用比例知识解决问题(1)课件
合集下载
人教版六年级下册数学《用比例解决问题》比例教学说课复习课件
一个办公楼原来平均每天照明用电100千瓦时。改用节能灯以后, 平均每天只用电25千瓦时。原来5天的用电量现在可以用多少天?
阅读与理解
问题是“原来5 天的用电量,现 在能用几天”。
总用电量是一定的, 也知道现在每天的 用电量,可以用除 法计算。
一个办公楼原来平均每天照明用电100千瓦时。改用节能灯以后, 平均每天只用电25千瓦时。原来5天的用电量现在可以用多少天?
y k (一定) x
探究新知
我们家上个月用了8t 水,水费是28元。
我们家用了10t水。
张大妈
李奶奶
思考:李奶奶家上个月的水费是多少钱?
方法一: 先算出水的单价,再求总价。
张大妈 李奶奶
水量 8t 10t
水费 28元 ?元
28÷8×10 =3.5×10 =35(元) 答:李奶奶家上个月的水费是35元。
关系是商一定还是积一定; (3)判断:如果商一定,就成正比例;
如果积一定,就成反比例; 如果商和积都不是定量,就不成比例。
1. 小明买4支圆珠笔用了6元,小刚想买3支同样的圆珠笔,
要用多少钱?
规范解答:
每支圆珠笔的价钱一定
用 比 例 法 解 答
答:小刚要用4.5元钱。
2. 小兰的身高1.5m,她的影长是2.4m,如果同一时间、 同一地点测得一棵树的影子长4m,这棵树有多高?
解这个问题的关键 是找到不变的量。
只要两个量的比值 一定,就可以用正 比例关系解答。
张大妈:我们家上个月用了8t水,水费是28元。 李奶奶:我们家用了10t水。 李奶奶家上个月的水费是多少钱?
回顾与反思 王大爷家上个月的水费是42元,上个月用了多少吨水?
用 比 例 法 解 答
《解决问题》比和比例PPT课件
2.一种淡蓝色涂料是用白色涂料和蓝色涂料按 3∶1 配制的。 (2)现在要用这种涂料粉刷一面长300米、高2米的临街墙壁。
粉刷完这面墙需要白色涂料和蓝色涂料各多少千克?
[选自教材P24 练一练 第2题]
粉刷1平方米墙壁 需要0.25千克涂料。
2.一种淡蓝色涂料是用白色涂料和蓝色涂料按 3∶1 配制的。
提示:点击任意一种 选法跳转详细方案
配 选法① 奶糖、酥糖、巧克力糖
制
方案一
2份奶糖
3份酥糖 5份巧克力糖
方
案
方案二
2份奶糖 3份巧克力糖 5份酥糖
方案三
2份酥糖
3份奶糖 5份巧克力糖
方案四
2份酥糖 3份巧克力糖 5份奶糖
方案五 2份巧克力糖 3份酥糖
5份奶糖
方案六 2份巧克力糖 3份奶糖
5份酥糖
2.一种淡蓝色涂料是用白色涂料和蓝色涂料按 3∶1 配制的。 (3)粉刷完这面墙,买涂料要花多少钱?[选自教材P24 练一练 第2题]
需要白色涂料112.5千克,需要蓝色涂料37.5千克。
(3)粉刷完这面墙,买涂料要花多少钱? [选自教材P24 练一练 第2题]
白色涂料:112.5÷18=6(桶)……4.5(千克) 160×6+105=1065(元)
价格最低:按巧克力糖:水果糖:酥糖=2:3:5配制。
价钱贵的糖占的比例大, 什锦糖的价格就高。
价钱便宜的糖占的比例大, 什锦糖的价格就低。
配成什锦糖50千克
配成什锦糖50千克
巩固练习
1.从上面任选三种糖,按2∶3∶5配成100千克什锦糖。 做出什锦糖单价最低和最高的配制方案。[选自教材P23 练一练 第1题]
每种糖各需要多少千克? 每千克什锦糖多少钱?
六年级数学下册课件-用比例解决问题
用比例解决问题
六年级 数学
小明家2020年1月份水费单
水表起数:513 水表止数:527 本期用水量:14立方米
小明
水费合计:70元
我家这个月用水量 是18立方米。
小军
我从小明家的水费单
小明家 小军家
中了解到……
用水量/m³ 14
18
水费/元 70 玲玲
我还从小军的话语中
丽丽
知道了……
小明家2020年1月份水费单
小明
水费合计:70元
我家这个月用水量 是18立方米。
小军
小军家这个月的水费是多少元?
小明家 小军家
用水量/m³ 14
18
水费/元 70
?
水的单价
水的单价不变
提示: 1.题目中哪两种量是相关联的量?哪种量是不变的量? 2.它们成什么比例关系? 3.根据比例关系,列出方程。 4.试着解方程。
② 解:设小军家这个月的水费是x元。 ①
(2)小林读一本文学名著,如果每天读 30页,8天可以读完。小林想6天读完, 那么平均每天要读多少页?
每天用电量 ×用电天数=用电总量 (一定)
每天的用电量与用电天数的乘积相等
每天读的页数 ×阅读天数=总页数 (一定)
每天读的页数与天数的乘积相等
乘积一定,用反比例关系解决问题。
需要写解、设。 小红
② 小明家水费 小军家水费
小明家用水量 = 小军家用水量
小林
小红
水费 用水量
=单价(一定)
小明家用水量 小军家用水量
=
小明家水费 小军家水费
(单价一定)
小红
小明家 小军家
写反了
小明家用水量 小军家用水量
=
六年级 数学
小明家2020年1月份水费单
水表起数:513 水表止数:527 本期用水量:14立方米
小明
水费合计:70元
我家这个月用水量 是18立方米。
小军
我从小明家的水费单
小明家 小军家
中了解到……
用水量/m³ 14
18
水费/元 70 玲玲
我还从小军的话语中
丽丽
知道了……
小明家2020年1月份水费单
小明
水费合计:70元
我家这个月用水量 是18立方米。
小军
小军家这个月的水费是多少元?
小明家 小军家
用水量/m³ 14
18
水费/元 70
?
水的单价
水的单价不变
提示: 1.题目中哪两种量是相关联的量?哪种量是不变的量? 2.它们成什么比例关系? 3.根据比例关系,列出方程。 4.试着解方程。
② 解:设小军家这个月的水费是x元。 ①
(2)小林读一本文学名著,如果每天读 30页,8天可以读完。小林想6天读完, 那么平均每天要读多少页?
每天用电量 ×用电天数=用电总量 (一定)
每天的用电量与用电天数的乘积相等
每天读的页数 ×阅读天数=总页数 (一定)
每天读的页数与天数的乘积相等
乘积一定,用反比例关系解决问题。
需要写解、设。 小红
② 小明家水费 小军家水费
小明家用水量 = 小军家用水量
小林
小红
水费 用水量
=单价(一定)
小明家用水量 小军家用水量
=
小明家水费 小军家水费
(单价一定)
小红
小明家 小军家
写反了
小明家用水量 小军家用水量
=
4人教版六年级数学上册第四单元 第13课时 用比例解决问题(1) 教学PPT课件
同一地点测得一棵树的影子长4m,这棵树有多高?(教材P63第3题)
解:设这棵树高xm。
2.4 = 4
1.5
x
2.4x=4×1.5
x=2.5
答:这棵树高2.5m。
四、课堂小结
回顾本节课, 你学会了什 么?
学习了用正比例来解决问题,知道了解决问题的步骤, 以及解决问题的关键。
五、课后作业
完成课本“练习十一”第4题、第6。
WAN XIANG SI WEI
课时3 用比例解决问题
一、下列各题中的两种量成不成比例?如果成比例,那么成什么
比例?
1. 圆的面积和半径。
(
)
2. 订《世博早报》的份数与总价。
(
)
3. 长方形的周长一定,长与宽。
不成比例 成正比例 不成比例 成反比例
(
)
4. 在没有余数的除法中,被除数一定,除数和商。
4 比例
第13课时 用比例解决问题 (1)
人教版·六年级下册
一、新课引入 今天,我们继续学习运用正比例知识解决生活中的 实际问题。谁能说一说生活中有哪些成正比例的量? 怎样判断两种相关联的量是否成正比例呢?
速度一定,时间和路程成 正比例关系。
工作效率一定,工作时间和工作 总量成正比例关系。
二、例题讲解
五、有浓度是15%的农药水800克,要配制成浓度为20%的农 药水,应加药多少克?
50克
六、甲、乙两地相距480千米,一辆汽车从甲地出发,开往乙地,
3小时行了180千米。照这样的速度,行完全程还需要多少小时?
解:设行完全程还需要x小时。 180÷3=(480-180)÷x
x=5 答:行完全程还需要5小时。
二、用比例解决下列问题。
小学六年级第二学期数学比例的应用用比例解决问题教学课件人教版
一个办公楼原来平均每天照明用电100千瓦时。改用节能 灯以后,平均每天只用电25千瓦时。原来5天的用电量现在可 以用多少天?
分析与解答
可以先求出总用电量, 再求现在的用电天数。
因为总用电量一定,也可 以用反比例关系解答。
当总用电量一定时,用电时间与单位时间内的 用电量成反比例关系,也就是说,更换节能灯前后, 每天的用电量与用电天数的乘积相等。
x=4.5
答:要用4.5元。
2.学校小商店有两种圆珠笔。小明带的钱刚好可以买4支单 价是1.5元的,如果他只买单价是2元的,可以买多少支?
解:设可以买x支。 2x=1.5×4
x=1.52×4
x=3 答:可以买3支。
3.甲乙两筐苹果共有105个,如果两个筐各拿走3个苹果,
则甲乙两个筐的苹果数比为4:5,两个筐原来各有多少个苹
四、课后练习
1.下面哪个图形是图形A按2:1放大后得到的图形?
A
B
C
D
×
×
√
只将宽度扩大到 原来的2倍,高 度没变。
只将高度扩大到 原来的2倍,宽 度没变。
3.小兰的身高1.5m,她的影长是2.4m, 如果同一时间、同一地点测得一棵树 的影子长4m,这.4x=4×1.5
也可以用比例的方法解决!
李奶奶家上个月的水费是多少钱?
我们家上个月用了8t 水,水费是28元。
我们家用了10t水。
分析与解答
张大妈
李奶奶
解:设李奶奶家上个月的水费是x元。
28 = x 8 10 8x=28×10
x=
28×10 8
x=35
我们家上个月用了8t 水,水费是28元。
回顾与反思
李奶奶家上个月的水费是多少钱?
冀教版六年级上册数学《解决问题》比和比例精品PPT教学课件
2020/11/26
4
方案二:选奶糖、酥糖和水果糖。
2+3+5=10 奶糖:50× 2 =10(千克) 24×10=240(元)
10
酥糖:50× 3 =15(千克) 10×15=150(元)
10
水果糖:50× 5 =25(千克)14×25=350(元)
10
每千克什锦糖:(240+150+350)÷50=14.8(元)
2020/11/26
6
怎样配制什锦糖价格最高?怎 样配制价格最低?
2020/11/26
7
练一练
1. 从下面任选三种糖,按2:3:5配成100千克什锦糖。 做出什锦糖单价最低和最高的配制方案。
2020/11/26
8
2. 一种淡蓝色涂料用白色涂料和蓝色涂料按3: 1配制的。
(1)现在有12千克白色涂料,需要 几千克蓝 色涂料才能配成这种淡蓝色涂料?
冀教版数学六年级上册第二单元
2020/11/26
1
教学目标
1、经历综合运用比和比例等知识解决生活中 实际问题的过程。 2、能运用所学知识做出不同的什锦糖配制方 案,提高解决实际问题的能力。 3、经历与他人交流配制方案的过程,对配制 什锦糖问题有自己的想法和建议。
2020/11/26
2
从下面四种糖重任选 三种,按2:3:5配 成什锦糖50千克。
2020/11/26
11
感谢你的阅览
Thank you for reading
温馨提示:本文内容皆为可修改式文档,下载后,可根据读者的需求 作修改、删除以及打印,感谢各位小主的阅览和下载
日期:
演讲者:蒝味的薇笑巨蟹
2020/11/26
12
2Байду номын сангаас20/11/26
用比例解决问题pptPPT课件
02
比例的基本性质
交叉相乘
01
交叉相乘是指比例中两个内项的乘 积等于另外两个外项的乘积的性质。 例如,如果 a:b = c:d,那么 a/b = d/c 或 a/c = b/d。
02
这一性质在解决比例问题时非常 有用,因为它可以帮助我们建立 等式,从而找到未知数的值。
比例的传递性
比例的传递性是指如果三个量 a、b、 c 满足 a:b = b:c,那么 a:b:c = a/b × c/b = a/c。
比例的概念是数学和生活中常见的基本概念,广泛应用于各种领域,如工程、经济、 医学等。
比例的应用场景
01
02
03
工程设计
在工程设计中,比例常用 于确定各个部分的大小和 位置,例如建筑设计、机 械设计等。
经济分析
在经济分析中,比例常用 于比较不同经济指标之间 的关系,例如GDP、CPI 等。
医学研究
在医学研究中,比例常用 于比较不同药物或治疗方 法的效果,例如药物疗效、 手术成功率等。
比例用于确定物体间的位置关系,例 如通过比例尺在地图上表示实际距离。
比例在代数中的应用
比例用于解决方程式问题,例如 通过交叉相乘法解线性方程组。
比例用于研究函数的性质,例如 通过比例关系分析函数的增减性。
比例用于解决实际生活中的问题, 例如通过比例关系计算投资回报
率或利率。
04
比例在实际生活中的应用
03
比例在数学中的应用
分数与比例的关系
分数是比例的一种表 现形式,用于表示部 分与整体的关系。
分数和比例在数学中 经常一起使用,用于 解决各种问题。
比例可以转化为分数 形式进行计算或比较 大小。
比例在几何学中的应用
《用比例解决问题》课件PPT
将比例与方程结合,让学生通过解方程来找到未 知的比例关系,进一步加深对比例的理解。
综合练习题
总结词
涉及多个知识点的题目,旨在提高学生的综合运用能力和 解题技巧。
比例与其他数学知识的结合
将比例与其他数学知识(如代数、几何等)结合,设计一 些综合性较强的题目,以提高学生的解题技巧和综合运用 能力。
实际应用中的比例问题
成本控制
企业通过分析生产成本的比例关系, 优化生产流程和原材料采购,降低 生产成本。
质量管理
企业使用比例来控制产品质量,例 如抽样检验中样本与总体之间的比 例,以确保产品质量符合标准。
商业决策中的比例问题
市场占有率分析
企业通过分析市场占有率的比例 关系,了解自身在市场竞争中的
地位和优劣势。
销售预测
投资者根据自身的风险承受能力和投 资目标,使用比例来配置不同类型的 资产,以实现资产的保值增值。
风险评估
投资者使用比例来评估投资风险,例 如股票和债券的市盈率、市净率等指 标,以确定投资的安全性和盈利性。
生产制造中的比例问题
生产计划制定
企业根据市场需求和产能,制定 合理的生产计划,以确保产品供
应和销售的平衡。
《用比例解决问题》课件
目录
• 比例的定义与性质 • 比例问题的解决方法 • 比例问题实例解析 • 比例问题在生活中的应用 • 练习与巩固
01 比例的定义与性质
比例的定义
01
02
03
比例的定义
比例是表示两个比值相等 关系的数学概念,通常表 示为a:b=c:d的形式。
比例的表示方法
在数学中,比例通常用冒 号或等号来表示,如 a/b=c/d或a:b=c:d。
设计一些涉及实际应用的题目,如按比例分配资源、按比 例计算成本等,让学生能够将所学知识应用于实际问题中。
综合练习题
总结词
涉及多个知识点的题目,旨在提高学生的综合运用能力和 解题技巧。
比例与其他数学知识的结合
将比例与其他数学知识(如代数、几何等)结合,设计一 些综合性较强的题目,以提高学生的解题技巧和综合运用 能力。
实际应用中的比例问题
成本控制
企业通过分析生产成本的比例关系, 优化生产流程和原材料采购,降低 生产成本。
质量管理
企业使用比例来控制产品质量,例 如抽样检验中样本与总体之间的比 例,以确保产品质量符合标准。
商业决策中的比例问题
市场占有率分析
企业通过分析市场占有率的比例 关系,了解自身在市场竞争中的
地位和优劣势。
销售预测
投资者根据自身的风险承受能力和投 资目标,使用比例来配置不同类型的 资产,以实现资产的保值增值。
风险评估
投资者使用比例来评估投资风险,例 如股票和债券的市盈率、市净率等指 标,以确定投资的安全性和盈利性。
生产制造中的比例问题
生产计划制定
企业根据市场需求和产能,制定 合理的生产计划,以确保产品供
应和销售的平衡。
《用比例解决问题》课件
目录
• 比例的定义与性质 • 比例问题的解决方法 • 比例问题实例解析 • 比例问题在生活中的应用 • 练习与巩固
01 比例的定义与性质
比例的定义
01
02
03
比例的定义
比例是表示两个比值相等 关系的数学概念,通常表 示为a:b=c:d的形式。
比例的表示方法
在数学中,比例通常用冒 号或等号来表示,如 a/b=c/d或a:b=c:d。
设计一些涉及实际应用的题目,如按比例分配资源、按比 例计算成本等,让学生能够将所学知识应用于实际问题中。
《用比例解决问题》比和按比例分配PPT课件-(共36张PPT)
500千克的海水中含盐25千克,120吨的海水含盐几吨?
华南服装厂3天加工西装180套,照这样 计算,要生产540套西装,需要多少天?
一辆汽车2小时行驶140千米,照这样的速度,甲地到乙地的公路长350千米。这辆汽车从甲地到乙地需要行驶多少小时?
速度
路程
时间
正
一定,
和
成
比例
等量关系是:
路程
时间
每小时打9000字
每小时打3600字
6小时
15小时
去时每小时行60千米,2小时到达株洲。
回来时每小时行75千米,1.6小时到达长沙。
大胆尝试
选择其中的三个数量编一道正比例或反比例应用题。
解:设可以站 行.
学生总数一定,每行的人数与行数成反比例。
24
=
20×18
=
15
答:可以站15行.
=
24
360
工程队修一条水渠。每天修30米,
4天修完。如果每天修40米,多少天
可以修完?
40χ = 30×4
40χ = 120
χ = 120÷40
χ = 3
答:3天可以修完。
用比例解决问题
判断下列每题中的两个量是不是 成比例,成什么比例?为什么?
1、购买课本的单价一定,总价和数量。
因为
所以
2、总路程一定,速度和时间。
判断下列每题中的两个量是不是 成比例,成什么比例?为什么?
总数一定时,生产的天数和每天 生产的件数成反比例。
因为
所以
做一做
2、同学们做广播体操,每行站20人,正好站18行,如果每行 站24人,可以站多少行?
1、食堂买3桶油用了780元,照这样计算,买8桶油要多少元?
华南服装厂3天加工西装180套,照这样 计算,要生产540套西装,需要多少天?
一辆汽车2小时行驶140千米,照这样的速度,甲地到乙地的公路长350千米。这辆汽车从甲地到乙地需要行驶多少小时?
速度
路程
时间
正
一定,
和
成
比例
等量关系是:
路程
时间
每小时打9000字
每小时打3600字
6小时
15小时
去时每小时行60千米,2小时到达株洲。
回来时每小时行75千米,1.6小时到达长沙。
大胆尝试
选择其中的三个数量编一道正比例或反比例应用题。
解:设可以站 行.
学生总数一定,每行的人数与行数成反比例。
24
=
20×18
=
15
答:可以站15行.
=
24
360
工程队修一条水渠。每天修30米,
4天修完。如果每天修40米,多少天
可以修完?
40χ = 30×4
40χ = 120
χ = 120÷40
χ = 3
答:3天可以修完。
用比例解决问题
判断下列每题中的两个量是不是 成比例,成什么比例?为什么?
1、购买课本的单价一定,总价和数量。
因为
所以
2、总路程一定,速度和时间。
判断下列每题中的两个量是不是 成比例,成什么比例?为什么?
总数一定时,生产的天数和每天 生产的件数成反比例。
因为
所以
做一做
2、同学们做广播体操,每行站20人,正好站18行,如果每行 站24人,可以站多少行?
1、食堂买3桶油用了780元,照这样计算,买8桶油要多少元?
六年级下册《4.7 用比例解决问题》课件(公开课)
张大妈
我们家用了10t水。
李奶奶
解这个问题的关键是 找到不变的量。
只要两个量的比值一 定,就可以用正比例 关系解答。
答:李奶奶家上个月的水费是35元。
王大爷上个月的水费是42元, 上个月用了多少吨水?
我们家上个月用了8t 水,水费是28元。
我们家用了10t水。
张大妈
李奶奶
解:设王大爷上个月用了x吨水。
解:设这条公路一共长x米。
288 6
=
x 12+6
x=
228×18 6
x= 684 答:这条公路一共长684m。
2.小明买4支圆珠笔用了6元,小刚想买3支同 样的圆珠笔,要用多少钱?
解:设要用x元。 6=x 43 4x=18
x=4.5 答:要用4.5元。
你知道哪种量不变吗?你 能试着用比例解决吗?
也可以用比例的方法解决!
李奶奶家上个月的水费是多少钱?
我们家上个月用了8t 水,水费是28元。
我们家用了10t水。
分析与解答
张大妈
李奶奶
解:设李奶奶家上个月的水费是x元。
28 = x 8 10 8x=28×10
x=
28×10 8
x=35
我们家上个月用了8t 水,水费是28元。
回顾与反思
李奶奶家上个月的水费是多少钱?
果。
解:设甲框原来有x个苹果。 (x-3):(105-x-3)=4:5 5x-15=420-4x-12
5x-15=408-4x
9x=423
x=47 105-47=58(个) 答:甲筐有47个苹果,乙筐有58个苹果。
三、课堂小结
用比例解决问题的步骤是:一、分析题意,找到两种相关联 的量,判断它们是否成比例,成什么比例;二、依据正比例或反 比例的意义列出方程;三、解方程(求解后检验),写答。
苏科版数学八年级下册1第1课时用反比例函数解决问题同步课件
第11章 反比例函数
11.3 第1课时 用反比例函数解决问题(1)
情景引入
1.某商场仓库内有圆珠笔2000支,若平均每天可售出x支,库房内圆珠笔 可以销售y天,则y与x的函数关系式为( C )
A. y=2000x C. y 2000
x
B.
y 1000 x
D. y=2000-x
(1)若平均每天可售出100支,则需销售___2__0_天; (2)若销售了20天,则平均每天可售出_1__0_0__支.
获取新知
你还能列举一些生活中反比例函数模型的例子吗?
例如: 路程一定的情况下,速度与时间; 面积一定的情况下长方形的长与宽; 压力一定的情况下压强与受力面积.
在一个实际问题中,两个变量之间若满足反比例函数关 系,则已知其中的一个变量可以求出另一个变量的值.
例题讲授
例1:小明将一篇24000字的社会调查报告录入电脑,打印成文. (1)如果小明以每分钟120字的速度录入,他
(2) 如果蓄水池的深度设计为5m,那么它的底面积应为多少? (3)如果考虑绿化以及辅助用地的需要,蓄水池的长和宽最
多只能分别设计为100m和60m,那么它的深度至少应 为多少米(精确到0.01)?
解:(1)由Sh=4×104,得 蓄水池的底面积 S(m2)与其深度 h(m)成反比例函数关系.
当蓄水池的深度设计为5 m时,它的底面积应为8000 m2. (3)根据题意,得 S = 100 × 60 = 6 000.
(1) 轮船到达目的地后开始卸货,平均卸货速度v (单位:吨/ 天)与卸货天数t之间有怎样的函数关系?
解:(1)设轮船上的货物总量为k吨,根据已知条件得
k=30×8 = 240, 所以v关于t的函数解析式为 v 240 .
11.3 第1课时 用反比例函数解决问题(1)
情景引入
1.某商场仓库内有圆珠笔2000支,若平均每天可售出x支,库房内圆珠笔 可以销售y天,则y与x的函数关系式为( C )
A. y=2000x C. y 2000
x
B.
y 1000 x
D. y=2000-x
(1)若平均每天可售出100支,则需销售___2__0_天; (2)若销售了20天,则平均每天可售出_1__0_0__支.
获取新知
你还能列举一些生活中反比例函数模型的例子吗?
例如: 路程一定的情况下,速度与时间; 面积一定的情况下长方形的长与宽; 压力一定的情况下压强与受力面积.
在一个实际问题中,两个变量之间若满足反比例函数关 系,则已知其中的一个变量可以求出另一个变量的值.
例题讲授
例1:小明将一篇24000字的社会调查报告录入电脑,打印成文. (1)如果小明以每分钟120字的速度录入,他
(2) 如果蓄水池的深度设计为5m,那么它的底面积应为多少? (3)如果考虑绿化以及辅助用地的需要,蓄水池的长和宽最
多只能分别设计为100m和60m,那么它的深度至少应 为多少米(精确到0.01)?
解:(1)由Sh=4×104,得 蓄水池的底面积 S(m2)与其深度 h(m)成反比例函数关系.
当蓄水池的深度设计为5 m时,它的底面积应为8000 m2. (3)根据题意,得 S = 100 × 60 = 6 000.
(1) 轮船到达目的地后开始卸货,平均卸货速度v (单位:吨/ 天)与卸货天数t之间有怎样的函数关系?
解:(1)设轮船上的货物总量为k吨,根据已知条件得
k=30×8 = 240, 所以v关于t的函数解析式为 v 240 .
用比例解决问题及整理复习课件
比例与函数
利用比例关系建立函 数表达式,研究函数
的性质和图像。
比例与几何
结合比例与几何知识 ,解决与图形、坐标 系、向量等相关的题
目。
比例与概率统计
将比例关系应用于概 率和统计问题中,如 概率计算、数据分析
和预测等。
用比例解决问题中的常见错
05
误及纠正方法
单位不统一导致的错误
总结词
在解决比例问题时,单位不统一是常见的错误之 一。
忽视比例的交叉相乘性质导致的错误
总结词
比例的交叉相乘性质是解决比例问题的重要依据,忽视这一性质会导致解题错误。
详细描述
在比例 a:b = c:d 中,交叉相乘得 a*d = b*c。这一性质在解决比例问题时经常用到,如果忽视这一 性质,会导致计算结果不准确。为了纠正这一错误,需要理解并运用比例的交叉相乘性质进行计算。
详细描述
由于不同单位之间的比例关系不成立,会导致计 算结果出现偏差。为了纠正这一错误,需要先统 一单位,再根据比例关系进行计算。
混淆比例与倍数导致的错误
总结词
比例和倍数是两个不同的概念,混淆 两者会导致解题思路和结果错误。
详细描述
比例表示两个数量之间的相对大小关 系,而倍数则表示一个数量是另一个 数量的几倍。在解题时,需要明确区 分比例和倍数,并正确运用各自的概 念进行计算。
详细描述
在交叉相乘法中,我们首先确定比例关系,然后将比例的分子和分母分别相乘,得到一个等式 ,最后求解这个等式得出结果。这种方法适用于比例关系明确且易于转化为乘法问题的问题。
比例的代数表达
总结词
比例的代数表达是通过代数方式表示比例关系,利用代数性质和定理解决问题 。
详细描述
冀教版数学六年级上册第2单元《比和比例》(解决问题)教学-课件
伦 理 使 人 庄 重 ; 逻 辑 与 修 辞 使 人 善 辩 。
写 作 与 笔 记 使 人 精 确 ; 史 鉴 使 人 明 智 ; 诗
歌
使
人
巧
慧
;
我们,还在路上……
方案一:选奶糖、酥糖和巧克力糖。
2+3+5=10
奶糖:50× 2 =10(千克) 24×10=240(元)
10
酥糖:50× 3 =15(千克) 10×15=150(元)
10
巧克力糖:50× 5 =25(千克)
10
18×25=450(元)
每千克什锦糖:(240+150+450)÷50=16.8(元)
练一练
1. 从下面任选三种糖,按2:3:5配成100千克什锦糖。 做出什锦糖单价最低和最高的配制方案。
2. 一种淡蓝色涂料用白色涂料和蓝色涂料按3: 1配制的。
(1)现在有12千克白色涂料,需要 几千克蓝 色涂料才能配成这种淡蓝色涂料?
2. 一种淡蓝色涂料用白色涂料和蓝色涂料按3: 1配制的。
冀教版数学六年级上册第二单元
解决问题
教学目标
1、经历综合运用比和比例等知识解决生活中 实际问题的过程。 2、能运用所学知识做出不同的什锦糖配制方 案,提高解决实际问题的能力。 3、经历与他人交流配制方案的过程,对配制 什锦糖问题有自己的想法和建议。
从下面四种糖重任选 三种,按2:3:5配 成什锦糖50千克。
2+3+5=10
奶糖:50× 2 =10(千克) 24×10=240(元)
10
巧克力糖:50× 3 =15(千克)
10
18×15=270(元)
水果糖:50× 5 =25(千克)14×25=350(元)
10
《用比例解决问题》课件(共23张PPT)
2、设未知数x ,注上单位名称。 3、根据正、反比例的意义列出比例式。
4、解比例。
5、检验、作答。
只列式不计算
① 一个小组3天加工零件189个,照这样计 算,9天可加工零件x个。
189= x 39
② 六年级同学们做广播操,每行站20人, 正好站12行,如果每行站24人,可以站x行。
24 x = 20×12
原2、来根5天据用这的样电的量比现例在关能 系用,多你少能天列?出等式吗?
水李的奶单 奶价家虽上然个不月知的道水,费但是它多是少一钱定?的。 判x 断下列每题中的两个量是不是成比例,成什么比例? 我3、能解解比决例(,用检比验例,解作答答)。
x=3
答:可以买3支。
解比例应用题的一般方法和步骤:
1、判断题中哪两种量是相关联的量?成 不成比例?成什么比例?
分析与解答
因为每吨水的价钱一定,所以水费和用水的 吨数成正比例关系。也就是说,两家的水费 和用水吨数的比值相等
我先算出每吨水的捡 钱,再算10 t水多少 钱
也可以用比例的方法解 决
解:设李奶奶家上个月用水费是x元。
8 = x 28 10
8 x = 2 8 × 1 0
回顾与思考
x= 28× 10 8
2、一家制糖厂用500千克甘蔗可榨糖60千克。照
这样计算,榨糖1.5吨需要甘蔗多少吨?
3、小丽要测量一大捆铁丝的长度,从中截取了5
米长的一段,测得其质量为400克。现测得这捆铁 丝的质量为6千克。这捆铁丝长多少米?
《用比例解决问题》
判断下列每题中的两个量是不是成比例,成什么比例?
1、单价一定,总价和数量。 正比例 2、路程一定,速度和时间。 反比例
3、速度一定,路程和时间。 正比例 4、每吨水的价钱一定,水费和用水的吨数。 正比例 5、全校学生做操,每行站的人数和站的行数
4、解比例。
5、检验、作答。
只列式不计算
① 一个小组3天加工零件189个,照这样计 算,9天可加工零件x个。
189= x 39
② 六年级同学们做广播操,每行站20人, 正好站12行,如果每行站24人,可以站x行。
24 x = 20×12
原2、来根5天据用这的样电的量比现例在关能 系用,多你少能天列?出等式吗?
水李的奶单 奶价家虽上然个不月知的道水,费但是它多是少一钱定?的。 判x 断下列每题中的两个量是不是成比例,成什么比例? 我3、能解解比决例(,用检比验例,解作答答)。
x=3
答:可以买3支。
解比例应用题的一般方法和步骤:
1、判断题中哪两种量是相关联的量?成 不成比例?成什么比例?
分析与解答
因为每吨水的价钱一定,所以水费和用水的 吨数成正比例关系。也就是说,两家的水费 和用水吨数的比值相等
我先算出每吨水的捡 钱,再算10 t水多少 钱
也可以用比例的方法解 决
解:设李奶奶家上个月用水费是x元。
8 = x 28 10
8 x = 2 8 × 1 0
回顾与思考
x= 28× 10 8
2、一家制糖厂用500千克甘蔗可榨糖60千克。照
这样计算,榨糖1.5吨需要甘蔗多少吨?
3、小丽要测量一大捆铁丝的长度,从中截取了5
米长的一段,测得其质量为400克。现测得这捆铁 丝的质量为6千克。这捆铁丝长多少米?
《用比例解决问题》
判断下列每题中的两个量是不是成比例,成什么比例?
1、单价一定,总价和数量。 正比例 2、路程一定,速度和时间。 反比例
3、速度一定,路程和时间。 正比例 4、每吨水的价钱一定,水费和用水的吨数。 正比例 5、全校学生做操,每行站的人数和站的行数
青岛版六年级下册数学课件《信息窗二(用比例尺解决问题1)》(2) (共17张PPT)
谢谢观赏
You made my day!
我们,还在路上……
三、知识应用
(二)解决问题
兰州到乌鲁木齐的铁路线大 约长1900km。地图上两地之 间的长度是多少厘米?
1900km=190000000cm
图上距离:190000000×
1 40000000
=4.75(cm)
答:地图上两地之间的长度是4.75厘米。
三、知识应用
(三)综合运用
明明量得公园的一个圆形花坛的周长是157米,他想把它画在平面图 上,请你帮忙画一画。(比例尺根据纸张的大小和圆规的大小确定。)
)
• 分母=( 分子÷分数值
)
• 分数值=( 分子÷分母
)
图上距离 实际距离 =比例尺
图上距离=( 比例尺×实际距离
)
实际距离=( 图上距离÷比例尺
)
比例尺=( 图上距离÷实际距离 )
二、探究新知
(一)根据比例尺求图上距离
小明家在学校的正西方向,距离学校200m;小亮家在小明家正 东方向,距小明家400m;小红家在学校正北方向,距学校250m。在 下图中画出他们三家和学校的位置平面图。(比例尺1:10000)
要想画出这个圆形花坛, 关键是确定花坛直径的图 上距离是多少厘米……
那我们先来计算一 下花坛直径实际的 长度吧!
花坛直径实际长度:157÷π≈50(米)
三、知识应用
(三)综合运用
明明量得公园的一个圆形花坛的周长是157米,他想把它画在平面图 上,请你帮忙画一画。(比例尺根据纸张的大小和圆规的大小确定。)
理解比例尺的意义,应用图上距离、实际距离和比例尺三者之间的关系解决实际问题.
说教学难点:
根据比例尺求图上距离或实际距离,应用比例尺画图。
You made my day!
我们,还在路上……
三、知识应用
(二)解决问题
兰州到乌鲁木齐的铁路线大 约长1900km。地图上两地之 间的长度是多少厘米?
1900km=190000000cm
图上距离:190000000×
1 40000000
=4.75(cm)
答:地图上两地之间的长度是4.75厘米。
三、知识应用
(三)综合运用
明明量得公园的一个圆形花坛的周长是157米,他想把它画在平面图 上,请你帮忙画一画。(比例尺根据纸张的大小和圆规的大小确定。)
)
• 分母=( 分子÷分数值
)
• 分数值=( 分子÷分母
)
图上距离 实际距离 =比例尺
图上距离=( 比例尺×实际距离
)
实际距离=( 图上距离÷比例尺
)
比例尺=( 图上距离÷实际距离 )
二、探究新知
(一)根据比例尺求图上距离
小明家在学校的正西方向,距离学校200m;小亮家在小明家正 东方向,距小明家400m;小红家在学校正北方向,距学校250m。在 下图中画出他们三家和学校的位置平面图。(比例尺1:10000)
要想画出这个圆形花坛, 关键是确定花坛直径的图 上距离是多少厘米……
那我们先来计算一 下花坛直径实际的 长度吧!
花坛直径实际长度:157÷π≈50(米)
三、知识应用
(三)综合运用
明明量得公园的一个圆形花坛的周长是157米,他想把它画在平面图 上,请你帮忙画一画。(比例尺根据纸张的大小和圆规的大小确定。)
理解比例尺的意义,应用图上距离、实际距离和比例尺三者之间的关系解决实际问题.
说教学难点:
根据比例尺求图上距离或实际距离,应用比例尺画图。
西师大版六年级数学上册《用比例解决问题》教学PPT课件(4篇)
甲
乙
100 km
两地相距 100 km,甲乙两辆汽车从两地相
对开出,4小时相遇。甲乙两车速度比是 3∶2,
甲乙两车速度各是多少?
甲乙两车的总速度为:100÷4=25(km/h)
总份数:3 + 2 = 5
甲
乙
100 km
状元成才路
两地相距 100 km,甲乙两辆汽车从两地相
对开出,4小时相遇。甲乙两车速度比是 3∶2,
智力闯关:第三关
三角形最长边的边长是35厘米,三条边 的长度比是3:4:5。三角形的另两条边长多 少厘米?
用比例解决问题
第3课时
引入
1∶9
有20g糖水,糖与水的比是1∶9,其 中糖有( 2 )g,水有(18)g。
引入
1∶1∶2
一个三角形三个内角度数比是1∶1∶2, 这个三角形一定是(等腰直角三角形)。
(1)题目中要分配什么? (2)平均分合理吗?为什么? (3)你认为怎样分合理? (4)陈红、赵青拿出钱数的比是( ):( )。 (5)怎样理解3:2?
理解
3:2就是陈红分得本数占( 3 )份,赵青 分得本数占( 2 )份,一共是( 5 )份。
陈红分得本数占总数的( 3 )。 5 2
赵青分得本数占总数的( 5 )。
星级挑战
分配水费问题 分配运费问题 分配租金问题
星级挑战
小李、小郭、小高、小张四家人7月份共付水 费180元,请结合下表所出示的信息,将水费 分摊到每家。
住户 人口数 应付水费
小李 5
小郭 3
小高 2
小张 2
星级挑战
甲、乙、丙三人合租一辆车运同样多的货 物处,卸从 货A,地乙到在B全地程需的付运43 费处5卸00货元,。只甲有在丙全到程B的地。31 他们如何分摊运费?
用比例解决问题》教学课件
张大妈
我上个月的水费是 19.2元。
王大爷
王大爷家上个月用了多少吨水?
华南服装厂3天加工西装180套,照这样 计算,要生产 540 套西装,需要多少天? (用比例解)
王叔叔开着一辆校车从甲地到乙地,前 2小时行驶了140千米,照这样的速度, 到达乙地还需要再行驶5小时,甲乙两 地之间的距离是多少千米?(用比例解)
先算出每吨水的价钱 , 再 算出10吨水的钱。
每吨水的价钱: 12.8÷8=1.6(元)
10吨水的价钱: 1.6×10=16(元)
也可以用比例的方法解决。
Байду номын сангаас
自学指导
1、①题中有哪两种量? ②它们成什么比例关系?你是怎样判断 2、题中根据( )相等列出等式。 的?
我们家上个月用了8 吨水,水费是12.8元。 检 测 一
用比例解这类问题的过程可以归纳 为以下几个步骤:
(1)设要求的问题为x;
(2)用正比例的意义判断题中的两种量是否
成正比例。
(3)列比例式;
(4)解比例,验算,作答。
用比例解决问题
温故知新
1.判断下面每题中的两种量是否成正比例关 系,并说明理由。
速度一定,路程 和时间?
单价一定,总价 和数量?
工作效率一定, 工作总量 工作总量和 工作效率 工作时间 工作时间?
学习目标:
1、能判断题中涉及的两种 相关联的量是否成正比例关系 。 2、掌握用正比例知识解答 含有正比例关系的实际问题。
我上个月的水费是 19.2元。
王大爷
王大爷家上个月用了多少吨水?
华南服装厂3天加工西装180套,照这样 计算,要生产 540 套西装,需要多少天? (用比例解)
王叔叔开着一辆校车从甲地到乙地,前 2小时行驶了140千米,照这样的速度, 到达乙地还需要再行驶5小时,甲乙两 地之间的距离是多少千米?(用比例解)
先算出每吨水的价钱 , 再 算出10吨水的钱。
每吨水的价钱: 12.8÷8=1.6(元)
10吨水的价钱: 1.6×10=16(元)
也可以用比例的方法解决。
Байду номын сангаас
自学指导
1、①题中有哪两种量? ②它们成什么比例关系?你是怎样判断 2、题中根据( )相等列出等式。 的?
我们家上个月用了8 吨水,水费是12.8元。 检 测 一
用比例解这类问题的过程可以归纳 为以下几个步骤:
(1)设要求的问题为x;
(2)用正比例的意义判断题中的两种量是否
成正比例。
(3)列比例式;
(4)解比例,验算,作答。
用比例解决问题
温故知新
1.判断下面每题中的两种量是否成正比例关 系,并说明理由。
速度一定,路程 和时间?
单价一定,总价 和数量?
工作效率一定, 工作总量 工作总量和 工作效率 工作时间 工作时间?
学习目标:
1、能判断题中涉及的两种 相关联的量是否成正比例关系 。 2、掌握用正比例知识解答 含有正比例关系的实际问题。
人教版六年级数学下册《用比例解决问题》课件
用比例解决实际问题
用比例进行数据比较
通过比例关系比较不同数据的大小和 关系,例如比较不同地区的经济增长 率等。
通过比例关系解决生活中的实际问题 ,例如计算银行利率、投资回报等。
02
用比例解决问题的方法
直接比例法
总结词
通过直接比较两个比例,找出未 知量与已知量之间间的比例关系,直接计算出未 知量的方法。这种方法适用于已 知量之间存在明显的比例关系的
生物实验
在生物学实验中,细胞或 组织培养时需要按照一定 的比例添加营养物质。
物理实验
在物理实验中,为了观察 不同因素对实验结果的影 响,需要按照一定比例调 整实验条件。
04
练习与巩固
基础练习题
总结词:巩固基础
详细描述:基础练习题是为了帮助学生掌握用比例解决问题的基本方法和步骤, 题目难度较低,主要涉及基础的比例关系和简单的计算。
销售配额
销售人员完成销售任务时,需要 按照公司设定的比例达成各项销
售指标。
成本核算
企业计算产品成本时,需要按照原 材料、人工和其他费用的比例进行 分摊。
市场份额
企业为了提高市场占有率,需要按 照竞争对手的比例来制定营销策略 。
科学实验中的比例问题
化学反应
在化学实验中,反应物之 间的比例会影响实验结果 和产物的性质。
05
总结与回顾
本节课的重点回顾
比例的概念和性质
01
理解比例的基本概念,掌握比例的基本性质,如交叉相乘相等
、内项之积等于外项之积等。
用比例解决问题的方法
02
学会通过建立比例关系来解决问题,掌握用比例解决问题的基
本步骤和方法。
比例在实际生活中的应用
03
用比例进行数据比较
通过比例关系比较不同数据的大小和 关系,例如比较不同地区的经济增长 率等。
通过比例关系解决生活中的实际问题 ,例如计算银行利率、投资回报等。
02
用比例解决问题的方法
直接比例法
总结词
通过直接比较两个比例,找出未 知量与已知量之间间的比例关系,直接计算出未 知量的方法。这种方法适用于已 知量之间存在明显的比例关系的
生物实验
在生物学实验中,细胞或 组织培养时需要按照一定 的比例添加营养物质。
物理实验
在物理实验中,为了观察 不同因素对实验结果的影 响,需要按照一定比例调 整实验条件。
04
练习与巩固
基础练习题
总结词:巩固基础
详细描述:基础练习题是为了帮助学生掌握用比例解决问题的基本方法和步骤, 题目难度较低,主要涉及基础的比例关系和简单的计算。
销售配额
销售人员完成销售任务时,需要 按照公司设定的比例达成各项销
售指标。
成本核算
企业计算产品成本时,需要按照原 材料、人工和其他费用的比例进行 分摊。
市场份额
企业为了提高市场占有率,需要按 照竞争对手的比例来制定营销策略 。
科学实验中的比例问题
化学反应
在化学实验中,反应物之 间的比例会影响实验结果 和产物的性质。
05
总结与回顾
本节课的重点回顾
比例的概念和性质
01
理解比例的基本概念,掌握比例的基本性质,如交叉相乘相等
、内项之积等于外项之积等。
用比例解决问题的方法
02
学会通过建立比例关系来解决问题,掌握用比例解决问题的基
本步骤和方法。
比例在实际生活中的应用
03
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
960 4800 = 4 x
4 x ③ 960 = x ② = 4 4800 960 4800
3、用比例解答下面各题。 、用比例解答下面各题。 千米, (1)甲乙两地之间的公路长 )甲乙两地之间的公路长350千米,一 千米 辆汽车从甲地开往乙地, 小时行驶了 小时行驶了140 辆汽车从甲地开往乙地,2小时行驶了 千米。照这样的速度, 千米。照这样的速度,这辆汽车从甲地开 往乙地一共需要行驶多少小时? 往乙地一共需要行驶多少小时?
教哪两种相关联的量? 请小组合作完成“ 用比例解决问题( 请小组合作完成“《用比例解决问题(一)》 学习记录卡” 学习记录卡”。
这样列方程行吗?为什么? 这样列方程行吗?为什么? 10 用水量 用水量 8 12.8水费 用水量 8 = A、 、 = B、 、 水费12.8 x 水费 用水量10 x 水费
1、用比例解决问题该怎样检验? 、用比例解决问题该怎样检验? 2、用比例解决问题的步骤是怎样的? 、用比例解决问题的步骤是怎样的? 要注意什么? 要注意什么?
阅读P59学习的内容,提出自己的疑问。 学习的内容,提出自己的疑问。 阅读 学习的内容 (1)为什么学习了算术方法,还要学 )为什么学习了算术方法, 习用比例解? 习用比例解? (2)以后遇到这样的题目时,该用什 )以后遇到这样的题目时, 么方法解答? 么方法解答?
(2)小兰的身高1.5m,她的影子长 )小兰的身高 , 2.4m。如果同一时间、同一地点测到一 。如果同一时间、 棵树的影子长4m,这棵树有多高? 棵树的影子长 ,这棵树有多高?
4、先补充问题再用比例解答。 、先补充问题再用比例解答。 王师傅4小时加工了 小时加工了200个零件,照 个零件, 王师傅 小时加工了 个零件 这样计算, 这样计算,__________? ? 5、一条绳子长126米,剪下 米共做了 条 、一条绳子长 米共做了5条 米 剪下9米共做了 跳绳。 跳绳。剩下的绳子还可以做多少条这样的 跳绳? 跳绳?
2、判断题。 、判断题。 工程队要修一段长4800米的公路,前4天 米的公路, 工程队要修一段长 米的公路 天 共修路960米,照这样计算,修完这段路共 米 照这样计算, 共修路 需要多少天?判断下面的比例的是否正确。 需要多少天?判断下面的比例的是否正确。 (解:设修完这段路共需要x天。) 设修完这段路共需要 天 ①
1、按要求做题。 、按要求做题。 小明买了4支圆珠笔用了 元 小明买了 支圆珠笔用了6元。小刚想 支圆珠笔用了 支同样的圆珠笔, 买3支同样的圆珠笔,要用多少钱? 支同样的圆珠笔 要用多少钱? 一定, (1)题中的( )题中的( 圆珠笔单价 )一定,也就 是说两人的( 是说两人的( 买笔总钱数 )和( 买笔数量 的比值是相等的,所以( 的比值是相等的,所以( 买笔总钱数 )和 比例。 ( 买笔数量 )成( 正 )比例。 (2)设要用 元。列比例是 )设要用x元 6 x ( )。 = 4 3 )
4 x ③ 960 = x ② = 4 4800 960 4800
3、用比例解答下面各题。 、用比例解答下面各题。 千米, (1)甲乙两地之间的公路长 )甲乙两地之间的公路长350千米,一 千米 辆汽车从甲地开往乙地, 小时行驶了 小时行驶了140 辆汽车从甲地开往乙地,2小时行驶了 千米。照这样的速度, 千米。照这样的速度,这辆汽车从甲地开 往乙地一共需要行驶多少小时? 往乙地一共需要行驶多少小时?
教哪两种相关联的量? 请小组合作完成“ 用比例解决问题( 请小组合作完成“《用比例解决问题(一)》 学习记录卡” 学习记录卡”。
这样列方程行吗?为什么? 这样列方程行吗?为什么? 10 用水量 用水量 8 12.8水费 用水量 8 = A、 、 = B、 、 水费12.8 x 水费 用水量10 x 水费
1、用比例解决问题该怎样检验? 、用比例解决问题该怎样检验? 2、用比例解决问题的步骤是怎样的? 、用比例解决问题的步骤是怎样的? 要注意什么? 要注意什么?
阅读P59学习的内容,提出自己的疑问。 学习的内容,提出自己的疑问。 阅读 学习的内容 (1)为什么学习了算术方法,还要学 )为什么学习了算术方法, 习用比例解? 习用比例解? (2)以后遇到这样的题目时,该用什 )以后遇到这样的题目时, 么方法解答? 么方法解答?
(2)小兰的身高1.5m,她的影子长 )小兰的身高 , 2.4m。如果同一时间、同一地点测到一 。如果同一时间、 棵树的影子长4m,这棵树有多高? 棵树的影子长 ,这棵树有多高?
4、先补充问题再用比例解答。 、先补充问题再用比例解答。 王师傅4小时加工了 小时加工了200个零件,照 个零件, 王师傅 小时加工了 个零件 这样计算, 这样计算,__________? ? 5、一条绳子长126米,剪下 米共做了 条 、一条绳子长 米共做了5条 米 剪下9米共做了 跳绳。 跳绳。剩下的绳子还可以做多少条这样的 跳绳? 跳绳?
2、判断题。 、判断题。 工程队要修一段长4800米的公路,前4天 米的公路, 工程队要修一段长 米的公路 天 共修路960米,照这样计算,修完这段路共 米 照这样计算, 共修路 需要多少天?判断下面的比例的是否正确。 需要多少天?判断下面的比例的是否正确。 (解:设修完这段路共需要x天。) 设修完这段路共需要 天 ①
1、按要求做题。 、按要求做题。 小明买了4支圆珠笔用了 元 小明买了 支圆珠笔用了6元。小刚想 支圆珠笔用了 支同样的圆珠笔, 买3支同样的圆珠笔,要用多少钱? 支同样的圆珠笔 要用多少钱? 一定, (1)题中的( )题中的( 圆珠笔单价 )一定,也就 是说两人的( 是说两人的( 买笔总钱数 )和( 买笔数量 的比值是相等的,所以( 的比值是相等的,所以( 买笔总钱数 )和 比例。 ( 买笔数量 )成( 正 )比例。 (2)设要用 元。列比例是 )设要用x元 6 x ( )。 = 4 3 )