传热学实验— 墙角matlab导热问题

合集下载

MATLAB在导热问题中的应用

MATLAB在导热问题中的应用

分类号密级U D C 编号本科毕业论文(设计) 题目MATLAB在导热问题中的运用所在院系数学与数量经济学院专业名称信息与计算科学年级 05级学生姓名朱赤学号 **********指导教师周瑾二00九年四月文献综述1、概述MATLAB是一个为科学和工程计算而专门设计的高级交互式的软件包。

它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便的、界面友好的用户环境。

在这个环境下,对所要求解的问题,用户只需简单的列出数学表达式,其结果便以数值或图形方式显示出来。

MATLAB中有大量的命令和事先定义的可用函数集,也可通称为MATLAB的M文件,这就使得用它来求解问题通常比传统编程快得多;另外一点,也是它最重要的特点,易于扩展。

它允许用户自行建立完成指定功能的M文件。

从而构成适合于其它领域的工具箱。

MATLAB既是一种编程环境,又是一种程序设计语言。

它与其它高级程序设计语言C、Fortran等一样,也有其内定的规则,但其规则更接近于数学表示,使用起来更为方便,避免了诸如C、Fortran语言的许多限制,比方说,变量、矩阵无须事先定义;其次,它的语句功能之强大,是其它语言所无法比拟的,再者,MATLAB提供了良好的用户界面,许多函数本身会自动绘制出图形,而且会自动选取坐标刻度。

传热学是一门研究由温差引起的热能传递规律的科学,其理论和技术在生产、科学研究等领域得到了广泛的应用。

在能源动力、建筑建材及机械等传统工业部门中,传热学理论的应用解决了这些部门生产过程的热工艺技术,而在新能源利用、军事高科技等新技术领域中,它甚至对一些关键技术起到了决定性作用。

传热过程是传热学研究最基本的过程之一,传统的数学分析解法只能解决相对简单的传热问题,而在解决复杂的实际传热问题时,数学描述和求解都很困难。

随着计算机技术的兴起,解偏微分方程组等早期不能被很好解决或模拟的部分已逐渐被人们完成。

同时,计算机技术的发展,尤其是MATLAB的出现,不但解决了很多较复杂的问题,也大大促进了传热学理论的发展。

一维介质中的热传导问题 卡尔曼滤波 matlab

一维介质中的热传导问题 卡尔曼滤波 matlab

一维介质中的热传导问题一、概述热传导是物理学中的一个重要问题,特别是对于介质的热传导问题更是如此。

一维介质中的热传导问题是指介质在一维空间内热量的传导过程。

这一问题不仅在物理学中具有重要性,而且在工程领域中也有着广泛的应用。

在实际工程中,我们常常需要对介质中的热传导问题进行分析和研究,以便更好地设计和优化热传导设备,提高能源利用效率。

二、热传导方程介质中的热传导过程可以用热传导方程来描述。

一维情况下,热传导方程可以写为:其中,u(x, t)为介质中的温度分布,k为介质的热导率,c为介质的比热容,ρ为介质的密度,t为时间,x为空间坐标。

三、数值模拟对于介质中的热传导问题,我们常常需要进行数值模拟来解决热传导方程。

数值模拟可以采用有限差分法、有限元法等数值方法来进行。

在进行数值模拟时,我们通常需要借助计算机软件来进行计算,其中Matlab是一种非常实用的数学建模和仿真软件,特别适用于解决热传导问题。

四、卡尔曼滤波卡尔曼滤波是一种最优状态估计算法,可以用于对系统的状态进行预测和估计。

在介质中的热传导问题中,我们可以利用卡尔曼滤波算法来对系统的温度状态进行估计,从而更好地理解和分析热传导过程。

五、Matlab仿真在研究介质中的热传导问题时,我们可以利用Matlab软件进行仿真计算。

通过编写Matlab程序,我们可以对介质中的热传导过程进行模拟,并得到系统的温度分布。

我们也可以借助Matlab提供的工具,如ODE求解器等,对热传导方程进行数值求解,得到系统的温度变化规律。

六、结论介质中的热传导问题是一个具有重要意义的物理问题,对其进行深入的研究不仅有助于提高工程设备的效率,而且可以推动物理学领域的发展。

卡尔曼滤波和Matlab仿真技术的应用为介质中的热传导问题研究提供了新的方法和手段,可以更好地帮助我们理解和解决这一重要问题。

希望未来能够有更多的研究者投入到介质中的热传导问题的研究中,共同推动科学技术的进步。

综述应用MATLAB软件求解导热和对流问题

综述应用MATLAB软件求解导热和对流问题
为 MA L B 7 T A 。几 百 个 核 心 函数 是 MA L B数 学 TA 运 算 的基础 , 能越 来 越 强 大 的工 具 箱 则 是 MA — 功 T L B深 入 应 用 到 各 个 具 体 工 程 领 域 的利 器 , T A MA -
事高科 技 等新 技术 领 域 中 , 甚 至对 一 些关 键 技术 它 起 到 了决 定性 作用 。 传热 过程 是传 热学 研 究最 基本 的过 程之 一 , 传统 的数值 分 析解 法 只能 解决 相 对 简 单 的传热 问题 ,而在 解决 复 杂 的实 际传 热 问题 时 , 数学 描述 和求 解都 很 困难 _】随 着计算 机 技术 的兴 l。 _ 2 起, 解偏 微分 方程分 已逐 渐 被 人们 完 成 , 时 , 算 机 技 术 的发 同 计
维普资讯
第 2 卷第 2期 7
V0.7 No. 1 2 2
企 业 技 术 开 发
TECHN0L0GI CAL DEVEL 0PMENT ENTERPRI E 0F S
20 年 2月 08
Fe . 08 b20
综述应 用 MA L B软件 求解导热和对 流 问题 TA
习惯 , “ 有 草稿 纸 ” 式编 程 工具 之称 口 MA L B软 件 】 TA 。
等传 统工 业部 门中 , 传热 学理 论 的 应用 解决 了这些
部 门生产 过程 的热 工 艺技 术 ,而在新 能 源利 用 、 军
是 国际上 公认 的优 秀数 学应 用 软件 之 一 , 主要包 它 括 两 大 内容 : 心 函数 和工 具 箱 , 核 目前 其 最 新 版本
S um m a y f t e ppl a i n f M ATLAB n he t o uc i n a r 0 h a i to o c i a c nd to nd

MATLAB在导热问题中的应用

MATLAB在导热问题中的应用

MATLAB在导热问题中的应用导热问题简介导热是指物质内部不同温度区域之间的热量传递现象。

在不同的热力学系统中,由于温度差异,导致热量从高温区域流向低温区域,以减少温度差异,直到两个区域相等为止,这个过程叫做导热。

在工业生产和科学研究中,导热问题是一个非常重要的问题,例如,建筑物的两面温度差、内部电子器件的散热等等都涉及到导热问题。

对于一些研究者而言,如何利用数学模型和计算机软件来解决导热问题,就成为了一个非常重要的课题。

MATLAB在导热问题中的应用MATLAB是一个非常强大的工具箱,因其拥有强大的计算功能,可以用于解决一些复杂的导热问题,例如:热传导方程热传导方程是描述物质中热量传递的基本方程,可以用MATLAB进行求解。

假设离散化的计算域中存在一系列温度节点,我们可以用以下公式表示热传导方程。

$$ \\dfrac{\\partial T}{\\partial t} = \ abla \\cdot (k \ abla T) $$其中,T为温度场变量,t为时间变量,k为热导率,abla表示热传导方程的梯度算子。

我们可以用MATLAB中的数值计算工具箱进行矩阵运算、微分运算等维度相关的计算,以求解这个方程。

边值问题在一些实际的导热问题中,会涉及到一些带边界的热传导问题,例如,房屋内的热传导问题,需要考虑外界空气温度对房屋内温度的影响。

这时,我们可以使用MATLAB中的偏微分方程工具箱,以求解带边值条件的问题。

辐射换热问题在一些高温应用场合,例如火车内部电力设备的散热问题,会涉及到辐射换热问题。

与传导换热不同,辐射换热是指物体表面和空间中其他物体表面之间的热量传递现象。

在这种情况下,我们可以使用MATLAB中的图像处理工具箱,通过计算辐射通量的分布来解决辐射换热问题。

结论综上所述,MATLAB可以用于解决一些复杂的导热问题,并且可以通过不同的工具箱进行平面模型、三维模型、带边值条件和辐射换热等不同类型的求解。

matlab求解一维带内热源传热问题

matlab求解一维带内热源传热问题

matlab 求解一维带内热源传热问题解一维带有内部热源的传热问题通常涉及到热传导方程的求解。

热传导方程描述了温度场随时间和空间的变化。

一维热传导方程通常写作:22()T T Q x t xα∂∂=+∂∂ 其中:• T 是温度,• t 是时间,• x 是空间坐标,• α 是热扩散系数,• Q(x) 是热源。

解这个方程需要适当的边界条件和初始条件。

为了简化问题,我们可以考虑一个稳态(0T t∂=∂)情况。

以下是使用 MATLAB 求解一维带有内部热源的传热问题的简单示例代码:% 参数设置L = 1; % 区域长度alpha = 0.01; % 热扩散系数Q = @(x) 1; % 内部热源% 空间离散化N = 100; % 离散网格数x = linspace(0, L, N);% 热传导方程T = zeros(1, N);T(1) = 0; % 初始条件T(N) = 100; % 边界条件% 离散格式求解dx = x(2) - x(1);dt = 0.01;num_steps = 1000;for step = 1:num_stepsfor i = 2:N-1T(i) = T(i) + alpha * dt / dx^2 * (T(i+1) - 2*T(i) + T(i-1)) + Q(x(i)) * dt;endend% 结果可视化plot(x, T);xlabel('空间坐标');ylabel('温度');title('一维带内部热源传热问题');请注意,这是一个简化的例子,具体的问题可能需要更多的考虑,例如更精确的数值方法、不同的边界条件和初始条件、更复杂的热源分布等。

这个示例主要用于演示MATLAB 中解决这类问题的基本方法。

利用matlab程序解决热传导问题

利用matlab程序解决热传导问题

哈佛大学能源与环境学院课程作业报告作业名称:传热学大作业——利用matlab程序解决热传导问题院系:能源与环境学院专业:建筑环境与设备工程学号:姓名:盖茨比2015年6月8日一、题目及要求1.原始题目及要求2.各节点的离散化的代数方程3.源程序4.不同初值时的收敛快慢5.上下边界的热流量(λ=1W/(m℃))6.计算结果的等温线图7.计算小结题目:已知条件如下图所示:二、各节点的离散化的代数方程各温度节点的代数方程ta=(300+b+e)/4 ; tb=(200+a+c+f)/4; tc=(200+b+d+g)/4; td=(2*c+200+h)/4 te=(100+a+f+i)/4; tf=(b+e+g+j)/4; tg=(c+f+h+k)/4 ; th=(2*g+d+l)/4ti=(100+e+m+j)/4; tj=(f+i+k+n)/4; tk=(g+j+l+o)/4; tl=(2*k+h+q)/4tm=(2*i+300+n)/24; tn=(2*j+m+p+200)/24; to=(2*k+p+n+200)/24; tp=(l+o+100)/12 三、源程序【G-S迭代程序】【方法一】函数文件为:function [y,n]=gauseidel(A,b,x0,eps)D=diag(diag(A));L=-tril(A,-1);U=-triu(A,1);G=(D-L)\U;f=(D-L)\b;y=G*x0+f;n=1;while norm(y-x0)>=epsx0=y;y=G*x0+f;n=n+1;end命令文件为:A=[4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0;-1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0;0,-1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0;0,0,-2,4,0,0,0,-1,0,0,0,0,0,0,0,0;-1,0,0,0,4,-1,0,0,-1,0,0,0,0,0,0,0;0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0,0;0,0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0;0,0,0,-1,0,0,-2,4,0,0,0,-1,0,0,0,0;0,0,0,0,-1,0,-1,0,4,0,0,0,-1,0,0,0;0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0,0;0,0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0;0,0,0,0,0,0,0,-1,0,0,-2,4,0,0,0,-1;0,0,0,0,0,0,0,0,-2,0,0,0,24,-1,0,0;0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1,0;0,0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1;0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,12];b=[300,200,200,200,100,0,0,0,100,0,0,0,300,200,200,100]';[x,n]=gauseidel(A,b,[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]',1.0e-6) xx=1:1:4;yy=xx;[X,Y]=meshgrid(xx,yy);Z=reshape(x,4,4);Z=Z'contour(X,Y,Z,30)Z =139.6088 150.3312 153.0517 153.5639108.1040 108.6641 108.3119 108.1523 84.1429 67.9096 63.3793 62.4214 20.1557 15.4521 14.8744 14.7746 【方法2】>> t=zeros(5,5);t(1,1)=100;t(1,2)=100;t(1,3)=100;t(1,4)=100;t(1,5)=100;t(2,1)=200;t(3,1)=200;t(4,1)=200;t(5,1)=200;for i=1:10t(2,2)=(300+t(3,2)+t(2,3))/4 ;t(3,2)=(200+t(2,2)+t(4,2)+t(3,3))/4;t(4,2)=(200+t(3,2)+t(5,2)+t(4,3))/4;t(5,2)=(2*t(4,2)+200+t(5,3))/4;t(2,3)=(100+t(2,2)+t(3,3)+t(2,4))/4;t(3,3)=(t(3,2)+t(2,3)+t(4,3)+t(3,4))/4; t(4,3)=(t(4,2)+t(3,3)+t(5,3)+t(4,4))/4; t(5,3)=(2*t(4,3)+t(5,2)+t(5,4))/4;t(2,4)=(100+t(2,3)+t(2,5)+t(3,4))/4;t(3,4)=(t(3,3)+t(2,4)+t(4,4)+t(3,5))/4;t(4,4)=(t(4,3)+t(4,5)+t(3,4)+t(5,4))/4;t(5,4)=(2*t(4,4)+t(5,3)+t(5,5))/4;t(2,5)=(2*t(2,4)+300+t(3,5))/24;t(3,5)=(2*t(3,4)+t(2,5)+t(4,5)+200)/24;t(4,5)=(2*t(4,4)+t(3,5)+t(5,5)+200)/24;t(5,5)=(t(5,4)+t(4,5)+100)/12;t'endcontour(t',50);ans =100.0000 200.0000 200.0000 200.0000 200.0000 100.0000 136.8905 146.9674 149.8587 150.7444 100.0000 102.3012 103.2880 103.8632 104.3496 100.0000 70.6264 61.9465 59.8018 59.6008 100.0000 19.0033 14.8903 14.5393 14.5117【Jacobi迭代程序】函数文件为:function [y,n]=jacobi(A,b,x0,eps)D=diag(diag(A));L=-tril(A,-1);U=-triu(A,1);B=D\(L+U);f=D\b;y=B*x0+f;n=1;while norm(y-x0)>=epsx0=y;y=B*x0+f;n=n+1;end命令文件为:A=[4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0,0;-1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0,0; 0,-1,4,-1,0,0,-1,0,0,0,0,0,0,0,0,0; 0,0,-2,4,0,0,0,-1,0,0,0,0,0,0,0,0;-1,0,0,0,4,-1,0,0,-1,0,0,0,0,0,0,0; 0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0,0; 0,0,-1,0,0,-1,4,-1,0,0,-1,0,0,0,0,0;0,0,0,-1,0,0,-2,4,0,0,0,-1,0,0,0,0;0,0,0,0,-1,0,-1,0,4,0,0,0,-1,0,0,0;0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0,0;0,0,0,0,0,0,-1,0,0,-1,4,-1,0,0,-1,0;0,0,0,0,0,0,0,-1,0,0,-2,4,0,0,0,-1;0,0,0,0,0,0,0,0,-2,0,0,0,24,-1,0,0;0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1,0;0,0,0,0,0,0,0,0,0,0,-2,0,0,-1,24,-1;0,0,0,0,0,0,0,0,0,0,0,-1,0,0,-1,12];b=[300,200,200,200,100,0,0,0,100,0,0,0,300,200,200,100]'; [x,n]=jacobi(A,b,[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]',1.0e-6); xx=1:1:4;yy=xx;[X,Y]=meshgrid(xx,yy);Z=reshape(x,4,4);Z=Z'contour(X,Y,Z,30)n =97Z =139.6088 150.3312 153.0517 153.5639108.1040 108.6641 108.3119 108.152384.1429 67.9096 63.3793 62.421420.1557 15.4521 14.8744 14.7746四、不同初值时的收敛快慢1、[方法1]在Gauss 迭代和Jacobi 迭代中,本程序应用的收敛条件均为norm(y-x0)>=eps ,即使前后所求误差达到e 的-6次方时,跳出循环得出结果。

MATLAB在导热问题中的应用

MATLAB在导热问题中的应用

分类号密级U D C 编号本科毕业论文(设计) 题目MATLAB在导热问题中的运用所在院系数学与数量经济学院专业名称信息与计算科学年级 05级学生姓名朱赤学号 0515180004指导教师周瑾二00九年四月文献综述1、概述MATLAB是一个为科学和工程计算而专门设计的高级交互式的软件包。

它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便的、界面友好的用户环境。

在这个环境下,对所要求解的问题,用户只需简单的列出数学表达式,其结果便以数值或图形方式显示出来。

MATLAB中有大量的命令和事先定义的可用函数集,也可通称为MATLAB的M文件,这就使得用它来求解问题通常比传统编程快得多;另外一点,也是它最重要的特点,易于扩展。

它允许用户自行建立完成指定功能的M文件。

从而构成适合于其它领域的工具箱。

MATLAB既是一种编程环境,又是一种程序设计语言。

它与其它高级程序设计语言C、Fortran等一样,也有其内定的规则,但其规则更接近于数学表示,使用起来更为方便,避免了诸如C、Fortran语言的许多限制,比方说,变量、矩阵无须事先定义;其次,它的语句功能之强大,是其它语言所无法比拟的,再者,MATLAB提供了良好的用户界面,许多函数本身会自动绘制出图形,而且会自动选取坐标刻度。

传热学是一门研究由温差引起的热能传递规律的科学,其理论和技术在生产、科学研究等领域得到了广泛的应用。

在能源动力、建筑建材及机械等传统工业部门中,传热学理论的应用解决了这些部门生产过程的热工艺技术,而在新能源利用、军事高科技等新技术领域中,它甚至对一些关键技术起到了决定性作用。

传热过程是传热学研究最基本的过程之一,传统的数学分析解法只能解决相对简单的传热问题,而在解决复杂的实际传热问题时,数学描述和求解都很困难。

随着计算机技术的兴起,解偏微分方程组等早期不能被很好解决或模拟的部分已逐渐被人们完成。

同时,计算机技术的发展,尤其是MATLAB的出现,不但解决了很多较复杂的问题,也大大促进了传热学理论的发展。

导热的反问题matlab

导热的反问题matlab

导热的反问题matlab
在MATLAB中,导热问题通常涉及热传导方程的数值求解。

热传导方程描述了物体内部温度分布随时间的变化,通常采用偏微分方程来描述。

解决导热问题的一种常见方法是使用有限差分法。

在MATLAB中,可以通过编写代码来离散化热传导方程,并使用迭代方法求解离散化后的方程。

另一种常见的方法是使用MATLAB的偏微分方程工具箱(Partial Differential Equation Toolbox)。

该工具箱提供了一系列函数和工具,可以帮助用户建立和求解偏微分方程,包括热传导方程。

用户可以通过定义边界条件、初始条件和热传导方程的参数来建立模型,并使用工具箱中的函数进行数值求解。

此外,MATLAB还提供了用于可视化和分析结果的丰富工具,例如绘制温度分布图、计算热通量等。

通过这些工具,用户可以全面分析导热问题的结果,并对模型进行验证和优化。

总之,在MATLAB中,可以通过编写代码、使用偏微分方程工具箱以及可视化分析工具来解决导热问题,从而全面深入地研究热传导现象。

matlab在传热学例题中的应用

matlab在传热学例题中的应用

matlab在传热学例题中的应用
MATLAB 是一种广泛使用的数学软件,可以在传热学等领域中用于数值计算和可视化。

以下是 MATLAB 在传热学例题中的应用:
1. 求解热传导方程
热传导方程是传热学中的基本方程之一,可以用于描述热量在固体表面上的传递。

MATLAB 可以用于求解热传导方程,例如可以使用Navier-Stokes 方程求解器来求解热传导方程。

2. 模拟热传导过程
通过使用 MATLAB 中的数值积分方法,可以模拟热传导过程,例如在求解热传导问题时,可以使用有限差分法 (FDM) 来求解热传导问题。

3. 可视化传热过程
MATLAB 可以用于可视化传热过程,例如可以使用 MATLAB 中的图像处理工具箱来绘制热传导过程的可视化图像。

此外,MATLAB 还可以用于制作动画,以展示传热过程的变化。

4. 研究热传导特性
通过使用 MATLAB 进行传热模拟,可以研究热传导特性,例如可以研究热传导率、热阻等特性。

此外,MATLAB 还可以用于研究热传导的非线性特性,例如可以使用非线性优化工具箱来求解最优热传导率。

MATLAB 在传热学中的应用非常广泛,可以帮助传热学者更好地理解和研究传热过程。

Matlab在热传递学课程中的应用

Matlab在热传递学课程中的应用

Matlab在热传递学课程中的应用热传递学是研究热能传递和传导的学科,广泛应用于工程、物理和环境领域。

在热传递学课程中,Matlab是一个常用的工具,可以帮助学生理解和分析热传递过程。

下面将介绍在热传递学课程中使用Matlab的步骤和应用。

第一步是建立热传递模型。

在研究热传递过程时,我们需要建立相应的数学模型。

可以使用Matlab来编写这些模型,并通过求解数学方程来分析热传递现象。

例如,我们可以使用Matlab编写热传导方程,并求解得到温度分布。

第二步是处理边界条件。

在热传递过程中,边界条件对结果有着重要的影响。

例如,我们可以设置材料的初始温度、表面的热通量或边界温度等。

Matlab提供了丰富的边界条件处理函数和图形界面,使得处理边界条件变得更加简便。

第三步是求解热传递问题。

在建立了合适的模型和边界条件后,我们可以使用Matlab的数值求解方法来求解热传递问题。

Matlab提供了许多数值求解算法,如有限差分法和有限元法,可以帮助我们得到准确的结果。

通过对求解结果的分析和可视化,我们可以更好地理解热传递过程。

第四步是进行参数敏感性分析。

在研究热传递过程时,我们通常需要考虑不同的参数对结果的影响。

Matlab提供了参数敏感性分析的工具,可以帮助我们理解不同参数对热传递问题的影响程度。

通过参数敏感性分析,我们可以选择最优的参数组合,并优化热传递系统的设计。

第五步是进行热传递实验和数据处理。

除了数值分析,实验也是研究热传递的重要手段。

Matlab 可以辅助我们进行热传递实验的数据处理和分析。

通过编写Matlab程序,我们可以快速地进行数据处理、绘图和拟合曲线,从而更好地理解实验数据和验证理论模型。

综上所述,Matlab在热传递学课程中具有广泛的应用。

它可以帮助学生建立热传递模型,处理边界条件,求解热传递问题,进行参数敏感性分析,并辅助实验数据处理。

通过使用Matlab,学生可以更好地理解和分析热传递过程,提高问题解决能力。

数值传热_传热学上机实验_墙角稳态导热问题数值模拟

数值传热_传热学上机实验_墙角稳态导热问题数值模拟

图一
二、 计算原理
本次上机模拟实验选等温边界条件。墙角是中心对称的,所以取其 1/4 研究, 方便计算机计算。上机模拟选取网格划分方法同实际实验,可根据热平衡法列 出节点方程,各方向导入单元体的热量之和为零。该边界条件下共有四类节点,
Hale Waihona Puke 内节点、内边界点、外边界点和绝热边界点。
图二
四种节点的节点方程简化如下:
eps=1; temp=A[i][j]; A[i][j]=(A[i-1][j]+A[i+1][j]+A[i][j-1]+A[i][j+1])/4; eps=A[i][j]-temp;
} eps=1; temp=A[0][j]; A[0][j]=(A[0][j-1]+A[0][j+1]+2*A[1][j])/4; eps=A[i][15]-temp; } //计算墙体外表面导热量 q_out=0; for(i=1;i<11;i++) q_out=q_out+A[i][0]-A[i][1]; for(j=1;j<15;j++) q_out=q_out+A[11][j]-A[10][j]; q_out=q_out+(A[0][0]-A[0][1]+A[11][15]-A[10][15])/2; q_out=q_out*0.53; //计算墙体内表面导热量 q_in=0; for(i=1;i<7;i++) q_in=q_in+A[i][4]-A[i][5]; for(j=5;j<15;j++) q_in=q_in+A[7][j]-A[6][j]; q_in=q_in+(A[0][4]-A[0][5]+A[7][15]-A[6][15])/2; q_in=q_in*0.53; //计算平均导热量和相对误差 q=(q_in+q_out)/2; eps=abs(q_in-q_out); } //输出结果 for(i=11;i>5;i--) { for(j=0;j<16;j++) out<<setw(8)<<setprecision(2)<<A[i][j]<<" "; out<<endl; } for(i=5;i>=0;i--) { for(j=0;j<6;j++) out<<setw(8)<<setprecision(2)<<A[i][j]<<" "; out<<endl; } out<<"墙体内表面导热量q_in="<<q_in<<"\n"; out<<"墙体外表面导热量q_out="<<q_out<<"\n"; out<<"墙体平均导热量q="<<q<<"\n"; return 0; }

数值传热_传热学作业_matlab

数值传热_传热学作业_matlab

开始
输入 n, np, tm, Bia, Bib, Fo
n=10, tm=480, tfa=20, Bia=6*0.24/(n-1)/0.43, Bib=15*0.24/(n-1)/0.43; Fo=0.43/1668/750*86400/tm/(0.24/(n-1))^2
No 打印“不稳定”
Yes k=k+1 k=1
ha ∆x ρ c∆x 2 1 = ,于是 = Bia , λ λ ∆τ Fo 1 ( t1k +1 − t1k ) 2 Fo 1 2 Bia + 2
k k t2 − t1k + Bia ( t k f − t1 ) =
移项整理得
k k + Bia t k t1k +1 = 2 Fo ( t2 f ) + (1 − 2 Bia Fo − 2 Fo ) t1 , Fo ≤
tik +1 =
a∆τ k a ∆τ t + tik+1 ) + 1 − 2 2 2 ( i −1 ∆x ∆x
k ti
上式可写作
tik +1 = Fo ( tik−1 + tik+1 ) + (1 − 2 Fo ) tik
Fo ≤
b)
1 2
边界节点离散方程 由于本题的壁面温度属于第三类边界条件,因此
(5) 计算结果 准则数初始值:Bia = 0.3721,Bib = 0.9302,Fo = 0.0870
时间 内壁面温度(℃) 0:30 8.22 1:00 9.45 1:30 10.28 2:00 10.89 2:30 11.37 3:00 11.76 3:30 12.09 4:00 12.36 4:30 12.59 5:00 12.79 5:30 12.97 6:00 13.13 6:30 13.27 7:00 13.40 7:30 13.52 8:00 13.64 8:30 13.75 9:00 13.86 9:30 13.96 10:00 14.06 10:30 14.16 11:00 14.26 11:30 14.36 12:00 14.46 (6) 温度变化图

传热学实验—-墙角matlab导热问题

传热学实验—-墙角matlab导热问题

二维导热物体温度场的数值模拟姓名小明学号 111111班级能动学院能动一、问题描述有一墙角模型,尺寸如图1所示,导热系数0.53W/(m·K),墙角内外壁为第一类边界条件。

求解该模型的温度分布及导热量。

图1q=0二、计算原理根据热平衡法列出节点方程,各方向导入单元体的热量之和为零。

内节点和绝热边界点(图1点划线上的点)的方程形式不同。

图2 Array图2所示的内节点和绝热边界节点方程如下:内节点:)()()()(1,,1,,1,1,,1,=⎥⎦⎤⎢⎣⎡-+-+-+-••=+++-+-+x y t t x y t t y x t t y x t t j i j i j i j i j i j i j i j i W E S N ∆∆∆∆∆∆∆∆ΦΦΦΦλ绝热边界点:)(02)(2)(1,,1,1,,1,=⎥⎦⎤⎢⎣⎡-++-+-••=+++--+x y t t y xt t y x t t j i j i j i j i j i j i W E S N ∆∆∆∆∆∆ΦΦΦΦλ三、计算过程用Matlab7.1语言编写计算程序,初取网格步长m y x 1.0=∆=∆运行结果:图1:各个点的温度数值图2:分层设色等温线分布图3:等温线分布(每两条线间隔为三度)四、小结本次数值模拟是运用matlab程序用于数值计算。

小组成员共同讨论并复习了热传导问题的数学描述和热平衡法;从模拟过程中练习了不同节点迭代方程的建立;并简单学习了matlab语言的使用。

这次大作业对于我们以后的学习和可能的研究来说是一个很好的锻炼机会。

热传导问题的MATLAB数值计算

热传导问题的MATLAB数值计算

收稿日期:2002-05-09.作者简介:李 灿(1968-),女,副教授;株州,湖南冶金职业技术学院冶金系(412000).¹Partial different ial equation toolbox user c s guide.T he M ath Works,Inc.,2000.热传导问题的M AT LAB 数值计算李 灿湖南冶金职业技术学院冶金系高彦栋 黄素逸华中科技大学能源与动力工程学院摘要:分析了应用M AT LAB 中PDE 工具箱解热传导问题的方法和步骤,编制了三个难以用解析方法求解的算例.采用有限元法求解导热偏微分方程,应用PDE 工具箱得到数值解.对适合圆柱坐标描述的问题,通过公式变化将其转换为能用PDE 工具箱求解的形式.算例表明,用M AT LAB 对复杂形状和有内热源的非稳态导热问题进行数值计算和图形处理是方便高效的.关 键 词:热传导;非稳态导热;M AT L AB;数值计算中图分类号:T K 124 文献标识码:A 文章编号:1671-4512(2002)09-0091-03许多工程问题需要确定物体内部的温度场或确定其内部温度到达某一限定值所需要的时间,因此研究导热问题特别是非稳态导热问题十分重要.目前非稳态导热问题的描述方程为多维非线性的偏微分方程,这些方程只在几何形状与边界条件都较简单的情况下才能求得理论解,而对于几何形状和边界条件复杂的情况多用数值解法,需借助于计算机将时间和空间坐标划分成数量巨大的网格才能得到较精确的数值解.本文应用M ATLAB 中PDE 工具箱,求解复杂边界条件的热传导问题.1 求解方法求解方法是基于数值解法中的有限元法[1],其基本原理是把计算区域划分成一系列的三角形单元,每个单元上取一个节点,选定一个形状函数(抛物线形或双曲线形),并通过单元中节点上的被求解变量值表示该函数.通过对控制方程作积分来获得离散方程.有限元法的最大优点是对不规则区域适应性好,故用MATLAB 方法求解的结果在边界上也较精确.对于适合圆柱坐标和球坐标描述的问题,通过对其热传导方程的变换,也能在MATLAB 中求解.应用MATLAB 的PDE (Partial Differential Equation)工具箱可以解如下四类偏微分方程¹-$#(c $u)+au =f ;d(5u /5t)-$#(c $u)+au =f ;d(52u/5t 2)-$#(c $u)+au =f ;-$#(c $u)+au =E du,(1)式中,u 为域8上的求解变量;E 为特征值;d,c,a,f 为常数或变量;t 为时间变量.前3个方程分别称为椭圆方程、抛物线方程和双曲线方程,第4个方程称为特征值方程.导热问题的通用微分方程可写成[2]Q c p (5u /5t )=$(K $u )+q v ,(2)式中,u 为求解变量,此处表示被求解物体内的温度;K 为导热系数;q v 为热源的发热率密度;Q 为密度;c p 为定压比热容.可以看出,式(1)和式(2)中的抛物线方程有着类似的形式.其中,求解变量为区域的温度,d 与Q c p ,c 与K ,f -au 与q v 可以一一对应.M ATLAB 中的PDE 工具箱定义了两类边界条件hu =r ;n #(c $u)+qu =g ,(3)式中,n 为垂直于边界的单位矢量;h ,r ,q 和g 为常量或与u 有关的变量.方程(3)中的第1个方程称为狄利克雷(Dirichlet)边界条件,第2个方程称为纽曼(Neumann)边界条件.可以看出,导热问题中的第一类边界与狄利克雷边界条件对应,第二类和第三类边界条件与纽曼边界条件对应.这些对应关系可以使用MATLAB 中的PDE 工具箱第30卷第9期 华 中 科 技 大 学 学 报(自然科学版) V ol.30 No.92002年 9月 J.Huazhong U niv.of Sci.&T ech.(Nature Science Edition)Sep.2002来求解.对一个导热问题的计算可以按图1的步骤进行.图1 M AT L AB 计算流程图2 算例2.1 三维非稳态无内热源的导热问题边长为0.5m,0.7m 和1.0m 的长方形钢锭,置于炉温u f =1200e 的加热炉内,计算5h 后钢锭的温度.已知钢锭的K =40.5W/(m #e ),A =0.722@10-5m 2/s ,u 0=25e ,钢锭与外界的对流换热系数h =348W/(m 2#e ).由对应关系可得d =Q c p =K /A ;c =K ;f =0;a =0,边界条件为纽曼边界条件,且钢锭的6个边界条件均相同,由对应关系有:q =h ; g =hf .求得5h 后钢锭内部的温度分布如图2,温度梯度如图3.两图还显示了有限元求解的网格,图3底平面的箭头方向为热流密度方向.图2 5h时刻钢锭的温度分布云图图3 5h 时刻钢锭的温度梯度云图如果导热体物性系数K 为温度u 的函数,只要写出K (u)的函数关系式,就可以得到解.2.2 有内热源的圆柱体非稳态导热问题有一半径为0.2m,长为3m 的圆柱形核电站用燃烧棒置于u f =100e 的水中,由于链式反应,棒内有恒定的产热率密度q v =20000W/m 3,计算10h 后燃烧棒内的温度分布.已知,燃烧棒的密度Q =7800kg /m 3,c p =500W #s/(kg #e ),K =40W/(m #e ),u 0=0e ,燃烧棒右端恒温t r =100e ,左端有一恒热流q l =5000W/m 2,燃烧棒外表面与外界水的对流换热系数h =50W/(m 2#e ).此问题宜采用圆柱坐标,由于燃烧棒内温度沿半径对称分布,因此可以转换为(r ,z )坐标的二维问题.将圆柱坐标内的热传导方程改写为Q c p r 5u 5t -55r K r 5u 5r -55z K r 5u 5z =q v r ,(4)以使其形式与式(1)拟合.式(4)与式(1)中的抛物线方程对比可以得出:d =Q c p r ;c =K r ;a =0;f =q v r ,式中,z 对应第一个坐标方向(在直角坐标中为x 方向);r 对应第二个坐标方向(在直角坐标中为y ).燃烧棒左端的边界条件为:n #(K $u )=q r ,为纽曼边界条件,由对应关系得:q =0; g =q l r ,燃烧棒右端为狄利克雷边界条件u =100.燃烧棒上(外)边界条件n #(K $u)=h(u f -u)为纽曼边界条件,由对应关系得q =hr ;g =hu f r.解析域的下边界为棒的中心,其边界条件为n #(K $t)=0,也为纽曼边界条件.q =0,则把q 和g 都设为0即可.求得10h 时刻燃烧棒内部的温度分布如图4所示,热流密度分布如图5所示.图4 10h 时刻燃烧棒的温度分布云图92 华 中 科 技 大 学 学 报(自然科学版) 第30卷图5 10h 时刻燃烧棒的热流密度云图如果内热源是时间或空间的函数,写出函数关系式,也可以得到解.2.3 复杂边界的热传导问题考虑这样一个问题:一个正方形内嵌一菱形,其中正方形区域的密度为2W/m 2,导热系数为10W/(cm #e ),菱形的密度为1W/m 2,导热系数为5W/(cm #e ),并有内热源的发热率密度为10W/m 2,两个区域的定压比热容均为0.1J/(kg #e ).初始温度为0e .计算0.1s 之后的等温图如图6所示,箭头所指为热流方向,热流密度图如图7所示.由此可见,应用MATLAB 可以方便快捷地解出复杂几何形状和复杂边界条件的非稳态问题.并且其强大的图形可视化功能使计算结果形象、直观而便于理解.图6 0.1s时刻等温图图7 0.1s 时刻热流密度云图参考文献[1]陶文铨.数值传热学(第2版).西安:西安交通大学出版社,2001.[2]程俊国,张洪济.高等传热学.重庆:重庆大学出版社,1990.Numerical simulation of problems in heat conduction using MATLABL i Can Gao Yandong H uang S uyiAbstract:The method and steps for finding the solutions for problems in heat conduction w ith the PDE toolbox in M ATLAB are described.T hree ex amples difficult to resolve w ith the analy tical method are g iven.The partial differential equation (PDE)for heat conduction is solved w ith the finite element method and the PDE toolbox is adopted to obtain the num erical simulation.Problems suitable for description w ith cylindrical coordinates are transformed into forms that are capable of solution w ith the PDE toolbox through formula variation.Examples of calculation show that M ATLAB is convenient and highly efficient for numerical simulation and graphic processing of com plex g eometry and non -steady -state heat conduction problems w ith internal thermal source.Key words:heat conduction;non -steady state heat conduction;MATLAB;numerical simulationLi Can Assoc.Prof.;Dept.of M etallurgy,Hu c nan Metallurg y Professional and Technical College,Zhuzhou 412000,Hu c nan,China.93第9期 李 灿等:热传导问题的M AT LAB 数值计算。

传热学上机作业-墙角温度场分布的数值模拟

传热学上机作业-墙角温度场分布的数值模拟

《传热学》上机实践大作业二维导热物体温度场的数值模拟 能动A02 赵凯 2010031134一、物理问题有一个用砖砌成的长方形截面的冷空气通道,其截面尺寸如下图所示,假设在垂直于纸面方向上冷空气及砖墙的温度变化很小,可以近似地予以忽略。

在下列两种情况下试计算:砖墙横截面上的温度分布;垂直于纸面方向的每米长度上通过砖墙的导热量。

第一种情况:内外壁分别均匀地维持在0C ︒及30C ︒; 第二种情况:内外表面均为第三类边界条件,且已知:Km K m W h C t Km W h C t •=•=︒=•=︒=∞∞/35.0/93.3,10/35.10,30222211λ砖墙导热系数二、数学描写1、控制方程该问题为无内热源的二维稳态导热问题,因此控制方程为导热微分方程:02222=∂∂+∂∂y t x t 2、边界条件该问题中,导热物体在x 方向上,y 方向上都是对称的,因此可以只取其中的四分之一部分作为研究对象,其他部分情况完全相同,如下图所示:对于上图所示各边界:边界1:由对称性可知:其为绝热边界,即0=w q 。

边界2:第一种情况:其为等温边界,满足第一类边界条件。

即: C t w ︒=0第二种情况:其为对流边界,满足第三类边界条件。

即:)()(2f w w w t t h ntq -=∂∂-=λ 边界3:第一种情况:其为等温边界,满足第一类边界条件。

即: C t w ︒=30 第二种情况:其为对流边界,满足第三类边界条件。

即:)()(1f w w w t t h ntq -=∂∂-=λ三、方程离散如下图所示,用一系列与坐标轴平行的间隔10cm 的网格线将求解区域划分成子区域。

可将上图所示各节点分成内节点与边界点两类。

分别利用热平衡法列各个节点的代数方程。

第一种情况(等温边界): 边界点:边界1(绝热边界):5~2),2(411,11,12,1,=++=+-m t t t t m m m m 11~8),2(411,161,16,15,16=++=+-n t t t t n n n n 边界2(内等温边界): 7,16~7;7~1,6,0,=====n m n m t n m边界3(外等温边界): 12,16~2;12~1,1,30,=====n m n m t n m内节点:11~8,15~6;11~2,5~2);(411,1,,1,1,====+++=-+-+n m n m t t t t t n m n m n m n m n m第二种情况(对流边界): 边界点:边界1(绝热边界):5~2),2(411,11,12,1,=++=+-m t t t t m m m m11~8),2(411,161,16,15,16=++=+-n t t t t n n n n边界2(内对流边界):6~1,)2(222111,61,6,5,6=++++=∆∆-+n Bi t Bi t t t t n n n n16~7,)2(2221117,17,18,7,=++++=∆∆-+m Bi t Bi t t t t m m m m边界3(外对流边界):11~1,)2(2222221,11,1,2,1=++++=∆∆-+n Bi t Bi t t t t n n n n16~2,)2(22222212,112,111,12,=++++=∆∆-+m Bi t Bi t t t t m m m m内角点: )3(22)(21116,67,78,67,57,6+++++=∆∆Bi t Bi t t t t t外角点: )1(222211,112,212,1+++=∆∆Bi t Bi t t t内节点:11~8,15~6;11~2,5~2);(411,1,,1,1,====+++=-+-+n m n m t t t t t n m n m n m n m n m(10,22121==∆=∞∆t t xh Bi λ;30,21212==∆=∞∆t t xh Bi λ)四、编程求解第一种情况(等温边界):Fortran程序代码如下所示:Program denwengimplicit noneinteger::t1=0integer::t2=30integer m,nreal::t(16,12),ta(16,12),et(16,12)real::epslona=1realfainei,fainei1,fainei2,fainei3,fainei4,fainei5,fai nei6,fainei7realfaiwai,faiwai1,faiwai2,faiwai3,faiwai4,faiwai5 ,faiwai6,faiwai7real pianchado n=1,7t(6,n)=t1end dodo m=7,16t(m,7)=t1end dodo n=1,12t(1,n)=t2end dodo m=2,16t(m,12)=t2end dodo m=2,5do n=1,11t(m,n)=10end doend dodo m=6,16do n=8,11t(m,n)=10end doend doopen(01,file='dengwen.dat')do while(epslona>0.00000001)do m=2,5ta(m,1)=0.25*(2*t(m,2)+t(m-1,1)+t(m+1,1)) end dodo m=2,5do n=2,11ta(m,n)=0.25*(t(m+1,n)+t(m-1,n)+t(m,n+1)+t( m,n-1))end doend dodo m=6,15do n=8,11ta(m,n)=0.25*(t(m+1,n)+t(m-1,n)+t(m,n+1)+t( m,n-1))end doend dodo n=8,11ta(16,n)=0.25*(2*t(15,n)+t(16,n-1)+t(16,n+1)) end dodo n=1,7ta(6,n)=t1end dodo m=7,16ta(m,7)=t1end dodo n=1,12ta(1,n)=t2end dodo m=2,16ta(m,12)=t2end dodo m=1,16do n=1,12et(m,n)=abs(ta(m,n)-t(m,n))end doend doepslona=maxval(et(1:16,1:12))do m=1,16do n=1,12t(m,n)=ta(m,n)end doend doend dofainei1=0.5*lanbuda*t(5,1)fainei3=lanbuda*t(5,8)fainei5=0.5*lanbuda*t(16,8)fainei2=0do n=2,7fainei6=lanbuda*t(5,n)fainei2=fainei2+fainei6end dofainei4=0do m=6,15fainei7=lanbuda*t(m,8)fainei4=fainei4+fainei7end dofainei=4*(fainei1+fainei2+fainei3+fainei4+fai nei5)faiwai1=0.5*lanbuda*(30-t(2,1))faiwai3=lanbuda*(30-t(2,11))faiwai5=0.5*lanbuda*(30-t(16,11))faiwai2=0do n=2,10faiwai6=lanbuda*(30-t(2,n))faiwai2=faiwai2+faiwai6end dofaiwai4=0do m=3,15faiwai7=lanbuda*(30-t(m,11))faiwai4=faiwai4+faiwai7end dofaiwai=4*(faiwai1+faiwai2+faiwai3+faiwai4+ faiwai5)print*,' m n t 'do m=1,16do n=1,12print*, m,n,t(m,n)write(01,*) m,n, t(m,n)end doend dopiancha=abs(fainei-faiwai)/((fainei+faiwai)/2) print*,'内部热流量=',faineiprint*,'外部热流量=',faiwaiprint*,'热平衡偏差=',pianchaend program denweng运行结果如图所示:第二种情况(对流边界): Fortran程序代码如下所示:program duiliuimplicit noneinteger::t1=10integer::t2=30integer m,nreal::t(16,12),ta(16,12),et(16,12)real::epslona=1real bi1,bi2realfainei,fainei1,fainei2,fainei3,fainei4,fainei5,fai nei6,fainei7realfaiwai,faiwai1,faiwai2,faiwai3,faiwai4,faiwai5 ,faiwai6,faiwai7real pianchabi1=h1*detax/lanbudabi2=h2*detax/lanbudado m=1,16do n=1,12t(m,n)=10end doend doopen(01,file='crs.dat')do while(epslona>0.000000001)do m=2,5ta(m,1)=0.25*(2*t(m,2)+t(m-1,1)+t(m+1,1)) end dodo n=8,11ta(16,n)=0.25*(2*t(15,n)+t(16,n-1)+t(16,n+1)) end dodo n=2,6 ta(6,n)=(2*t(5,n)+t(6,n+1)+t(6,n-1)+2*bi1*t1) /(2*bi1+4)end dodo m=7,15ta(m,7)=(2*t(m,8)+t(m+1,7)+t(m-1,7)+2*bi1* t1)/(2*bi1+4)end dodo n=2,11ta(1,n)=(2*t(2,n)+t(1,n+1)+t(1,n-1)+2*bi2*t2) /(2*bi2+4)end dodo m=2,15ta(m,12)=(2*t(m,11)+t(m+1,12)+t(m-1,12)+2 *bi2*t2)/(2*bi2+4)end dodo m=2,5do n=2,11ta(m,n)=0.25*(t(m+1,n)+t(m-1,n)+t(m,n+1)+t( m,n-1))end doend dodo m=6,15do n=8,11ta(m,n)=0.25*(t(m+1,n)+t(m-1,n)+t(m,n+1)+t( m,n-1))end doend dota(6,7)=(2*t(5,7)+2*t(6,8)+t(7,7)+t(6,6)+2*bi1*t1)/(2*bi1+6)ta(1,12)=(t(2,12)+t(1,11)+2*bi2*t2)/(2*bi2+2) ta(6,1)=(t(5,1)+t(6,2)+bi1*t1)/(bi1+2)ta(16,7)=(t(16,8)+t(15,7)+bi1*t1)/(bi1+2)ta(16,12)=(t(16,11)+t(15,12)+bi2*t2)/(bi2+2) ta(1,1)=( t(2,1)+t(1,2)+bi2*t2)/(bi2+2)do m=1,16do n=1,12et(m,n)=abs(ta(m,n)-t(m,n))end doend doepslona=maxval(et(1:16,1:12))do m=1,16do n=1,12t(m,n)=ta(m,n)end doend doend dofainei1=0.05*h1*(t(6,1)-10)fainei3=0.1*h1*(t(6,7)-10)fainei5=0.05*h1*(t(16,7)-10)fainei2=0do n=2,6fainei6=0.1*h1*(t(6,n)-10)fainei2=fainei2+fainei6end dofainei4=0do m=7,15fainei7=0.05*h1*(t(m,8)-10)fainei4=fainei4+fainei7end dofainei=4*(fainei1+fainei2+fainei3+fainei4+fai nei5)faiwai1=0.05*h2*(30-t(1,1))faiwai3=0.1*h2*(30-t(1,12))faiwai5=0.05*h2*(30-t(16,12))faiwai2=0do n=2,11 faiwai6=0.1*h2*(30-t(1,n))faiwai2=faiwai2+faiwai6end dofaiwai4=0do m=2,15faiwai7=0.1*h2*(30-t(m,12))faiwai4=faiwai4+faiwai7end dofaiwai=4*(faiwai1+faiwai2+faiwai3+faiwai4+ faiwai5)do n=1,12do m=1,16print*, m,n,t(m,n)write(01,*) m,n,t(m,n)end doend dopiancha=abs(fainei-faiwai)/((fainei+faiwai)/2) print*,'内部热流量=',faineiprint*,'外部热流量=',faiwaiprint*,'热平衡偏差=',pianchaclose(01)end program duiliuWORD完整版----可编辑----教育资料分享运行结果如图所示:----完整版学习资料分享----五、结果讨论1,、温度场分布图用以上数值模拟得到的各节点温度绘制温度场分布图。

热传导方程以及matlab求解

热传导方程以及matlab求解

热传导方程及matlab求解1. 热传导方程的概念热传导方程是描述物质内部温度分布随时间变化的数学模型。

它是热力学基本方程之一,描述了热能在物体内传递和扩散的过程。

热传导方程通常表示为:$$\frac{\partial u}{\partial t} = \alpha \nabla^2 u$$其中,u表示温度分布,t表示时间,$\alpha$表示热扩散系数,$\nabla^2$表示拉普拉斯算子。

热传导方程可以根据不同的物理条件和边界条件进行不同形式的推导和求解。

2. 热传导方程的重要性热传导方程在工程、地球科学、生物学和材料科学等领域都有着广泛的应用。

通过研究热传导方程,可以深入理解物质内部温度变化的规律,从而优化材料设计、改进能源利用效率,甚至预测地球内部热量分布等方面都有着重要的意义。

3. 热传导方程的matlab求解Matlab作为一种强大的科学计算软件,对热传导方程的求解有着很好的支持。

通过Matlab中的偏微分方程求解工具包,可以方便地对热传导方程进行数值求解。

一般来说,使用Matlab求解热传导方程的步骤包括定义方程、设定边界条件和初值条件、选择合适的数值求解方法,并进行模拟计算。

4. 个人观点和理解对于热传导方程及其在Matlab中的求解,我个人认为这是一个非常有意思且实用的课题。

热传导方程作为热力学基本方程之一,在工程领域有着很重要的应用,而Matlab作为科学计算软件的代表,在求解热传导方程时具有高效、准确的优势。

通过学习热传导方程及在Matlab中的求解,不仅可以深入理解热传导的物理过程,还能够提升数值计算及编程的能力。

总结通过本文的介绍,我们了解了热传导方程的基本概念、重要性以及在Matlab中的求解方法。

热传导方程作为描述物质内部温度分布变化的数学模型,对于研究物质热传导过程有着重要意义。

而Matlab作为强大的科学计算软件,对于求解热传导方程也有着很好的支持。

希望通过本文的介绍,读者能对热传导方程及其在Matlab中的求解有更深入的理解,并能够在相关领域应用这些知识。

MATLAB在导热问题中的应用

MATLAB在导热问题中的应用

MATLAB在导热问题中的应用分类号密级U D C 编号本科毕业论文(设计) 题目MATLAB在导热问题中的运用所在院系数学与数量经济学院专业名称信息与计算科学年级 05级学生姓名朱赤文献综述1、概述MATLAB是一个为科学和工程计算而专门设计的高级交互式的软件包。

它集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便的、界面友好的用户环境。

在这个环境下,对所要求解的问题,用户只需简单的列出数学表达式,其结果便以数值或图形方式显示出来。

MATLAB中有大量的命令和事先定义的可用函数集,也可通称为MATLAB的M文件,这就使得用它来求解问题通常比传统编程快得多;另外一点,也是它最重要的特点,易于扩展。

它允许用户自行建立完成指定功能的M文件。

从而构成适合于其它领域的工具箱。

MATLAB 既是一种编程环境,又是一种程序设计语言。

它与其它高级程序设计语言C、Fortran等一样,也有其内定的规则,但其规则更接近于数学表示,使用起来更为方便,避免了诸如C、Fortran语言的许多限制,比方说,变量、矩阵无须事先定义;其次,它的语句功能之强大,是其它语言所无法比拟的,再者,MATLAB 提供了良好的用户界面,许多函数本身会自动绘制出图形,而且会自动选取坐标刻度。

传热学是一门研究由温差引起的热能传递规律的科学,其理论和技术在生产、科学研究等领域得到了广泛的应用。

在能源动力、建筑建材及机械等传统工业部门中,传热学理论的应用解决了这些部门生产过程的热工艺技术,而在新能源利用、军事高科技等新技术领域中,它甚至对一些关键技术起到了决定性作用。

传热过程是传热学研究最基本的过程之一,传统的数学分析解法只能解决相对简单的传热问题,而在解决复杂的实际传热问题时,数学描述和求解都很困难。

随着计算机技术的兴起,解偏微分方程组等早期不能被很好解决或模拟的部分已逐渐被人们完成。

同时,计算机技术的发展,尤其是MATLAB的出现,不但解决了很多较复杂的问题,也大大促进了传热学理论的发展。

传热学matlab实验心得

传热学matlab实验心得

传热学matlab实验心得通过《matlab仿真》实验使我学习掌握了许多知识。

首先是对matlab有了一个全新的认识,其次是对matlab的更多操作和命令的使用有了更高的掌握,最重要的事对matlab的处理能力有了一个更高的飞跃尤其是对相关函数的使用及相关问题的处理。

就对matlab相关的命令操作而言,通过这次实验的亲身操作和实践,学习掌握了许多原本不知道的或者不太熟悉的命令。

比如说相关m文件的建立,画图用到的标注,配色,坐标控制,同一张图里画几幅不同的图像,相关参数的设置以及相关函数的调用格式等等。

就拿建立一个数学方程而言,通过设置不同的参数达到所需要的要求和结果,而且还可以在不同的窗口建立不同的函数而达到相同的效果,比如说可以再命令窗口和m文件中通过不同的命令设置的到相同的所需的效果图。

而自己对于矩阵及闭环传递函数的建立原本所掌握的知识几乎为零,而通过这次实验使我彻底的掌握了相关的命令操作和处理的方法,在这里我们不仅可以通过建立函数和参数来达到目标效果,而且还可以通过可视化的编程达到更快更方便,更简洁的效果。

就拿可视化编程而言原本根本就只是听说而已罢了,从来就没有亲身去尝试过,然而现在自己却可以和容易的通过搭建不同功能木块来实现相关的函数及功能。

这些在原本根本就不敢相信,然而通过《matlab 仿真》的学习和实验亲身操作这些原本看似不可能的操作在此就变的轻而易举的事了。

再此我不得不题到的事指导老师教我们怎么去搭建构造相关闭环传递函数的实验,这个实验几乎在我们的这次实验中占据了非常大的比重,在后面的几个大一点的实验中几乎都是涉及这个方面的内容,我现在想说的事怎么去搭建相关的函数和功能模块对我们来说几乎已经不是什么难事了,就拿怎么去对模块功能的实现以及分析确实是个重点和难点。

通过对同一个模块分析其对应的不同的参数分析图的建立去分析和解释其对应的相关功能和技术指标和性能分析是非常重要的,我们不可能只需要建立相关的模块和功能就说自己掌握了所有的相关知识和技术,真正的技术和知识是怎么去分析和解释相关的技术指标和功能参数才是重中之重。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二维导热物体温度场的数值模拟
姓名小明
学号 ******
班级能动
学院能动
一、问题描述
有一墙角模型,尺寸如图1所示,导热系数0.53W/(m·K),墙角内外壁为第一类边界条件。

求解该模型的温度分布及导热量。

图1
q=0
二、计算原理
根据热平衡法列出节点方程,各方向导入单元体的热量之和为零。

内节点和绝热边界点(图1点划线上的点)的方程形式不同。

图2
图2所示的内节点和绝热边界节点方程如下:
内节点:
0)()()()(1,,1,,1,1,,1,=⎥⎦
⎤⎢⎣⎡-+-+-+-••=+++-+-+x y t t x y t t y x t t y x t t j i j i j i j i j i j i j i j i W E S N ∆∆∆∆∆∆∆∆ΦΦΦΦλ
绝热边界点:
)(02)(2)(1,,1,1,,1,=⎥⎦⎤⎢⎣⎡-+
+-+-••=+++--+x y t t y x t t y x t t j i j i j i j i j i j i W E S N ∆∆∆∆∆∆ΦΦΦΦλ
三、计算过程
用Matlab7.1语言编写计算程序,初取网格步长m y x 1.0=∆=∆
运行结果:
图1:各个点的温度数值图2:分层设色等温线分布
图3:等温线分布(每两条线间隔为三度)
四、小结
本次数值模拟是运用matlab程序用于数值计算。

小组成员共同讨论并复习了热传导问
题的数学描述和热平衡法;从模拟过程中练习了不同节点迭代方程的建立;并简单学习了matlab语言的使用。

这次大作业对于我们以后的学习和可能的研究来说是一个很好的锻炼机会。

相关文档
最新文档