《运筹学》期末考试试题及参考答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

费销
用 地
B1
B2
B3
B4
Si


1
2
3
4
A1
10
8
2
×
×
8
7
6
5
A2
20
×
×
2
18
9
A3 ×
dj
8
∴初始方案�
10 20
22
11 10
12
9 30
×
60
18
60
8
B1
2
B3
20
B2
A1
A2
2
B2
18
B4
A3
10
B3
Z=1×8+2×2+6×2+5×18+10×20+11×10=424
第 7 页 共 11 页
� �
xj

0,
j
� 1,2,..., 7
� x6
�4
� x5
� x7 � 10
大 M 法单纯形表求解过程如下�
第 5 页 共 11 页
�5
CB XB b x1
�2
�4
0
0 �M �M
θL
x2
x3
x4
x5
x6
x7
�M x6 4 �3�
1
2
�1
0
1
0
4/3
�M x7 10
6
3
5
0
�1
0
1
5/3
�9M
学习资料分享
[公司地址]
《运筹学》试题参考答案
一、填空题�每空 2 分�共 10 分� 1、在线性规划问题中�称满足所有约束条件方程和非负限制的解为 可行解 。 2、在线性规划问题中�图解法适合用于处理 变量 为两个的线性规划问题。 3、求解不平衡的运输问题的基本思想是 设立虚供地或虚需求点�化为供求平衡 的标准形式 。
B4
20
B2
A3
10
B4
最小运费 Z=1×8+2×2+6×12+5×8+10×20+9×10=414
六、�8 分�有甲、乙、丙、丁四个人�要分别指派他们完成 A、B、C、D 四项不同的工作�每 人做各项工作所消耗的时间如下表所示�
A
B
C
D

2
10
9
7

15
4
14
8

13
14
16
11

4
15
13
9
问�应该如何指派�才能使总的消耗时间为最少� 解�用 “匈牙利法”求解。
备如下表所示�
A
B
C

9
4
3
70

4
6
10
120
360
200
300
1�建立使得该厂能获得最大利润的生产计划的线性规划模型��5 分�
第 2 页 共 11 页
2�用单纯形法求该问题的最优解。�10 分� 解�1�建立线性规划数学模型�
设甲、乙产品的生产数量应为 x1、x2�则 x1、x2≥0�设 z 是产品售后的总利 润�则
300
3
�10�
0
0
1
0
0
0源自文库
0
0
70
120↑
0
0
0
0
x3
240 39/5
0
1
0
- 2/5
0
x4
20 �11/5� 0
0
1
- 3/5
120
x2
30 3/10
1
36
120
34↑
0
0
x3 1860/11 0
0
0
0
1/10
0
0
12
0
0
�12
1
�39/11 19/11
70
x1 100/11
1
0
0
5/11 - 3/11
3
0
�2 �11/3 1
1/3
�1
�1/3
0
�1/3 �1 �1/3 �M+1 �M+1/3
∴x*=�
2 3
�2�0�0�0�T
最优目标函数值 min z =�max z/ =��� 22 �= 22
3
3
五、�15 分�给定下列运输问题��表中数据为产地 Ai 到销地 Bj 的单位运费�
第 6 页 共 11 页
效率矩阵表示为�
� 2 10 9 7 �


� 15 4 14
8�
� 13 14 16 11 �
�� �
4
15 13
9
�� �
行约简
�0
8
7

� 11 0 10
�2
3
5
�� �
0
11 9
5 � 列约简 �
4�
0 � 标号
5
�� �
� (0)
8
2
5�


� 11 (0) 5
4�
�2
3
(0)
0* �


B1
B2
B3
B4
si
A1
1
2
3
4
10
A2
8
7
6
5
80
A3
9
10
11
9
15
dj
8
22
12
18
1�用最小费用法求初始运输方案�并写出相应的总运费��5 分� 2�用 1�得到的基本可行解�继续迭代求该问题的最优解。�10 分� 解�用“表上作业法”求解。
1�先用最小费用法�最小元素法�求此问题的初始基本可行解�
可行解域为 abcda�最优解为 b 点。
�2 x1 � 4 x2 � 22
由方程组 �

x2 � 0
∴X*=
� �� �
x1 x2
� �� �
=�11�0�T
∴min z =�3×11+2×0=�33
解出 x1=11�x2=0
三、�15 分�某厂生产甲、乙两种产品�这两种产品均需要 A、B、C 三种资源� 每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储
max z =70x1+120x2
s.t.
�9 x1 � 4 x 2 � 360
� �
4
x
1

6x2

200
� �
3
x
1

10
x2

300
��
x

1
x
2

0
2�用单纯形法求最优解�
加入松弛变量 x3�x4�x5�得到等效的标准模型�
max z =70x1+120x2+0 x3+0 x4+0 x5
s.t.
0
�5 x1 5/3
1
1/2
5/6
0 �1/6 0
1/6
10/3
0 x4 1
0
�1/2� 1/2
1 �1/2 �1
1/2
2
�5
�5/2 �25/6 0
5/6
0
�5/6
0
1/2↑ 1/6
0
�5/6 �M �M+5/6
�5 x1 2/3
1
�2 x2 2
0
0
1/3
�1 1/3
1
�1/3
1
1
2
�1 �2
1
�5 � 22
11
4 4
C3
2
12
8
最佳策略为�A→B2→C1→D1→E2→F
此时的最短距离为 5+4+1+2+2=14
4
D1
4
2
6 D2
9 7
7 5
D3
7
1
E1
1
0
F 2 E2
2
第 11 页 共 11 页
4、在图论中�称 无圈的 连通图为树。 5、运输问题中求初始基本可行解的方法通常有 最小费用法 、 西北角法 两 种方法。
二、�每小题 5 分�共 10 分�用图解法求解下列线性规划问题�
1�max z = 6x1+4x2

�2 x1 � x2 � 10
� � x1

x2

8
� �
x2 � 7
�� x1� x2 � 0
18
60
费销
用 地
B1
B2
B3
B4
Si


1
2
3
�1
4
�3
A1
10
8
2
×
×
8
�3
7
�1
6
5
A2
20
×
×
12
8
9
0
10
11
�1
9
A3
30
×
20
×
10
60
dj
8
22
12
18
60
调整后�从上表可看出�所有检验数� j ≤0�已得最优解。
∴最优方案为�
第 8 页 共 11 页
8
B1
12
B3
A1
A2
2
B2
8
�� �
1
0
1 0� �
0 0�
0 1�
0
0
�� �
∴使总消耗时间为最少的分配任务方案为�
甲→C�乙→B�丙→D�丁→A 此时总消耗时间 W=9+4+11+4=28
七、�6 分�计算下图所示的网络从 A 点到 F 点的最短路线及其长度。
此题在“《运筹学参考综合习题》�我站搜集信息自编�.doc”中已有。
30
400/13 100/11
100
四、�10 分�用大 M 法或对偶单纯形法求解如下线性规划模型�
min z =5x1�2x2�4x3
�3 x1 � x2 � 2 x3 � 4
� �
6
x1

3x2

5 x3

10
� �
x1, x2 , x3

0
第 4 页 共 11 页
解�用大 M 法�先化为等效的标准模型� max z/ =�5x1�2x2�4x3
s.t.
�3 x1 � x2 � 2 x3 � x4
� �
6
x1

3x2

5 x3
� �
yj

0,
j
� 1,2,..., 5
�4 � x5 � 10
增加人工变量 x6、x7�得到�
max z/ =�5x1�2x2�4x3�Mx6�Mx7
s.t
�3 x1 � x2 � 2 x3 � x4 ��6 x1 � 3x2 � 5 x3
120
x2 300/11
0
1
0 - 3/22 2/11
43000
70
120
0
170/11 30/11
11
0
0
0
-170/11 �30/11
∴X*=� 100 � 300 � 1860 �0�0�T
11
11
11
∴max z =70× 100 +120× 300 = 43000
11
11
11
θL
90 100/3
� �
0*
12
4
5
� �

� (0)
8
2

� 11 (0) 5
5� √ �
4�
�2
3
(0)
0* �


� �
0*
12
4
5
� �

第 9 页 共 11 页
� 0*
6
(0)
3�


� 13 (0) 5
4�
� �
4
3
0*
(
0)
� �
� �
(0)
10
2
3
� �
�0 0

至此已得最优解� � 0 1
�0 0
2�①用闭回路法�求检验数�
费销
用 地
B1
B2


1
2
A1
8
2
8
�4
7
�2
A2
×
×
B3
3
0
×
6
2
B4
Si
4
�2
10 ×
5 20
18
9
0
10
A3
×
20
dj
8
22
∵� 34 =1�0�其余 � j ≤0 ∴选 x34 作为入基变量迭代调整。 ②用表上闭回路法进行迭代调整�
11 10
12
9
1
30 ×
60
�9 x1 � 4 x2 � x3
� 360
� �
4
x1

6
x2
� �
3
x1

10
x2
� x4
� 200
� x 5 � 300
� �
x
j

0,
j

1,2,..., 5
列表计算如下�
第 3 页 共 11 页
70
120
0
0
0
CB
XB
b
x1
x2
x3
x4
x5
0
x3
360
9
4
1
0
0
0
x4
200
4
6
0
1
0
0
x5
⑵ ⑶ ⑷ ⑸、⑹
解�此题在“《运筹学》复习参考资料.doc”中已有�不再重复。
2�min z =�3x1+2x2
�2 x1 � 4 x2 � 22

�� �
� 2
x1 x1
� �
4 x
x
2
2 � 10 �7
� �
x1

3x2
�1
�� x1 , x 2 � 0
⑴ ⑵ ⑶ ⑷ ⑸ ⑹、⑺
解�
第 1 页 共 11 页
3
A
5
4
9 B1
5
4 3
B2 5
1
B3
7
1 C1
5
8 C2 4
6
4 4
C3
2
D1
4
2
E1 6
D2 9
E2 7
5
D3
1
F 2
解�此为动态规划之“最短路问题”�可用逆向追踪“图上标号法”解决如下�
第 10 页 共 11 页
3 14
5 A
4
14 9
B1 5
4 9
3 B2
5
1
B3
7
5 1
C1 5
8
C2 4 6
�4M �7M
M
M �M �M
9M�5↑ 4M�2 7M�4 �M �M
0
0
�5 x1 4/3
1
1/3
2/3 �1/3 0
1/3
0
——
�M x7 2
0
1
1
�2� �1 �2
1
1
�5
-M�5/3 -M�10/3 -2M+5/3 M 2M�5/3 -M
0
M�1/3 M�2/3 2M�5/3↑ �M �3M+5/3
相关文档
最新文档