华东师大版八年级上册数学:勾股定理

合集下载

八年级上华东师大版14.1勾股定理课件

八年级上华东师大版14.1勾股定理课件
勾股定理的逆定理指出:如果三角形的三边长a、b、c满足a² + b² = c²,那么这 个三角形一定是直角三角形。
逆定理为我们提供了一个判断三角形是否为直角三角形的方法,即验证三边是否 满足勾股定理的关系式。
02
勾股定理证明方法
拼图法证明
将两个直角三角形的斜边作为拼 图的两个边,通过拼接可以形成
05
拓展与延伸:费马大定理简介
费马大定理内容
费马大定理是指一个整数幂不可能被 分解为两个大于1的整数幂的和。
例如,费马猜想了不存在整数a、b和 c,使得a3=b3+c3(这被称为费马最 后定理)。
具体来说,费马猜想了以下三个情形 :对于任何大于2的整数n,不存在三 个大于1的整数a、b和c,使得 an=bn+cn。
例如,对于形如$a^2+b^2>c^2$的不等式,可以通过 构造直角三角形并应用勾股定理来证明或求解该不等式。
辅助角公式推导
勾股定理在三角函数中有重要应用, 特别是在推导辅助角公式时。
利用勾股定理和三角函数的定义,可 以推导出诸如$sin(A+B)$和 $cos(A+B)$等辅助角公式,从而简化 三角函数的计算和证明过程。
02
公式表示为:a² + b² = c²,其中 a和b是直角三角形的两个直角边 ,c是直角三角形的斜边。
勾股数及性质
勾股数是指满足勾股定理的三个正整 数,即a² + b² = c²中的a、b、c为 正整数。
勾股数的性质包括:任意两个勾股数 一定是互质的;一组勾股数中,必有 一个数是偶数等。
勾股定理逆定理
04
勾股定理在代数中的应用
求解代数式最值问题
利用勾股定理,可以将某些代数式转化为直角三角形中的边 长关系,进而利用三角形的性质求解最值问题。

八年级上华东师大版14.2勾股定理的应用PPT课件

八年级上华东师大版14.2勾股定理的应用PPT课件

解:连接AC
在直角三角形ADC中CD=3,AD=4
根据勾股定理得 AC2=CD2+AD2=32+
12
42=25
∴AC=5M
C ∵AC2+BC2=122+52
=132=AB2
3
D
13
B
S△ACD= CD×AD÷ 2= 3×4÷2= 6M2 ∴ 这块地的 面积=30_ 6=24M2
∴△ABC 是直角三角形
4
∴S△ABC=AC×BC÷2
=30M2
A
探究1
如图,以Rt△
的三边为边向外作正方形,
其面积分别为 S1 S2 S3,请同学们想一想
S1 S2 S3 之间有何关系呢?
解: 因为 S1 + S2 =a2+b2 S3=c2
A
S S3 c b a
2
B S1 C
所以a2+b2=c2
S1 + S2 = S3
❖ 一解圆柱在体R的t△底A面C周D中长为,2A4Dc=m1,2 C高DA=B5 为由5勾cm股, B定C是理上得底面的直径 .一只蚂蚁 从A点C2A=出A发D2,+C沿D着2=圆12柱2的+5侧2=面16爬9行到点 C, 试求∴出爬AC行=的13最短路程.
B
CB
C
A
DA
D
例3、如图,边长为1的正方体中,一只蚂蚁从顶点A出
P'
14.2勾股定理的应用
大堡中学:周忠成
问题一
• 勾股定理的内容是什么?
A
a2+b2=c2
b
c
Ca B
勾股定理:直角三角形两直角边的平方 和等于斜边的平方.
问题二
• 如果已知三角形的三边长a、b、c,怎样 判定这个三角形是否为直角三角形?

1勾股定理(第1课时)(教学PPT课件(华师大版))28张

1勾股定理(第1课时)(教学PPT课件(华师大版))28张
正方形中小方格的个数,你有什么猜想?
1955年希腊发行的一枚纪念邮票.
讲授新课
知识点一 直角三角形三边的关系
视察正方形瓷砖铺成的地面.
(1)正方形P的面积是
1
(2)正方形Q的面积是
1
平方厘米;
(3)正方形R的面积是
2
平方厘米.
平方厘米;
上面三个正方形的面积之间有什么关系?
等腰直角三角形ABC三边长度之间存在什么关系吗?
程.
b
a
b
a
c
c
b
c
c
a
a
b
讲授新课
证明:大正方形的面积=(a+b)2.
四个个全等的直角三角形和小正方形的面积
1
2
2
之和= 4 ab c 2ab c .
2
b
由题可知(a+b)2=2ab+c2,
a
c
化简可得a2+b2=c2.
我们利用拼图的方法,将形的问题
与数的问题结合起来,再进行整式
A的面积
B的面积
C的面积
左图
4
9
13
右图
16
9
25
结论:以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
SA+SB=SC
讲授新课
猜想:两直角边a、b与斜边 c 之间的关系?
A
a
B b
c
a2+b2=c2
C
讲授新课
概念总结
由上面的探索可以发现:对于任意的直角三角形,如果它的两
数学(华东师大版)
八年级 上册
第14章 勾股定理

华师大版八年级数学上册第十四章勾股定理PPT教学课件全套

华师大版八年级数学上册第十四章勾股定理PPT教学课件全套

解: 在 Rt△ABC 中, 斜边不确定, 这就需要分情况讨论: 若 AB 是斜边,则 AB2=AC2+BC2=152+82=289,从 而 AB=17; 若 AB 不是斜边,由 AC>BC,知 AC 为斜边,此时 AC2 =AB2+BC2,即 AB2=AC2-BC2=152-82=161,从而 AB = 161. 综上所述,AB 边的长为 17 或 161.
图 14-1-3
14.1.1
探索直角三角形三边的关系
重难互动探究
探究问题一 理解勾股定理 (1)求出如图 14-1-4 所示直角三角形中未知边的长度; (2)在直角三角形 ABC 中, ∠C = 90°, BC = 12, AC = 9,求 AB 的长; (3)已知:图 14-1-5 的正方形是以直角三角形的边长为 边的正方形,那么正方形 A 的面积是多少? (4)已知:图 14-1-6 的正方形是以直角三角形的边长为 边的正方形,那么正方形 B 的边长是多少?
图 14-1-4
图 14-1-5
图 14-1-6
14.1.1
探索直角三角形三边的关系
解:(1)如图 14-1-4,在 Rt△ABC 中,∠C=90°,AC =15, BC=8.由勾股定理, 得 AB2=AC2+BC2=152+82=289, ∴ AB=17. (2)∵∠C = 90°,BC = 12,AC = 9 ,∴ AB2=BC2 +AC2=122+92=225, ∴AB=15. (3) 由勾股定理可知:直角三角形的两条直角边上的正方 形的面积和等于斜边上的正方形的面积,故可以求得正方形 A 的面积是 37+63=100. (4)由勾股定理可知: 直角三角形的两条直角边上的正方形 的面积和等于斜边上的正方形的面积, 故可以求得正方形 B 的 面积是 100-36=64,所以边长是 8.

【华东师大版】数学八年级上册数学:勾股定理

【华东师大版】数学八年级上册数学:勾股定理

❖ AC2+BC2=AB2 → ∠ACB为直角
❖ AC2+BC2>AB2 → ∠ACB为锐角
C
A
C
A
BC
A B
B
归纳应用方法:
用勾股定理的逆定理判断直角三角形的步骤:
△ABC中
①、确定最大边(最大边c所对的角是最大角)
②、验证:c2与a2+b2是否相等 若 c2 == a2 ++ b2则△ABC是以∠C=90°的直角三角形
BC = 4 , CD = 12 , AD = 13, 求 四
边形ABCD的面积?
S C
四边形ABCD=36
B D
A
华东师大版八年级上册数学:勾股定 理-精品 课件pp t(实用 版)
华东师大版八年级上册数学:勾股定 理-精品 课件pp t(实用 版)
2. 已知a,b,c为△ABC的三边,且 满足
练一练
1、 三 角 形 三 边 长 a、 b、 c满 足 条 件 a:b:c= = 9:12:15,则 此 三 角 形 是 ( B )
A、锐角三角形 C、钝角三角形
B、直角三角形 D、等边三角形
2. 满足下列条件△ABC,不是直角三角形的是( D )
A.b2=a2-c2
B. a:b:c=3:4:5
A、锐角三角形
B、直角三角形
C、钝角三角形
D、等边三角形
华东师大版八年级上册数学:勾股定 理-精品 课件pp t(实用 版)
思 维 激 活
华东师大版八年级上册数学:勾股定 理-精品 课件pp t(实用 版)
1、△ABC三边a,b,c为边向外作 正方形,(以三边为直径作半 圆,)若S1+S2=S3成立, 则△ABC 是直角三角形吗?

14.2 勾股定理的应用 华东师大版数学八年级上册知识考点梳理课件

14.2 勾股定理的应用 华东师大版数学八年级上册知识考点梳理课件
又 ∵BF=6 cm,∴BG=5+6=11(cm).
在 Rt△ABG 中,AG= +
= + = (cm);
14.2 勾股定理的应用
返回目录
方案二:如图 2,当蚂蚁从点 A 出发经过 BF 到点 G


题 时(将前面和右面展开),

∵AB=3 cm,BC=5 cm,
设 B′E=BE=x,则 CE=4-x.
∵S△AEC=

Βιβλιοθήκη CE×AB=
(4-x)×3=




AC×B′E,
×5x,解得 x=


,∴B′E=


.
14.2 勾股定理的应用
返回目录
变式衍生 1
如图,在长方形 ABCD 中,AB=8,BC=4


题 ,将长方形沿 AC折叠,点 D 落在点 D′处,则重叠部分

破 ,BF=6 cm,蚂蚁要沿着怎样的路线爬行,才能最快吃到饼
干渣? 这时蚂蚁走过的路程是多少?
14.2 勾股定理的应用
返回目录
[答案]解:分以下三种方案讨论:


方案一:如图 1,当蚂蚁从点 A 出发经过 EF 到点 G


突 时(将前面和上面展开),

∵BC=5 cm,∴FG=BC=5 cm.
对点典例剖析


典例
如图,一架 2.5 m 长的梯子AB 斜靠在墙 AC 上


解 ,梯子的顶端 A离地面的高度为 2.4 m,如果梯子的底部 B
读 向外滑出 1.3 m 后停在 DE位置上,则梯子的顶部下滑多少

八年级上华东师大版14.2勾股定理的应用课件

八年级上华东师大版14.2勾股定理的应用课件

2
A 8 C
4.一个三角形的三边的比为5∶12∶13,它的 周长为60cm,则它的面积是___

假期中,王强和同学到某海岛上去玩探宝 游戏,按照探宝图,他们登陆后先往东走 8千米,又往北走2千米,遇到障碍后又往 西走3千米,再折向北走到6千米处往东一 拐,仅走1千米就找到宝藏,问登陆点A 到 宝藏埋藏点B的距离是多少千米? 1 B 6 3

AC2+BC2=AD2
S S ABC S ACD
∴△ACD是直角三角形 1 1 3 4 5 12 36 2 2
如图,有一块地,已知,CD=6m, AD=8m,∠ADC=90°,BC=24m, AB=26m。求图中着色部分的面积。
练习P123 1,2
1.三角形三边长分别为6、8、10,那么它 最短边上的高为______. 2.测得一个三角形花坛的三边长分别为 5cm,12cm,13cm,则这个花坛的面积是 ________. 3.直角三角形三边是连续整数,则这三角 形的各边分别为___
14.2勾股定理的应用

b c
a2+b2=c2
B a 勾股定理:直角三角形两直角边的平方 和等于斜边的平方. C

如果已知三角形的三边长a、b、c,怎样判 定这个三角形是否为直角三角形?
如果三角形的三边长a、b、c有 关系:a2+b2=c2,那么这、个三 角形是直角三角形.
• 如图,在3乘3的方格图中,每个小方格的边长都为1,请在 给定网格中按下列要求画出图形: • (1)画出所有从点A出发,另一个端点在格点(即小正方形 的顶点)上,且长度为根号5的线段; • (2)画出所有以题(1)中所画线段为腰的等腰三角形.
D

八年级数学上册 14.1 勾股定理 勾股数有规律吗?素材 (新版)华东师大版

八年级数学上册 14.1 勾股定理 勾股数有规律吗?素材 (新版)华东师大版

勾股数有规律吗?我们知道,像15,8,17这样,能够成为直角三角形三条边长的三个正整数,称为勾股数.勾股数有什么规律吗?下面就让我们分类探究一下.一、最短边的长度为奇数 观察下表中的勾股数:根据上面的表格,我们可以发现以上勾股数(a ,b ,c 无公约数)具备一定的特征,很显然,当21a n =+(n ≥1)时,()21b n n =+,()211c n n =++.同时我们容易验证:()()()2222121211n n n n n +++=++⎡⎤⎡⎤⎣⎦⎣⎦,即当最短边的长度为奇数时,勾股数有此规律. 二、最短边的长度为偶数最短边的长度为偶数时,没有公约数的勾股数又有什么规律呢?首先,最短边为偶数时,其他两边不可能再是偶数,否则就有了公约数2,所以另外两个勾股数必为奇数,而且这两个奇数的平方差是8的倍数(八年级上册曾学过).这是因为两个奇数可以表示为21m +和21n +,这里的m 、n 都是正整数,不妨设m n >,则()()()22222121441441m n m m n n +-+=++-++()()2244m n m n =-+- ()()41m n m n =-++.因为m 、n 都为正整数,而任意两个正整数的和与差具有同奇同偶性,所以m n -与1m n ++这两个数中,有且只有一个偶数,所以()()41m n m n -++必定能被8整除.这说明,一组无公约数的勾股数中,如果最小的数为偶数,则它的平方必为8的倍数,而另外两数必为奇数.观察下表中的没有公约数的勾股数:由此表格中的数据可以得出,该表格中的无公约数的勾股数具备这样的特征:当8a n =(n ≥1)时,2161b n =-,2161c n =+,同时我们容易验证:()()()222228161161n n n +-=+.综上,我们对无公约数的勾股数做了一定的探索,并获得了一般规律,只要能牢固掌握这些规律,今后解决相关的题目就能够驾轻就熟.。

华师大版八年级数学上册 14.1勾股定理

华师大版八年级数学上册 14.1勾股定理

C
a
B 则a2+b2=C2


N
M C
Fa B
b C
P A

D
E
M C
Fa
b
B
A
C
D
E
M C
Fa
b
B
A
C
D
E
N
M C
Fa B
b C
P A
D
E
N
M C
Fa B
b C
P A
D
E
N
M C
Fa B
b C
P A
D
E
N
M C
Fa B
b C
P A
D
EGຫໍສະໝຸດ NM CFa B
b C
P A
D
E
G
N
M C
Fa B
b C
P A
D
E
G
N
M C
Fa B
b C
P A
ou
D
E
G
N
M C
Fa B
b C
P A
ou
D
E
G
刘徽的“青朱出入图”
I
E F
D
C
A
BH
G
收获:
一个定理——勾股定理 一个思想——以形证数 一次探索——从特殊到一般 一份自豪——中国人的骄傲
华师版八年级(上)第十四章
勾股定理
勾股定理: 直角三角形两直角边的平方和等 于斜边的平方。
cD
勾股定理:
直角三角形两直角边的平方和等
于斜边的平方。
C a
b
在Rt△ABC中, 若∠A=900

初中数学 华东师大版八年级上册 第14章 勾股定理知识点总结及常见题型

初中数学 华东师大版八年级上册  第14章 勾股定理知识点总结及常见题型

勾股定理知识点总结及常见题型勾股定理是解直角三角形的一个有力且重要的工具,新课程标准对勾股定理及其逆定理的要求是“掌握”和“应用”,并使用定理解决一些简单的实际问题.勾股定理是每年河南中考必考内容,不单独命题考查,常以综合题的形式展开考查. 在不同版本的初中数学教材中,勾股定理及其逆定理的内容单独成章,全章共分为3节:勾股定理的探索及内容、勾股定理的逆定理和勾股定理的应用.熟练掌握掌握本章内容是每一个学生必须完成的任务. 下面就本章的内容进行知识点梳理和常见题型总结.知识点一 勾股定理的内容直角三角形两直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为b a ,,斜边为c ,那么有:222c b a =+.注意:1. 勾股定理揭示了直角三角形三边之间的数量关系.2. 勾股定理仅用于直角三角形的求解,不能直接用于其它非直角三角形的求解.3. 根据勾股定理,已知直角三角形的两边长,可以求出第三条边的长度.4. 注意上面的公式中“c ”不一定是斜边,所以在用勾股定理解直角三角形时,要注意分类讨论.5. 公式的变形:222222,,a c b b c a b a c -=-=+=.6. 勾股定理的使用对象是直角三角形,所以在应用勾股定理时要先在过程里面说明三角形是直角三角形,还要弄清楚直角边和斜边.若不确定斜边,则要展开分类讨论.例1. 在△ABC 中,已知︒=∠90C ,10,6==c a ,求b . 解:在△ABC 中,∵︒=∠90C ∴△ABC 是直角三角形 ∵10,6==c a∴由勾股定理得:86102222=-=-=a c b .注意: ∵︒=∠90C ,所以C ∠的对边c 就是斜边.习题1. 求下列直角三角形中未知边的长度.图(1)x86图(2)y135习题2. 已知直角三角形的两边长分别为3和4,求第三条边的长度.(提醒:长度为4的边,可能是直角三角形的直角边长,也可能是直角三角形的斜边长,所以本题要分两种情况进行讨论)习题3. 如图(3)所示,求等腰三角形ABC 的面积.图(3)655BA知识点二 勾股定理的证明勾股定理是一个非常重要的定理,它的证明方法很多,但初中阶段最常见的证明方法是拼图法:用几个相同的直角三角板拼成一个几何图形,根据图形之间的面积关系列出等式,从而证明勾股定理.证明一: 如图(4),用4个相同的直角三角板拼成一个边长为c 的大正方形和一个边长为()a b -的小正方形,则有:图(4)abc()22214c a b ab =-+⨯ 展开等式并整理可得:222c b a =+.证明二: 如图(5),用4个相同的直角三角板拼成一个边长为()b a +的大正方形和一个边长为c 的小正方形,则有:图(5)bc ba()22214b a c ab +=+⨯ 展开等式并整理可得:222c b a =+.证明三: 如图(6),用两个相同的直角三角板可以拼成一个上底为a ,下底为b ,高为()b a +的直角梯形,则有:图(6)bc ba()222121212b a c ab +=+⨯ 展开等式并整理可得:222c b a =+.重要结论 与勾股定理有关的面积结论(1)如图(7)所示,以直角三角形的三边为边长,向外作三个正方形,则三个正方形的面积关系为:213S S S +=.图(7)图(8)图(9)(2)如图(8)所示,以直角三角形的三条边为直径向外作三个半圆,则三个半圆的面积关系为:213S S S +=.(3)如图(9)所示,以直角三角形的三条边为斜边长(或直角边长),向外作三个等腰直角三角形,则这三个等腰直角三角形的面积关系为:213S S S +=. (4)如图下页(10)所示,以直角三角形的三条边为边长向外作三个等边三角形,则这三个等边三角形的面积关系为:213S S S +=.图(10)重要结论 在长方体中,能放进木棒的最大长度如图(11)所示,已知长方体的长、宽、高分别为c b a ,,,则长方体中能放进木棒的最大长度为222c b a ++.图(11)c ba D C BA事实上,在Rt △ABC 中,由勾股定理得:2222b a BC AB AC +=+=在Rt △ACD 中,由勾股定理得:22222c b a CD AC AD ++=+=.显然,AD 的长度即为长方体中能放进木棒的最大长度.知识点三 勾股定理的逆定理如果三角形的三边长c b a ,,满足222c b a =+,那么这个三角形是直角三角形.以上便是勾股定理的逆定理,可以用来判断已知三边长度的三角形是否为直角三角形.在应用勾股定理的逆定理时,同学们要注意: (1)已知的条件:某三角形三条边的长度.(2)满足的条件:最长边的平方=最小边的平方+中间边的平方. (3)得到的结论:这个三角形是直角三角形,并且最长边的对角是直角. (4)如果不满足(2),则这个三角形不是直角三角形.勾股定理的逆定理是判断一个三角形是否为直角三角形的一种重要的方法,因此也叫作直角三角形的判定定理,使用方法是: (1)首先确定最长边,不妨设最长边为c ; (2)分别计算处2c 和22b a +:①若222c b a =+,则三角形是直角三角形; ②若222c b a ≠+,则三角形不是直角三角形.勾股数 满足222c b a =+的三个正整数,称为勾股数.常见的勾股数如3 , 4 , 5 ; 6 , 8 ,10 ; 5 , 12 , 13 ; 8 , 15 , 17 ; 7 , 24 , 25. 例2. 如图(12)所示,在四边形ABCD 中,3,2,2,1,====⊥AD CD BC AB BC AB ,求四边形ABCD 的面积.图(12)DCBA分析:勾股定理用于求直角三角形的边长,勾股定理的逆定理用于判断一个三角形是否为直角三角形,题目经常对两个定理同时考查.图形当中如果没有直角三角形,则需要添加辅助线构造直角三角形. 解:连结AC ,∵BC AB ⊥ ∴△ABC 是直角三角形 由勾股定理得:5212222=+=+=BC AB AC∵()93,94525222222===+=+=+AD CD AC∴222AD CD AC =+ ∴△ACD 为直角三角形 ∴5125212121+=⨯⨯+⨯⨯=+=∆∆ACD ABC ABCD S S S 四边形.例3. 若三角形三边长分别为c b a ,,,且满足()44222b a c b a -=-,试判断这个三角形的形状.解:()44222b a c b a -=-()()()()()()()()0222222=---+-++=-+b a c b a b a b a b a b a c b a b a ∵c b a ,,为三角形的三边长 ∴0=-b a 或0222=--b a c ∴b a =或222b a c +=∴这个三角形为等腰三角形或直角三角形.习题4. 如图(13)所示,在△ABC 中,若17,8,6,10====AC AD BC AB ,求△ABC 的面积.图(13)D CBA习题5. 如图(14)所示,在△ABC 中,CD 是AB 边上的高,9,15,20===DB BC AC . (1)求CD 的长;(2)△ABC 是直角三角形吗?为什么?图(14)DCBA知识点四 勾股定理的应用主要有两方面的应用:(1)已知直角三角形的两边长,求第三条边的长;(2)已知一边长,另两条边的长度之间存在着一定的数量关系,通过设未知数利用勾股定理列方程来求解直角三角形. 本章主要问题有:1. 折叠问题习题6. 如图(15)所示,长方形纸片ABCD ,沿折痕AE 折叠边AD ,使点D 落在BC 边上的点F 处,已知24,8==∆ABF S AB ,求EC 的长.图(15)F EDCBA2. 网格问题习题7. 如图(16)所示,设正方形网格的每个小正方形的边长为1,格点△ABC 中,AB 、BC 、AC 三边的长分别为31015、、. (1)请在正方形网格中画出格点△ABC ; (2)格点△ABC 的面积为_________.图(16)3. 判断三角形形状问题习题8. 已知△ABC 的三边c b a ,,满足c b a c b a 262410338222++=+++,求 △ABC 的面积.4. 梯子问题习题9. 一架云梯长25 m,如图(17)那样斜靠在一面墙上,云梯底端离墙7 m. (1)这架云梯的顶端距地面有多高?(2)如果云梯的顶端下滑了4 m,那么它的底部在水平方向也滑动了4 m 吗?图(17)5. 航海问题习题10. 如图(18)所示,甲船以16海里/时的速度离开港口,向东南航行,乙船在同时同地向西南航行,已知他们离开港口一个半小时后分别到达B 、A 两点,且知AB =30海里,问乙船每小时航行多少海里?图(18)6. 最值问题习题11. 如图(19)所示,正方形ABCD 的边长为2,点E 为边BC 的中点,点P 在对角线BD 上移动,则PC PE 的最小值是_________.图(19)PE DCBA。

华师大版初中八年级数学上册第14章《勾股定理》PPT课件

华师大版初中八年级数学上册第14章《勾股定理》PPT课件

D
A
B
图1
CD
13
C
5
4
12
A3 B
图2
解:在△ABD中,
所以△ABD 是直角三角形,∠A是直角. 在△BCD中,
所以△BCD 是直角三角形,∠DBC是直角. 因此,这个零件符合要求.
例4 已知△ABC,AB=n²-1,BC=2n,AC=n²+1(n为大于
1的正整数).试问△ABC是直角三角形吗?若是,哪一条 边所对的角是直角?请说明理由
x=15, 15+9=24(m). 答:旗杆原来高24 m.
课堂小结
认识勾 股定理
如果直角三角形两直角边长 分别为a,b,斜边长为 c , 那么a2+b2=c2
利用勾股定理进行计算
第14章 勾股定理
14.1 勾股定理 第2课时
学习目标
情境引入
1.了解直角三角形的判定条件.(重点) 2.能够运用勾股数解决简单实际问题.(难点)
A 2 E 2 D △FCB均为直角三角形. 1 F 由勾股定理,知
4
BE2=22+42=20,EF2=22+12=5,
3 BF2=32+42=25,
B
4
C ∴BE2+EF2=BF2. ∴ △BEF是直角三角形.
课堂小结
一定是直 角三角形
勾股定理的逆定理:如果三角形的 三边长a,b,c满足a2+b2=c2,那么 这个三角形是直角三角形.
如图,在△ABC中,AB=c,BC=a,AC=b,(a≤b≤c)
有关系a2 +b2 =c2时,这个三角形一定是直角三角形吗?
解析:由a2 +b2 =c2 ,根据勾股定理的逆

华师大版八年级上册 14.2 勾股定理的应用 课件(共20张PPT)

华师大版八年级上册 14.2 勾股定理的应用 课件(共20张PPT)

=100(海里)
答海:里甲。乙两船相C 距100
B A

1、已知:等边△ ABC的边长是6cm
(1) 求高AD的长.
(2) 求S △ ABC.
A
B
D
C

解:(1)∵ △ ABC是等边三角形,AD是高,
BD1BC3(三线和一)
2
在Rt △ ABD中,AB=6,BD=3,
B
根据勾股定理,
∵ AD2=AB2 - BD2
甲 30×2 =60(海里) 乙 40×2 =80 (海里)
C
B A
甲船以每小时30海里 的速度,从A处向正 北方向航行,同时乙 船从A处以每小时40 海里的速度向正西方 向航行,两小时后, 甲、乙两艘轮船相距 多少海里?
解:如图,在Rt∆ABC
中,
BC2=AB2+AC2
BC= (30×2)2+(40×2)2
么它的斜边上的高为_2__cm.
A
A
2cm
D
B
C
16cm
C
B
△ABC中,a2+b2=25,a2-b2=7,
又c=5,则最大边上的高是__2_._4___. 解:a2+b2=25,a2-b2=7,
2a2=32,a2=16,a=4, b2=9 b=3 又c=5c为最大边 设最大边上的高为X
1 2
ab=
CD= OC2 OD2 = 12 0.82 =0.6m,
N
CH=0.6+2.3 =2.9(m)>2.5(m).
2.3米
C
O
┏B
D
M
2米 H
答:高度上有0.4m的余量,卡车能通过厂门.

14.2勾股定理的应用第一课时课件华东师大版数学八年级上册

14.2勾股定理的应用第一课时课件华东师大版数学八年级上册

AB AC2 BC2 12 22 5
答:最短路程为 5 厘米。
例3.如果盒子换成如图长为3cm,宽为2cm,高为
1cm的长方体,蚂蚁沿着表面需要爬行的最短路程
又是多少呢?
B
分析:蚂蚁由A爬到B过程中 较短的路线有多少种情况?
1
A
3
2
(1)经过前面和上底面; (2)经过前面和右面;
B
B
2
(大门宽度一半),米 (卡车
宽度一半)在Rt△OCD中,由
勾股定理得
A

CD= OC 2 OD2
= 12 0.82 =米,
CH=+=>
N
因此高度上有米的余量,所以卡车能通过厂门.
B
2米
C
C
O

D
B
2米 HM
例3.有一个水池,水面是一个边长 为10尺的正方形,在水池的中央有 一根新生的芦苇,它高出水面1尺, 如果把这根芦苇拉向岸边,它的顶端 恰好到达岸边的水面,问这个水池的 深度和这根芦苇的长度各是多少?
解:由题意得,在RtΔABF中 A
AF=AD=BC=10,AB=DC=8
BF AF2 AB2
8
102 82 6
∴FC =4cm
B
设EC=x,则DE=EF=(8-x),
10
6 10
D
8-X
8-X E
X
F4 C
∵EF2=EC2+FC2 ∴ (8-x)2 = x2+42
解得:x=3
试一试
1.长方形纸片ABCD中,AD=4cm,AB=10cm,按如
解:如图,在Rt∆ABC中,∠A=90
C
BC2=AB2+AC2

华东师范大学出版社初中数学八年级上册 14.2 勾股定理的应用 )

华东师范大学出版社初中数学八年级上册 14.2 勾股定理的应用 )

达标检测
如果盒子换成如图长为4cm,宽为2cm, 高为1cm的长方体,蚂蚁沿着表面从A点出发 爬到对角顶点C1处,问怎样走路线最短?最 短路程是多少?
C1
1
A
2
4
分析:蚂蚁由A爬到C1过程中较短的路线有多
少种情况?
B
(1)经过前面和上底面;
2
(2)经过前面和右面;
1
(3)经过左面和上底面.
A
4
C
8m
A
6m B
新知探究
例1 如图,一圆柱体的底面周长为20cm,高 AB为4cm,BC是上底面的直径.一只蚂蚁从 点A出发,沿着圆柱的侧面爬行到点C,试求 出爬行的最短路程.(精确到0.01cm)
(1)自制一个圆柱,尝试从A点 到C点沿圆柱侧面画出几条路线,
你认为哪条路线最短呢?
(2)如图,将圆柱侧面剪开展成 一个长方形,从A点到C点的最短
14.2 勾股定理的应用
勾股定理 如果直角三角形两直角边分别为 a,b,斜边为c,那么a²+b²=c²。
∵ 在Rt△ABC中, ∠C=90°,AB=c,AC=b,BC=a,
A
a2+b2=c2.
cb
B aC
设境导入 :☞
如图,学校有一块长方形草地,有极少数
人为了避开拐角走“捷径”,在草地内走出
了一条“路”,仅仅少走了___4_____步路, 却
程为
B
A
AB= AC2 BC2 =
A1
52 22
B 2
4
C
= 29
5 26 29
∴最短路程为5cm
达标检测
如果圆柱换成如图的长、宽都是3,高是8的长 方体盒子,一只蚂蚁从顶点A沿着表面爬到需要爬 到顶点B处,它所走的最短路程是多少?

华东师大版八年级上册数学课件华师大版八年级数学上14.1.1勾股定理课件共17张ppt

华东师大版八年级上册数学课件华师大版八年级数学上14.1.1勾股定理课件共17张ppt
米宽,他觉得一定是售货员搞错了。你能解释这是为什 么吗?
58
我们通常所说的29英
寸或74厘米的电视机,
46
是指其荧屏对角线的
长度
∵ 582 462 5480 742 5476
∴荧屏对角线大约为74厘米 ∴售货员没搞错。 灿若寒星
课堂小结:
1、这节课你学到了什么知识? 2、运用“勾股定理”应注意什么问题? 3、你还有什么疑惑或没有弄懂的地方?
观察图2
(1)正方形P中含有() 个小9方格,即P的面积 是()平方厘米。9
(2)正方形Q中含有() 小方1格6 ,即Q的面积 是()平方厘米。16
(每一格表示1平方厘米)
图2
(3)正方形R中含有()2个5 小方格,即R的面积 是()平方2厘5 米。
灿若寒星
SP=1
SR=2
你能发现图1中三个正方
形P,Q,R的面积之间有
灿若寒星
规律:直角三角形两直角边的平方和等于斜边的平方。
画出两条直角边分别为5cm、12cm的直角三角形,然后用刻度 尺量出斜边的长,并验证上述关系对这个直角三角形是否成立。
A
画BC=5cmAC=12cm
量得AB=13cm
C
B
因为52+122=132
所以BC2+AC2=AB2
即:直角三角形两 直角边的平方和等 于斜边的平方。
灿若寒星
课堂练习
1.在Rt△ABC中,已知∠A=90°,AB=c,BC=,AC=b
(1)已知=a10,b=6,求c;
B
(2)已知ba=5,c=6,求.
a
a C=?6
=1?0
解:(1)在Rt△ABC中,根据勾股定理得

勾股定理课件华东师大版数学八年级上册

勾股定理课件华东师大版数学八年级上册

A
则____A_B__=__A_C_______ ( 等角对等边).
这与____已__知__A__B_≠_A_C_____矛盾.
B
C
假设不成立.
∴___∠__B__≠_∠__C__________________.
小结:反证法的步骤:假设结论的反 面成立→逻辑推理得出矛盾→肯定原 结论正确
例题精讲
AB2 AD2 32 42 25 52 BD2,
在△BCD 中, BD2 BC2 52 122 169 132 CD2,
例题精讲
所以△BCD 是直角三角形,
D
13
∠DBC 是直角.
因此,这个零件符合要求.
4
5
A 3B
C 12
例题精讲 例4
已知△ABC,AB = n²- 1,BC = 2n,AC = n²+ 1 (n 为大于 1 的正整数). 试问△ABC 是直角三角形吗?若 是,哪一条边所对的角是直角?请说明理由
例题精讲
(2) a = 13 ,b = 14,c = 15. ∵ 132 + 142 = 365,152 = 225, ∴ 132 + 142 ≠152,不符合勾股定理的逆定理, ∴ 这个三角形不是直角三角形.
归纳 根据勾股定理的逆定理,判断一个三角形是不是直角三 角形,只要看两条较小边长的平方和是否等于最大边长 的平方.
练一练
求下列图形中未知正方形的面积或未知边的长度(口
答):
100
x
17
225
?
15
已知直角三角形两边,求第三边.
2.直角三角形的判定
学习目标
1. 了解直角三角形的判定条件.(重点) 2. 能够运用勾股数解决简单实际问题.(难点)

初中数学华东师大版八年级上册14.2 勾股定理的应用

初中数学华东师大版八年级上册14.2 勾股定理的应用

2、如图,有一个长方体盒子,它的长是60厘米,宽和高都是40厘米,在A处有一
只蚂蚁,它想吃到B点处的食物,那么它爬行的最短路程是多少?
B
A
A
60
AB2=AC2+BC2=602+802=1002
B
∴蚂蚁爬行的最短路程为100厘米。
80
c
B
A
点A到点B的最短路线是多少?ຫໍສະໝຸດ BA 有三个路线:
AB 32 112 130cm
C
B
例3.有一个圆柱,它的高等于
B
12厘米,底面半径等于3
厘米,在圆柱下底面上的 A点有一只蚂蚁,它想从 点A爬到点B , 蚂蚁沿着
我怎么走 会最近呢?
圆柱侧面爬行的最短路 A
程是多少? (π的值取3)
B
9cm
B
高 12cm
A
A
长18cm (π的值取3)
∵ AB2=92+122=81+144=225= 152 ∴ AB=15(cm)
A 36cm
A
10cm
6cm
B
48cm
解题思路:把握题意—— 找关键字词——连接相关 知识——建立数学关系式
(建模)
C
36cm
B
解:由图得:在Rt△ABC中,
A
AC=48cm,BC=36cm
AB= AC 2 BC 2
=60cm
答:蚂蚁从A点出发,沿着台阶面爬到B点, 最短线路是60cm
勾股定理应用
勾股定理与距离
例1. 如图,学校有一块长方形草坪,有极少 数人为了避开拐角而走“捷径”,在草坪内走
出了一条“路”。他们仅仅少走了____4______
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


3.把握好故事情节,是欣赏小说的基础,也是整 体感知 小说的 起点。 命题者 在为小 说命题 时,也必 定以情 节为出 发点,从整体 上设置 理解小 说内容 的试题 。通常 从情节 梳理、 情节作 用两方 面设题 考查。

4.根据结构来梳理。按照情节的开端 、发展 、高潮 和结局 来划分 文章层 次,进而 梳理情 节。
所对的直角边是斜边的一半 ;
(6)在直角三角形中, 如果一条直角边是斜边的一半, 那么它所对的锐角是30°。
反之,一个三角形满足什么条件,才能是直角三角形呢?
X
思考:
一个三角形满足什么条件才能是直角三角形?
(1)有一个角是直角的三角形是直角三角形; (2)有两个角的和是90°的三角形是直角三角形;

8.少年时阅历不够丰富,洞察力、理 解力有 所欠缺 ,所以 在读书 时往往 容易只 看其中 一点或 几点, 对书中 蕴含的 丰富意 义难以 全面把 握。

9.自信让我们充满激情。有了自信, 我们才 能怀着 坚定的 信心和 希望, 开始伟 大而光 荣的事 业。自 信的人 有勇气 交往与 表达, 有信心 尝试与 坚持, 能够展 现优势 与才华 ,激发 潜能与 活力, 获得更 多的实 践机会 与创造 可能。
锐角三角形
(2)6,7,10
钝角三角形
(3)5,12,13 直角三角形
请比较上述每个三角形的两条较短边的平方和 与最长边的平方之间的大小关系. 并指出最长边所 对的角是什么角。
6cm
7cm
5cm ⑴
7cm
10cm
锐角三角形
较短的两条边的平方和 __大_于___最长边的平方
52 ++ 62> 72 最长边所对的角
如果一个定理的逆命题经过证明是真命题,那么 它也是一个定理,这两个定理称为互逆定理,其中 一个定理称另一个定理的逆定理.
我们已经学习了一些互逆的定理,如: 勾股定理及其逆定理; 两直线平行,内错角相等;内错角相等,两直线平行.
设AB是△ABC中三边中最长边,则有
❖ AC2+BC2<AB2 → ∠ACB为钝角
C.∠C=∠A-∠B
D. ∠A:∠B : ∠C =3:4:5
3.下列各组线段中,能组成直角三角形的是( ) A. 5,6,7 B. 32,42,52 C. 5,11,12 D. 5,12,13
解释“古埃及人画直角”的理论根据.
解:如图,设每两个结的距离为a(a>0),
则AC=3a,BC=4a,AB=5a.
练一练
1、 三 角 形 三 边 长 a、 b、 c满 足 条 件 a:b:c= = 9:12:15,则 此 三 角 形 是 ( B )
A、锐角三角形 C、钝角三角形
B、直角三角形 D、等边三角形
2. 满足下列条件△ABC,不是直角三角形的是( D )
A.b2=a2-c2
B. a:b:c=3:4:5
是__锐__角__
钝角三角形
较短的两条边的平方和 __小_于__最长边的平方
62++ 72< 102 最长边所对的角是
__钝_角_____
6cm ⑵
5cm
13cm
12cm (3)
直角三角形
52++122 ==132
较短的两条边的平方和 __等__于__最长边的平方 最长边所对的角是 ___直__角_
(3)如果一个三角形一边上的中线等于这边的一半 那么这个三角形是直角三角形
(4)如果一个三角形的三边 a ,b ,c
满足a2 +b 2=c2 , 那么这个三角形是直角三角形吗??
据说,古埃及人曾用下面 的方法画直角:
他们用13个等距的结 巴一根绳子分成等长的12 段,一个工匠同时握住绳 子的第1个结和第13个结, 两个助手分别握住第4个结 和第8个结,拉紧绳子,就 会得到一个直角三角形,其 直角在第4个结处。
(3) a=1 b=2 c= 3
_是___ ∠ _B_=_9_0_0 ;
像25,20,15,能够成为直角三角形三条
边长的三个正整数,称为勾股数.
最常用的勾股数:勾3、股4、弦5
挑战自我
1、请你写出三组勾股数;
如:3、4、5; 5、12、13; 7、24、25; 9、40、41 --(2n+1、2n2+2n、2n2+2n+1)( n为正整数) 3、4、5;8、6、10;15、8、17; 24、10、26;--( n2-1、2n、n2+1)( n为大于1的正整数)
若 c2≠a2++b2 则△ABC不是直角三角形。
例题解析
例1 设三角形三边长分别为下列各组数,试判断各 三角形是否是直角三角形:
(1) 7, 24 , 25 (2)12 , 35 , 37 (3)13 , 11 , 9
解 : 因为 2 5 2 = 2 4 2 + 7 2 , 分析:由3勾7 股2 =定理3 5的2 逆+ 定1 2理2 ,, 判断三角形是 不和是是直否角等1 三于3 2角最形大1,边1 只的2 +要平9看方2两。, 条较小边的平方
5、在RtΔABC中,AC=BC,点P是三角
形内一点,且PA=3,PB=1,PC=2,
求证:∠BPC=135°
P’
C
A
P
B (A)
作业:
预习14.1.3反证法

1.情节是叙事性文学作品内容构成的 要素之 一,是叙 事作品 中表现 人物之 间相互 关系的 一系列 生活事 件的发 展过程 。

2.它由一系列展示人物性格,反映人物 与人物 、人物 与环境 之间相 互关系 的具体 事件构 成。

∴ (a2-b2)c2=(a2+b2)(a2-b2)

∴ c2=a2+b2

∴ △ABC是直角三角形 问:上述解题过程,从哪一步开始出现错误?请写
出 该 步 的 序 号 :__③____, 错 误 的 原 因 为:_a_2_-_b_2_可__能__为___0_;本题正确的结论
是__直_角__三__角__形_或__等__腰__三_角__形__或_ 等腰直角三角形
a
c
A
S1
B
S3
C
S2 b
S1
a
c
B
A
S3
2.在Rt△ABC中,∠C=90°,CD 是高,AB=1, 求 2 CD2 + AD2 +BD2 的值
3、在△ABC中,AB边上的中线CD=3, AB=6,BC+AC=8
求△ABC的面积(AC·BC=?) (直角三角形的判定: 如果三角形一边上的中线等于这边的一半, 那么这个三角形是直角三角形。)
欢迎指导
1、了解勾股定理的逆定理与勾股定理的互逆性。
2、会通过三角形三边的数量关系来判断它是否 为直角三角形。
直角三角形的性质
(1)有一个角是直角; (2)两个锐角互余 ;
(3)直角三角形斜边上的中线等于斜边的一半
(4)两直角边的平方和等于斜边的平方 ; (5)在直角三角形中, 如果有一个锐角是30°,那么它
Ca
B C′ a
B′
证明:我们作Rt△A′B′C′,使A′C′=AC,B′C′=BC
在 Rt△A′B′C′中根据 勾股定理有
A B 2=A C 2+B C 2
∵ BC = a, AC = b
\ AB2 = a2 + b2 = c2 AB = c
ABC≌ ABC
C= C =90
知识要点 勾股定理的逆定理:
所以根据前面的判定方法可知 , 以(1)、(2)两组数为 边长的三角形是直角三角形,而以组(3)的数为边长 的三角形不是直角三角形。
小试牛刀
下面以a,b,c为边长的三角形是不是直角三
角形?如果是那么哪一个角是直角?
(1) a=25 b=20 c=15 _是___ ∠ _A_=_9_0_0;
(2) a=13 b=14 c=15 _不__是_ _____ ;
如果三角形的三边长 a,b,c满足 a2+b2=c2,那么这个三角形是直角三角形。
(即一个三角形的两条较短的边的平方和等于 最长边的平方,那么这个三角形是直角三角形。)
最长边(c)所对的角是直角
勾股定理
互为逆定理
勾股定理:如果直角三角形两直角边分别 为a,b,斜边为c,那么a2+b2=c2.
定理与逆定理
试判断△ABC的形状.
3、如图BE⊥AE,
∠A=∠EBC=60°,AB=4,BC=2 3 CD= 3 DE=3,求证:AD⊥CD
3 E
60°
A
4
D3
C
23
60°
B
4. 阅读下列解题过程: 已知a,b,c为△ABC的三边,且 满足a2c2-b2c2=a4-b4, 试判断△ABC的形状.
解∵ a2c2-b2c2=a4-b4
A
古埃及人的做法:
4
5 △ABC中, BC=3、 AC=4、AB=5
C3
A′
B 我们作Rt△A′B′C′, 使A′C′=AC,B′C′=BC
4
这两个三角形有什么关系?
C′ 3 B′
理论证明
A
A′
已知:△ABC中, BC=a、 AC=b、AB=c, b
c
b
且 a2+b2=c2.
求证: ∠C=90°

5.根据场景来梳理。一般一个场景可 以梳理 为一个 情节。 小说中 的场景 就是不 同时间 人物活 动的场 所。

6.根据线索来梳理。抓住线索是把握 小说故 事发展 的关键 。线索 有单线 和双线 两种。 双线一 般分明 线和暗 线。高 考考查 的小说 往往较 简单,线 索也一 般是单 线式。
相关文档
最新文档