遥感概论复习解析

合集下载

遥感概论复习

遥感概论复习

遥感导论复习第一章:绪论1.什么是遥感?(狭义)——名词解释是从远处探测感知物体,也就是不直接接触物体,从远处通过探测仪器接收来自目标地物的电磁波信息,经过对信息的处理,判别出目标地物的属性。

遥感( Remote Sensing ),即遥远的感知,利用非接触传感器来获取有关目标的时空信息,不仅着眼于解决传统目标的几何定位,更为重要的是对利用外层空间传感器获取的影像和非影像信息进行语义和非语义解译,提取客观世界中各种目标对象的几何与物理特征信息。

几何:由2维影像重建3维模型。

物理:由光谱特性确定物质类别。

现在遥感发展的趋势与展望1.多分辨率(空间、时间、光谱)多遥感平台并存2.新型传感器不断涌现,微波遥感、高光谱遥感迅速发展3.遥感的综合应用不断深化4.商业遥感时代的到来第二章:遥感电磁辐射基础8、斯忒藩-玻尔兹曼定律:绝对黑体的总辐射出射度与黑体温度的四次方成正比。

σ—斯忒藩-玻尔兹曼常数, σ=5.67×10-8 W ·m -2·K -49、维恩位移定律黑体辐射光谱中最强辐射的波长λmax 与黑体绝对温度T 成反比:b —常数几何意义:在黑体辐射曲线中,黑体温度越高,其曲线的峰值就越往左移,即往波长短的方向移动(位移)。

若辐射最大值落在可见光波段,物体的颜色会随着温度的升高而变化,波长逐渐变短,颜色由红外到红色再逐渐变蓝变紫(烟煤燃烧,燃烧越充分,颜色越接近蓝色)。

恒星、地球、太阳都可看做绝对黑体。

10、基尔霍夫定律(计算题)在任何给定温度下,地物的辐射出射度M 与吸收率α之比,对任何地物都是一个常数,并等与该温度下绝对黑体的M 0 。

表现了实际物体的辐射出射度与同一温度、同一波长绝对黑体辐射的关系: 仅与波长和温度有关,与物体本身的性质无关。

注意:斯忒藩-玻尔兹曼定律、维恩位移定律只适用于黑体辐射,但在自然界中,黑体辐射是不存在的,一般地物辐射能量总要比黑体辐射能量要小。

遥感导论复习重点

遥感导论复习重点

遥感导论复习重点第一章遥感概述§1-1遥感的基本概念及其特点一、遥感概念遥感(RemoteSening)是20世纪60年代发展起来对地观测综合性技术。

有广义和狭义之分。

1、广义遥感:泛指一切无接触的远距离探测(对电磁场、力场、机械波等)2、狭义遥感:即是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析揭示出物体的特征性质及其变化的综合测控技术。

遥测:对目标的某些运动参数和性质进行远距离册测量的技术。

分接触和非接触测量。

遥控:远距离控制目标的运动状态和过程的技术。

二、遥感的特点1.大面积同步观测:探测范围大,具有综合、宏观的特点,受地面条件限制少。

2.时效性:获取信息速度快,更新周期短,具有动态监测特点。

3.数据综合性先进性:信息量大,具有手段多,技术先进的特点。

4.经济性:用途广,效益高的特点。

5.局限性:利用的电磁波段有限。

§1-2遥感过程及系统一、遥感过程的实现光谱特性:一切物体固有的对电磁波反射、透射、吸收的能力。

由于环境不同,物体的反射、辐射电磁波是不同的。

数据获取→数据处理分析→数据应用遥感是一个接收、传送、处理和分析遥感信息,并最后识别目标的复杂技术过程。

二、遥感的技术系统依据遥感过程遥感系统分为:1.信息源2.信息的获取和接收传感器遥感平台地面站:是为了接收和记录遥感平台传送来得图像胶片或数字磁带数据而建立的。

由地面数据接收和记录系统(TRRS)和图像数据处理系统(IDPS)两部分组成。

3.信息的处理4.信息的应用-1-§1-3遥感的类型遥感的分类方法多种多样,主要有以下几种分类方法:1.按照遥感平台分:地面遥感、航空遥感、航天遥感、航宇遥感2.按照传感器的探测波段分:紫外遥感、可见光遥感、红外遥感、微波遥感、多波段遥感 3.按工作方式分:主动遥感、被动遥感;成像遥感、非成像遥感4.按信息获取方式分:5.按照波段宽度及波谱的连续性分:6.按应用领域分:较多§1-4遥感的发展简史一、遥感发展概况(一)遥感的萌芽及其初期发展时期(二)现代遥感发展时期从以下四个阶段了解遥感发展过程无记录的地面遥感阶段(1608-1838)有记录的地面遥感阶段(1839-1857)空中摄影遥感阶段(1858-1956)航天遥感阶段(1957-)二、我国遥感发展概况及其特点三、当前遥感发展主要特点与展望新一代传感器的研制,获得分辨率更高,质量更好的图象和数据;遥感应用不断深化;地理信息系统的发展与支持是遥感发展的又一新动向;复习题1.试述遥感的探测系统及其实现过程。

遥感概论知识点总结

遥感概论知识点总结

遥感概论知识点总结一、遥感的基本概念遥感是通过对地球表面进行观测和测量,获取地球表面各种信息的技术。

遥感可以利用航空器、卫星等平台来进行观测和测量,通过获取的遥感数据,可以对地球的各种现象和特征进行监测和分析。

遥感技术的应用范围非常广泛,可以在农业、水资源、土地利用、环境保护、城市规划等领域发挥重要作用。

二、遥感的原理遥感的原理主要是通过传感器对地球表面进行观测和测量,获取各种遥感数据。

传感器可以利用电磁波、红外线、微波等方式对地球表面进行观测,不同的传感器可以获取到不同波段的数据,从而获取到地球表面的不同信息。

遥感数据可以分为光学遥感数据和雷达遥感数据两种类型,其中光学遥感数据主要是通过对可见光、红外线等光谱的捕捉,获取地球表面的图像信息,而雷达遥感数据则是通过微波的回波信息获取地球表面的各种信息。

通过对遥感数据的处理和分析,可以获取到地球表面的各种信息,包括地形、地物、植被、水域、土壤等。

三、遥感的分类遥感可以根据传感器的工作原理和数据类型进行分类,主要可以分为光学遥感和雷达遥感两种类型。

光学遥感主要是利用可见光和红外线等光学波段进行观测和测量,可以获取地球表面的图像信息,包括地形、地物、植被、水域等。

光学遥感主要利用航空摄影、卫星摄影等方式获取数据,可以在农业、林业、地质勘探等领域得到应用。

雷达遥感则是利用雷达传感器对地球表面进行观测和测量,可以在夜间和恶劣天气下进行观测,可以获取地球表面的高度、形状、液体含量等信息,广泛应用于地质勘探、环境监测等领域。

四、遥感数据的获取遥感数据的获取主要是通过航空摄影、卫星摄影等方式进行观测和测量。

航空摄影是利用航空器进行大范围、高分辨率的遥感观测和测量,可以获取地球表面的高分辨率图像信息,适用于小范围的地面观测。

而卫星摄影则是利用卫星平台进行大范围、中低分辨率的遥感观测和测量,可以获取地球表面的宽幅图像信息,适用于大范围的地面观测。

通过这些方式获取的遥感数据可以在地质勘探、农业监测、城市规划等方面得到应用。

遥感概论期末重点[亲自整理]

遥感概论期末重点[亲自整理]

遥感概论期末复习重点一、狭义的遥感是指应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。

二、遥感系统的组成根据遥感的定义,遥感系统包括:目标物的电磁波特性(被测目标的信息特征)、信息的获取、信息的接收(信息的传输与记录)、信息的处理、信息的应用三、遥感的类型1.按遥感平台分地面遥感-、航空遥感、航天遥感、航宇遥感2.按工作方式分主动遥感---由探测器主动发射一定电磁波能量并接受目标的后向散射信号。

如:侧视雷达被动遥感---传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源的反射能量。

如:摄影机成像遥感---传感器接受的目标电磁辐射信号可转换成(数字或模拟)图像。

非成像遥感---传感器接受的目标电磁辐射信号不能形成图像。

四、遥感的特点①大面积的同步观测:遥感范围大,可实施大面积的同步观测;②时效性:获取信息快,更新周期短,具有动态监测的特点;③数据的综合性和可比性:具有手段多,技术先进的特点;④经济性:能节省大量的经费、时间和劳动力。

五、遥感的发展简史无记录的地面遥感阶段(1608-1838年)有记录的地面遥感阶段(1839-1857年)空中摄影遥感阶段(1858-1956年)航天遥感阶段(1957-)六、电磁波电磁波---当电磁振荡进入空间,变化的磁场激发了涡旋电场,变化的电场又激发了涡旋磁场,使电磁震荡在空间传播,这就是电磁波。

电磁波方向—由电磁振荡向各个不同方向传播。

七、电磁波谱【见右图】波谱以频率从高到低排列为:γ射线—X射线—紫外线—可见光—红外线—无线电波。

遥感中较多地使用可见光、红光和微波波段八、电磁波性质①是横波;②在真空以光速传播;③满足:f·λ=c E=h·λ其中:E-能量,单位J; h-普朗克常数,h=6.626×J/s;f-频率;λ-波长;c-光速,c=3×108m/s④电磁波具有波粒二象性九、勃朗源朗伯源—辐射亮度(L )与观察角(θ)无关的辐射源。

遥感概论复习

遥感概论复习

问题第一章--绪论1、遥感的基本概念2、遥感探测系统组成3、遥感与常规观测手段的区别重点:遥感的概念及应用领域1.遥感的广义理解和狭义理解?P12.遥感探测系统包括哪几个部分?P13.遥感的特点?P54.遥感的信息源?遥感探测的依据?P35.遥感的类型?P3第二章--电磁辐射与地物光谱特征1、电磁波谱与电磁辐射的概念及特点2、太阳辐射及大气对辐射的影响3、地球的辐射与地物波谱重点:地物波谱特征难点:电磁辐射原理1.大气层次与成分?P262.散射现象的实质?P293.大气散射的三种情况?P294.根据不同散射类型的特点分析可见光遥感与微波遥感的区别,说明为什么微波具有穿云透雾能力而可见光不能?P295.物体的反射状况?(镜面反射、漫反射、实际物体反射)P376.大气窗口对于遥感探测的重要意义?P317.综合论述太阳辐射传播到地球表面又返回到遥感传感器这一整个过程中所发生的物理现象?8.从地球辐射的分段特性说明为什么对于卫星影象解译必须了解地物反射波谱特性?P35 9.黑体辐射定律?P19第三章--电磁辐射与地物光谱特征1、了解主要的遥感平台及各平台的工作特点。

2、摄影成像的基本原理及图像特征。

3、扫描成像的基本原理及扫描图像的特征。

4、微波成像与摄影、扫描成像的区别。

5、评价遥感图像质量的方法。

重点:摄影成像的基本原理及图像特征、评价遥感图像质量的方法难点:中心投影的原理1.主要遥感平台是什么,各有何特点?P462.摄影成像的基本原理是什么?其图象有什么特征?P53、P573.扫描成像的基本原理是什么?P674.扫描成像和摄影图象有何区别?5.微波成像与摄影、扫描成像有何本质的区别?6.如何评价遥感图象的质量?P80-P837.气象卫星特点?P488.海洋遥感的特点?P529.中心投影与垂直投影的区别?P5810.中心投影的透视规律?P5911.光/机扫描成像的概念?P6712.瞬时视场角(像元)的概念?P6813.总视场角的概念?P6814.固体自扫描成像的概念?P6915.高光谱成像光谱扫描的概念?P7016.微波遥感的特点?P7217.微波遥感方式和传感器?P74-P8018.遥感解译人员需要通过遥感图像获取的信息?P8019.遥感图像的特征?P80-P83第四章--遥感图象处理1、光学原理与光学处理2、数字图像的校正3、数字图像增强4、多源信息复合重点:数字图象的增强难点:数字图象的校正及数字图象增强的原理与计算方法1.影响亮度值的两个物理量?P982.引起辐射畸变的两个原因?P983.辐射校正的方法(直方图最小值去除法、回归分析法)?P1004.遥感影像变形的原因?P1035.几何畸变校正的方法(最近邻法、双线性内插法、三次卷积内插法)?P1076.空间滤波的概念以及手段?P1167.彩色变换?P1208.图像运算(差值运算、比值运算)?P1229.多光谱变换(主成分变换、缨帽变换)?P12310.遥感信息的复合(不同传感器的遥感数据复合、不同时相的遥感数据复合)?P128 11.遥感与非遥感信息的复合?P13012.简述多波段彩色变换的不同方法?P120第五章--遥感图像目视解译与制图1、遥感图像目视解译原理2、遥感图像目视解译基础3、遥感制图1.遥感图像目标地物识别特征?P1352.图像知觉形成的客观条件?P1423.摄影像片的特点?P1454.摄影像片的解译标志?P1455.遥感摄影像片的判读方法?P1496.遥感扫描影像的判读?P1537.遥感扫描影像特征?P1618.遥感影像主要解译方法?P1619.微波影像的特点?P16310.微波影像解译标志及地物影像特征?P16611.微波影像的判读方法?P17112.目视解译方法?P17113.目视解译步骤?P17414.遥感影像地图的主要特征?P17615.对比分析MSS影像与TM影像的不同特点?P154第六章--遥感数字图像计算机解译1、遥感数字图像的性质与特点2、遥感数字图像的计算机分类3、遥感图像多种特征的抽取重点与难点:遥感数字图像的计算机分类方法1.遥感数字图像计算机解译的概念及其难度?P1872.按波段数量,遥感数字图像的类型?P1903.多波段数字图像的存储与分发通常采用的数据格式?P1904.航空像片的数字化过程?P1925.遥感数字图像计算机分类原理?P1936.遥感数字图像计算机分类方法(监督分类方法、非监督分类方法)?P195、P196 7.遥感数字图像计算机分类基本过程?P1958.植被、水体及土壤反射波谱特征?P399.计算机分类存在的问题?P20110.地物边界跟踪的方法?P20311.遥感图像解译专家系统的组成?P214-P21712.计算机解译的主要技术发展趋势?P219第七章--遥感应用1、地质遥感的主要原理与应用2、水体遥感的主要原理与应用3、植被遥感的主要原理与应用4、土壤遥感的主要原理与应用5、高光谱遥感的应用1.地质遥感的任务?基础?P2252.从遥感影像上识别地质构造的内容?P2313.岩石的反射光谱特征是什么?如何对沉积岩、岩浆岩、变质岩的影像进行识别?P225-P230 4.如何进行地质构造识别?P2315.水体的光谱特征是什么?水体识别可包括哪些内容?P237-P2396.植物的光谱特征是什么?如何区分植物类型,监测植物长势?P240-P2447.作物估产的原理和方法是什么?P2458.土壤的光谱特征是什么?如何进行土类的识别?P249-P2529.什么是高光谱遥感?它与传统遥感手段有何区别?P25310.高光谱提取地质矿物成分的主要技术方法是什么?P25411.高光谱在植被研究中有哪些应用?主要技术方法是什么?P256第八章--3S综合应用1.GIS的基本概念及其基本功能?P2612.GPS的基本原理、作用及其组成?P2643.RS的作用?P267概念第一章--绪论1.传感器(遥感器):接收、记录目标物电磁波特征的仪器2.遥感平台:装载传感器的平台,包括地面平台、空中平台、空间平台3.地面遥感:传感器设置在地面平台上,如车载、船载、手提、固定或活动高架平台等4.航空遥感:传感器设置于航空器上,主要是飞机、气球等5.航天遥感:传感器设置于环地球的航天器上,如人造地球卫星、航天飞机、空间站、火箭等6.航宇遥感:传感器设置于星际飞船上,指对地月系统外的目标的探测7.主动遥感:由探测器主动发射一定电磁波能量并接收目标的后向散射信号8.被动遥感:传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源的反射能量9.成像遥感:传感器接收的目标电磁辐射信号可转换成(数字或模拟)图象10.非成像遥感:传感器接收的目标电磁辐射信号不能形成图象第二章--电磁辐射与地物光谱特征1.电磁波谱:按电磁波在真空中传播的波长或频率,递增或递减排列2.朗伯源:辐射亮度与观察角无关的辐射源3.绝对黑体:一个对于任何波长的电磁辐射都全部吸收的物体4.太阳常数:不受大气影响,在距太阳一个天文单位内,垂直于太阳光辐射方向上,单位面积单位时间黑体所接收的太阳辐射能量5.太阳光谱:通常指光球产生的光谱,是连续光谱,且辐射特性与绝对黑体辐射特性基本一致6.散射:辐射在传播过程中遇到小微粒而使传播方向改变,并向各个方向散开7.大气窗口:电磁波通过大气层时较少被反射、吸收或者散射的,透过率较高的波段8.比辐射率=发射率第三章--电磁辐射与地物光谱特征1.遥感平台:搭载传感器的工具2.低轨:近极地太阳同步轨道,卫星每天在固定的时间(地方时)经过每个地点的上空,使资料获得时具有相同的照明条件3.高轨:指地球同步轨道4.摄影机:成像遥感最常用的传感器,有分幅式和全景式摄影机之分,通常的遥感探测和制图大都采用分幅式摄影5.垂直摄影:摄影机主光轴垂直于地面或偏离垂线在3°以内,取得的像片称水平像片或垂直像片6.倾斜摄影:摄影机主光轴偏离垂线大于3°,有时为了获取较好的立体效果且对制图要求不高时采用7.像点位移:在中心投影的像片上,地形的起伏除引起像片比例尺变化外,还会引起平面上的点位在像片位置上的移动的现象,位移量就是中心投影与垂直投影在同一水平面上的"投影误差",位移量与摄影高度(航高)成反比8.感光特征曲线:横坐标为曝光量的对数值,纵坐标为胶片的光学密度9.光学密度:指胶片经感光显影后,影象表现出的深浅程度10.感光度:指胶片的感光速度。

遥感概论知识点

遥感概论知识点

遥感概论知识点-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN遥感概论—刘朝顺第一章绪论一、遥感的概念1.广义::泛指各种非接触的、远距离的探测技术,包括对电磁场、力场、机械波(声波、地震波)等的探测。

2.狭义::是一门新兴的科学技术,主要指从远距离、高空以至外层空间的平台上,利用可见光、红外、微波等探测器,通过摄影或扫描、信息感应、传输和处理,从而识别地面物质的性质和运动状态的现代化技术系统。

二、什么是传感器1.地物空间信息主要由搭载在遥感平台上的传感器来获取。

2.传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

3.分类:摄影类型的传感器;扫描成像类型的传感器;雷达成像类型的传感器;非图像类型的传感器。

4.构造:1)收集器:收集地物辐射来的能量。

具体的元件如透镜组、反射镜组、天线等。

2)探测器:将收集的辐射能转变成化学能或电能。

具体的无器件如感光胶片、光电管、光敏和热敏探测元件、共振腔谐振器等。

3)处理器:对收集的信号进行处理。

如显影、定影、信号放大、变换、校正和编码等。

具体的处理器类型有摄影处理装置和电子处理装置。

4)输出器:输出获取的数据。

输出器类型有扫描晒像仪、阴极射线管、电视显像管、磁带记录仪、XY彩色喷笔记录仪等等。

三、遥感的特点1空间特性:视域范围大,具有宏观特性。

2.光谱特性:探测的波段从可见光向两侧延伸,扩大了地物特性的研究范围。

3.时相特性:周期成像,有利于进行动态研究和环境监测。

4.大面积的同步观测。

5.时效性 - 动态、快速获取监测范围数据。

6.数据的综合性和可比性。

7.经济性-应用领域多,经济效益高。

8.局限性。

四、遥感的发展历史1.无记录的地面遥感阶段2.有记录的地面遥感阶段(萌芽阶段)3.航空遥感阶段4.航天遥感阶段第二章电磁辐射与地物光谱特征(理解PPT)一、电磁波谱1.电磁波谱:按照电磁波在真空中传播的波长或频率递增或递减排列形成的一个连续谱带称为电磁波谱。

遥感概论复习重点

遥感概论复习重点

遥感概论复习重点遥感概论是地球科学和环境科学中的重要学科之一,主要研究地球表面信息的获取、处理和应用。

以下是遥感概论复习的重点内容。

一、遥感基础知识1.遥感的定义、特点和应用范围;2.遥感数据的分类、图像解译的基本步骤;3.遥感的数据源、传感器和平台;4.遥感数据的光谱特征和光谱反射率;5.遥感数据的空间、光谱和时间分辨率。

二、遥感图像解译1.遥感图像解译的基本概念和步骤;2.遥感图像的特征提取方法;3.遥感图像分类方法和常用分类算法;4.遥感图像解译中的误差源和误差评价方法;5.遥感图像的应用领域和典型应用案例。

三、遥感技术的发展和应用1.遥感技术的发展历程和主要进展;2.遥感技术在农业、林业、环境监测、城市规划等领域的应用;3.遥感技术在气象、地质灾害监测、资源调查和管理中的应用;4.遥感技术在国土调查、地理信息系统、地理空间数据处理中的应用。

四、遥感数据处理和分析1.遥感数据的获取和预处理技术;2.遥感图像的增强和滤波处理方法;3.遥感数据的特征提取和信息提取方法;4.遥感数据的数学模型和解析技术;5.遥感数据的多光谱、高光谱和合成孔径雷达处理方法。

五、遥感与地理信息系统(GIS)的集成应用1.遥感与GIS的概念、关系和集成模式;2.遥感数据在GIS中的应用和分析方法;3.遥感数据与GIS数据的转换和交互;4.遥感数据与GIS空间分析的集成方法;5.遥感与GIS的应用案例和未来发展方向。

六、遥感应用中的伦理和社会问题1.遥感数据的隐私和安全问题;2.遥感数据在环境保护和资源管理中的伦理问题;3.遥感数据的使用和共享政策问题;4.遥感数据在社会冲突和隐患管理中的道德问题;5.遥感数据的技术限制和社会影响问题。

以上内容是遥感概论复习的重点,通过对这些知识点的深入学习和理解,可以帮助学生全面掌握遥感概论的基本理论和应用技术,为进一步深入研究和应用遥感技术打下坚实的基础。

遥感概论最强考点总结

遥感概论最强考点总结

遥感概论和普通的图象有什么异同?能从图象上得到什么?为什么要从那么高的空间对地成像?想了解有关的空间信息,通过什么途径?如何获取信息?遥感的作用或者目的?一、遥感定义:遥感广义的含义:泛指各种非接触的、远距离的探测技术,根据物体对电磁波的反射和辐射特性,以获取物体信息的一种技术。

遥感狭义的含义:指从远距离、高空以至外层空间的各种平台上,利用可见光、红外、微波等探测仪器,通过摄影或扫描,信息感应、传输和处理,从而识别地面物质的性质和运动状态的一门现代化科学技术。

遥感定义:指在高空和外层空间的各种平台上,运用各种传感器获取反映地表特征的各种参数,通过传输,变换,处理,提取有用的信息,实现研究地物形状、位置、性质、变化及与环境的相互关系的一门现代应用科学。

遥感技术:实现上述目的所采取的各种技术手段的总称。

二、遥感技术的特点:宏观性,综合性(覆盖范围大、信息丰富),多波段性(波段的延长使对地球的观测走向了全天候),多时相性(重复探测,有利于进行动态分析)。

三、遥感的分类1、按照遥感的工作平台分类:地面遥感、航空遥感、航天遥感。

2、按照探测电磁波的工作波段分类:可见光遥感、红外遥感、微波遥感等。

3、按照遥感应用的目的分类:环境遥感、农业遥感、林业遥感、地质遥感等4、按照资料的记录方式:成像方式、非成像方式5、按照传感器工作方式分类:主动遥感、被动遥感四、遥感技术系统:是一个从地面到空中直至空间;从信息收集、存储、传输、处理到分析判读、应用的完整技术系统。

第一章遥感的物理基础电磁波及电磁波谱光的波动性形成了干涉,衍射,偏振现象。

干涉:由两个或两个以上频率振动方向相同,相位相同或相位差恒定的电磁波在空间叠加时,合成波振幅为各个波的振幅的矢量和,因此会出现交叠区某些地方振动加强,某些地方震动减弱或完全抵消的现象。

凡是单色波都是相干波。

干涉对微波遥感的判读意义重大。

衍射:光通过有限大小的障碍物时偏离直线路径的现象。

遥感导论复习整理(期末考试)

遥感导论复习整理(期末考试)

到达顶峰后植被反射率变化平缓,形成略有起伏的高平台 (红外平
台)
在中红外波段(1.3-2.5μm)受到含水量的影响,以
1.45μm、1.95μm、2.7μm为中心是水的吸收带,形成低谷。
绿色植被在遥感影像上的特征: 由于叶绿素的影响,绿色植被对蓝光、红光吸收强,对绿光反射作
用强,所以可见光下,人眼看到了绿色的植被,可见光影像上也通常表 示为绿色
13 植被的反射波普曲线?
可见光(0.4-0.76μm)绿光处有一小反射峰,两侧0.45μm
蓝和
0.67μm红是两个吸收带,所以叶片呈现绿色
进入近红外波段(0.7-0.8μm)红外反射率急剧上升,在 0.8微米
达到顶峰,这区间反射率曲线很陡峻,几乎为近垂直的直线(植被红外
陡坡效应),是植被独有的特征。
(5)0.8~2.5cm:即微波波段,发射光谱。有八个窗口,常用三个
0.8cm,3cm,5cm,10cm。 一般将0.05~300cm纳入微波波段。微波的特点
决定了它能够全天候观测。
11 哪个波段属于太阳辐射,哪个波段属于地球辐射,那个两者都有?
• 地球是温度为300K的黑体,其电磁辐射的波长范围是:2.5~50μ
遥感概论复习整理 第1章 绪论
1. 遥感概念? 狭义遥感:应用探测仪器,不与探测目标相接触,从远处把目标的电磁 波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合 性探测技术
2. 遥感技术系统组成? 信息源、信息的获取、信息的记录和传输、信息的处理、信息的应用。
3. 信息源,传感器概念? 信息源:任何地物都可以发射、反射和吸收电磁波信号,都是遥感信息 源;目标物与电磁波发生相互作用,会形成目标物的电磁波特性,这为 遥感探测提供了获取信息的依据 。 传感器:接收、记录地物电磁波特征的仪器,主要有:扫描仪、雷达、 摄影机、光谱辐射计等

《遥感概论复习资料》

《遥感概论复习资料》

《遥感概论复习资料》《遥感概论》课程复习思考题1.何谓遥感?遥感技术系统主要包括哪⼏部分?遥感,顾名思义是遥远感知的意思。

它是⼀种远距离的,不与物体直接接触⽽取得其信息的⼀种探测技术。

从⼴义上说是泛指从远处探测,感知物体或事物的技术。

即不直接接触物体本⾝,从远处通过仪器(传感器)探测和接收来⾃⽬标物的信息(如电场,磁场,电磁波,声波,地震波等信息),经过信息的传输及其处理分析,识别物体的属性及其分布特征的技术。

狭义遥感是指从远离地⾯的不同⼯作平台上(如⾼塔,⽓球,飞机,⽕箭,⼈造地球卫星,宇宙飞船,航天飞机等)通过传感器,对地球表⾯的电磁波(辐射)信息进⾏探测,并经信息的传输,处理和判读分析,对地球的资源与环境进⾏探测和监测的现代化的综合性技术。

2.当前遥感发展的特点如何?总的说来当前遥感技术与应⽤正在从实验阶段向⽣产商品化阶段转化,这⼀进程构成了今后遥感发展的主要趋向。

当前遥感发展的主要特点表现在以下⼏个⽅⾯:a新⼀代传感器的研制,以获得分辨⼒更⾼,质量更好的遥感图象和数据。

b遥感应⽤不断深化在遥感应⽤的深度和⼴度不断扩展的情况下,微波遥感应⽤领域的开拓,遥感应⽤成套技术的发展,以及全球系统的综合研究等成为当前遥感发展的⼜⼀动向c地理信息系统的发展与⽀持是遥感发展的⼜⼀进展和动向因此,地理信息系统是遥感的进⼀步发展和延伸,成为遥感技术从实验阶段向⽣产型商品化转化历史进程中的⼜⼀进展,成为当前遥感发展的⼜⼀新动向。

3.试述遥感在地学中的主要应⽤,并举例说。

(1)遥感已成为地理研究的重要信息源遥感获取的地理信息不仅数量⼤,⽽且及时准确,客观地记录了地表地物的各种电磁波的辐射特征,能真实地反映地物的景观及其分布状况,地物或现象之间的相互关系以及地物之间相互影响变化的情况。

因此遥感⼿段的引⼊,为地理学的区域综合分析,区域动态分析的深⼊研究提供了便利的基础。

遥感的数据源种类繁多,不仅可以提供可见光波段的信息,还可提供红外,紫外,微波波段的信息和多波段信息;既可以提供模拟图象形式的信息,⼜可提供数字化图象的信息,既能获取⼆维的平⾯信息,⼜能得到三维的信息。

遥感概论复习资料

遥感概论复习资料

遥感概论复习资料第一章遥感的基本概念(1)广义:泛指一切无接触的远距离探测技术。

包括对电磁场、力场、机械波(声波、地震波)等的探测。

(2)狭义:是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。

不同于遥测和遥控。

遥感系统包括(1)被测目标的信息特征(2)信息的获取(通过传/遥感器、遥感平台)(3)信息的传输与记录(4)信息的处理(5)信息的应用遥感的类型(1)按遥感平台分类:地面遥感、航空遥感、航天遥感、航宇遥感(2)按遥感器的探测波段分类μ之间紫外遥感:探测波段在0.05-0.38mμ之间可见光遥感:探测波段在0.38-0.76mμ之间红外遥感:探测波段在0.76-1000m微波遥感:探测波段在1mm-1m之间多波段遥感:探测波段在可见光和红外波段范围内,再分成若干窄波段来探测目标。

(3)按工作方式分类:主动遥感和被动遥感(4)按是否成像分类:成像遥感和非成像遥感遥感的特点(1)大面积同步观测传统地面调查实施困难,工作量大,遥感观测可以不受地面阻隔等限制。

(2)时效性可以短时间内对同一地区进行重复探测,发现地球上许多事物的动态变化,传统调查,需要大量人力物力,用几年甚至几十年时间才能获得地球上大范围地区动态变化的数据。

因此,遥感大大提高了观测的时效性。

这对天气预报、火灾、水灾等的灾情监测,以及军事行动等都非常重要。

(3)数据的综合性和可比性遥感获得地地物电磁波特性数据综合反映了地球上许多自然、人文信息。

由于遥感的探测波段、成像方式、成像时间、数据记录、等均可按照要求设计,使获得的数据具有同一性或相似性。

同时考虑道新的传感器和信息记录都可以向下兼容,所以数据具有可比性。

与传统地面调查和考察相比较,遥感数据可以较大程度地排除人为干扰。

(4)经济性遥感的费用投入与所获得的效益,与传统的方法相比,可以大大的节省人力、物力、财力和时间、具有很高的经济效益和社会效益。

遥感概论知识点汇总

遥感概论知识点汇总

遥感概论—刘朝顺第一章绪论一、遥感的概念1.广义::泛指各种非接触的、远距离的探测技术,包括对电磁场、力场、机械波(声波、地震波)等的探测。

2.狭义::是一门新兴的科学技术,主要指从远距离、高空以至外层空间的平台上,利用可见光、红外、微波等探测器,通过摄影或扫描、信息感应、传输和处理,从而识别地面物质的性质和运动状态的现代化技术系统。

二、什么是传感器1.地物空间信息主要由搭载在遥感平台上的传感器来获取。

2.传感器是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。

3.分类:摄影类型的传感器;扫描成像类型的传感器;雷达成像类型的传感器;非图像类型的传感器。

4.构造:1)收集器:收集地物辐射来的能量。

具体的元件如透镜组、反射镜组、天线等。

2)探测器:将收集的辐射能转变成化学能或电能。

具体的无器件如感光胶片、光电管、光敏和热敏探测元件、共振腔谐振器等。

3)处理器:对收集的信号进行处理。

如显影、定影、信号放大、变换、校正和编码等。

具体的处理器类型有摄影处理装置和电子处理装置。

4)输出器:输出获取的数据。

输出器类型有扫描晒像仪、阴极射线管、电视显像管、磁带记录仪、XY彩色喷笔记录仪等等。

三、遥感的特点1空间特性:视域范围大,具有宏观特性。

2.光谱特性:探测的波段从可见光向两侧延伸,扩大了地物特性的研究范围。

3.时相特性:周期成像,有利于进行动态研究和环境监测。

4.大面积的同步观测。

5.时效性- 动态、快速获取监测范围数据。

6.数据的综合性和可比性。

7.经济性-应用领域多,经济效益高。

8.局限性。

四、遥感的发展历史1.无记录的地面遥感阶段2.有记录的地面遥感阶段(萌芽阶段)3.航空遥感阶段4.航天遥感阶段第二章电磁辐射与地物光谱特征(理解PPT)一、电磁波谱1.电磁波谱:按照电磁波在真空中传播的波长或频率递增或递减排列形成的一个连续谱带称为电磁波谱。

遥感概论复习重点

遥感概论复习重点

遥感概论复习重点第⼀章⼀、遥感:⼀种远离⽬标,不与探测⽬标相接触,通过某种平台上装载的传感器获取其特征信息,然后对所获取的信息进⾏提取、判定、加⼯处理及应⽤分析的综合性技术⼆、遥感技术系统是⼀个地⾯到空中,乃⾄空间,从信息收集、存储、处理到判读分析和应⽤的完整技术体系三、遥感技术系统的组成信息源;信息的获取;传感器;遥感平台;信息的记录和传输四、遥感的分类①按遥感平台分类:航天、航空、地⾯遥感②按传感器探测波段分类:紫外遥感(0.05-0.38µm)可见光遥感(0.38-0.76µm)红外遥感(0.76-1000µm)微波遥感(1mm-1m)③按传感器的⼯作原理分:主动遥感,被动遥感④按数据获取⽅式:成像遥感;⾮成像遥感五、遥感的特点宏观性;动态性;技术⼿段多,信息海量六、当前遥感发展的主要特点和趋势⾼分遥感发展迅速,多种传感器并存:⾼空间分辨率、⾼光谱分辨率、⾼时间分辨遥感从定性到定量分析:遥感从“定性”向“定量”转变,定量遥感成为遥感应⽤的发展热点遥感信息提取逐步⾃动化:建⽴适⽤于遥感图像⾃动解释的专家系统,逐步实现遥感图像专题信息提取⾃动化遥感商业化第⼆章⼀、电磁波的性质波动性:①是横波②在真空以光速传播③满⾜C=λ*?粒⼦性:光电效应波粒⼆象性:E= h*?;P=h/λ波粒⼆象性的程度与电磁波的波长有关:波长愈短,辐射的粒⼦性愈明显;波长愈长,辐射的波动特性愈明显。

⼆、电磁波与物体相互作⽤过程中,会出现三种情况:反射、吸收、透射,遵守能量守恒定律(如果是不透明的物体,物体的反射率⼤,发射率就⼩)四、电磁辐射定义①反射:电磁辐射与物体作⽤后产⽣的次级波返回原来的介质,这种现象称反射。

该次级波便称之为反射波(辐射)。

反射率:物体的反射辐射通量与⼊射辐射通量之⽐。

②透射:电磁辐射与介质作⽤后,穿过该介质到达另⼀种介质的现象或过程。

透射率:透射能量与⼊射总能量之⽐。

遥感概论期末复习知识点(完整)

遥感概论期末复习知识点(完整)

遥感概论期末复习知识点一遥感的定义遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的科学及综合性探测技术。

二遥感的基本原理自然界的任何物体本身都具有发射、吸收、反射以及折射电磁波的能力,遥感是利用传感器主动或被动地接受地面目标反射或发射的电磁波,通过电磁波所传递的信息来识别目标,从而达到探测目标物的目的。

三遥感的物理基础(一)电磁波电磁波是遥感技术的重要物理理论基础。

1、电磁波的性质:具有波的性质和粒子的性质(波粒二相性)2、波长越短(频率越高),能量越高。

3、电磁波谱电磁波几个主要的分段:宇宙射线、伽玛射线、X射线、紫外、可见光、红外(近、中、远)、微波、无线电波。

遥感常用的电磁波段主要是近紫外、可见光、红外、微波紫外:紫外线是电磁波谱中波长从0.01~0.38um辐射的总称,主要源于太阳辐射。

由于太阳辐射通过大气层时被吸收,只有0.3~0.38um波长的光能穿过大气层到达地面,且散射严重。

由于大气层中臭氧对紫外线的强烈吸收与散射作用,紫外遥感通常在2000m 高度以下的范围进行。

可见光:是电磁波谱中人眼可以感知的部分,遥感常用的可见光是蓝波段(0.45um附近)、绿波段(0.55um附近)和红波段(0.65um附近)红外,红外线是波长介乎微波与可见光之间的电磁波,波长在0.7um至1mm之间,遥感常用的在0.7um-100mm微波,波长在0.1毫米~1米之间的电磁波。

微波波段具有一些特殊的特性:①受大气层中云、雾的散射影响小,穿透性好,不受光照等条件限制,白天、晚上均可进行地物微波成像,因此能全天候的遥感。

②微波遥感可以对云层、地表植被、松散沙层和干燥冰雪具有一定的穿透能力。

微波越长,穿透能力越强。

4、黑体辐射定律辐射出射度:在单位时间内从物体表面单位面积上发出的各种波长的电磁波能量的总和。

黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,又能全部发射,则该物体是绝对黑体。

遥感导论复习资料讲解

遥感导论复习资料讲解

遥感复习资料一、名词解释1、遥感:是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。

2、大气窗口:电磁波在大气中传输过程中吸收和散射很小,透射率很高的波段。

绿色植物反射波谱特征,并作出相应植物反射波谱曲线。

3、电磁波(横波):由振源发出的电磁振荡在空中的传播叫电磁波,如:光波、热辐射、微波、无线电波等。

4、电磁波谱:将各种电磁波在真空中的波长(或频率)的长短,依次排列制成的图表,叫做电磁波谱。

5、绝对黑体:如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体。

6像点位移:在中心投影的像片上,地形的起伏除引起相片比例尺变化外,还会引起平面上的点位在像片位置的移动,这种现象称为像点位移。

7、瞬时视场角:扫描镜在一瞬时时间可以视为静止状态,此时,接受到的目标物的电磁波辐射,限制在一个很小的角度之内,这个角度称为瞬时视场角。

即扫描仪的空间分辨率。

8、(遥感)数字图像:能够被计算机存储、处理和使用的影像。

9、辐射畸变:指从传感器得到的测量值与目标物的光谱反射率与光谱反射亮度等物理量不一致。

10、几何精校正:利用控制点的影像坐标和地图坐标的对应关系,近似的确定所给的影像坐标系和应输出的坐标系之间的变换公式。

11、多源信息复合:将多种遥感平台,多时相遥感数据之间以及遥感数据与非遥感数据之间的信息组合匹配。

12、程辐射度:相当部分的散射光向上通过大气直接进入传感器,这部分辐射称为程辐射度。

13、差值运算:两幅同样行、列数的图像,对应像元的亮度值相减就是差值运算。

fd (x,y)=f1 (x,y)- f2 (x,y)14、比值运算:两幅同样行、列数的图像,对应像元的亮度值相除(除数不为0)就是比值运算。

’15、信息复合:指同一区域内遥感信息之间或遥感与非遥感信息之间的匹配复合。

16、正像素:把一个像素内只含有一种地物的称为正像素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遥感导论复习第一章:绪论1.什么是遥感?(狭义)——名词解释是从远处探测感知物体,也就是不直接接触物体,从远处通过探测仪器接收来自目标地物的电磁波信息,经过对信息的处理,判别出目标地物的属性。

遥感( Remote Sensing ),即遥远的感知,利用非接触传感器来获取有关目标的时空信息,不仅着眼于解决传统目标的几何定位,更为重要的是对利用外层空间传感器获取的影像和非影像信息进行语义和非语义解译,提取客观世界中各种目标对象的几何与物理特征信息。

几何:由2维影像重建3维模型。

物理:由光谱特性确定物质类别。

现在遥感发展的趋势与展望1.多分辨率(空间、时间、光谱)多遥感平台并存2.新型传感器不断涌现,微波遥感、高光谱遥感迅速发展3.遥感的综合应用不断深化4.商业遥感时代的到来第二章:遥感电磁辐射基础8、斯忒藩-玻尔兹曼定律:绝对黑体的总辐射出射度与黑体温度的四次方成正比。

σ—斯忒藩-玻尔兹曼常数, σ=5.67×10-8 W ·m -2·K -49、维恩位移定律黑体辐射光谱中最强辐射的波长λmax 与黑体绝对温度T 成反比: b —常数几何意义:在黑体辐射曲线中,黑体温度越高,其曲线的峰值就越往左移,即往波长短的方向移动(位移)。

若辐射最大值落在可见光波段,物体的颜色会随着温度的升高而变化,波长逐渐变短,颜色由红外到红色再逐渐变蓝变紫(烟煤燃烧,燃烧越充分,颜色越接近蓝色)。

恒星、地球、太阳都可看做绝对黑体。

10、基尔霍夫定律(计算题)在任何给定温度下,地物的辐射出射度M 与吸收率α之比,对任何地物都是一个常数,并等与该温度下绝对黑体的M 0 。

表现了实际物体的辐射出射度与同一温度、同一波长绝对黑体辐射的关系: 仅与波长和温度有关,与物体本身的性质无关。

注意:斯忒藩-玻尔兹曼定律、维恩位移定律只适用于黑体辐射,但在自然界中,黑体辐射是不存在的,一般地物辐射能量总要比黑体辐射能量要小。

故使用基尔霍夫定律。

12.大气散射:辐射在传播过程中,遇到小微粒而使传播方向改变,并向各个方向散开,即为散射。

(了解)瑞利散射、米氏散射、无选择性散射瑞利:d <<λ 。

大气中的原子和分子,如 O 2、N 2等分子引起。

对可见光,散射强度与波长的四次方成反比。

红外和微波,波长长,基本不受影响。

4T M σ=b T =⋅max λ无云的晴空呈现蓝色,因为蓝光波长短,散射强度大;朝霞和夕阳:太阳高度角小、阳光斜射地面、要穿过厚厚的大气层、在过长的传播中,蓝光波长最短最容易被散射殆尽、波长次之的绿光也大部分被散射了只剩下波长最长的红光散射最弱透过大气层最多。

米氏散射:d ≈λ由大气中的微粒,如烟、尘埃、小水滴及气溶胶引起。

潮湿天气米氏散射影响大。

散射强度与波长的二次方成反比,散射在光线向前方向比向后方向强,方向性比较明显。

非选择性散射:d >>λ,散射强度与波长无关。

(云雾呈白色,因为云雾中水滴的粒子直径比波长大得多,对可见光中各个波长的光散射强度相同。

)14.地物反射波谱测量理论双向反射分布函数:对于表面dA ,设入射时照度为 ,在方向上由dIi 产生的反射亮度为dLr ,随入射角方向和反射方向的不同,产生一个函数fr ,称为双向反射分布函数(BRDF ): 双向反射比因子R(BRF): 第三章:遥感光学基础颜色的性质:1. 颜色性质:明度、色调、饱和度。

(1)明度,是人眼对光源或物体明亮程度的感觉。

在一般情况下,物体反射率越高,明度就越高。

所以白色比灰色明度高。

对于光源来说,亮度越大,明度越高。

(2)色调,是色彩彼此相互区分的特性。

多数情况下,刺激人眼的光波不是单一波长,而常常是一些波长的组合,对于光源来说,则是不同波长的亮度组合,对于反射物体是不同反射率的不同波长组合,共同刺激人眼产生组合后的颜色感觉。

(3)饱和度,是彩色纯洁的程度,也就是光谱中波长是否窄,频率是否单一的表示。

对于光源,发出的若是单色光就是最饱和的彩色。

对于物体颜色,如果物体对光谱反射有很高的选择性,只反射很窄的波段则饱和度高。

如果光源或物体反射光在某种波长中混有许多其他波长的光或混有白光,则饱和度低2. 加色法和减色法原理及应用:加色法:用红、绿、蓝三原色光按不同比例相加而取得其他色彩的一种方法。

颜色相加原理:互补色:若两种颜色混合产生白色或灰色,这两种颜色就成为互补色。

(如黄和蓝、红和青、绿和品红)三原色:若三种颜色,其中的任一种都不能由其余两种颜色混合相加产生,这三种颜色按一定比例混合,可以形成各种色调的颜色,称为三原色。

(红、绿、蓝) 混合后的颜色只是一种视觉效果上的颜色,完全失去了颜色的光谱意义。

白光是由相同数量的红、绿、蓝三原色组成,红=绿=蓝=1/3,红+绿+蓝=1 颜色相减原理:减色法:是从白光中按不同比例减去原色来实现色彩再现的一种方法。

通俗地说,减色法就是运用青、品红、黄三种补色重叠起来合成色彩的一种方法。

每一种颜色是从白光中减去与它互成补色的颜色。

当白光先后通过两块滤光片的过程就是颜色的减法过程。

(,)i i i dI φθ(,)(,)r i i r r r i i i dL f dI φθφθφθ=R =目标的反射辐射通量标准参考面的反射辐射通量减法三原色:指加法三原色的补色,即黄、品红和青色。

一般用于颜料的配制、彩色印刷、彩色相片的染印等。

黄=白-蓝=红+绿;青=白-红=蓝+绿加色法主要是用三个原色光相加再现色彩,而减色法则是用三个补色的透明色素相叠或染料相混合再现色彩,这就是它们的根本区别。

3.彩色合成根据加色法原理或减色法原理,选用不同波段的正片或负片组合,进行彩色合成。

真彩色合成:如果所采用的滤光系统与波段一一对应,称为真彩色合成,彩色与原物体或景观的色彩一样。

假彩色合成:选择遥感影像的某三个波段,分别赋予红、绿、蓝三种原色,由于原色的选择与原来遥感波段所代表的真实颜色不同,因此生成的合成色不是地物真实的颜色,这种合成叫做假彩色合成.。

标准假彩色合成:在彩色合成时,选择4、3、2波段,分别赋予红、绿、蓝时,即绿波波段赋予蓝、红波波段赋予绿,红外波段赋予红时,这一合成方案被称为标准假彩色合成。

第四章传感器1.遥感图像特征:(掌握4个分辨率的定义)空间分辨率:指像素所代表的地面范围的大小,即扫描仪的瞬时视场,或地面物体能分辨的最小单元。

温度分辨率:热红外传感器分辨地表热辐射最小差异的能力光谱分辨率:传感器所能记录的电磁波谱中,某一特定的波长范围值。

时间分辨率:对同一目标进行重复探测,相邻两次探测的时间间隔。

2.扫描成像类型的传感器是逐点逐行地以时序方式获取二维图像,有两种主要的形式,一是对物面扫描的成像仪,它的特点是对地面直接扫描成像,这类仪器如红外扫描仪、多光谱扫描仪、成像光谱仪、自旋和步进式成像仪及多频段频谱仪等;二是瞬间在像面上先形成一条线图像,甚至是一幅二维影像,然后对影像进行扫描成像,这类仪器有线阵列CCD推扫式成像仪,电视摄像机等。

3.摄影类型的传感器(1)框幅式摄影机:曝光一次获得目标物的一幅完整影像。

投影性质:单中心投影。

(2)推扫式摄影机:即缝隙式摄影机,又称航带摄影机,工作方式是通过焦平面前方设置的与飞行方向垂直的狭缝快门获取横向的狭带影像。

这是由于在摄影机焦平面前方放置一开缝的挡板,将缝隙外的影像全挡去的缘故。

投影性质:多中心投影,一幅影像是由若条缝隙影像拼接而成的,不同缝隙对应的中心投影是不同的。

(3)面阵CCD传感器获取图像的方式与框幅式摄影机相似,某一瞬间获得一幅完整的影像,因而是一个单中心投影,其构像关系可直接使用框幅式中心投影的航空像片的构像关系式。

(4)线阵列传感器获取图像的方式与推扫式摄影机相似,即线阵列方向与飞行方向垂直,在某一瞬间得到的是一条线影像,一幅影像由若干条线影像拼接而成,所以又称为推扫式扫描成像。

这种成像方式在几何关系上与缝隙摄影机相同。

第五章航空遥感1.地面起伏的影响:垂直投影时,随地面起伏变化,投影点之间的距离和地面实际水平距离成比例缩小,相对位置不变。

中心投影时,地面起伏较大,像上投影点水平位置的位移量就越大,产生投影误差。

(书P108)计算题2.左右视差(见书本P115)计算题第六章:航天遥感1.卫星的姿态(1)三轴倾斜:遥感卫星在飞行过程中发生的滚动、俯仰与偏航现象。

(2)振动:指遥感卫星运行过程中除滚动、俯仰与偏航以外的非系统性的不稳定振动。

遥感卫星运行中的姿态变化对其所获取的数据有很大影响,所以在使用数据前需做几何校正。

2.遥感卫星的轨道类型:(老师只是提到了轨道类型,具体没说清楚)人造地球卫星轨道按离地面的高度,可分为低轨道、中轨道和高轨道;按形状分可分为圆轨道和椭圆轨道;按飞行方向分可分为顺行轨道(与地球自转方向相同)、逆行轨道(与地球自转方向相反)、赤道轨道(在赤道上空绕地球飞行)和极轨道(经过地球南北极上空)。

人造地球卫星还有以下几种特殊轨道地球同步轨道:卫星在顺行轨道上绕地球运行时,其运行周期(绕地球一圈的时间)与地球的自转周期相同。

这种卫星轨道叫地球同步轨道。

地球静止卫星轨道:如果地球同步轨道卫星正好在地球赤道上空离地面35786千米的轨道上绕地球运行,由于它绕地球运行的角速度与地球自转的角速度相同,从地面上看去它好像是静止的,这种卫星轨道叫地球静止卫星轨道。

地球静止卫星轨道是地球同步轨道的特例,它只有一条。

太阳同步轨道:由于地球扁率(地球不是圆球形,而是在赤道部分隆起),卫星轨道平面绕地球自转轴旋转。

如果卫星轨道平面绕地球自转轴的旋转方向和角速度与地球绕太阳公转的方向和平均角速度相同,则这种卫星轨道叫太阳同步轨道。

3、陆地卫星Landsat系列陆地卫星指地球资源卫星,陆地卫星在重复成像的基础上,产生世界范围的图像,同时提供数字化的多波段的图像数据。

Landsat卫星的传感器:(1) MSS:多光谱扫描仪,5个波段。

(2) TM :主题绘图仪,7个波段。

(3) ETM+:增强主题绘图仪,8个波段。

4、气象卫星系列气象卫星是广泛应用于国民经济领域和军事领域的一种卫星,是太空中的自动化高级气象站。

它能连续、快速、大面积地探测全球大气变化情况。

气象卫星是最早发展起来的环境卫星。

NOAA 卫星 数据来源:美国气象卫星。

近圆形太阳同步轨道。

GMS 气象卫星 数据来源:日本葵花气象卫星。

地球卫星同步轨道中国风云气象卫星 近极地太阳同步轨道。

第七章 微波遥感1.极化:电波的振动仅在单一平面①水平极化:电场振动方向平行于水平面(“H ”极化)②垂直极化:电场振动方向垂直于水平面(“V ”极化)③同极化图像HH/VV :发射和接收的电磁波同为水平/垂直极化方式。

相关文档
最新文档