pn结二极管的单向导电性

合集下载

PN结及其单向导电性

PN结及其单向导电性

本征半导体的导电机理 当半导体两端加上外电压时,在半导体中将出现
两部分电流 (1)自由电子作定向运动 电子电流 (2)价电子递补空穴 空穴电流
自由电子和空穴都称为载流子。 自由电子和空穴成对地产生的同时,又不断复合。
在一定温度下,载流子的产生和复合达到动态平衡, 半导体中载流子便维持一定的数目。 注意:
--- - -- --- - -- ---- - -
+++ +++ +++
+++ +++ +++
P
IR
内电场 外电场
–+
N
动画
内电场被加 强,少子的漂 移加强,由于 少子数量很少, 形成很小的反 向电流。
PN 结加反向电压时,PN结变宽,反向电流较小, 反向电阻较大,PN结处于截止状态。
温度越高少子的数目越多,反向电流将随温度增加。
PN结及其单向导电性
2. PN 结加反向电压(反向偏置)P接负、N接正
--- - -- + + + + + +
动画
--- - -- + + + + + +
--- - -- + + + + + +
P
内电场 外电场
N
–+
PN结及其单向导电性
2. PN 结加反向电压(反向偏置)P接负、N接正
PN 结变宽
1. 1 PN结及其单向导电性
1.半导体的导电特性: 热敏性:当环境温度升高时,导电能力显著增强

二极管单向导电的原理

二极管单向导电的原理

二极管单向导电的原理
二极管(Diode)是一种具有单向导电性质的电子器件,其原
理基于PN结的特性。

PN结由一种被掺杂了掺杂剂的p型半
导体和一种被掺杂了不同掺杂剂的n型半导体结合而成。

p型
半导体的材料中掺杂了少量的三价元素,如硼,形成了多余的正电荷,而n型半导体则是通过掺入五价元素,如磷,从而形成了多余的电子。

当这两个材料被连接在一起时,形成了PN 结。

在平衡状态下,PN结两侧会形成一个电势差,即存在一个由
p端指向n端的内建电场。

这个内建电场会阻止电子和空穴的
自由扩散,并且使得p端富电子而n端富空穴。

当外部电压施加在PN结上时,如果是正向偏置,即p端连接正电压,n端
连接负电压,那么该外电压会抵消内建电场,从而减小或消除内建电势差。

这样,电子和空穴就能够穿过PN结,导电发生。

而当施加的外电压是反向偏置,即p端连接负电压,n端连接
正电压时,这时外电压将会增加内建电势差,阻止电子和空穴穿越PN结,导电不会发生。

只有当外电压超过PN结的击穿
电压时,电流才会通过。

根据以上原理,可以得出二极管的单向导电特性。

当二极管的正向电压小于它的额定击穿电压时,它会导电,而当反向电压大于或等于它的额定击穿电压时,它会呈现高阻抗状态,导电不会发生。

这样,二极管可以用来整流交流电、保护电路免受反向电压的破坏等应用。

PN结二极管概述

PN结二极管概述

PN结二极管概述PN结二极管是一种常见的电子器件,它是由P型半导体和N型半导体组成。

PN结二极管具有单向导电性,即在正向电压下通过电流,而在反向电压下几乎不导电。

它是现代电子技术中最基本的器件之一,广泛应用于电路设计、电源管理、通信系统和光电器件等领域。

PN结的形成是通过对P型和N型半导体材料进行特殊处理,使得其中掺入的杂质发生化学反应,形成一个界面区域。

在P型半导体中掺入的杂质称为施主杂质,它提供了额外的电子;在N型半导体中掺入的杂质称为受主杂质,它提供了额外的空穴。

当P型和N型半导体相接触时,施主和受主杂质之间会发生电荷转移,形成一个电势垒。

这个电势垒会阻碍电流的流动,因此PN结二极管在反向电压下具有高阻抗。

当正向电压施加在PN结二极管上时,施主杂质的电子会向电势较低的N型半导体移动,与受主杂质的空穴结合,形成一个导电通道。

这时,PN结二极管的电势垒被削弱,电流可以流经二极管。

由于P型半导体和N 型半导体的材料特性不同,导致二极管的导电特性也有所不同。

在正向电压下,PN结二极管的导电特性可以近似为理想二极管模型,即电流与电压成指数关系。

在反向电压下,当电势较高的一侧施加一个负电压,PN结二极管的电势垒会进一步扩大,电子会被吸入施主一侧,空穴会被吸入受主一侧。

这样,电势垒的高度增加,对电流的阻碍也更强。

只有当反向电压超过一定程度时,电势垒被击穿,电流开始流过二极管。

这种击穿现象称为反向击穿,会损坏二极管,因此在设计电路时需要注意反向电压的大小。

PN结二极管的性能参数主要包括最大正向电流、正向电压降、反向击穿电压和反向电流。

最大正向电流是指在正向电压下,二极管能够稳定工作的最大电流值;正向电压降是正向电流流过二极管时产生的电压降;反向击穿电压是反向电压超过一定程度时,电势垒被击穿的电压值;反向电流是在反向电压下,流经二极管的电流值。

除了基本的PN结二极管,还有其他变种的二极管,如肖特基二极管和光二极管。

什么是PN结和二极管

什么是PN结和二极管

什么是PN结和二极管PN结是半导体物理学中的一个基本概念,它是由P型半导体和N型半导体接触在一起形成的结构。

在P型半导体中,空穴是多数载流子,而在N型半导体中,电子是多数载流子。

当P型和N型半导体接触时,N型半导体中的电子会向P型半导体中的空穴移动,形成大量的电子-空穴对,这些电子-空穴对称为载流子。

由于载流子的数量大大超过了原来的数量,所以形成了电荷不平衡,产生了电场,这个电场阻止了电子和空穴的进一步扩散,最终达到了一种电荷分布的平衡状态,形成了PN结。

二极管是一种基于PN结的半导体器件,它具有单向导电性。

当二极管的正极连接到高电位,负极连接到低电位时,PN结处于正向偏置状态,此时电子和空穴会大量移动,形成电流,二极管导通。

而当正极连接到低电位,负极连接到高电位时,PN结处于反向偏置状态,此时电场会阻止电子和空穴的移动,二极管截止,不形成电流。

二极管广泛应用于电子电路中,如整流、调制、稳压、信号检测等。

它们是现代电子技术中不可或缺的基本元件之一。

习题及方法:1.习题:PN结的形成过程中,为什么会产生电场?解题方法:回顾PN结的形成过程,分析P型和N型半导体接触时电荷不平衡的原因,以及电场的作用。

答案:PN结形成过程中,由于P型半导体中的空穴和N型半导体中的电子大量移动,形成了电子-空穴对。

这些电子-空穴对使得PN结区域内的电荷分布不平衡,产生了电场。

电场的作用是阻止电子和空穴的进一步扩散,最终达到电荷分布的平衡状态。

2.习题:二极管在正向偏置和反向偏置状态下,分别会发生什么现象?解题方法:分析二极管的正向偏置和反向偏置过程,以及对应的电荷分布和电流情况。

答案:在正向偏置状态下,二极管的正极连接到高电位,负极连接到低电位。

此时,PN结中的电场减弱,电子和空穴大量移动,形成电流,二极管导通。

在反向偏置状态下,二极管的正极连接到低电位,负极连接到高电位。

此时,PN结中的电场增强,阻止了电子和空穴的移动,二极管截止,不形成电流。

二极管失效原理

二极管失效原理

二极管失效原理今天咱们来唠唠二极管失效是咋回事儿。

二极管这小玩意儿啊,在电路里可起着大作用呢,就像一个小小的交通警察,控制着电流的走向。

可它要是失效了,那就好比交通警察罢工了,电路可就要出乱子啦。

咱先说说二极管的结构吧。

二极管就是由一个PN结组成的,P型半导体和N型半导体接在一起,就像两个性格不同的小伙伴凑一块儿了。

正常情况下呢,电流只能从P区流向N区,这是二极管的单向导电性。

那它为啥会失效呢?有一种情况就是过热。

你想啊,二极管在电路里工作的时候,就像人在干活儿一样,会产生热量。

要是电路里的电流太大了,就好比给二极管安排了太多的工作任务,它累得不行,热量就呼呼地往上冒。

这热量一高啊,就像把二极管放在火上烤似的。

二极管可受不了这么高的温度,里面的原子啊、电子啊就开始变得不安分起来。

原本规规矩矩的PN结结构可能就被破坏掉了。

就像搭好的积木,被人一脚踢散了一样。

一旦PN结的结构乱了套,那单向导电性也就没了,二极管就失效喽。

还有一种可能是电压过高。

这电压就像是一股强大的力量,推着电流往前走。

如果这个力量太大了,超过了二极管能承受的范围,那就糟糕啦。

就好比一阵超强的风,把一扇小窗户给吹破了。

过高的电压可能会直接击穿二极管的PN结,让电流能够双向流动,这可就违背了二极管的本职工作啦。

这时候的二极管就像一个被打败的小战士,失去了控制电流的能力。

再说说制造缺陷吧。

二极管在生产的时候啊,就像做手工一样,要是哪个环节出了差错,那也容易导致失效。

比如说在制作PN结的时候,如果杂质掺入的量不对,或者掺入的杂质不均匀,这就像做饭的时候盐放多了或者没拌匀一样。

PN结的性能就会受到影响,在使用的时候就可能出现各种各样的问题,甚至还没怎么工作呢,就直接失效了。

另外啊,环境因素也不能忽视。

如果二极管处在一个很恶劣的环境里,比如说湿度很大的地方,就像把它放在一个到处都是水汽的浴室里一样。

水汽可能会进入二极管内部,引起短路或者腐蚀里面的结构。

(完整版)二极管导通的条件

(完整版)二极管导通的条件

二极管的特性及应用
二、二极管基本电路应用
二极管应用
应用电 路
作用解说

半波整流
只用一只二极管依单向导电特性,将交流变为单向脉动性直流 电。
流 全波整流 用两只二极管,得到两个极性的单向脉动性直流电压。
电 路
桥式整流 用四只二极管,得到两个极性的单向脉动性直流电压。
倍压整流 是一种大电压小电流整流电路,利用多只二极管构成整流电路。
制作人:曾建
二极管的特性及应用 一 、二极管的特性
1 二极管单向导电性
PN结
管壳 二极管的基本结构是由PN结构成,二极管也具有单向导电 性,箭头所指方向为正向电流方向。
二极管的特性及应用
1.1二极管正向导通工作原理
二极管有导通和截止两种工作状态。而且导通和截止有一定的工作条件。
如果给二极管的正极加上高于负极的电压,称为二极管的正向偏置电压,当 该电压达到一定数值时二极管导通,导通后二极管相当于一个导体,电阻很 小,相当于接通,如图所示。
利用二极管管压降随温度微小变化的特征可以设 计成温度补偿电路,在分析温度补偿电路时不了解二 极管的这种特性,电路的工作原理就无法分析。
二极管的特性及应用
3 二极管正向电阻小,反向电阻大的特性
正向电阻是二极 +V R1
R1
管正向导通后正——
等效
负极之间的电阻,这 一电阻值很小。
正向导通
VD1
R01
正向电阻很小
二极管正极为
R1
负电压,反向
偏置状态
E1
VD1
E1
+
R1
二极管截止, 为开路,回路
中没有电流
VD1
综上所述,给二极管加上一定正向电压二极管处于导通 状态,给二极管加上反向电压时,二极管处于截止状态。

20种常见基本电路

20种常见基本电路

一、桥式整流电路1、二极管的单向导电性:伏安特性曲线:理想开关模型和恒压降模型:1二极管的单向导电性:二极管的PN结加正向电压,处于导通状态;加反向电压,处于截止状态。

伏安特性曲线;理想开关模型和恒压降模型:理想模型指的是在二极管正向偏置时,其管压降为0,而当其反向偏置时,认为它的电阻为无穷大,电流为零.就是截止。

恒压降模型是说当二极管导通以后,其管压降为恒定值,硅管为0.7V,锗管0.5 V2桥式整流电流流向过程:当u 2是正半周期时,二极管Vd1和Vd2导通;而夺极管Vd3和Vd4截止,负载RL 是的电流是自上而下流过负载,负载上得到了与u 2正半周期相同的电压;在u 2的负半周,u 2的实际极性是下正上负,二极管Vd3和Vd4导通而Vd1和Vd2截止,负载RL上的电流仍是自上而下流过负载,负载上得到了与u 2正半周期相同的电压。

3计算:Vo,Io,二极管反向电压Uo=0.9U2, Io=0.9U 2/RL,URM=√2 U 2二.电源滤波器1、电源滤波的过程分析:波形形成过程:1电源滤波的过程分析:电源滤波是在负载RL两端并联一只较大容量的电容器。

由于电容两端电压不能突变,因而负载两端的电压也不会突变,使输出电压得以平滑,达到滤波的目的。

波形形成过程:输出端接负载RL时,当电源供电时,向负载提供电流的同时也向电容C充电,充电时间常数为τ充=(Ri∥RLC)≈RiC,一般Ri〈〈RL,忽略Ri 压降的影响,电容上电压将随u 2迅速上升,当ωt=ωt1时,有u 2=u 0,此后u 2低于u 0,所有二极管截止,这时电容C通过RL放电,放电时间常数为RLC,放电时间慢,u 0变化平缓。

当ωt=ωt2时,u 2=u 0, ωt2后u 2又变化到比u 0大,又开始充电过程,u 0迅速上升。

ωt=ωt3时有u 2=u 0,ωt3后,电容通过RL放电。

如此反复,周期性充放电。

由于电容C的储能作用,RL上的电压波动大大减小了。

二极管PN结原理

二极管PN结原理

PN结的定义:在一块本征半导体中,掺以不同的杂质,使其一边成为P型,另一边成为N型,在P区和N区的交界面处就形成了一个PN结。

PN结的形成(1)当P型半导体和N型半导体结合在一起时,由于交界面处存在载流子浓度的差异,这样电子和空穴都要从浓度高的地方向浓度低的地方扩散。

但是,电子和空穴都是带电的,它们扩散的结果就使P区和N区中原来的电中性条件破坏了。

P区一侧因失去空穴而留下不能移动的负离子,N区一侧因失去电子而留下不能移动的正离子。

这些不能移动的带电粒子通常称为空间电荷,它们集中在P区和N区交界面附近,形成了一个很薄的空间电荷区,这就是我们所说的PN结,如图1所示。

(2)在这个区域内,多数载流子或已扩散到对方,或被对方扩散过来的多数载流子(到了本区域后即成为少数载流子了)复合掉了,即多数载流子被消耗尽了,所以又称此区域为耗尽层,它的电阻率很高,为高电阻区。

(3)P区一侧呈现负电荷,N区一侧呈现正电荷,因此空间电荷区出现了方向由N区指向P区的电场,由于这个电场是载流子扩散运动形成的,而不是外加电压形成的,故称为内电场,如图2所示。

(4)内电场是由多子的扩散运动引起的,伴随着它的建立将带来两种影响:一是内电场将阻碍多子的扩散,二是P区和N区的少子一旦靠近PN结,便在内电场的作用下漂移到对方,使空间电荷区变窄。

(5)因此,扩散运动使空间电荷区加宽,内电场增强,有利于少子的漂移而不利于多子的扩散;而漂移运动使空间电荷区变窄,内电场减弱,有利于多子的扩散而不利于少子的漂移。

当扩散运动和漂移运动达到动态平衡时,交界面形成稳定的空间电荷区,即PN结处于动态平衡。

PN结的宽度一般为0.5um。

PN结的单向导电性PN结在未加外加电压时,扩散运动与漂移运动处于动态平衡,通过PN结的电流为零。

(1)外加正向电压(正偏)当电源正极接P区,负极接N区时,称为给pN结加正向电压或正向偏置,如图3所示。

由于PN结是高阻区,而P区和N区的电阻很小,所以正向电压几乎全部加在PN结两端。

整流二极管(PN结二极管)主要参数及工作原理介绍

整流二极管(PN结二极管)主要参数及工作原理介绍

整流二极管(PN结二极管)主要参数及工作原理介绍整流二极管是一种用于将交流电转换成直流电的半导体器件,具有明显的单向导电性,可用半导体锗或硅制成。

整流二极管一般为平面硅二极管,用于各种功率整流电路。

整流二极管一层半导体材料掺杂有P型材料,另一层掺杂有N型材料,这些P型和N型层的组合形成称为PN结,因此也被叫做PN结二极管。

整流二极管的选用原则选择整流二极管时,要考虑其最大整流电流、最大反向工作电流、截止频率和反向恢复时间等参数。

串联稳压电源电路中使用的整流二极管对截止频率的反向恢复时间要求不高。

只要最大整流电流和最大反向工作电流满足电路的要求,就选用整流二极管。

例如1N系列、2CZ系列、RLR 系列等。

在开关稳压电源的整流电路和脉冲整流电路中,整流二极管应具有较高的工作频率和较短的反向恢复时间(如RU系列、EU 系列、V系列、1SR系列等)。

或者也可以选择快速恢复二极管或肖特基整流二极管。

整流二极管主要参数1、最大平均整流电流IF :长期工作允许通过的最大正向平均电流。

电流由PN结的结面积和散热条件决定。

通过二极管的平均电流不能大于此值,应满足散热条件。

例如1N4000整流串联二极管的IF为1A。

2、最大工作反向电压VR :施加在二极管上的最大允许反向电压。

如果超过这个值,反向电流(IR)会急剧增加,破坏二极管的单向导电性,造成反向击穿。

通常取反向击穿电压(VB)的一半作为(VR),例如下表格所示:3 、最大反向电流IR:在最高反向工作电压下允许流过二极管的反向电流。

该参数反映了二极管的单向导电性。

因此,电流值越小,二极管质量越好。

4、击穿电压VB:二极管反向伏安特性曲线锐弯点处的电压整流值。

当反向为软特性时,是指在给定反向漏电流下的电压值。

5 、最高工作频率fm:二极管在正常情况下的最高工作频率。

主要由PN结的结电容和扩散电容决定。

如果工作频率超过fm,二极管的单向导电性就不能很好的体现出来。

[精品文档]pn结二极管的单向导电性

[精品文档]pn结二极管的单向导电性

PN结的单向导电性PN结在外加电压的作用下,动态平衡将被打破,并显示出其单向导电的特性。

1、外加正向电压当PN结外加正向电压时,外电场与内电场的方向相反,内电场变弱,结果使空间电荷区(PN结)变窄。

同时空间电荷区中载流子的浓度增加,电阻变小。

这时的外加电压称为正向电压或正向偏置电压用VF表示。

在VF作用下,通过PN结的电流称为正向电流IF。

外加正向电压的电路如图所示。

2、外加反向电压外加反向电压时,外电场与内电场的方向相同,内电场变强,结果使空间电荷区(PN结)变宽, 同时空间电荷区中载流子的浓度减小,电阻变大。

这时的外加电压称为反向电压或反向偏置电压用VR表示。

在VR作用下,通过PN结的电流称为反向电流IR或称为反向饱和电流IS。

如下图所示。

3、PN结的伏安特性根据理论分析,PN结的伏安特性可以表达为:式中iD为通过PN结的电流,vD为PN结两端的外加电压;VT为温度的电压当量=kT/q=T/11600=0.026V,其中k为波尔慈曼常数(1.38×10-23J/K),T 为绝对温度(300K),q为电子电荷(1.6×10-19C);e为自然对数的底;IS为反向饱和电流。

财务一周工作小结[财务一周工作小结]财务一周工作小结 上班一周,第一天把手头的工作理了理头绪;第二、三天去帮学院收费,下班后又回到办公室加班,所以周四的时候基本上理清了SZGT股权调整的问题,并反应到王老师那里;周五上午把王老师提出的意见完善后又向王老师请教了一个关于交叉持股的问题,之后回办公室和敏敏聊了半个上午,到下午又去参加公司党委的活动了,财务一周工作小结。

一周大致情况就这样,一个人待在办公室里的感觉不像想像中的那么差。

没有人聊天,工作效率更高了。

这一周总的来说,工作完成得还不错,今天来加了半天班,除了还有两个问题需要向电子和通信两个集团相关人员请教一下之外,其他的都整理好了。

希望明天能顺利找到需要的信息,然后报给王老师。

二极管的作用

二极管的作用

二极管的作用
在电子学中,二极管是一种最基本的电子元件之一。

它由两个不同材料(通常是硅或锗)组成,分别为P型半导体和N型
半导体,形成一个PN结。

二极管在电路中起到了诸多重要作用。

1. 整流作用:二极管具有单向导电性。

当正向电压施加在P
型区域,负向电压施加在N型区域时,二极管将导电,使电
流正向流动;而当反向电压施加在二极管时,二极管将处于截止状态,电流无法通过。

这种特性使得二极管可以用来实现交流电到直流电的转换,即进行整流作用。

2. 电压稳定器:当二极管正向工作时,给定电阻下的电压不会超过二极管的正向电压降。

这种特性使得二极管可以用作电压稳定器,使电路中的电压保持在稳定的水平。

3. 温度传感器:二极管的正向电压降随温度变化而变化,这使得二极管可以用作温度传感器。

通过测量二极管的正向电压变化,可以推断环境温度的变化。

4. 阻止反向电流:二极管的反向电流非常小,几乎可以忽略不计。

因此,在电路中,可以使用二极管来阻止反向电流的流动,保证电流的单向流动。

5. 信号调理:二极管可以用于信号调理,例如频率调制、解调、射频检测以及信号限幅。

6. 光电转换:某些二极管具有光电转换特性。

光照射在这些二极管上时,会产生电流。

这使得二极管可以用作光电二极管、光电探测器等光学装置。

总而言之,二极管在电子学中扮演着重要的角色。

它的特殊特性使得它适用于许多不同的应用,包括整流、电压稳定、温度测量、阻止反向电流、信号调理以及光电转换等。

电子技术习题答案

电子技术习题答案

第1章半导体晶体管和场效应管一、重点和难点1.半导体材料的导电特性半导体材料的导电特点决定了半导体器件的特点和应用场合,因此透彻的了解半导体的导电特点是学习电子技术的基础,也是本章的重点之一。

2.PN结的单向导电性所有的半导体器件都是由一个或者多个PN结组合而成的,深刻理解PN结的单向导电性的特点是本章的重点。

3.二极管的参数二极管的参数中,有表示极限的参数,有表示优劣的参数,同时有直流参数,又有交流参数,有建立在时间积累效应基础上的电流参数,还有建立在雪崩效应和隧道效应基础上的瞬时电压参数,正确的理解二极管的参数是应用的前提和基础,掌握每个参数的意义是本章的重点,也是本章的难点,4.二极管的应用二极管的主要利用其单向导电性可以用来构成各种电路,二极管的应用是本章的重点。

5.三极管的结构三极管的是由两个相互关联的PN结构成的,三极管由于其内部载流子的运动规律难于形象描述而成为本章的难点。

6.三极管的特性三极管不论输入还是输出都是非线性的,故此其为本章的难点,由于了解管子的特性是对于管子应用的基础和前提,因此正确理解输入电流对输出电流的控制也是本章的重点。

7.三极管的应用三极管在日常生活中有着非常广泛的应用,模拟电子中主要用其放大作用,数字电子中主要用其开关作用。

学习的目的主要是为了应用,因此是本章的重点。

二、学习方法指导1.半导体材料的导电特性半导体材料的导电性能介于导体和绝缘体之间,其导电特性包括:对温度反映灵敏(热敏性) ,杂质的影响显著(掺杂性) ,光照可以改变电阻率(光敏性)。

2.自由电子和空穴当一部分价电子挣脱共价键的束缚而成为自由电子后,共价键中就留下相应的空位,这个空位被称为空穴。

原子因失去一个价电子而带正电,也可以说空穴带正电。

在本征半导体中,电子与空穴总是成对出现的,它们被称为电子空穴对。

如果在本征半导体两端加上外电场,半导体中将出现两部分电流:一是自由电子将产生定向移动,形成电子电流;一是由于空穴的存在,价电子将按一定的方向依次填补空穴,亦即空穴也会产生定向移动,形成空穴电流。

二极管的单向导电性

二极管的单向导电性

二极管的单向导电性
二极管为什幺只能单向导电
二极管的核心是PN结。

因此二极管的单向导电性是由PN结的特性说决定的。

在P型和N型半导体的交界面附近,由于N区的自由电子浓度大,于是带负电荷的自由电子会由N区向电子浓度低的P区扩散,扩散的结果使PN结中靠P区一侧带负电,靠N区一侧带正电,形成由N区指向P区的电场。

即PN结内电场。

内电场将阻碍多数载流子的继续扩散,又称为阻档层。

(1)PN结加上正向电压的情况将PN结的P区接电源正极,N区接电源负极,此时外加电压对PN结产生的电场与PN结内电场方向相反,消弱了PN结内电场,使得多数载流子能顺利通过PN结形成正向电流,并随着外加电压的升高而迅速增大,即PN结加正向电压时处于导通状态。

(2)PN结加上反向电压的情况将PN结的P区接电源负极,N区接电源正极,此时外加电压对PN结产生的电场与PN结内电场方向相同,加强了PN结内电场,多数载流子在电场力的作用下难以通过PN结反向电流非常微小,即PN结加反向电压时处于截止状态。

二极管单向导电性工作原理图文分析

二极管单向导电性工作原理图文分析

二极管单向导电性工作原理图文分析⑴半导体及基本特性自然界中存在着许多不同的物质,根据其导电性能的不同大体可分为导体、绝缘体和半导体二大类。

通常,将很容易导电、电阻率小于10-4Ω.cm的物质称为导体,如铜、铝、银等金属材料;将很难导电、电阻率小于10-10Ω.cm的物质称为绝缘体,如塑料、橡胶、陶瓷等材料;将导电能力介丁导体和绝缘体之间、电阻率在10-3~109Ω.cm范围内的物质称为半导体。

常用的半导体材料是硅(Si)和锗(Ge),硅和锗等半导体都是晶体,所以利用该两种材料所制成的半导体器什又称晶体管。

同时,半导体材料的导电能力会随着温度、光照等的变化而变化,分别称为热敏性和光敏性,尤其是半导体的导电能力因掺入适量杂质会发生很大的变化。

例如在半导体硅中,只要掺入亿分之一的硼,导电率会下降到原来的几万分之一,称为杂敏性,利用这一特性,可以制造成不同性能、不同用途的半导体器件。

而金属导体即使掺入千分之一的杂质,对其电阻率几乎也没有什么影响。

⑵本征半导体和杂质半导体通常把纯净的不含任何杂质的半导体(硅和锗)称为本征半导体,从化学的角度来看,硅原子和锗原子的电子数分别为32和14,所以它们最外层的电子数都是4个,是四价元素。

由于导电能力的强弱,在微观上看就是单位体积中能自由移动的带电粒子数日,所以,半导体的导电能力介于导体和绝缘体之间。

由于半导体具有杂敏性,所以利用掺杂可以制造出不同导电能力、不同用途的半导体器件。

根据掺入杂质的不同,又可分为N型半导体和P型半导体。

①N型半导体在四价的本征硅(或锗)中,掺入微量的五价元素磷(P)之后,磷原子由丁数量较少,不会改变本征硅的共价键结构,而是和本征硅一起形成共价键结构,形成N型半导体。

②P型半导体在四价的本征硅(或锗)掺入微量的二价元素硼(B)之后,参照上述分析,硼原子也和周围相邻的硅原子组成共价键结构,形成P型半导体。

⑶ PN结的形成与单向导电性在一块本征半导体上通过某种掺杂工艺,使其形成N型区和P型区两部分后,在它们的交界处就形成一个特殊薄层,这就是PN结,如图1.6所示。

PN结二极管概述

PN结二极管概述

PN结二极管概述PN结二极管是一种基本的半导体器件,其作用是控制电流的流动。

以下是对PN结二极管的详细概述:一、PN结二极管的结构PN结二极管主要由P型半导体和N型半导体之间形成的PN结组成。

在PN结两侧,通常会添加两个金属电极,分别是阳极(正极)和阴极(负极)。

阳极通常连接P型半导体,而阴极则连接N型半导体。

二、PN结二极管的性质1.单向导电性:PN结二极管最重要的性质是它的单向导电性。

当阳极相对于阴极为正电压时,PN结内部的电子从N型半导体流向P型半导体,形成电流。

而当阴极相对于阳极为正电压时,电流方向相反。

这意味着PN结二极管只能允许电流从一个方向流过。

2.反向饱和电流:当PN结两端施加反向电压时,会有一个微弱的电流流过二极管,这个电流被称为反向饱和电流。

反向饱和电流随着温度的升高而增大。

3.正向电压与正向电流:当PN结二极管正向导通时,电压降约为0.7V(硅材料)或0.3V(锗材料),此时的电流称为正向电流。

正向电流与正向电压的关系通常遵循欧姆定律,即电压与电流成正比。

4.击穿电压:当PN结二极管承受的电压超过其反向击穿电压时,电流会急剧增加,导致二极管损坏。

反向击穿电压通常在几十到几百伏特之间,具体取决于二极管的类型和设计。

三、PN结二极管的应用1.整流:利用PN结二极管的单向导电性,可以将交流电转换为直流电。

这是二极管最重要的应用之一。

2.开关:由于PN结二极管的导通和截止状态可以轻松切换,因此它可以用作开关,以控制电路的通断。

3.限幅:当信号通过PN结二极管时,如果信号幅度超过二极管的反向击穿电压,二极管会因过载而损坏。

因此,可以使用PN结二极管作为限幅器,将信号幅度限制在安全范围内。

4.温度传感器:由于PN结二极管的反向饱和电流与温度有关,因此可以将PN结二极管用作温度传感器,用于测量温度或控制温度。

5.稳压器:在电源电路中,可以利用PN结二极管的电压降效应来稳定电压。

例如,齐纳二极管就是一个特殊的PN结二极管,用于稳定电压。

pn结的单向导电性

pn结的单向导电性

pn结的单向导电性
pn结是一种电子器件,也称为一种带有两个极性的特殊电路结构,它由p半导体和n半导体连接而成,并具有单向导电性能。

p型半导体的导电性能是因其具有正电荷的移动缺陷,接受外部电压和电流;而n型半导体的导电性能具有负电荷的移动缺陷,接受外部电压和电流。

pn结的单向导电性能是指它具有单向电流流动的能力,也就是说电子在pn结路中只能在一个方向上流动,也就是它们只能由p型半导体流到n型半导体,即由正向流动到反向。

pn结单向导电性的原理主要是由p和n半导体构成的pn结上存在一种称为均衡状态的电势屏障,这种均衡状态的电势屏障会使电子在pn结中只能在一个方向上流动,即正向流动。

pn结的单向导电性主要是由这种均衡状态的电势屏障决定的,它会使负电荷在pn结中只能从n型向p型半导体流动,而正电荷则只能从p型向n型半导体流动,来实现单向电流流动的效果。

另一方面,pn结也有一些其他性能,例如具有较低的比率阻抗等。

由于pn结具有单向导电性,因此其阻抗率也要低于其它电路结构。

当一个电路结构具有较低的阻抗率时,它就可以更有效地将电压和电流传输出去,从而提高系统的效率。

因此,pn结的单向导电性特性不仅可以使电子在pn结中只能在一个方向上流动,还可以提高电路的效率。

pn结的单向导电性是它重要性能之一,它为电子电路提供了更高的效率,并可以用于制造各种电子设备。

pn结的单向导电性不仅
可以控制电子在pn结中的方向,而且还能有效提高电路的效率,使之更加稳定,经久耐用。

因此,pn结的单向导电性在电子电路中发挥着重要作用,并且它也是制造电子元件的重要因素。

二极管有什么特性

二极管有什么特性

二极管有什么特性二极管的特性是单方向导电性。

二极管是用半导体材料制成的一种电子器件,它具有单向导电性能,即给二极管阳极和阴极加上正向电压时,二极管导通。

当给阳极和阴极加上反向电压时,二极管截止。

因此,二极管的导通和截止,则相当于开关的接通与断开。

二极管是最早诞生的半导体器件之一,其应用非常广泛。

特别是在各种电子电路中,利用二极管和电阻、电容、电感等元器件进行合理的连接,构成不同功能的电路,可以实现对交流电整流、对调制信号检波、限幅和钳位以及对电源电压的稳压等多种功能。

一、二极管结构组成二极管就是由一个PN结加上相应的电极引线及管壳封装而成的。

采用不同的掺杂工艺,通过扩散作用,将P型半导体与N型半导体制作在同一块半导体(通常是硅或锗)基片上,在它们的交界面就形成空间电荷区称为PN结。

由P区引出的电极称为阳极,N区引出的电极称为阴极。

因为PN结的单向导电性,二极管导通时电流方向是由阳极通过管子内部流向阴极。

二、二极管工作原理二极管的主要原理就是利用PN结的单向导电性,在PN结上加上引线和封装就成了一个二极管。

晶体二极管为一个由P型半导体和N型半导体形成的PN结,在其界面处两侧形成空间电荷层,并建有自建电场。

当不存在外加电压时,由于PN结两边载流子浓度差引起的扩散电流和自建电场引起的漂移电流相等而处于电平衡状态。

当外界有正向电压偏置时,外界电场和自建电场的互相抑消作用使载流子的扩散电流增加引起了正向电流。

当外界有反向电压偏置时,外界电场和自建电场进一步加强,形成在一定反向电压范围内与反向偏置电压值无关的反向饱和电流。

当外加的反向电压高到一定程度时,PN结空间电荷层中的电场强度达到临界值产生载流子的倍增过程,产生大量电子空穴对,产生了数值很大的反向击穿电流,称为二极管的击穿现象。

PN结的反向击穿有齐纳击穿和雪崩击穿之分。

二极管的结构及性能特点.

二极管的结构及性能特点.

PN 结主要的特性就是其具有单方向导电性, 即在 PN 加上适当的正向电压 (P 区接电源正极 , N 区接电源负极 , PN 结就会导通 , 产生正向电流。

若在 PN 结上加反向电压 , 则 PN 结将截止 (不导通 , 正向电流消失 , 仅有极微弱的反向电流。

当反向电压增大至某一数值时 , PN 结将击穿 (变为导体损坏 , 使反向电流急剧增大。

(二普通二极管1.二极管的基本结构二极管是由一个 PN 结构成的半导体器件 , 即将一个 PN 结加上两条电极引线做成管芯 , 并用管壳封装而成。

P 型区的引出线称为正极或阳极 , N 型区的引出线称为负极或阴极 ,如图所示。

普通二极管有硅管和锗管两种 , 它们的正向导通电压 (PN 结电压差别较大 , 锗管为 0.2~0.3V,硅管为 0.6~0.7V。

2.点接触型二极管如图所示 , 点接触型二极管是由一根根细的金属丝热压在半导体薄片上制成的。

在热压处理过程中 ,半导体薄片与金属丝接触面上形成了一个PN 结 ,金属丝为正极 ,半导体薄片为负极。

点接触型二极管的金属丝和半导体的金属面很小, 虽难以通过较大的电流 , 但因其结电容较小, 可以在较高的频率下工作。

点接触型二极管可用于检波、变频、开关等电路及小电流的整流电路中。

3.面接触型二极管如图所示 , 面接触型二极管是利用扩散、多用合金及外延等掺杂质方法 , 实现 P 型半导体和 N 型半导体直接接触而形成 PN 结的。

面接触型二极管 PN 结的接触面积大 , 可以通过较大的电流 , 适用于大电流整流电路或在脉冲数字电路中作开关管。

因其结电容相对较大 , 故只能在较低的频率下工作。

二极管的分类及其主要参数一 . 半导体二极管的分类半导体二极管按其用途可分为 :普通二极管和特殊二极管。

普通二极管包括整流二极管、检波二极管、稳压二极管、开关二极管、快速二极管等 ; 特殊二极管包括变容二极管、发光二极管、隧道二极管、触发二极管等。

pn结单向导电的原理 -回复

pn结单向导电的原理 -回复

pn结单向导电的原理-回复PN结单向导电的原理引言:PN结是半导体物质中最基本的结构之一,是现代电子器件中广泛应用的核心组成部分。

具有单向导电性质的PN结被广泛应用于二极管、光电二极管、太阳能电池等电子器件中。

本文将从基本概念出发,一步一步解释PN结单向导电的原理。

一、PN结的构成PN结由P型半导体和N型半导体材料组成。

P型半导体是通过在纯硅中掺入三价元素(如硼)形成的,它的主要载流子是空穴。

N型半导体则是通过在纯硅中掺入五价元素(如磷)形成的,其主要载流子是自由电子。

在P型半导体中,三价元素硼掺杂后,少了一个电子,形成了“空穴”。

而在N型半导体中,五价元素磷掺杂后,多了一个自由电子。

当P型和N 型半导体材料相互接触时,形成了PN结。

二、内建电场的形成当P型和N型半导体相接触时,发生了电子的扩散,自由电子从N区向P区扩散,空穴从P区向N区扩散。

这种扩散过程会导致N区的电子浓度增加,P区的空穴浓度增加,逐渐形成电子云和空穴云。

电子云和空穴云中存在着电荷分布的差异,这导致了PN结附近的电场形成。

由于电子云和空穴云的电荷分布不同,形成了内建电场。

内建电场方向从N区指向P区。

三、正向偏置状态在PN结中,当正向电压(与电子云和空穴云的分布方向相同)施加在P 区,负向电压(与电子云和空穴云的分布方向相反)施加在N区时,被称为正向偏置状态。

在正向偏置状态下,正电压使得P区的空穴云向内移动,N区的电子云向内移动。

这样,内建电场被削弱,PN结的阻断层变得较薄。

载流子在PN 结中可以流动,形成了导电通道。

电流可以正常通过PN结,此时PN结呈现出导电的特性。

四、反向偏置状态在PN结中,当负向电压施加在P区,正向电压施加在N区时,被称为反向偏置状态。

反向偏置状态下,反向偏压增强了内建电场的作用,使得PN 结的阻断层更加厚,不利于载流子的流动。

在反向偏置状态下,只有少数的载流子发生漂移,并且只有少量的载流子通过PN结。

因此,反向偏置状态下,PN结不会有可观的电流通过,表现为绝缘或高阻态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

pn结二极管的单向导电性
PN结的单向导电性
PN结在外加电压的作用下,动态平衡将被打破,并显示出其单向导电的特性。

1、外加正向电压
当PN结外加正向电压时,外电场与内电场的方向相反,内电场变弱,结果使空间电荷区(PN结)变窄。

同时空间电荷区中载流子的浓度增加,电阻变小。

这时的外加电压称为正向电压或正向偏置电压用VF表示。

在VF作用下,通过PN结的电流称为正向电流IF。

外加正向电压的电路如图所示。

2、外加反向电压
外加反向电压时,外电场与内电场的方向相同,内电场变强,结果使空间电荷区(PN结)变宽, 同时空间电荷区中载流子的浓度减小,电阻变大。

这时的外加电压称为反向电压或反向偏置电压用VR表示。

在VR作用下,通过PN 结的电流称为反向电流IR或称为反向饱和电流IS。

如下图所示。

3、PN结的伏安特性
根据理论分析,PN结的伏安特性可以表达为:
式中iD为通过PN结的电流,vD为PN结两端的外加电压;VT为温度的电压当量=kT/q=T/11600=0.026V,其中k为波尔慈曼常数(1.38×10-23J/K),T 为绝对温度(300K),q为电子电荷(1.6×10-19C);e为自然对数的底;IS为反向饱和电流。

相关文档
最新文档