高分子材料研究方法

合集下载

高分子材料的结构和性能研究

高分子材料的结构和性能研究

高分子材料的结构和性能研究高分子是由大量分子单元化合而成的材料,是众多材料之中使用最为广泛的一类材料,其中塑料是高分子材料中最常见和应用最广泛的一种。

随着科技的不断发展,人们对高分子材料的研究和应用也越来越深入,对高分子材料的结构和性能进行探究已成为重要的研究方向之一。

一、高分子材料的基本结构和组成高分子材料的基本结构是由大量简单分子单元通过共价键或离子键连接而成的长链分子。

这些长链分子可能包含数千上万个单元,其分子量也可达数百万至数千万不等。

除了长链分子,高分子材料中还可能存在支链分子、交错分子、网状分子等不同的形态。

高分子材料的组成不仅有单一的高分子,还可能由多种高分子组成的共混物或复合材料。

共混物由两种或以上的高分子混合而成,其组分可以均为同质高分子,也可以为不同种类的高分子。

而复合材料则是将高分子与其它材料混合而成,这些材料可以是同种的或不同种的。

复合材料的成分可以按照功能需求进行配比,形成满足不同使用需求的高性能材料。

二、高分子材料的性能及其研究方法高分子材料因其结构特点,在力学、光学、电学、化学、热学等方面表现出一系列独特的性能。

高分子材料的性能取决于分子结构、分子量、结晶度、形态结构、分子力学运动状态等因素。

其中,热性能、机械性能和流变性能等是高分子材料中最为重要和常见的性能。

研究高分子材料的性能需要运用多种方法和技术。

其中,常用的方法包括热分析、质谱分析、核磁共振、傅里叶变换红外光谱、拉伸测试、动态力学分析、热重分析等。

这些方法可以实现对高分子材料的性能进行定量描述,并能够揭示高分子材料的制备过程中的关键因素和作用机理。

三、高分子材料的应用及其发展趋势高分子材料由于其独特的性能和广泛的应用领域,成为了现代工业中不可或缺的材料之一。

塑料制品、纤维、色素、润滑剂、胶粘剂、电线电缆、医疗器械等领域均有广泛应用。

而在新能源、新兴材料、高效催化剂、生物医学领域等新兴领域,高分子材料也取得了许多创新和突破性的进展。

高分子材料的分离与纯化技术研究

高分子材料的分离与纯化技术研究

高分子材料的分离与纯化技术研究正文:一. 引言高分子材料是一种应用广泛的材料,广泛应用于塑料、橡胶、纤维等领域。

高分子材料的制备需要经历许多步骤,其中涉及到分离与纯化过程。

高效的分离与纯化技术对于高分子材料的制备至关重要。

随着科技的不断进步,研究者们针对高分子材料的分离与纯化技术进行了许多研究,本文对目前高分子材料的分离与纯化技术研究进行了综述。

二. 萃取技术萃取技术是高分子材料分离与纯化中广泛应用的一种方法。

萃取技术基于化学物质在不同溶剂中的溶解度不同的原理,将目标分子从混合物中分离出来。

(一)溶剂萃取溶剂萃取是一种基于溶解度原理的分离技术。

它用两种不同溶剂构成的溶剂系统,按照目标化合物在不同溶剂中的溶解度差异实现对目标化合物的分离。

溶剂萃取技术在高分子材料分离与纯化领域中具有广泛应用。

该技术的优点是能够高效地提取目标化合物,同时对环境无污染,适用于大批量制备。

(二)超临界萃取超临界萃取是一种在超临界压力和温度下利用超临界流体萃取和分离材料的方法。

由于超临界流体具有低粘度、高扩散速率、低表面张力等特点,可以有效地提高高分子材料的溶解度,从而提高分离效率。

超临界萃取技术可以避免有机溶剂对环境的污染,同时能够得到高纯度的分离产物。

三. 离子交换技术离子交换技术是利用有特定功能基团的树脂,通过树脂中的功能基团与溶液中离子的反应,实现分离和纯化。

离子交换技术在高分子材料分离与纯化中得到了广泛的应用。

离子交换树脂具有高选择性、工艺简单、大批量生产等优点。

四. 分子筛技术分子筛技术是一种用于高分子材料的分离和纯化的方法。

分子筛具有高度有序的孔道结构和良好的控制孔径和孔道长度能力,可以实现对高分子材料的选择性吸附和分离。

分子筛技术广泛应用于高分子材料纯化,如石油化工行业的高分子组分分离、高分子催化剂制备、高分子药剂的分离纯化等。

五. 气相色谱技术气相色谱技术是一种广泛应用于高分子材料分离与纯化的方法。

气相色谱技术通过高温将样品分解成气体形式,然后将气体送入色谱柱中,随着气体在固定相中的分配、扩散、吸附、解吸和蒸发,分离出样品中的各个分子。

高分子材料的微结构与性能研究

高分子材料的微结构与性能研究

高分子材料的微结构与性能研究高分子材料是一种具有重要应用价值的新材料,因其在各个领域的广泛应用而备受关注。

高分子材料的性能和结构之间存在着密切的关系,探究其微结构与性能的研究可以为高分子材料的设计、合成及应用提供重要的参考依据。

1. 高分子材料的微结构高分子材料由大量分子链构成,其微观结构决定了其宏观性质,因此对高分子材料的微结构进行研究是十分重要的。

高分子材料的微观结构包括分子尺寸、分子量、分子结构和分子链排布方式等方面。

1.1 分子量分子量是高分子材料最基础的结构参数之一,它反映了高分子长链分子实体的大小。

通常采用分子量分布来表示高分子材料的分子量。

分子量分布分类方法众多,一般分别采用群分子量和平均分子量来描述。

高分子材料的分子量分布决定了其机械性能、热稳定性和可加工性等性质。

1.2 分子结构高分子材料的分子结构主要包括线型聚合物、支化聚合物、交联聚合物等。

线型聚合物的结构简单、分子量大可以为高分子质量提供可靠的保障,而支化聚合物由于其复杂的分支结构,具有更改高分子材料性质的能力。

另外,交联聚合物的三维网络结构可大大提高高分子材料的机械性能和耐用性等特性。

1.3 分子排布高分子材料的分子排布方式包括线型、交叉交联、缠绕排列、高分子共聚等。

高分子材料的分子排布影响其熔体流动性能、性能均匀性和物理化学性质等。

2. 高分子材料的性能研究高分子材料的性能和微观结构之间有着紧密的联系,高分子材料的性能受其材料的微观结构先天性影响,在高分子材料的制备和应用过程中先天性影响需付出很高的代价。

因此,了解和掌握高分子材料的性能和微观结构对高分子材料的设计、制备和改性有着重要的意义。

2.1 机械性能高分子材料的机械性能是其最基本的性能之一,反映了高分子材料承受外力的能力。

高分子材料的性能受其分子量、交联度和缠绕等因素的影响。

增加高分子材料的分子量、交联度和缠绕可提高高分子材料的极限拉伸强度和弹性模量等机械性能。

高分子材料成分分析

高分子材料成分分析

高分子材料成分分析高分子材料是一类由大量重复单元组成的材料,其主要成分是由碳、氢、氧、氮等元素组成的大分子化合物。

在工业、日常生活中,高分子材料被广泛应用于塑料、橡胶、纤维、涂料等领域。

对于高分子材料的成分分析,不仅可以帮助我们了解其基本结构和性质,还可以指导材料的合成、改性和应用。

本文将从高分子材料的成分分析方法、常见成分及其性质等方面进行探讨。

一、成分分析方法。

1. 元素分析法。

元素分析法是一种常用的高分子材料成分分析方法,通过分析样品中各种元素的含量,来推断高分子材料的组成。

常用的元素分析方法包括化学分析法、光谱分析法、质谱分析法等。

2. 分子量分析法。

分子量是高分子材料的重要指标之一,分子量分析可以帮助我们了解高分子材料的聚合程度和分子链的长度。

凝胶渗透色谱法、粘度法、光散射法等都是常用的分子量分析方法。

3. 结构分析法。

结构分析是对高分子材料分子链结构和侧链结构进行分析的方法,包括核磁共振、红外光谱、拉曼光谱等。

二、常见成分及其性质。

1. 聚乙烯。

聚乙烯是一种常见的高分子材料,其主要成分是碳和氢。

聚乙烯具有良好的耐磨、耐腐蚀性能,透明度高,具有良好的电绝缘性能,广泛应用于塑料制品、包装材料等领域。

2. 聚丙烯。

聚丙烯也是一种常见的高分子材料,其主要成分同样是碳和氢。

聚丙烯具有较好的耐热性、耐寒性和机械性能,被广泛应用于汽车零部件、纺织品、医疗器械等领域。

3. 聚氯乙烯。

聚氯乙烯是一种氯乙烯聚合而成的高分子材料,其主要成分是碳、氢、氯。

聚氯乙烯具有良好的耐酸碱、耐腐蚀性能,常用于管道、电线电缆、塑料门窗等领域。

4. 聚苯乙烯。

聚苯乙烯是一种常见的塑料,其主要成分是碳和氢。

聚苯乙烯具有良好的透明度、机械性能和加工性能,被广泛应用于电子产品外壳、食品包装等领域。

5. 聚醚。

聚醚是一类含氧的高分子材料,其主要成分是碳、氢、氧。

聚醚具有良好的柔软性、弹性和耐磨性,常用于弹簧、密封件、医疗器械等领域。

高分子材料研究方法

高分子材料研究方法

一各类有机化合物的基团特征频率(一)烷烃类基团吸收带位置(cm-1)—CH32960287014601380-CH2-292528501460785~720-CH(CH3)211701155-C(CH3)312501210-C(CH3)2-12151195注:对于-(CH2)n-,n=1,~775;n=2,~738;n=3,~727;n=4,~722(二)烯烃C-H键面外弯曲振动特征频率基团吸收带位置(cm-1)R-CH=CH21000~960和940~900R2C=CH2915~870反-RCH=CHR 990~940顺-RCH=CHR 790~650R2C=CHR 850~790(三)烯烃的红外吸收峰振动类别吸收带位置(cm-1)=C-H伸缩3100~3000=C-H弯曲1000~800=CH2弯曲885~855C=C伸缩1700~1600 (四)炔烃的红外吸收峰振动类别吸收带位置(cm-1)C-H伸缩~3300C-H弯曲645~615C C伸缩2250~2100(五)芳基化合物红外吸收峰振动类别吸收带位置(cm-1)芳基C-H伸缩3300~3000芳基C-C(四个峰)1600~1450芳基C-H弯曲900~690(六)苯基C-H键面外弯曲振动频率取代基位置吸收带位置(cm-1)单取代(2个峰)770~730710~690邻-二取代770~735间-二取代(3个峰)900~860810~750725~680对-二取代860~800(七)醇类和酚类基团吸收带位置(cm-1)O-H(游离)3650~3600O-H(形成氢键)3500~3200C-O 1250~1000(八)不同醇类的C-O伸缩振动化合物吸收带位置(cm-1)叔醇(饱和)~1150仲醇(饱和)~1100伯醇(饱和)~1050(九)羰基化合物的特征吸收位置羰基类型吸收峰位置(cm-1) 注释醛1735~1715 C=O伸缩2820,2720 =C-H伸缩酮1720~1710 C=O伸缩1100(脂肪),1300(芳香)C-C伸缩羧酸1770~1750 C=O伸缩(游离酸)1720~1710 C=O伸缩(二聚体)3580~3500 O-H伸缩(游离酸)3200~2500 O-H伸缩(二聚体)1300~1200 O-H弯曲(二聚体)1420 C-O伸缩(二聚体)羧酸盐1610~15501400酯1735 C=O伸缩1260~1160 C-O-C不对称伸缩1160~1050 C-O-C对称伸缩酸酐1820和1760 两峰间距~60cm-1酰卤~1800 C=O伸缩酰胺(游离)3500和3400 N-H伸缩1690 C=O伸缩1600 N-H弯曲酰胺(缔合)3350,3200几个峰N-H伸缩1650 C=O伸缩1640 N-H弯曲(十)腈类基团吸收带位置(cm-1)C N(脂肪族)~2250C N(芳香族)2240~2220(十一)胺的红外吸收峰振动类别吸收峰位置(cm-1)1.伯胺N-H伸缩(纯液体)3400~3250C-N伸缩1250~10202.仲胺N-H伸缩(纯液体)3300C-N伸缩1250~10203.叔胺C-N伸缩1250~1020。

高分子材料分析与测试

高分子材料分析与测试

高分子材料分析与测试引言高分子材料是一类重要的工程材料,在各个领域有着广泛的应用。

为了确保高分子材料的质量和性能,对其进行准确的分析与测试是至关重要的。

本文将介绍高分子材料分析与测试的基本原理、常用方法和技术,并对其在实际应用中的重要性进行讨论。

1. 高分子材料的特性分析高分子材料具有许多特殊的性质,如高分子链结构、长链分子的柔性和高分子材料的热性能等。

为了准确分析和测试高分子材料的特性,我们需要运用一些常用的分析方法。

下面介绍几种常用的高分子材料特性分析方法:•红外光谱分析:红外光谱是一种常见的高分子材料分析方法,通过对材料吸收、发射或散射红外辐射进行分析,可以确定材料的化学成分和结构。

•热分析:热分析是一种通过加热样品并监测其温度和质量变化来分析材料热性能的方法。

常见的热分析方法包括热重分析(TGA)和差热分析(DSC)等。

•X射线衍射(XRD):XRD是一种通过测量材料对入射X射线的衍射情况来分析其晶体结构的方法。

通过XRD可以确定高分子材料的结晶性质和晶格参数。

•核磁共振(NMR):核磁共振是一种通过测量材料中核自旋的共振现象来分析材料结构和化学环境的方法。

在高分子材料分析中,NMR可以提供关于材料分子结构、分子量和链结构等信息。

2. 高分子材料的力学性能测试高分子材料的力学性能是评价其质量和使用性能的关键指标之一。

为了准确测试高分子材料的力学性能,常用的测试方法包括:•拉伸测试:拉伸测试是一种通过施加拉伸力来测量材料在拉伸过程中的力学性能的方法。

通过拉伸测试可以确定高分子材料的强度、延展性和弹性模量等指标。

•弯曲测试:弯曲测试是一种通过施加弯曲力来测量材料在弯曲过程中的力学性能的方法。

通过弯曲测试可以确定高分子材料的弯曲强度和弯曲模量等参数。

•硬度测试:硬度测试是一种通过在材料表面施加静态或动态载荷来测量材料硬度的方法。

常用的高分子材料硬度测试方法包括巴氏硬度和洛氏硬度等。

•冲击测试:冲击测试是一种通过施加冲击载荷来测量材料抗冲击性能的方法。

高分子材料研究方法

高分子材料研究方法
σ* π*
n → σ* π→π*
n→π*跃迁
n
π
能 量
σ→σ*
σ
11

主要有四种跃迁类型 跃迁所需能量为: σ→σ* n→σ* π→π* n→π*
分子中电子的能级和跃迁
2
12
(1) σ→σ* 跃迁


成键σ电子跃迁到反键σ*轨道所产生的跃迁 σ→σ*跃迁所需能量很大,相当于远紫外的辐射能, <200nm。
(2) ε值愈大,方法的灵敏度愈高。
ε > 104 ε = 103~104 ε = 102~103 ε < 102
强吸收 较强吸收 中吸收 弱吸收
8

文献报道:紫外可见光谱的两个重要特征 max ε (希腊文,卡帕)

例:λmaxEt = 279 nm ε5012 lgε=3.7
9
二、 紫外可见吸收光谱与分子结构的关系

含-NH2 、-OH、-X λmax=204nm
14
例:CH3OH λmax=184nm
CH3Br
(3)π→π*跃迁


π电子跃迁到反键π* 轨道所产生的跃迁,这类跃迁 所需能量比σ→σ*跃迁小,若无共轭,与n→σ*跃迁 差不多。200nm左右 吸收强度大, ε在104~105范围内,强吸收

29
(三)影响紫外可见吸收光谱的因素
1. 共轭效应 ——π→π共轭
长移
——中间有一个单键隔开的双键或三键,形成大π键。 由于存在共轭双键,使吸收峰长移,吸收强度增加 的这种效应。
——两个生色团处于非共轭状态,各发色团独立的产 生吸收,总吸收是各发色团吸收加和。
λmax
1-己烯 1.5-己二烯 177 178

高分子材料研究方法

高分子材料研究方法

高分子材料研究方法
高分子材料那可是现代科技的宝贝啊!研究高分子材料就像在探索一个神秘的魔法世界。

咱先说说研究的步骤吧。

首先得确定研究目标,你想想,要是连目标都不清楚,那不就像无头苍蝇一样乱撞嘛!然后收集各种相关的资料,这就好比打仗前要收集情报一样重要。

接着进行实验设计,可不能马虎,这一步要是错了,后面可就全乱套了。

实验的时候要仔细观察、记录数据,就像侦探在寻找线索一样。

最后分析数据得出结论,这可是最关键的一步呢!
注意事项也不少哦!实验设备一定要检查好,万一出了问题,那可就糟糕了。

实验环境也得控制好,不然结果可能不准确。

还有啊,数据记录一定要准确,这可关系到整个研究的成败呢!
说到安全性,那可不能掉以轻心。

高分子材料有些可能会有毒性,或者在实验过程中会产生危险的物质。

所以一定要做好防护措施,就像战士穿上铠甲一样。

稳定性也很重要啊,要是材料不稳定,实验结果怎么能可靠呢?
高分子材料的应用场景那可多了去了。

在医疗领域,可以用来制作人造器官、药物缓释材料等。

在电子领域,可以制作高性能的绝缘材料、显示屏等。

在环保领域,还能制作可降解的材料呢!优势也很明显啊,比如
重量轻、强度高、耐腐蚀等。

这不是超级厉害嘛!
举个实际案例吧,有一种高分子材料被用来制作防弹衣。

哇塞,这效果简直太棒了!它不仅能保护人们的生命安全,还很轻便,穿着舒服。

这就是高分子材料的实际应用效果啊!
高分子材料研究真的超有意义,能为我们的生活带来很多好处。

咱可得好好研究,让这些神奇的材料发挥更大的作用。

高分子材料研究方法课程教学大纲

高分子材料研究方法课程教学大纲

高分子材料研究方法课程教学大纲课程名称:高分子材料研究方法课程编码:02100450 英文名称:Investigation Methods of Polymer materials学时:32学时学分:2学分开课学期:第六学期适用专业:高分子材料与工程课程类别:必修课程性质:专业课先修课程:高分子化学、有机化学、物理化学教材:《聚合物近代仪器分析(第二版)》汪昆华罗传秋周啸清华大学出版社一、课程性质及目的高分子材料研究方法是高分子材料与工程专业的专业基础理论课。

学生在掌握无机化学、有机化学、分析化学和物理化学课、高分子化学基础上,学习和掌握高分子材料研究方法的理论与实践,为学好高分子专业其他的后续课和将来的工作打下坚实的基础。

同时进一步培养学生分析问题,研究问题和解决问题能力,培养学生的创新精神和自学能力。

本课程的任务是:学习高分子材料研究方法理论与实践,了解和掌握高分子材料研究方法的实施方法,同时对高分子学科的新知识、新技术、新进展做一些了解与掌握。

二、课程内容及学习方法第一章绪论1.1 高聚物近代仪器分析方法的研究对象1.2 高聚物近代仪器分析方法所用仪器简介1.3 高聚物研究和分析1.4 高聚物的表征第二章光谱分析2.1 概述2.2 紫外光谱2.3 荧光光谱2.4 红外光谱2.5 激光拉曼光谱简介第三章核磁共振与电子顺磁共振波谱法3.1 核磁共振波谱3.2 1H-核磁共振波谱3.3 13C-核磁共振波谱3.4 NMR在高聚物研究中的应用3.5 NMR的经验计算关系式3.6 电子顺磁共振谱3.7 电子顺磁共振谱在高分子研究中的应用第四章气相色谱法与反气相色谱法4.1色谱分离原理及其分类4.2 气相色谱仪简介4.3 色谱谱图解析4.4 定性与定量分析4.5 微处理机在色谱数据处理中的应用(自学)4.6 反气相色谱法4.7 气相色谱法与反气相色谱法在高分子研究中的应用第五章高聚物的热解分析5.1 高聚物热解分析的特点5.2 高聚物热裂解的一般模式5.3 有机质谱5.4 有机质谱谱图解析5.5 裂解气相色谱分析5.6 PGC-MS联用技术5.7 热解分析在高分子材料研究中的应用第六章热分析6.1 热分析的定义与分类6.2 差热分析和示差扫描量热分析6.3 热重分析6.4 DTA,DSC,TG在聚合物研究中的应用第七章聚合物的热-力分析7.1 概述7.2 主要测试方法的原理与装置7.3 热-力分析中应注意的问题7.4 热-力分析在聚合物研究中的应用第八章分子量分布的测定8.1 概述8.2 凝胶色谱8.3 凝胶色谱的数据处理8.4 凝胶色谱在高分子研究中的应用8.5 场流分离技术(自学)第九章高分子材料的透射电子显微术9.1 光学和电子光学基础9.2 透射电镜的结构及其成像机制9.3 透射电镜用聚合物试祥的制备技术第十章聚合物的扫描电子显微术10.1 高能电子束与固体样品的相互作用10.2 扫描电镜的结构10.3 扫描电镜的放大倍数和分辨本领10.4 扫描电子显微像的衬度及其调节第十一章X射线衍射及其在聚合物结构研究中的应用课程讲授为主,结合实验。

高分子材料的表征和导热性能研究

高分子材料的表征和导热性能研究

高分子材料的表征和导热性能研究高分子材料是一种重要的材料种类,具有广泛的应用领域。

如何对高分子材料进行表征和研究其导热性能,是当前高分子材料研究的一个热点问题。

一、高分子材料的表征高分子材料通常具有分子量大、化学结构复杂的特点,因此需要采用多种手段进行表征。

1. 分子量的测定高分子材料的分子量一般采用凝胶渗透色谱、粘度法等实验手段进行测定。

其中,凝胶渗透色谱具有分离精度高、灵敏度好等优点,可以处理多种分子量范围的高分子材料。

2. 凝聚态的表征对于固态高分子材料,需要采用X射线衍射、热分析等技术手段进行表征,以了解高分子材料的晶体结构、热性能等特征。

3. 动态热力学性能的表征高分子材料在使用过程中还需要考虑其时间依赖性、疲劳性、耐热性等方面的性能。

这就需要采用热分析、动态力学测试等技术手段进行表征。

二、高分子材料的导热性能研究导热性能是高分子材料的一个关键性能指标,对于高分子材料的设计、制备、应用都具有重要意义。

导热性能研究的主要方法有以下几个:1. 热导率的测试热导率是导热性能的基本指标之一,一般采用稳态热流方法进行测试。

稳态热流方法包括热阻率法、热板法等,能够准确测定材料在稳态下的导热性能。

2. 动态热导率的测试高分子材料在使用过程中很少处于稳态状态,因此需要考虑其动态导热性能。

动态热导率的测试方法包括脉冲法、频率扫描法等,能够模拟高分子材料在实际使用过程中的导热性能。

3. 热膨胀系数的测试高分子材料在受热过程中往往会产生热膨胀现象,对于导热性能的影响较大。

因此,需要采用膨胀测试仪等设备对高分子材料的热膨胀系数进行测定。

4. 界面热阻的测试高分子材料在应用过程中往往需要与其他材料进行接触,因此涉及到界面热阻的问题。

界面热阻的测试方法包括接触热阻法、热反射法等。

三、导热性能的改进高分子材料的导热性能往往不如金属等传统材料,因此需要采取一些措施进行改进。

导热性能的改进方法主要有以下几个:1. 添加导热填料通过向高分子材料中添加导热填料,如石墨、纳米银粉等,可以显著提高高分子材料的导热性能。

高分子材料的动力学研究方法

高分子材料的动力学研究方法

高分子材料的动力学研究方法高分子材料广泛应用于各行各业,从塑料到纤维,从涂料到医疗器械,无处不见。

为了进一步改善高分子材料的性能和应用,我们需要深入了解其动力学行为。

本文将探讨一些常用的高分子材料动力学研究方法,以及它们在材料科学领域中的应用。

1. 热分析技术热分析技术是高分子材料动力学研究中最常用的方法之一。

其中,差示扫描量热法(DSC)和热失重分析法(TGA)是两种非常重要的技术手段。

DSC技术可以通过测量样品在不同温度下的热容量变化,来研究高分子材料的熔融行为、结晶性能和玻璃化转变等动力学过程。

通过分析热容量曲线的峰值位置和面积,可以得到热分解反应、结晶度和热稳定性等信息。

TGA技术则可以通过测量样品在不同温度下的质量变化,来研究高分子材料的热分解、热降解和氧化行为。

此外,TGA技术还可以用于确定高分子材料的残碳含量,评估其耐热性能。

2. 动态力学分析技术动态力学分析技术(DMA)是研究高分子材料力学性能的重要方法。

DMA技术可以通过施加交变应力(应变)或交变温度(固体态)来研究高分子材料的力学行为。

其中,常见的动态力学分析方法包括剪切模量(G'和G'')、阻尼模量(tanδ)、频率扫描等。

通过DMA技术,我们可以获得高分子材料的弹性模量、剪切模量、损耗模量等物理性质,从而研究其固态结构和力学行为。

此外,DMA还可以评估材料的疲劳性能、拉伸性能、粘弹性等重要指标,帮助改善材料设计和应用。

3. 压电技术压电技术主要用于研究高分子材料的电响应行为。

压电效应是指材料在外部压力或变形作用下产生电势差,或者在外加电场下发生形变。

常见的压电技术有压电电流法、压电电荷法和压电应变法。

通过压电技术,我们可以研究高分子材料的压电性能、电极化行为和电-力学耦合现象。

此外,压电法还可以用于检测材料的质量和结构变化,对于实时监测高分子材料的性能和损伤具有广泛应用前景。

4. 荧光探针技术荧光探针技术是用于研究高分子材料表面和界面动力学行为的重要方法。

高分子分子量测定方法的研究

高分子分子量测定方法的研究

高分子分子量测定方法的研究高分子材料在生活中的应用越来越广泛,例如塑料、橡胶、纤维等。

因此,高分子材料的质量控制和研究变得越来越重要。

高分子材料的分子量是其物理、化学和力学性质的重要指标,因此分子量的精确测定是高分子材料研究的一个重要方面。

目前,已经开发了多种高分子分子量测定方法,包括粘度法、光散射法、凝胶渗透色谱法、质谱法等。

本文将介绍一些高分子分子量测定方法的原理、特点和应用。

一、粘度法粘度法是高分子分子量测定的最早的方法之一,其原理是:高分子在溶液中运动时,会与溶剂分子相互摩擦和撞击,产生阻力,导致溶液的整体粘度增加。

粘度与分子量成反比,因此可以用粘度法来测定高分子的分子量。

具体地,用天平称取不同浓度的高分子溶液,在特定的温度下,测量溶液的粘度。

将粘度数据与相应的浓度计算出粘度平均分子量,从而得到分子量的概略值。

粘度法的优点是操作简单、不需要复杂的仪器设备、测量时间短、成本低廉。

但是,粘度法在分子量高于10万时,其精度受到很大限制。

此外,不同高分子之间粘度测量结果的可比性较差,因此需要对不同高分子进行标准化处理。

二、光散射法光散射法是一种测量高分子分子量的准确方法,可以用来测量高分子的绝对分子量、分子量分布和形态结构等。

光散射测量的原理是: 测量高分子溶液中光线的散射强度,改变光线方向或波长,可以获得不同范围分子量的散射强度分布,从而测量高分子的分子量特性。

与粘度法相比,光散射法更适合于测量高分子的分子量分布宽泛和形态结构不规则的情况。

三、凝胶渗透色谱法凝胶渗透色谱(GPC)法是一种广泛应用的高分子分子量测定方法。

其原理是: 利用凝胶为分子分离提供渗透分子的溶剂黏度,嵌入凝胶内进行分子量分布测定。

凝胶作为一种多孔元素或分子网络,具有分子筛、分子导向、渗透、化学识别等作用。

当高分子涂布在凝胶表面时,由于凝胶中的分子间间隙比高分子分子大,高分子的长链会被凝胶筛选,而短链则可以穿过凝胶,在洗涤溶液中被洗出,使溶液分子量分布向小分子倾斜。

高分子材料的研发与应用

高分子材料的研发与应用

高分子材料的研发与应用高分子材料是一种具有高分子结构的化学合成材料。

它的研发与应用一直是材料科学领域的热点和难点之一。

高分子材料的种类非常多样,如塑料、橡胶、纤维、泡沫等,广泛应用于农业、工业、医疗、环境、能源等各个领域。

与传统材料相比,高分子材料具有很多优点,如轻量、高强、耐腐蚀、耐高温等,因此其研发和应用受到了广泛关注。

一、高分子材料的研发(一)合成高分子材料最重要的特点就是它的结构特殊,因此其研发和合成比较困难。

常见的合成方法有自由基聚合、离子聚合、环氧树脂合成、交联反应等。

这些方法都需要针对不同的高分子材料进行选择和优化。

以自由基聚合为例,首先要确定单体的选择和合适的引发剂。

然后需要选择合适的溶剂和温度,在这样的条件下进行聚合反应。

一旦合成完成后,需要用一系列的对于高分子材料的测试手段进行检测和评估,检验合成的高分子材料是否能够达到预期的效果。

(二)改性一般情况下合成出的高分子材料都不能满足具体应用时的要求,因此需要对高分子材料进行改性。

改性的目的在于提高高分子材料的物理性能和化学稳定性,以适应不同的环境和应用条件。

改性主要包括增材、掺杂、改变高分子结构等方法。

例如在聚合物中加入纳米或微米级的颗粒来增加材料的硬度或导电性、通过添加特殊的功能性材料来实现磁性、光致变色等特殊功能、改变高分子的结构和分子量来改变材料的物理性能和化学性质。

二、高分子材料的应用(一)塑料塑料是高分子材料最常用的一个应用领域,全球制造业中大量使用的物品都是由塑料制成的,如容器、包装、家具、电子产品外壳等。

而且随着人们环保意识的提高,以可降解塑料为代表的新型塑料将逐渐替代传统塑料。

(二)纤维高分子纤维的性能已经与传统天然纤维相媲美,甚至更胜一筹。

它们具有阻燃、抗老化、抗紫外线、耐高温、抗腐蚀等特点。

高分子纤维在仿真气动、战斗服、运动装备、汽车内装和空气滤清系统等领域具有广泛的应用前景。

(三)油田化学高聚物和聚合物的油田化学制品由于其化学性质稳定性、耐高温、高强度等特点,其应用范围越来越广泛,如双油管综合应力制约技术、远离器壳、高耐热水挤弹技术、高压水封、井间水晶土削渣等领域。

高分子材料结构与成分分析的方法有哪些

高分子材料结构与成分分析的方法有哪些

高分子材料结构与成分分析的方法有哪些篇一:高分子材料分析测试与研究方法复习材料一. 傅里叶红外光谱仪1. 什么是红外光谱图当一束连续变化的各种波长的变动红外光照射样品时,其中一小部分被吸收,吸收的这样一来光能就能量转变为分子的振动能量和转动能量;另一部分光透过,若将需要进行其透过的光用单色器进行色散,就可以得到一谱带。

若以波长或波数为横坐标,以百分吸收率或透光度为纵坐标,把这谱带著记录下来,就给予了该样品的红外吸收光谱图,也有称红外振-转光谱图2. 红外光谱仪基本工作原理用一定频率的红外线聚焦照射被分析的试样,如果分子中某个基团的振动频率与照射红外线相同就会产生共振,这个基团就吸收同样频率的红外线,把分子吸收的红外线的情况用复述仪器记录下来,便能得到全面反映试样成份特征的光谱,从而推测化合物推测的类型和结构中。

3. 红外光谱产生的条件(1) 应具有能满足物质产生振动跃迁所需的能量;(2) 辐射与物质间有相互偶合作用。

4. 红外光谱图的三要素峰位、峰强和峰形5. 红外光谱样品的制备方法1) 固体样品的制备a. 压片法b. 糊状法:c. 溶液法2) 液体样品的制备a. 液膜法b. 液体吸收池法3) 气态样品的制备: 气态样品一般都灌注于气体池内进行测试4) 特殊样品的制备—薄膜法a. 熔融法b. 热压成膜法c. 溶液制膜法6. 红外对供试样品的要求① 试样纯度应大于98%,或者符合文化娱乐规格,这样才便于与纯化合物的标准光谱比对或商业光谱进行对照,多组份试样应预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱互相交叉,难予解析。

② 试样不应含水(结晶水或游离水)水有红外吸收,与羟基峰干扰,而且会侵蚀吸收池的食盐窗。

所用试样应当经过干燥处理。

③ 试样浓度和厚度要适当以使最强吸收透光度在5~20%之间7. 红外光谱特点1)红外吸收只有振-转跃迁,能量低;2)应用范围广:除单原子分子及单核分子外,几乎所有有机物皆均有红外吸收;3)分子结构更为精细的表征:通过红外光谱的波数位置、波峰数目及强度确定水分子基团、分子结构;4)分析速度快;5)固、液、气态样均可用,且用量少、不破坏样品;6)与色谱等联用(GC-FTIR)蕴含强大的定性功能;7)可以需要进行定量分析;二. 紫外光谱1. 什么是紫外-可见分光光度法?产生的其原因及其特点?紫外-可见分光光度法也称为紫外-可见吸收光谱法,属于分子吸收光谱,是利用某些物质对200-800 nm光谱区辐射的吸收进行分析测定的一种方法。

高分子材料的制备及应用研究进展

高分子材料的制备及应用研究进展

高分子材料的制备及应用研究进展高分子材料是一种具有广泛应用前景的材料,在各个领域中都有重要的作用。

本文将就高分子材料的制备方法及其在不同领域中的应用做出简要介绍。

高分子材料的制备方法多种多样,常见的方法包括聚合法、溶液法、熔融法、注塑法等。

其中,聚合法是最常用的方法之一。

聚合法通过采用不同的引发剂和反应条件,将单体分子连接成长链的高分子分子。

溶液法则是将溶解有高分子单体的溶液逐渐蒸发,让单体分子逐渐聚合形成高分子。

熔融法则是将高分子单体加热至熔点形成熔体,然后通过压力和温度的变化控制其聚合。

注塑法是将高分子熔体通过注射器注入到模具中,随后冷却凝固形成制品。

这些方法各有优缺点,适用于不同的高分子材料制备需求。

高分子材料在不同领域中有广泛应用。

在医学领域,高分子材料可以用于制备人工器官、药物缓释系统、组织工程材料等。

例如,一种被广泛应用于心脏病患者的人工心脏瓣膜材料就是高分子材料。

高分子材料具有良好的生物相容性和生物降解性,能够与人体组织相容,同时具有良好的耐久性和力学性能。

在电子领域,高分子材料可以用于制备柔性显示器件、有机太阳能电池、导电聚合物等。

高分子材料具有重量轻、柔性好、可塑性强的特点,能够适应不同形状和需求,因此在柔性电子产品中有广泛应用。

在环境保护领域,高分子材料可以制备吸附材料、膜材料、催化剂等,用于水处理、废气处理和垃圾处理等。

高分子材料具有较大的比表面积和较好的吸附性能,能够有效去除水中的有机污染物和重金属离子。

在航空航天领域,高分子材料可以用于制作轻质结构和防护层等。

高分子材料具有质量轻、强度高、隔热性好的特点,可以有效减轻航空器的重量并提高其性能。

虽然高分子材料的制备方法和应用领域十分广泛,但仍然存在一些挑战和问题。

首先,高分子材料的制备过程中可能出现反应不完全、副反应发生、分子量分布不合理等问题,使得材料性能不够稳定和一致。

其次,高分子材料的应用领域需要材料具备特定的物理性能和化学稳定性,因此高分子材料在不同领域中需求的性能参数差异较大,需要不断研究和改进。

高分子研究方法热分析

高分子研究方法热分析
利用X射线在结晶高分子中的衍射现象,研究其 晶体结构和结晶度。
偏光显微镜(POM)
观察高分子材料在升降温过程中的结晶形态和 熔融行为。
DSC分析
通过测量高分子材料在升降温过程中的热量变化,研究其结晶度、熔融温度和 熔融焓等。
交联度及固化反应动力学研究
凝胶含量测定
通过测量高分子材料在溶剂中不溶部分的质量分数,评价其交联度。
动态热机械分析法原理及设备
测量材料的动态力学响应。
产生交变应力或应变。
DMA设备主要由以下几部 分组成
设备
传感器 振荡器
动态热机械分析法原理及设备
温控系统
控制测试温度。
数据采集与处理系统
记录并分析测试结果。
动态热机械曲线解析与实例
曲线解析
DMA测试得到的曲线主要包括储能模量-温度曲线、损耗模量-温度曲线和损耗因子-温 度曲线。通过这些曲线,可以分析材料的玻璃化转变、结晶、交联等结构变化以及分子
通过热重分析可以确定聚合物的热稳定性, 了解其在不同温度下的分解行为,为聚合物 的加工和使用提供指导。
利用热重分析可以研究聚合物共混物的相容 性,通过比较不同组分的热失重行为,判断 共混物中各组分之间的相互作用。
聚合物老化研究
添加剂对聚合物性能的影响
热重分析可用于研究聚合物材料的老化行为, 通过比较老化前后样品的热失重曲线,了解 老化对聚合物结构和性能的影响。
氧化诱导期测定
要点一
氧化诱导时间(OIT)
通过测量高分子材料在特定温度和氧气压力下开始发生自动 催化氧化反应的时间,评价其抗氧化性能。
要点二
氧化诱导温度(OIT)
在恒定氧气压力下,测量高分子材料开始发生自动催化氧化 反应的温度,用于评价其在不同温度下的氧化稳定性。

高分子材料的结构和性质研究

高分子材料的结构和性质研究

高分子材料的结构和性质研究高分子材料是一种由大量具有重复结构的分子组成的材料,具有一系列独特的性质,如高强度、高韧性、耐热、耐腐蚀等,被广泛应用于电子、医疗、建筑、能源等各个领域。

高分子材料的性能与其结构密切相关,因此深入研究高分子材料的结构和性质具有重要意义。

一、高分子材料的结构高分子材料的结构是指由单体分子通过化学键连接而成的大分子链结构。

高分子材料主要分为线性高分子和交联高分子两类。

线性高分子是由一种或多种单体分子按线性方式连接而成的长链结构,在链端具有自由基基团,可以通过反应生成交联结构。

交联高分子是由线性高分子或多种单体分子经过交联反应形成的三维网络结构,具有良好的强度、韧性和耐热性。

高分子材料的结构形态也是影响其性能的重要因素。

高分子材料的结构形态通常分为晶体形态和非晶体形态两种。

晶体形态是指高分子链长期有序排列而形成的结晶区域,这种结构具有高力学强度和较高的熔点;非晶体形态是指高分子链没有长期有序排列而呈现的无序状态,具有较高的韧性和良好的拉伸性。

高分子材料的晶体形态和非晶体形态也会对其性能产生显著影响。

二、高分子材料的性质高分子材料的性质主要包括机械性能、热学性能、光学性能、电学性能、化学性能等。

机械性能是指高分子材料在机械载荷下的表现,包括强度、韧性、硬度等;热学性能是指高分子材料在温度变化下的表现,包括熔点、玻璃化转变温度、热膨胀系数等;光学性能是指高分子材料对光线的吸收、反射、透射等性质;电学性能是指高分子材料在电场下的导电性、介电常数等性质;化学性质是指高分子材料在各种化学试剂、环境条件下的稳定性和耐腐蚀性等。

三、高分子材料的性能研究方法高分子材料的性能研究需要一系列实验和理论方法的支持。

其中,X射线衍射、红外光谱、核磁共振谱等是研究高分子材料结构的重要手段;拉伸强度测试、压缩测试、硬度测试等是研究高分子材料机械性能的关键方法;热重分析、热膨胀测试、热导率测试等是研究高分子材料热学性能的常用手段;电导率测试、介电常数测试、电化学测试等是研究高分子材料电学性能的有力手段。

5高分子材料研究方法X射线衍射分析

5高分子材料研究方法X射线衍射分析

X 射
铅 屏

线
晶体


在照相底片上形成对称分布的若干衍射斑点,称 6
为劳厄斑。
7
8
三、布拉格公式
1913年英国的布拉格父子,提出了另一种精确研 究 X 射线的方法,并作出了精确的定量计算。由于 父子二人在X射线研究晶体结构方面作出了巨大贡献, 于1915年共获诺贝尔物理学奖。
晶体是由彼此相互平行的原子层构成。这些原子
40
C.测量方法 (1)衍射线峰位的测量 1.峰巅法;2.切线法;3.半高宽中点法;4.中线峰法; 5.重心法;6.抛物线拟合法。
峰巅法
切线法
41
(2)衍射线强度的测量
峰高强度 积分强度
求积法 计数法
(3)衍射线线形的测量
1.半高宽法; 2.积分宽度法; 3.方差宽度法
42
本章主要内容
➢ 1. X 射线介绍 ➢ 2. X 射线与物质的作用 ➢ 3. X 射线衍射仪器 ➢ 4. X 射线衍射分析方法 ➢ 5. X 射线衍射应用
➢ X射线与物质作用除散射、吸收和通过物质外,几 乎不发生折射,一般情况下也不发生反射。
22
*相干散射或称古典散射
当入射X光子与物质中的某些电子(例如内层电 子)发生碰撞时,由于这些电子受到原子的强力束 缚,光子的能量不足以使电子脱离所在能级的情况 下,此种碰撞可以近似地看成是刚体间的弹性碰撞, 其结果仅使光子的前进方向发生改变,即发生了散 射,但光子的能量并未损耗,即散射线的波长等于 入射线的波长。此时各散射线之间将相互发生干涉, 故成为相干散射。相干散射是引起晶体产生衍射线 的根源。
18
2.白色、特征X射线谱的产生
➢白色X射线:“白色”的理解-连续波长;仅与加速电压有关 ➢特征X射线:“单色”;

高分子材料分析测试与研究方法

高分子材料分析测试与研究方法

高分子材料分析测试与研究方法引言高分子材料是一类重要的工程材料,公认为21世纪最具潜力的材料之一。

高分子材料的性能与结构密切相关,因此对其进行分析测试与研究是非常必要的。

本文将介绍常用的高分子材料分析测试方法及其研究方法,包括物理性能测试、化学结构分析、热性能分析、力学性能测试以及相关的表征技术。

一、物理性能测试物理性能是高分子材料的基本性能之一,常用的物理性能测试包括密度测量、吸水性能测试、熔融指数测试等。

1. 密度测量密度是衡量材料物理性能的重要指标之一,可以通过比重法、浮力法或压缩气体法等方法进行测量。

其中,比重法是最常用的方法,通过称量样品质量和体积来计算密度。

2. 吸水性能测试吸水性能是衡量材料对水分的吸收能力的指标,可以通过浸泡法、浸水法或密闭测量等方法进行测试。

这些测试方法可以帮助评估材料的耐水性能及吸水后的性能变化。

3. 熔融指数测试熔融指数是衡量高分子材料熔融流动性能的指标,常用的测试方法有熔体指数法、熔体流动速率法等。

通过测量熔融材料的流动性能,可以评估材料的加工性能以及与其他材料的相溶性。

二、化学结构分析化学结构分析是研究高分子材料化学特性的重要手段,常用的化学结构分析方法包括红外光谱分析、核磁共振分析、质谱分析等。

1. 红外光谱分析红外光谱分析是研究材料化学结构的重要手段,通过研究材料在红外波段的吸收谱图,可以确定材料中的官能团、键的类型以及化学环境等信息。

2. 核磁共振分析核磁共振分析是研究材料分子结构及动力学性质的重要方法,通过测量核磁共振信号,可以获得材料中原子的化学环境、相对数量以及分子间的相互作用信息。

3. 质谱分析质谱分析是研究材料分子结构及组成的关键分析方法,通过测量不同质荷比的离子的相对丰度,可以确定材料中的化学元素、分子量以及它们的相对含量等信息。

三、热性能分析热性能是衡量材料耐热性、热膨胀性等重要性能的指标,常用的热性能分析方法包括热重分析、差示扫描量热分析等。

高分子材料成分分析方法

高分子材料成分分析方法

高分子材料成分分析方法高分子材料成分分析是指对高分子材料中的成分进行分析和鉴定,以确定其组成和结构特征的方法。

高分子材料广泛应用于塑料、橡胶、纤维等领域,其性能和用途很大程度上取决于其成分和结构特征。

因此,高分子材料成分分析方法对于研究和控制高分子材料的性能和品质具有重要意义。

常用的高分子材料成分分析方法包括物理性能测试、化学分析、光谱分析和显微镜观察等。

以下将对这些方法进行详细介绍。

物理性能测试是最常用的高分子材料成分分析方法之一、它通过直接测量高分子材料的物理性能参数来推测其成分。

例如,在机械性能测试中,可以通过拉伸强度、断裂伸长率和硬度等指标来评估高分子材料的成分和结构特征。

在热性能测试中,可以测量高分子材料的熔点、玻璃化转变温度和热稳定性等参数来推测其成分和热行为。

化学分析是高分子材料成分分析中的关键方法之一、它通过化学反应和分析技术来确定高分子材料中的成分。

常用的化学分析方法包括元素分析、红外光谱分析和热重分析等。

元素分析可以定量测定高分子材料中的元素含量,以评估其成分。

红外光谱分析则可提供高分子材料的结构信息,通过测量样品对红外辐射的吸收和散射来推测材料中的功能团和官能团。

热重分析则可以通过测量材料在升温过程中的质量变化来推测材料的成分和热分解行为。

光谱分析是高分子材料成分分析中的一种非常重要的方法。

它基于材料与光的相互作用来获取材料的成分和结构信息。

光谱分析包括紫外可见吸收光谱、拉曼光谱和核磁共振等。

紫外可见吸收光谱可以用于测定高分子材料的吸收特性,以推测材料中的共轭结构和功能团。

拉曼光谱可以提供高分子材料的分子振动信息,以推测其结构和成分。

核磁共振可以通过核磁共振谱图来推测高分子材料中的原子种类、数量和取代基位置等。

显微镜观察是一种直接观察高分子材料形貌和结构的方法。

显微镜观察可以通过光学显微镜、电子显微镜和原子力显微镜等来获取高分子材料的形貌信息。

光学显微镜可用于观察高分子材料的晶体形貌、缺陷和表面特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、聚合物结构与性能测定方法概述
(1)链结构:广角X-衍射(WAXD )、电子衍射(ED )、
中心散射法、裂解色谱——质谱、紫外吸收光谱、红外吸收光谱、拉曼光谱、微波分光法、核磁共振法、顺磁共振法、荧光光谱、偶极距法、旋光分光法、电子能谱等。

(2)凝聚态结构:小角X-散射(SAXS
)、电子衍射法
(ED )、电子显微镜(SEM 、TEM )、光学显微镜
(POM )、原子力显微镜(AFM )、固体小角激光光散射(SSALS )1、聚合物结构的测定方法
䀕•结晶度
:X 射线衍射法(WAXD )、电子衍射法(ED )、核磁共振吸收(NMR )、红外吸收光谱
(IR )、密度法、热分解法•聚合物取向度:双折射法(double refraction )、X 射
线衍射、圆二向色性法、红外二向色性法(infrared
dichroism)•聚合物分子链整体的结构形态:
•分子量:溶液光散射、凝胶渗透色谱、沸点升高、黏度
法、扩散法、超速离心法、溶液激光小角光散射、渗透压法、气相渗透压法、端基滴定法
•支化度:化学反应法、红外光谱法、凝胶渗透色谱法、
粘度法•交联度:溶胀法、力学测量法
•分子量分布:凝胶渗透色谱、熔体流变行为、分级沉淀
法、超速离心法●体积的变化:膨胀计法、折射系数测定法
●热力学性质的变化:差热分析法(DTA )、
差示扫描量热法(DSC )
●力学性质的变化:热机械法、应力松弛
法,动态测量法如动态模量和内耗等
●电磁效应:介电松弛、核磁共振(NMR)
•3、聚合物性能的测定(略)2、聚合物分子运动(转变与松弛)的测定
其它常用的高分子测试仪器
•XPS ( X-射线光电子能谱)
•Ellipsometry( 椭圆偏振仪)
•X-薄膜衍射仪
1.质谱的概巵:有机列合物的分子在高真空中受到电子流轰击或强电场作用(分子会丢ᤱᤱ个外层电子,生成带正电荷的倆子离子l同时化学键乛会发生某丛规律性的断裂,生成各种特征质量的碎片离子。

这些碻孀在电场和磁场的作甪下,按照质荷比(m/z)大小的顺序分离开来,收集和记录这些离子就得到质谱图。

2. 紫外-可见吸收光谱是利用某些物质的分子吸收200 ~ 800 nm光谱区的辐射来进行分析表征的方法。

这种分子吸收光谱产生于价电子在电子能级间的跃迁,广泛用于无机和有机化合物的结构表征和定量分析。

3. 紫外光谱是带状光谱的原因:在电子能级跃迁的同时,总是伴随着多个振动和转动能级跃迁。

4. 吸收带的划分
5.红移(red shift):
由于化合物的结构改变,如发生共轭、引入助色基,以及溶剂改变等,使吸收峰向长波方向移动的现象
6.蓝(紫)移(blue shift):
化合物结构改变时或受溶剂影响使吸收峰向短波方向移动的现象。

7.X射线衍射方法是当今研究物质微观结构的主要方法
8.原理:X射线是高速运动的粒子与某种物质相撞击后猝然减速,且与该物质中的内层电子相互作用而产生的。

9. X射线产生条件:产生自由电子;使电子作定向的高速运动;在其
运动的路径上设置一个障碍物使电子突然减速或停止。

10.高分子晶体的特点:晶胞由链段构成;折叠链;结晶不完善;结构的复杂性及多重性
11.作业:某聚合物的广角X射线衍射如图所示,
晶面(110)与(200)衍射峰对应的2θ分别为 21. 180,23. 540 ,
衍射峰的半高宽B分别为0.3,0.4,形状因子K=0.9,所用靶材为铜,仪器角度增宽因子b0 为0.15,(λCu=1.5418Å)
请分别求出晶面(110)与(200)的晶粒尺寸大小?
12. NMR与IR、UV均属于吸收光谱
红外吸收光谱源于分子的振动-转动能级间的跃迁
紫外-可见吸收光谱源于分子的电子能级间的跃迁
核磁共振谱源于原子核能级间的跃迁
13.核磁共振:用能量等于∆E的电磁波照射磁场中的磁性核,则低能级上的某些核会被激发到高能级上去,同时高能级上的某些核会放出能量返回低能级,产生能级间的能量转移,此即核磁共振。

NMR⇒利用磁场中的磁性原子核吸收电磁波时产生的能级分裂与共振现象
14.产生核磁共振的条件
(1) 核有自旋(磁性核)
(2)外磁场,能级裂分
(3)照射频率与外磁场的比值ν0 / H0 = γ / (2π )
15.红外吸收的基本原理
●物质的分子是由原子组成的。

在分子内部存在着三种运动形
式,即电子绕原子核运动,原子核的振动和转动。

每种运动都
有一定的量子化的能量 E=E平+ E转+ E振+ E电
●用红外光照射化合物分子,分子吸收红外光的能量使其振动能
级和转动能级产生跃迁
●只有当外来电磁辐射的能量恰好等于基态与某一激发态的能
量之差时(ΔΕ=hυ),这个能量才能被分子吸收产生红外光
谱,或者说只有当外来电磁辐射的频率恰好等于从基态跃迁到
某一激发态的频率时,则产生共振吸收——产生红外光谱。

●红外吸收光谱是一种分子吸收光谱。

16.红外光谱产生的条件:红外光谱振动频率=分子振动频率;红外活
性:红外光与分子间有偶合作用,只有引起分子偶极矩发生变化的振动才能引起红外吸收
17.即使同一物质,其红外谱图的测定条件,如测定方法,样品状态、浓度、溶剂、仪器操作条件等不同,谱图也有所差别
18.聚合物的谱带:组成吸收带;构象谱带;立构规整性谱带;构象
规整性谱带;结晶谱带。

19. 红外光谱解析的三要素:位置;峰形;强度
20. 分子振动的形式:伸缩振动;弯曲振动
21. 拉曼位移:斯托克斯线或反斯托克斯线与入射光频率之差
大小与入射光的频率无关,只与分子的能级结构有关
22. 激光拉曼光谱与红外光谱的比较
拉曼效应产生于入射光子与分子振动能级的能量交换
分子的对称性愈高,红外与拉曼光谱的区别就愈大,非极性官能团的拉曼散射谱带较强,极性官能团的红外谱带较强
对于链状聚合物,碳链上的取代基团用红外检测,而碳链的振动用拉曼光谱表征
23. 拉曼光谱与红外光谱分析方法比较
24. 差热分析(DTA):差热分析(DTA)是在程序控制温度下,建立
被测量物质和参比物的温度差与温度关系的一种技术。

25. DTA的基本原理:热分析仪主要由转换器,记录器和温度控制器
三部分组成。

差热分析仪是用电炉中的试样及参比物支持器
间的温差热电偶,把温差信号变为电信号(通常是电压),然
后经放大记录。

26. 热重分析(TGA):热重法(Thermogravimetry)简称TG,是在
程序控制温度下,测量物质的质量与温度关系的一种技术。

27. 差示扫描量热法(DSC) DSC是测量输入到试样和参比物的热流量
差或功率差与温度或时间的关系
28. DSC与DTA测定原理的不同
DSC是在控制温度变化情况下,以温度(或时间)为横坐标,以样品与参比物间温差为零所需供给的热量为纵坐标所得的扫描曲线。

DTA是测量∆T-T 的关系,而DSC是保持∆T = 0,测定∆H-T 的关系。

两者最大的差别是DTA只能定性或半定量,而DSC的结果可用于定量分析。

29.作业: 某PET试样的DSC谱图如下,已知结晶度为100%的PET重
复单元的熔融热焓是24.1KJ/mol,请计算出该PET试样的结晶度?
30.偏光显微镜:
31.透射电镜(TEM)
32.电镜三要素:分辨率,放大倍数,衬度。

33.扫描电镜(SEM)
34.生色基 (chromophore):能在紫外-可见光区域产生吸收带的官
能团,如一个或几个不饱和键,芳环
35.助色基 (auxochrome):本身不能产生吸收带,但与生色基团相
连时,能增强生色基的生色能力,使其吸收带向长波方向移动。

36.核磁共振(NMR)的重要条件:外加磁场
●NMR信号的产生:样品是否吸收,由核的种类决定
●样品的吸收频率:无线电电磁波
●NMR谱:吸收峰频率(化学位移)与峰强度的关系。

相关文档
最新文档