机械类英文参考文献
机械外文翻译外文文献英文文献机械臂动力学与控制的研究
外文出处:Ellekilde, L. -., & Christensen, H. I. (2009). Control of mobile manipulator using the dynamical systems approach. Robotics and Automation, Icra 09, IEEE International Conference on (pp.1370 - 1376). IEEE.机械臂动力学与控制的研究拉斯彼得Ellekilde摘要操作器和移动平台的组合提供了一种可用于广泛应用程序高效灵活的操作系统,特别是在服务性机器人领域。
在机械臂众多挑战中其中之一是确保机器人在潜在的动态环境中安全工作控制系统的设计。
在本文中,我们将介绍移动机械臂用动力学系统方法被控制的使用方法。
该方法是一种二级方法, 是使用竞争动力学对于统筹协调优化移动平台以及较低层次的融合避障和目标捕获行为的方法。
I介绍在过去的几十年里大多数机器人的研究主要关注在移动平台或操作系统,并且在这两个领域取得了许多可喜的成绩。
今天的新挑战之一是将这两个领域组合在一起形成具有高效移动和有能力操作环境的系统。
特别是服务性机器人将会在这一方面系统需求的增加。
大多数西方国家的人口统计数量显示需要照顾的老人在不断增加,尽管将有很少的工作实际的支持他们。
这就需要增强服务业的自动化程度,因此机器人能够在室内动态环境中安全的工作是最基本的。
图、1 一台由赛格威RMP200和轻重量型库卡机器人组成的平台这项工作平台用于如图1所示,是由一个Segway与一家机器人制造商制造的RMP200轻机器人。
其有一个相对较小的轨迹和高机动性能的平台使它适应在室内环境移动。
库卡工业机器人具有较长的长臂和高有效载荷比自身的重量,从而使其适合移动操作。
当控制移动机械臂系统时,有一个选择是是否考虑一个或两个系统的实体。
在参考文献[1]和[2]中是根据雅可比理论将机械手末端和移动平台结合在一起形成一个单一的控制系统。
机械类方向的论文参考文献
机械类方向的论文参考文献机械类方向的论文参考文献在日常学习和工作中,大家最不陌生的就是论文了吧,通过论文写作可以培养我们的科学研究能力。
那么你知道一篇好的论文该怎么写吗?下面是小编为大家收集的机械类方向的论文参考文献,希望对大家有所帮助。
机械类论文参考文献1 [1] 王遐.随车起重机行业扫描[J].工程机械与维修,2006(3):68-71 [2] 王金诺,于兰峰.起重运输机金属结构[M].北京:中国铁道出版社,2002 [3] 卢章平,张艳.不同有限元分析网格的.转化[J].机械设计与研究,2009(6):10-14 [4] 朱秀娟.有限元分析网格划分的关键技巧[J].机械工程与自动化,2009(1):185-186 [5] 姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.50-54 [6] 桥斌.国内外随车起重机的对比[J].工程机械与维修,2006(7):91-92 [7] 王欣,黄琳.起重机伸缩臂截面拓扑优化[J].大连理工大学学报,2009(3):374-379 机械类论文参考文献2 1 金会庆.驾驶适性.合肥:安徽人民出版社,1995. 2 蔡辉、张颖、倪宗瓒等.Delphi法中评价专家的筛选.中国卫生事业管理,1995,1:49~55. 3 侯定丕.管理科学定量分析引论.合肥:中国科技大学出版社,1993. 4 王有森.德尔菲法. 医学科研管理学(刘海林主编.第一版),北京:人民卫生出版社,1991:279~289. 5 安徽省劳动保护教育中心编.劳动安全、卫生国家标准及其编制说明汇编第三辑,1987. 6 Kaoru Ishikawa. Guide to Quality Control. Asian Productivity Organization.Tokyo. 1982:42~49 机械类论文参考文献3 [1]郑文纬,吴克坚 .机械原理[M] .北京:高等教育出版社,1997 [2]濮良贵.纪名刚.机械设计[M] .北京:高等机械出版社.2006 [3]杨家军.机械系统创新设计[M] .武汉:华中科技大学出版社.2000 [4]高志.黄纯颖. 机械创新设计[M] . 北京:高等机械出版社.2010 [5]王晶.第四届全国大学生机械创新设计大赛决赛作品选集. 北京:高等教育出版社,2011 [6]黄华梁、彭文生.创新思维与创造性技法. 北京:高等教育出版社,2007 [7]李学志.计算机辅助设计与绘图[M] .北京:清华大学出版社.2007 [8]吴宗泽.机械设计手册[M] .北京:机械工业出版社.2008 [9]颜鸿森.姚燕安.王玉新等译.机构装置的创造性设计(creative design of mechanical devices)[M] .北京:机械工业出版社.2002 [10]邹慧君.机械运动方案设计手册[M] .上海:上海交通大学出版社.1994 [11]王世刚.张春宜.徐起贺.机械设计实践[M] .哈尔滨:哈尔滨工程大学出版社.2001 [12][美]厄儿德曼.桑多尔著.机构设计——分析与综合.第一卷(1992),第二卷(1993).庄细荣等译.北京:高等教育出版社.1994 [13]温建民. Pro/E wildfire5.0 三维设计基础与工程范例[M] .清华大学出版社.2008[14]赵瑜.闫宏伟.履带式行走机构设计分析与研究[M] .东北大学出版社.2011[15]秦大同.谢里阳.现代机械设计手册.第三卷.化学工业出版社[M] .2011 [16]闻邦椿.机械设计手册.第二卷.第三卷.第四卷.机械工业出版社.2011 [17]陈敏.缪终生一种新型滚动四杆螺母副的研究与应用[J] .江西理工大学南昌校区.江西.南昌 2009. [18]彭国勋.肖正扬.自动机械的凸轮机构设计[M] .机械工业出版社.1990 [19]孙志礼.机械设计[M] .东北大学出版.2011 [20]张也影.流体力学[M] .高等教育出版社.1998 [21]吴涛、李德杰,彭城职业大学学报,虚拟装配技术,[J] 2001,16(2):99-102. [22]叶修梓、陈超祥,ProE基础教程:零件与装配体[M] ,机械工业出版社,2007. [23]邓星钟,机电传动控制[M] ,华中科技大学出版社,2001. [24]朱龙根,简明机械零件设计手册[M] ,机械工业出版社,2005. [25]李运华,机电控制[M].北京航空航天大学出版社,2003. 机械类论文参考文献4 [1] 邹银辉.煤岩体声发射传播机理研究[D].山东:山东科技大学硕士论文,2007 [2] 贾宝新,李国臻.矿山地震监测台站的空间分布研究与应用[J].煤炭学报,2010,35(12):2045-2048 [3] 柳云龙,田有,冯晅,等.微震技术与应用研究综述[J].地球物理学进展,2013,28(4):1801-1808 [4] 徐剑平,陈清礼,刘波,等.微震监测技术在油田中的应用[J].新疆石油天然气,2011,7(1):89-82 [5] 汪向阳,陈世利.基于地震波的油气管道安全监测[J].电子测量技术, 2008, 31(7): 121-123 [6] 何平.地铁运营对环境的振动影响研究[D].北京:北京交通大学,2012 [7] 陆基孟.地震勘探原理[M].山东:中国石油大学出版社,1990 [8] 崔自治.土力学[M].北京:中国电力出版社,2010 [9] 许红杰,夏永学,蓝航 ,等.微震活动规律及其煤矿开采中的应用 [J]. 煤矿开采,2012,17(2):93-95、16 [10] 李铁,张建伟,吕毓国,等.采掘活动与矿震关系[J].煤炭学报,2011,36(12):2127-2132 [11] 陈颙.岩石物理学[M].北京:北京大学出版社,2001 [12] 秦树人,季忠,尹爱军.工程信号处理[M].北京:高等教育出版社,2008 [13] 董越. SF6 高压断路器在线监测及振动信号的分析[D].上海:上海交通大学,2008 [14] 张谦.基于地脉动观测的城市地区工程场地动参数及反演地下结构的研究[D].北京:北京交通大学,2012 [15] 刘振武,撒利明,巫芙蓉,等.中国石油集团非常规油气微地震监测技术现状及发展方向[J].石油地球物理勘探,2013,48(5):843-853 [16] 聂伟荣.多传感器探测与控制网络技术-地面运动目标震动信号探测与识别[D].南京:南京理工大学,2001(6). [17] T. Damarla and D. Ufford,Personnel detection using ground sensors[J].Proc. of SPIE, Orlando,FL, 2007, vol. 656205, 1-10.。
机械手设计英文参考文献原文翻译
翻译人:王墨墨山东科技大学文献题目:Automated Calibration of Robot Coordinatesfor Reconfigurable Assembly Systems翻译正文如下:针对可重构装配系统的机器人协调性的自动校准T.艾利,Y.米达,H.菊地,M.雪松日本东京大学,机械研究院,精密工程部摘要为了实现流水工作线更高的可重构性,以必要设备如机器人的快速插入插出为研究目的。
当一种新的设备被装配到流水工作线时,应使其具备校准系统。
该研究使用两台电荷耦合摄像机,基于直接线性变换法,致力于研究一种相对位置/相对方位的自动化校准系统。
摄像机被随机放置,然后对每一个机械手执行一组动作。
通过摄像机检测机械手动作,就能捕捉到两台机器人的相对位置。
最佳的结果精度为均方根值0.16毫米。
关键词:装配,校准,机器人1 介绍21世纪新的制造系统需要具备新的生产能力,如可重用性,可拓展性,敏捷性以及可重构性[1]。
系统配置的低成本转变,能够使系统应对可预见的以及不可预见的市场波动。
关于组装系统,许多研究者提出了分散的方法来实现可重构性[2][3]。
他们中的大多数都是基于主体的系统,主体逐一协同以建立一种新的配置。
然而,协同只是目的的一部分。
在现实生产系统中,例如工作空间这类物理问题应当被有效解决。
为了实现更高的可重构性,一些研究人员不顾昂贵的造价,开发出了特殊的均匀单元[4][5][6]。
作者为装配单元提出了一种自律分散型机器人系统,包含多样化的传统设备[7][8]。
该系统可以从一个系统添加/删除装配设备,亦或是添加/删除装配设备到另一个系统;它通过协同作用,合理地解决了工作空间的冲突问题。
我们可以把该功能称为“插入与生产”。
在重构过程中,校准的装配机器人是非常重要的。
这是因为,需要用它们来测量相关主体的特征,以便在物理主体之间建立良好的协作关系。
这一调整必须要达到表1中所列到的多种标准要求。
机械类毕业设计开题报告含文献综述外文翻译
毕业设计开题报告(含文献综述、外文翻译)题目姓名学号班级专业机械设计制造及其自动化学院机械工程学院指导教师(职称)开题报告1. 选题的背景和意义分子合成技术,…… 1.1 选题的背景1.2 选题意义2.设计内容 2.1 主要设计内容…………………………… 2.2 拟解决的关键问题……………………………3.设计的方法及措施3.1 可行性分析……………………………3.2 方法及措施……………………………4.预期设计成果……………………………5.设计工作进度计划本毕业设计的阶段划分与进度安排如下:第一阶段:第七学期第10~12周(2010.11.1~2010.11.19),查阅文献和撰写文献综述初稿;第二阶段:第七学期第 13~16周(2010.11.22~2010.12.10),修改并完成第三阶段:第八学期第 1~……….;……;……….;……….;……….;第六阶段:第八学期第 10~12周(2011…..~2011…..),整理和撰写设计论文,形成终稿,送审、修改、并装订。
1. 国内外研究现状分子合成技术,…… 2.研究方向2.1 机电一体化方向2.1.1 机械结构设计……………………………参考文献(含开题报告和文献综述)[1] 蒋继红, 虞贤颖, 王效岳. 塑料成型模具典型结构图册业出版社, 2006.[2] 朱祖超. 2000, 36(4): 30-33.[3]ANTILA M, LANTTO E, ARKKIO A. Determination of force and linearizedparameters of radial active magnetic bearings by finite element technique[J]. IEEE Trans. on Magn. 1998, 34(3): 684-694.[S]. 北京: 中国标准出版社,[D]. 太原: 太原理工大学, 1998. 期刊[序号] 主要责任者. 文献题名[J]. 刊名, 出版年份,卷号(期号): 起止页码.专着[序号] 主要责任者. 文献题名[M]. 其他责任者. 出版地: 出版者, 出版年.国际、国家标准[序号] 标准代号, 标准名称[S]. 出版地: 出版者, 出版年.学位论文[序号] 主要责任. 文献题名[D]. 保存地: 保存单位, 年份.外文翻译译文题目原稿题目原稿出处。
机械类英语作文模板
机械类英语作文模板英文回答:Introduction。
Mechanical engineering is an incredibly vast anddiverse field that encompasses the design, development, and operation of machines. It is a highly interdisciplinaryfield that draws upon principles from physics, mathematics, and materials science to create solutions to real-world problems. Mechanical engineers play a vital role in many industries, including transportation, manufacturing, energy, and healthcare.Education and Training。
To become a mechanical engineer, a strong foundation in mathematics and science is essential. Most mechanical engineers hold a bachelor's degree in mechanicalengineering from an accredited university. Some may alsochoose to pursue a master's degree or doctorate in mechanical engineering or a related field.Career Opportunities。
Mechanical engineers are in high demand across a wide range of industries. Some of the most common job titles for mechanical engineers include:Design Engineer。
机械设计制造及其自动化参考文献英文
机械设计制造及其自动化参考文献英文机械设计制造及其自动化参考文献英文:1. Chen, J., & Mei, X. (2016). A review of intelligent manufacturing in the context of Industry 4.0: From the perspective of quality management. Engineering, 2(4), 431-439.这篇文章回顾了智能制造在工业4.0背景下的发展,并从质量管理的角度进行了分析。
2. Wu, D., & Rosen, D. W. (2015). Cloud-based design and manufacturing: A new paradigm in digital manufacturing and design innovation. Computer-Aided Design, 59, 1-14.该研究探讨了基于云计算的设计和制造,认为这是数字制造和设计创新的新范式。
3. Wang, L., Trngren, M., & Onori, M. (2015). Current status and advancement of cyber-physical systems in manufacturing. Journal of Manufacturing Systems, 37, 517-527.这篇文章综述了制造业中物联网技术的现状和进展,强调了制造业中的网络化和物理化系统。
4. Xie, Y. M., & Shi, Y. (2008). A survey of intelligence-based manufacturing: Origins, concepts, and trends. IEEE Transactions on Industrial Informatics, 4(2), 102-120.该文章综述了智能制造的起源、概念和趋势,并对智能制造的方法和技术进行了详细描述。
机械工程专业英语精ppt课件
专利检索资源荟萃(二)
8.美国专利检索:/patft/index.html 9.欧洲专利检索:/ 10.从ESPACENET数据库提取世界各国专利文献的方法(国知局提供): /sipo/wxfw/ytwggsjkjs/ytwzlsjkjs/ESPACENET.doc 11.欧洲专利局免费专利数据库(含欧洲各国家入口): /access/index.en.htm 12.欧洲专利局专利数据高级检索(含欧洲、PCT和世界范围三个数据库): /advancedSearch?locale=en_ep 13.欧洲专利法律状态查询:/portal/public/registerplus 14.PCT专利检索:http://www.wipo.int/pctdb/en/ 15.英国专利检索:/search/index.htm
专利检索资源荟萃(一)新!专利搜索网址:/ 1.因特网专利数据库介绍(中华人民共和国国家知识产权局): /sipo//wxfw/ytwzlsukjs/ytwzlsjkjs/200508/t20050816_67485. htm
机械工程专业英语ቤተ መጻሕፍቲ ባይዱ
Subject-Based English for Mechanical Engineering
机械与电气工程学院
2020/4/27
教学要求及目的
了解专业英语的语法特点,熟悉专业词汇, 逐步培养学生具有比较熟练的专业文献阅 读理解能力、翻译能力和英文学术论文的 写作能力。 掌握国外英文专利和文献资料的查询方法, 能以英语为工具,获取本专业所需信息。 了解国际学术交流的常用表达方式。
Lesson 37 Milling Machines and Grinding Machines Lesson 38 Drilling Operations Lesson 44 Nontraditional Manufacturing Processes Lesson 62 The Computer and Manufacturing Lesson 63 Computers in Design and Manufacturing Lesson 64 Computer-Aided Analysis of Mechanical Systems Lesson 65 Computer-Aided Process Planning Lesson 66 Numerical Control Lesson 71 Industrial Robots Lesson 77 Technical Report Elements Lesson 78 Writing the Technical Report Extra lesson 1 English for International Academic Exchange Extra lesson 2 Expression of Numbers, Signs, Equations and Graphs in English Extra lesson 3 Professional Literature and Patent Retrieval
机械安全_基本概念与设计通则_第1部分:基本术语和方法
GB/机械安全基本概念与设计通则第1部分:基本术语和方法Safety of machinery-Basic concepts,general principles for design-Part1:Basic terminology,methodology目次前言引言1 范围2 规范性引用文件3 术语和定义4 设计机械时需要考虑的危险5 减小风险的策略附录A(资料性附录) 机器的图解表示用于GB/T 15706的专用术语和表述的英中文对照索引参考文献前言GB/T 15706《机械安全基本概念与设计通则》由两部分组成:——第1部分:基本术语和方法;——第2部分:技术原则。
本部分为GB/T 15706的第l部分。
本部分等同采用国际标准ISO12100-1:2003《机械安全基本概念与设计通则第1部分:基本术语和方法》(英文版),并按照我国标准的编写规则GB/T 做了编辑性修改。
本部分与ISO12100-1:2003的不同为:将标准正文后面的英法德三种文字对照的索引改为英中两种文字对照的索引。
本部分代替GB/T 《机械安全基本概念与设计通则第1部分:基本术语、方法学》。
本部分由全国机械安全标准化技术委员会(SAC/TC 208)提出并归口。
本部分负责起草单位:机械科学研究总院中机生产力促进中心。
本部分参加起草单位:长春试验机研究所、南京食品包装机械研究所、吉林安全科学技术研究院、中国食品和包装机械总公司、中联认证中心、广东金方圆安全技术检测有限公司。
本部分主要起草人:聂北刚、李勤、王学智、居荣华、肖建民、宁燕、王国扣、隰永才、张晓飞、富锐、程红兵、孟宪卫、赵茂程。
本部分所代替标准的历次版本发布情况为:——GB/T 。
引言GB/T 15706的首要目的是为设计者提供总体框架和指南,使其能够设计出在预定使用范围内具备安全性的机器。
同时亦为标准制定者提供标准制定的策略。
机械安全的概念是指在风险已经被充分减小的机器的寿命周期内,机器执行其预定功能的能力。
机械类的英文作文
机械类的英文作文Title: The Evolution of Mechanical Engineering。
Mechanical engineering, often referred to as the backbone of engineering disciplines, has undergonesignificant evolution over the years. From ancient times to the modern era, the field has seen remarkable advancements, shaping the way we live, work, and interact with technology. In this essay, we'll delve into the journey of mechanical engineering, exploring its historical roots, key innovations, and future prospects.The origins of mechanical engineering can be tracedback to ancient civilizations such as Mesopotamia, Egypt, and China. In these early societies, rudimentary machines like pulleys, levers, and wheels were developed to aid in agricultural, construction, and transportation activities. These innovations laid the foundation for moresophisticated mechanical systems in the centuries to come.During the Renaissance period, mechanical engineering experienced a resurgence as scholars and inventors soughtto understand and harness the principles of mechanics. Visionaries like Leonardo da Vinci conceptualized intricate machines and mechanisms, contributing to the expansion of knowledge in the field. The invention of the printing press by Johannes Gutenberg in the 15th century marked a pivotal moment, revolutionizing communication and paving the wayfor the Industrial Revolution.The 18th and 19th centuries witnessed unprecedented progress in mechanical engineering, driven by theIndustrial Revolution. Innovations such as the steam engine, textile machinery, and machine tools transformed industries and spurred economic growth. Engineers like James Watt, George Stephenson, and Eli Whitney became household namesfor their contributions to mechanical innovation.The 20th century brought about further advancements in mechanical engineering, propelled by rapidindustrialization and technological breakthroughs. The development of the internal combustion enginerevolutionized transportation, leading to the proliferation of automobiles, airplanes, and ships. Meanwhile, the fields of robotics, aerospace engineering, and materials science emerged, pushing the boundaries of what was possible in mechanical design and manufacturing.In recent decades, the advent of digital technology has revolutionized mechanical engineering once again. Computer-aided design (CAD) software has enabled engineers to create intricate designs with unprecedented precision and efficiency. Simulation tools allow for virtual testing and optimization of mechanical systems, reducing the need for costly physical prototypes. Furthermore, the integration of sensors and actuators has enabled the development of smart, interconnected devices that can adapt to changing conditions in real-time.Looking ahead, the future of mechanical engineering holds immense promise and challenges. As society grapples with issues such as climate change, resource scarcity, and urbanization, mechanical engineers will play a crucial role in developing sustainable solutions. From renewable energytechnologies to advanced manufacturing processes, the opportunities for innovation are vast.In conclusion, the evolution of mechanical engineering is a testament to human ingenuity and perseverance. From humble beginnings to the forefront of technological innovation, the field has continually pushed the boundaries of what is possible. As we stand on the brink of a new era, the principles of mechanical engineering will continue to shape the world around us, driving progress and improving the quality of life for generations to come.。
机械自动化专业参考文献汇总
机械自动化专业参考文献汇总一、综述类文献1. 《机械自动化技术的发展及应用前景》本文综述了机械自动化技术的发展历程和应用前景,介绍了机械自动化技术在制造业、交通运输、医疗卫生等领域的应用,并探讨了未来机械自动化技术的发展趋势。
2. 《机械自动化技术在工业生产中的应用案例研究》本文以实际案例为基础,探讨了机械自动化技术在工业生产中的应用情况。
通过分析案例,总结了机械自动化技术在提高生产效率、降低成本、改善工作环境等方面的优势,并提出了进一步发展和应用机械自动化技术的建议。
二、领域研究类文献1. 《机械自动化在汽车制造中的应用研究》本文研究了机械自动化在汽车制造过程中的应用情况。
通过对汽车生产线的自动化程度进行调查和分析,探讨了机械自动化在汽车制造中的效果和问题,并提出了相应的改进措施。
2. 《机械自动化技术在食品加工中的应用研究》本文研究了机械自动化技术在食品加工领域的应用情况。
通过对食品加工生产线的自动化设备及控制系统进行调查和分析,探讨了机械自动化技术在提高食品加工效率、保障食品质量等方面的作用,并提出了相关建议。
三、技术创新类文献1. 《机械自动化技术在物流仓储中的创新应用研究》本文研究了机械自动化技术在物流仓储领域的创新应用情况。
通过对自动化仓储设备和系统的设计和实施,探讨了机械自动化技术在提高物流仓储效率、降低成本、减少人为错误等方面的创新应用,并提出了相关的技术改进建议。
2. 《机械自动化技术在智能制造中的创新研究》本文研究了机械自动化技术在智能制造领域的创新应用情况。
通过对智能制造系统的设计和实施,探讨了机械自动化技术在提高制造过程智能化、灵活化、可持续发展等方面的创新应用,并提出了相关的技术改进和发展方向。
机械自动化专业的参考文献汇总涵盖了综述类、领域研究类和技术创新类文献。
这些文献从不同角度探讨了机械自动化技术的发展历程、应用情况和创新应用,为机械自动化专业的学习和研究提供了有益的参考。
机械毕业设计参考文献(大全)
Part1中文[1] 巩云鹏、田万禄等主编. 机械设计课程设计 . 沈阳:东北大学出版社 2000[2] 孙志礼,冷兴聚,魏严刚等主编. 机械设计. 沈阳:东北大学出版社 2000[3] 刘鸿文主编. 材料力学. 北京:高等教育出版社1991[4] 哈尔滨工业大学理论力学教研组编. 理论力学. 北京:高等教育出版社 1997[5] 大连理工大学工程画教研室编. 机械制图. 北京:高等教育出版社 1993[6] 孙桓,陈作模主编. 机械原理. 北京:高等教育出版社 2000[7] 高泽远,王金主编. 机械设计基础课程设计.沈阳:东北工学院出版社 1987[8] 喻子建,张磊、邵伟平、喻子建主编. 机械设计习题与解题分析.沈阳:东北大学出版社 2000[9] 张玉,刘平主编. 几何量公差与测量技术 .沈阳:东北大学出版社 1999[10] 成大先主编.机械设计手册(减(变)速器.电机与电器)化学工业出版社Part2中文[1]《煤矿总工程师工作指南》编委会编著. 《矿总工程师工作指南》(上). 北京:煤炭工业出版社,1990.7[2] 严万生等编著.《矿山固定机械手册》..北京:煤炭工业出版社,1986.5,第1版[3]孙玉蓉等编著.《矿井提升设备》. 北京:煤炭工业出版社,1995.1,第1版[4] 中国矿业学院主编. 《矿井提升设备》. 北京:煤炭工业出版社,1980.9,第1版[5] 煤炭工业部制定.《煤矿安全规程》.煤炭工业出版社,1986,第1版[6] 谢锡纯,李晓豁主编.《矿山机械与设备》.徐州:中国矿业大学出版社,2000[7] 能源部制定.《煤矿安全规程》.北京:煤炭工业出版社,1992[8] 王志勇等编.《煤矿专用设备设计计算》.北京:煤炭工业出版社,1984[9] 彭兆行编.《矿山提升机械设计》.北京:机械工业出版社,1989[10] 机械设计、机械设计基础课程设计,王昆等主编,北京:高等教育出版社,1996[11] 机械设计手册/上册,《机械设计手册》联合编写组编,化学工业出版社,1979[12] 画法几何及工程制图,中国纺织大学工程图学教研室等编,上海科学技术出版社,1984[13] 机械零件设计手册(第二版)/中册,东北工学院《机械零件设计手册》编写组编,冶金工业出版社,1982[14] 机械零件课程设计,郭奇亮等主编,贵州人民出版社,1982.1[15] 机械设计标准应用手册/第二卷,汪恺主编,北京:机械工业出版社,1997.8[16] 矿山提升机械设计,潘英编,徐州:中国矿业大学出版社,2000.12[17] 机械设计(第七版),濮良贵、纪名刚主编,北京:高等教育出版社,2001[18] 极限配合与测量技术基础,孔庆华、刘传绍主编,上海:同济大学出版社,2002.2 PART3英文1、‘‘HOW CAN A BILL OF MATERIALS BE DEfiNED SO THAT ALL POSSIBLE PRODUCTS CAN BE BUILT EFfiCIENTLY?’’ ONE WAY T O ANSWER IT IS TO DEfiNE A SET OF COMPONENTS (CALLEDMODULES), EACH OF WHICH CONTAINS A SET OF PRIMARY FUNCTIONS. AN INDIVIDUAL PRODUCT IS THEN BUILT BY COMBINING SELECTED MODULES.【1】BRUNO AGARD,BERNARD PENZ. A SIMULATED ANNEALING METHOD BASED ON A CLUSTERING APPROACH TO DETERMINE BILLS OF MATERIALS FOR A LARGE PRODUCT FAMILY. INT. J. PRODUCTION ECONOMICS 117 (2009) 389–401.2、IN THIS STUDY, WE PROPOSE A METHODOLOGY FOR BUILDING A SEMANTICALLY ANNOTATED MULTI-FACETED ONTOLOGY FOR PRODUCT FAMILY MODELLING THAT IS ABLE TO AUTOMATICALLY SUGGEST SEMANTICALLY-RELATED ANNOTATIONS BASED ON THE DESIGN AND MANUFACTURING REPOSITORY.【2】SOON CHONG JOHNSON LIM,YING LIU,WING BUN LEE.A METHODOLOGY FOR BUILDING A SEMANTICALLY ANNOTATED MULTI-FACETED ONTOLOGY FOR PRODUCT FAMILY MODELLING. ADVANCED ENGINEERING INFORMATICS 25 (2011) 147–161.3、THE AIM OF THIS WORK IS TO ESTABLISH A METHODOLOGY FOR AN EFFECTIVE WORKING OF RECONfiGURABLE MANUFACTURING SYSTEMS (RMSS). THESE SYSTEMS ARE THE NEXT STEP IN MANUFACTURING, ALLOWING THE PRODUCTION OF ANY QUANTITY OF HIGHLY CUSTOMISED AND COMPLEX PRODUCTS TOGETHER WITH THE BENEfiTS OF MASS PRODUCTION.【3】 R.GALAN,J.RACERO,I.EGUIA,J.M.GARCIA. A SYSTEMATIC APPROACH FOR PRODUCT FAMILIES FORMATION IN RECONfiGURABLE MANUFACTURING SYSTEMS.ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING 23 (2007) 489–502.4、A MIXED INTEGER LINEAR PROGRAMMING MODEL IS INVESTIGATED THAT OPTIMIZES THE OPERATING COST OF THE RESULTING SUPPLY CHAIN WHILE CHOOSING THE PRODUCT VARIANTS AND CAN DEfiNE THE PRODUCT FAMILY AND ITS SUPPLY CHAIN SIMULTANEOUSLY.【4】 JACQUES LAMOTHE,KHALED HADJ-HAMOU,MICHEL ALDANONDO. AN OPTIMIZATION MODEL FOR SELECTING A PRODUCT FAMILY AND DESIGNING ITS SUPPLY CHAIN. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH 169 (2006) 1030–1047.5、THIS PAPER PRESENTS LCP-FAMILIES, A CONCEPT TO DEVELOP REFERENCE RANGES FOR ENVIRONMENTAL IMPACT OF A NEW PRODUCT. A NEW PRODUCT CAN BE CATALOGUED AS ENVIRONMENTALLY BETTER OR WORSE THAN A PERCENTAGE OF ITS COMPETITORS, DEPENDING ON WHAT POSITION IT OCCUPIES IN ITS LCP-FAMILY.【5】 DANIEL COLLADO-RUIZ,HESAMEDIN OSTAD-AHMAD-GHORABI. COMPARING LCA RESULTS OUT OF COMPETING PRODUCTS: DEVELOPING REFERENCE RANGES FROM A PRODUCT FAMILY APPROACH.JOURNAL OF CLEANER PRODUCTION 18 (2010) 355–364.6、THIS PAPER HAS PROPOSED A COOPERATIVE COEVOLUTIONARY OPTIMIZATION METHOD FOR OPTIMAL DESIGN OF PRODUCT FAMILY WITH MULTI–LEVEL COMMONALITY .【6】 L.SCHULZE,L.LI. COOPERATIVE COEVOLUTIONARY OPTIMIZATION METHOD FOR PRODUCT FAMILY DESIGN.7、THIS PAPER CHARACTERIZES A DECISION FRAMEWORK BY WHICH A fiRM CAN MANAGE GENERATIONAL PRODUCT REPLACEMENTS UNDER STOCHASTIC TECHNOLOGICAL CHANGES.【7】 HENG LIU,OZALP OZER. MANAGING A PRODUCT FAMILY UNDER STOCHASTIC TECHNOLOGICAL CHANGES. INT. J. PRODUCTION ECONOMICS 122 (2009) 567–580.8、THIS PAPER PROPOSES AN INFORMATION SEARCH AND RETRIEVAL FRAMEWORK BASED ON THE SEMANTICALLY ANNOTATED MULTI-FACET PRODUCT FAMILY ONTOLOGY TO SAVE TIME FOR THE ONTOLOGY DEVELOPMENT IN DESIGN ENGINEERING.【8】 SOON CHONG JOHNSON LIM,YING LIU,WING BUN LEE. MULTI-FACET PRODUCT INFORMATION SEARCH AND RETRIEVAL USING SEMANTICALLY ANNOTATED PRODUCT FAMILY ONTOLOGY. INFORMATION PROCESSING AND MANAGEMENT 46 (2010) 479–493.9、THE PURPOSE OF THE PAPER IS TO PRESENT PRODUCT VARIETY ANALYSIS (PVA) APPROACH TO COORDINATED AND SYNCHRONIZED FOWS OF INFORMATION ABOUT PRODUCTS AND PRODUCTION PROCESSES AMONG VARIOUS SUPPLY CHAIN MEMBERS.【9】 PETRI HELO,QIANLI XU,KRISTIANTO,ROGER JIANXIN JIAO. PRODUCT FAMILY DESIGN AND LOGISTICS DECISION SUPPORT SYSTEM.10、THE PURPOSE OF THIS PAPER IS TO PROPOSE A PRODUCT FAMILY DESIGN ARCHITECTURE THAT SATISFIES CUSTOMER REQUIREMENTS WITH MINIMAL EFFORTS.【10】 TAIOUN KIM,HAE KYUNG LEE,EUN MI YOUN. PRODUCT FAMILY DESIGN BASED ON ANALYTIC NETWORK PROCESS.11、THIS PAPER PRESENTS A CONCEPTUAL FRAMEWORK OF USING SEMANTIC ANNOTATION FOR ONTOLOGY BASED DECISION SUPPORT IN PRODUCT FAMILY DESIGN.【11】 SOON CHONG JOHNSON LIM,YING LIU,WING BUN LEE. USING SEMANTIC ANNOTATION FOR ONTOLOGY BASED DECISION SUPPORT IN PRODUCT FAMILY DESIGNPart4中文&英文[1] 陈维健,齐秀丽,肖林京,张开如. 矿山运输与提升机械. 徐州:中国矿业大学出版社,2007[2] 王启广,李炳文,黄嘉兴,采掘机械与支护设备,徐州:中国矿业大学出版社,2006[3] 陶驰东.采掘机械(修订版).北京:煤矿工业出版社,1993[4] 孙广义,郭忠平.采煤概论.徐州:中国矿业大学出版社,2007[5] 张景松.流体力学与流体机械之流体机械.徐州:中国矿业大学出版社,2001[6] 濮良贵,纪名刚.机械设计.北京:高等教育出版社,2006[7] 李树伟.矿山供电. 徐州:中国矿业大学出版社,2006[8] 于岩,李维坚.运输机械设计. 徐州:中国矿业大学出版社,1998[9] 煤矿安全规程, 原国家安监局、煤矿安监局16号令2005年[10] 机械工业部北京起重运输机械研究所,DTⅡ型固定带式输送机设计选用手册,冶金工业出版社[11]Tugomir Surina, Clyde Herrick. Semiconductor Electronics. Copyright 1964 by Holt, Rinehart and Winston, Inc., 120~250[12] Developing Trend of Coal Mining Technology. MA Tong – sheng. Safety and Production Department, Hei longjiang Coal Group, Ha erbin150090,ChinaPart5中文[1]北京农业工程大学农业机械学[M]中国农业机械出版社,1991年[2]机械设计手册(1—5卷)[3]邓文英,郭晓鹏.金属工艺学[M],高等教育出版社,2000年[4]刘品,徐晓希.机械精度设计与检测基础[M],哈尔滨工业大学出版社,2004[5]王昆,何小柏,汪信远.机械设计课程设计[M],高等教育出版社,1995[6]濮良贵,纪名刚.机械设计[M],高等教育出版社,2000年[7]朱冬梅,胥北澜.画法几何及机械制图[M],高等教育出版社,2000年[8]杨可帧,程光蕴.机械设计基础[M],搞成教育出版社,1999年[9]孙恒,陈作模.机械原理[M],高等教育出版社,1999年[10]哈尔滨工业大学理论力学教研组.理论力学[M],高等教育出版社,2002年[11]张也影,流体力学[M],高等教育出版社,1998年[12]张学政,李家枢.金属工艺学实习材料[M],高等教育出版社,1999年[13]史美堂,金属材料[M],上海科学技术出版社,1996年[14]黄常艺,严晋强.机械工程测试技术基础[M],机械工艺出版社,2005年[15]齐宝玲.几何精度设计与检测技术,机械工业出版社,1999年[16]张启先.空间机构的分析与检测技术,机械工业出版社,1999年[17]史习敏,黎永明.精密机构设计,上海科学技术出版社,1987年[18]施立亭.仪表机构零件,冶金工业出版社,1984年[19]农业机械设计手册 2000年[20]相关产品设计说明书Part6中文1、李运华.机电控制[M].北京航空航天大学出版社,2003.2、芮延年.机电一体化系统设计[M].北京机械工业出版社,2004.3、王中杰,余章雄,柴天佑.智能控制综述[J].基础自动化,2006(6).4、章浩,张西良,周士冲.机电一体化技术的发展与应用[J].农机化研究,2006(7).5、梁俊彦,李玉翔.机电一体化技术的发展及应用[J].科技资讯,2007(9).Part7中文&英文[1] Cole Thompson Associates.“Directory of Intelligent Buildings”1999.[2] Ester Dyson.Adesign for living in the Digital Age.RELEASE 2.0:1997.[3] 吴涛、李德杰,彭城职业大学学报,虚拟装配技术,2001,16(2):99-102.[4] 叶修梓、陈超祥,ProE基础教程:零件与装配体,机械工业出版社,2007.[5] 邓星钟,机电传动控制(第三版),华中科技大学出版社,2001.[6] 裴仁清,机电一体化原理,上海大学出版社,1998.[7] 李庆芬,机电工程专业英语,哈尔滨工程大学出版社,2004.[8] 朱龙根,简明机械零件设计手册(第二版),机械工业出版社,2005.[9] 秦曾煌,电工学-电子技术(第五版),高等教育出版社,2004.[10]朱龙根,机械系统设计(第二版),机械工业出版社,2002.[11]纪名刚,机械设计(第七版),高等教育出版社,2005.[12]Charles W. Beardsly, Mechanical Engineering, ASME, Regents Publishing Company,Inc,1998.[13]李俊卿,陈芳华,李兴林.滚动轴承洁净度及评定方法的商榷.轴承,2004(8):45-46.[14]梁治齐.实用清洗技术手册.北京:化学工业出版社,2000.[15]金杏林.精密洗净技术.北京:化学工业出版社,2005.[16]张剑波,孙良欣等.清洗技术基础教程.北京:中国环境科学出版社,2004.[17]杨镜明.清洗技术在机械制造行业中的应用和展望.化学清洗,1997(6):29-32.[18]李久梅,马纯.轴承清洗的发展方向.轴承,1995(8):31-36.[19]艾小洋.中国工业清洗领域的现状与发展趋势.现代制造,2004(2):58-60.[20]杨晓蔚.机床主轴轴承最新技术.主轴轴承,2010(1):45-48.[21]阎昌春.一种柔性轴承研制的关键技术.柔性轴承,2010(3):23-25.[22]李尧忠.轴承清洗机液压系统的设计.液压系统,2009(7):11-14.[23]T.Ramayah and Noraini Ismail,Process Planning ConcurrentEngineering,Concurrent Engineering,2010.。
机械设计第十版参考文献格式
机械设计第十版参考文献格式机械设计第十版参考文献格式:一般来说,要按照国际通用的核心引文(Core Citation)和技术书目(Tech Catalog)指南进行格式化引用工作。
在机械设计的参考文献格式中,其信息可以分为普通参考文献和网上参考文献两类:一、普通参考文献1、短文章或文献小量引用[Author1, Year]——[short article title], [Publisher].2、文献较多引用[Author1, Year]——[book title], [Publisher].3、期刊文献引用[Author1, Year]——[article title], [Journal Name], [vol.], [page numbers].4、报纸文献引用[Author1, Year]——[news name], [day/month/year], [Page].二、网上参考文献1、问答引用[Author1, Year]——[question title], [website name], [retrieved date].2、网页引用[Author1, Year]——[web page title], [url], [retrieved date].3、论坛引用[Author1, Year]——[forum topic], [website name], [retrieved date].4、博客文章引用[Author1, Year]——[blog post title], [website name], [retrieved date].5、视频剪辑引用[Author1, Year]——[video episode title and season], [website name], [retrieved date].三、特殊参考文献引用1、拷贝参考文献引用[Author1, Year]——[copied document title], [Publisher].2、多媒体参考文献引用[Author1, Year]——[multimedia material title], [Publisher].。
机械设计制造及其自动化参考文献英文
机械设计制造及其自动化参考文献英文1. Hahn, R.S., 2010. Introduction to mechanical engineering design and manufacturing. CRC Press.2. Zhang, J., Liu, X., Fang, Y. and Xu, D., 2016. A collaborative optimization approach for product design and manufacturing process planning. Journal of Intelligent Manufacturing, 27(4), pp.803-819.3. Yang, S., Guo, D., Cai, W., Li, Z. and Zhou, H., 2017. Research on the application of cloud manufacturing in mechanical design and manufacturing. International Journal of Advanced Manufacturing Technology, 92(9-12), pp.3639-3648.4. Rao, P.N. and Chidambara, M.R., 2015. Design for manufacturing and assembly-a review. International Journal of Engineering Research and Applications, 5(8), pp.84-90.5. Hu, Q., Chen, S. and Su, Y., 2014. Design for manufacturability: A literature review. Journal of Industrial Integration and Management, 2(3), p.145.6. Ulrich, K.T. and Eppinger, S.D., 2017. Product design and development. McGraw-Hill Education.7. Wang, Z., Li, B., Zhao, J. and Wu, G., 2018. Design for additive manufacturing: A review of requirements and challenges. International Journal of Advanced ManufacturingTechnology, 94(9-12), pp.3563-3577.8. Kim, D. and Cho, D.W., 2015. Review of manufacturing technologies for tissue engineering applications. Procedia Engineering, 110, pp.139-144.9. Kuo, R.J., Ho, L.C. and Lu, Y.Y., 2016. An innovative manufacturing system for smart production of customized eyeglasses. Journal of Intelligent Manufacturing, 27(4), pp.821-836.10. Wang, G., Zou, Y., Li, W. and Xu, X., 2017. A review of research on modeling and optimization of machining processes. International Journal of Machine Tools and Manufacture, 122, pp.1-17.。
专科机械类论文参考文献范例
专科机械类论文参考文献一、专科机械类论文期刊参考文献[1]专科机械类专业实践教学改革的分析与研究.《实验室研究与探索》.被北京大学《中文核心期刊要目总览》收录PKU.1999年6期.韩存仓.林士兰.[2].工程制图与机械基础系列课程改革的研究.《机械工业高教研究》.被南京大学《核心期刊目录》收录CSSCI.2002年4期.崔承琦.[3].专科层次机械类专业CAE课程教学内容研究与实践.《辽宁省交通高等专科学校学报》.2009年5期.高显宏.[4].吸引头类管腔器械机械清洗架的研制与使用.《中华护理杂志》.被中信所《中国科技期刊引证报告》收录ISTIC.被北京大学《中文核心期刊要目总览》收录PKU.2013年9期.刘启华.冷萍.[5].对高职高专机械类专科《液压传动与气动》课程的探索.《现代企业教育》.2008年20期.林晖.唐勰.[6].民办高校汽车专科专业机械制图教学探索.《产业与科技论坛》.2014年22期.杨娜.[7].高职机电与机械类本科专业课程衔接的研究.《广州航海学院学报》.2014年4期.唐振宇.刘志军.[8].SCL90量表使用的现状及检测心理健康的异议.《中国心理卫生杂志》.被中信所《中国科技期刊引证报告》收录ISTIC.被北京大学《中文核心期刊要目总览》收录PKU.被南京大学《核心期刊目录》收录CSSCI.2004年1期.王金道.[9].高职高专非机械类专业车工实训的教改与实践.《哈尔滨职业技术学院学报》.2014年5期.田野.王蕾.田金波.伊洺扬.[10].新疆高校少数民族学生在工科类课程学习中遇到的问题与改革建议. 《新疆农机化》.2015年1期.郭文松.范修文.周岭.二、专科机械类论文参考文献学位论文类[1].基于USB2.0高速接口的机床振动实验系统的开发.被引次数:2作者:曹雏清.机械设计及理论重庆大学2008(学位年度)[2].小波分析在往复机械特征提取中的应用研究.被引次数:9作者:鞠培刚.机械电子工程大连理工大学2007(学位年度)[3]经济全球化进程中我国高等教育结构分析——劳动力市场视角.作者:白萌.高等教育学北京师范大学2011(学位年度)[4].角膜神经痛的临床研究.作者:李一敏.眼科学复旦大学2012(学位年度)[5].口腔CT控制系统的设计.作者:骆毅斌.生物医学工程南方医科大学2013(学位年度)[6].近代方剂学成就与特点研究(18401949).作者:黄鑫.中医医史文献中国中医研究院中国中医科学院2005(学位年度)[7].牙槽骨维度不足的口腔种植临床研究(附36例报告).作者:石全贵.口腔临床医学大连医科大学2010(学位年度)[8]. 高等学历教育学生自我导向学习研究.被引次数:4作者:李攀. 教育学四川师范大学2012(学位年度)[9].ICU高年资医生非工作日值班对重症脓毒症/脓毒性休克患者预后的影响.被引次数:1作者:周建仓.内科学(传染病学);脓毒症浙江大学2013(学位年度)[10].OSAHS患者腭咽肌纤维改变及myogenin、myostatin的表达和临床意义研究.作者:赵晨.临床医学;耳鼻咽喉科学中国医科大学2014(学位年度)三、专科机械类论文专著参考文献[1]加强我校省级机械基础实验教学示范中心的实验教学改革.王为.魏春梅.魏兵,2006第八届全国机械设计教学研讨会议暨见习机械师设计工程师工作会议[2]产学研结合培养机械制造类专业特色人才.成虹,2003第二次全国高职高专教育产学研结合经验交流会[3]日本胃肠动力实验技术及研究方法.张苏闽.2005年肛肠外科高层学术论坛[4]产学研结合建一流实训基地.陈传伟.曹凤.张世凭,2003第二次全国高职高专教育产学研结合经验交流会[5]面向轴类零件FMS四自由度直角坐标机器人的研制.吴建华.卜云峰.刘榜实,1998中国人工智能学会第三届智能机器人学术研讨会[6]基于竞赛驱动模式的师范院校电子专业学生创新能力的培养.龙兴明.马燕.郭世刚.宋培森,2009第六届全国高等学校电气工程及其自动化专业教学改革研讨会[7]小儿辅助循环新进展.丁文祥,2007第九届中国南方国际心血管病学术会议[8]旋转对称子结构罚单元分析.李香莲.李舜酩.方圣,2000中国兵工学会第10届测试技术研讨会[9]甘蓝生产现状及其机械化收获技术研究.王芬娥.郭维俊.曹新惠.韩正晟.魏宏安,2008中国农业机械学会2008年学术年会[10]工程图学课程实施创新教育的研究.顾寄南.黄燕萍.戴立玲,2002第十三届全国图学教育研讨会暨制图CAI课件演示交流会。
【机械类文献翻译】机械臂动力学
毕业论文(设计)外文翻译题目机械臂动力学与控制的研究系部名称:机械工程系专业班级:机自学生姓名:学号:指导教师:教师职称:20**年03月20日2009年IEEE国际机器人和自动化会议神户国际会议中心日本神户12-17,2009机械臂动力学与控制的研究拉斯彼得Ellekilde摘要操作器和移动平台的组合提供了一种可用于广泛应用程序高效灵活的操作系统,特别是在服务性机器人领域。
在机械臂众多挑战中其中之一是确保机器人在潜在的动态环境中安全工作控制系统的设计。
在本文中,我们将介绍移动机械臂用动力学系统方法被控制的使用方法。
该方法是一种二级方法,是使用竞争动力学对于统筹协调优化移动平台以及较低层次的融合避障和目标捕获行为的方法。
I介绍在过去的几十年里大多数机器人的研究主要关注在移动平台或操作系统,并且在这两个领域取得了许多可喜的成绩。
今天的新挑战之一是将这两个领域组合在一起形成具有高效移动和有能力操作环境的系统。
特别是服务性机器人将会在这一方面系统需求的增加。
大多数西方国家的人口统计数量显示需要照顾的老人在不断增加,尽管将有很少的工作实际的支持他们。
这就需要增强服务业的自动化程度,因此机器人能够在室内动态环境中安全的工作是最基本的。
图、1一台由赛格威RMP200和轻重量型库卡机器人组成的平台这项工作平台用于如图1所示,是由一个Segway与一家机器人制造商制造的RMP200轻机器人。
其有一个相对较小的轨迹和高机动性能的平台使它适应在室内环境移动。
库卡工业机器人具有较长的长臂和高有效载荷比自身的重量,从而使其适合移动操作。
当控制移动机械臂系统时,有一个选择是是否考虑一个或两个系统的实体。
在参考文献[1]和[2]中是根据雅可比理论将机械手末端和移动平台结合在一起形成一个单一的控制系统。
另一方面,这项研究发表在[3]和[4],认为它们在设计时是独立的实体,但不包括两者之间的限制条件,如延伸能力和稳定性。
这种控制系统的提出是基于动态系统方法[5],[6]。
2020-2022年机械类参考文献
2020-2022年机械类参考文献[1]尤世杰.试论机械加工中的工装夹具定位设计[J].工业技术[2]张树勋.机械加工中的工装夹具定位设计方法[J].工业技术[3]王存荣.机械加工中的工装夹具的定位设计及其价值研究[J].工程机械[4]梁荣坚.机械加工中的工装夹具定位设计方法[J].机械管理开发[5]胡建中,等.工程机械机群远程故障诊断系统研究.制造业自动化[6]梁兰娇.浅谈工程机械油耗定额的制定[J].北方交通[7]李兴,张礼崇,郜祥,等.机械设备状态监测及诊断技术[J].技术与市场[8]杨晓强,张梅军,苏卫忠.机械设备状态监测系统[J].振动.测试与诊断[9]张利群,朱利民,钟秉林.几个机械状态监测特征量的特性研究[J].振动与冲击[10]徐敏,等.设备故障诊断手册-机械设备状态监测和故障诊断[M].西安交通大学出版社[11]靳晓雄,胡子谷.工程机械噪声控制学[M].上海:同济大学出版社[12]蒋真平,周守艳.工程机械噪声与控制分析[J].建筑机械[13]张性伟,王世良,付光均.工程机械驾驶室内的降噪方法[J].工程机械[14]廉红梅,朱武强.某型平地机噪声测试分析及降噪改进措施[J].工程机械[15]邵杰,张少波,刘宏博.某型平地机作业时发出异响的原因及改进措施[J].工程机械与维修[16]杨林.一种新型高精密机械密封的研究[J/OL].装备制造与教育[17]许艾明,赵柱,陈琨,等.非确定工作状态下机械系统可靠性分析[J].机械设计与制造[18]韩萍,张彦生.高新技术在工程机械上的应用及发展[C].北京:中国工程机械学会年会[19]李志刚.矿山机械的润滑管理与保养分析[J].中国新技术新产品[20]武志敏.水泥机械液压系统液压油污染的危害与控制[J].内燃机与配件。
机械相关英文文献
From Taizhou, East China CNC Machine Tool Co., Ltd. to provide the brand eastern type EDM, CNC wire cutting machine tool product information descriptions and quotes: My company's CNC wire cutting machine has the following characteristics: 1, Technical indicators:Geometric Accuracy: According to GB7926-2005 standard CNC Precision: According to GB7926-2005 standardPositioning accuracy: 0.005mmT repeat positioning accuracy: 0.003mm Machining precision: ¡Ü 0.008mm precision cutting straight body cut round precision ¡Ü 0.015mmMaximum processing speed ¡Ü 100mm ? / min surface finish Ra ¡Ü 2.5¦Ìm Max Current: 5A Maximum Short-circuit current:> 7AMinimum processing instruction: 0.001mm Maximum processing instruction: ¡À 9999.999mm2, performance characteristics:High Accuracy: to maintain high accuracy,? machine tool accuracy can be maintained over the last decade.High performance: high? efficiency and low wire consumption, can realize high-current fast-free fringe cut, continuous processing of continuous wire, to ensure true and round through the right angle position.? High Reliability: stable performance, with an average failure rate of no more than 99%.3, functional components:rolling components: the use of national? sentinel plants produce high-precision ball screw, high-rigidity rolling guide, the accuracy of imported brands NSK bearings, using a large torque 5 phase stepper motor driver 10 shooting, Chu wire balancing test tube through the holographic , idler pulley components of the overall structural design, thus ensuring high-speed machine tools, high precision operation. CNC System: PC with intelligent CNC system ~? high-quality PC machines, HL software control, AUTOP software programming, anti-interference ability in the high degree of automation, performance, stable and reliable.High Frequency Power Supply: Using? high-performance all-digital pulse power supply (high-speed digital circuit oscillation vibration, high-power VMOS FET for effect), frequency adjustable, with stable performance, high output power, cutting speed, surface finish high, electrode wire wear and tear and small water features.Electrical components: machine tools and? control the key cabinet adopt high quality imported electric components parts (such as Manifold, transistors, power tube, rectifier bridge, relays, etc.) to ensure quality.Network Interface: with ACD data interface can? be RS232 or RS485 serial port transmission, so that the machine has a network connection function,which enables remote transmission.4, machine function:Four-axis three-dimensional linkage,? compilation and Control Integration, DXF files directly read into the programming, processing and graphical real-time tracking, job profile three-dimensional modeling, multi-processing status display.with the upper and lower profiled, such as? cone, variable cone cutting, time-cutting, power failure memory, short-circuit back to back, broken wires protection, keep to the side position, simulation verification, automatic shutdown, automatic centering, arbitrary angle rotation, rapid return to zero checks, special。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Int J Interact Des Manuf(2011)5:103–117DOI10.1007/s12008-011-0119-7ORIGINAL PAPERBenchmarking of virtual reality performance in mechanics educationMaura Mengoni·Michele Germani·Margherita PeruzziniReceived:27April2011/Accepted:29April2011/Published online:27May2011©Springer-Verlag2011Abstract The paper explores the potentialities of virtual reality(VR)to improve the learning process of mechanical product design.It is focused on the definition of a proper experimental VR-based set-up whose performance matches mechanical design learning purposes,such as assemblability and tolerances prescription.The method consists of two main activities:VR technologies benchmarking based on sensory feedback and evaluation of how VR tools impact on learning curves.In order to quantify the performance of the technol-ogy,an experimental protocol is defined and an testing plan is set.Evaluation parameters are divided into performance and usability metrics to distinguish between the cognitive and technical aspects of the learning process.The experi-mental VR-based set up is tested on students in mechanical engineering through the application of the protocol. Keywords Mechanical product design·Virtual reality·Experimental protocol·Learning curve·Mechanics education1IntroductionModern society is dominated by continuous scientific and technical developments.Specialization has become one of the most important enablers for industrial improvement.As a result,nowadays education is more and more job-oriented and technical education is assuming greater importance.In this context both university and industry are collaborating to create high professional competencies.Thefirst disseminates M.Mengoni(B)·M.Germani·M.PeruzziniDepartment of Mechanical Engineering,Polytechnic University of Marche,Via Brecce Bianche,60131Ancona,Italye-mail:m.mengoni@univpm.it knowledge and innovative methods while the second pro-vides a practical background for general principles training. The main problem deals with the effort and time required to improve technical learning,while market competitiveness forces companies to demand young and high-qualified engi-neers in short time.Therefore,the entire educational process needs to be fast and efficient.Novel information technolo-gies(IT)and emerging virtual reality(VR)systems provide a possible answer to the above-mentioned questions.Some of the most important issues,in mechanical designfield,are the investigation of such technologies potentialities and the evaluation of achievable benefits in terms of product design learning effectiveness and quality.While IT has been deeply explored in distance education,i.e.e-learning,VR still rep-resents a novelty.VR refers to an immersive environment that allows pow-erful visualization and direct manipulation of virtual objects. It is widely used for several engineering applications as it provides novel human computer interfaces to interact with digital mock-ups.The close connection between industry and education represents the starting point of this research. Instead of traditional teaching methods,virtual technolo-gies can simultaneously stimulate the senses of vision by providing stereoscopic imaging views and complex spatial effects,of touch,hearing and motion by respectively adopt-ing haptic,sound and motion devices.These can improve the learning process in respect with traditional teaching meth-ods and tools.The observation of students interpreting two-dimensional drawings highlighted several difficulties:the impact evaluation of geometric and dimensional tolerances chains,the detection of functional and assembly errors,the recognition of right design solutions and the choice of the proper manufacturing operations.These limitations force tutors to seek for innovative technologies able to improve students’perception.Investigations into the use of VR have indicated that it may improve the learning process offering a more useful product’s representation and creating an augmented environment for the models investigation and description.The main problem deals with the effective application of a VR system into edu-cational situations and the appraisal of its impact on learning. These are crucial points if we consider that the definition of a proper VR arrangement for specific lesson purposes has to be correlated to the learning process as the result of indi-vidual skills(procedural aspects)and instrumental practice (declarative aspects).The scope of this research is the experimentation of VR in mechanical product design teaching,the assessment of the limits and advantages of available technologies and,finally, the evaluation of the achieved learning process performance.In this context,the paper aims at defining both a proper VR set-up for mechanical product design teaching and an exper-imental protocol for validation tests.A method is proposed to benchmark current VR technologies.It is based on the study of product design lessons by traditional means of rep-resentation,on the identification of the main critical activities where paper-based tools and CAD systems usually fail and on the correlation between the identified activities and tools usability,achieved presence and depth of sensations that are perceived into the experienced-based learning environment. Then an experimental protocol based on specific context met-rics is defined.It aims at evaluating both the learning process performance for the specific purpose and the usability of the adopted VR-based set-up.2Background:VR technologies for learning purposes2.1Learning environments for mechanical product designA learning environment is characterized by active interac-tions among all involved individuals.Kaye[13]in particular states that learning is an individual process but it is always influenced and stimulated by the external context.Only by conversation and comparison with peers and experts,stu-dents reach a solid knowledge of the specific topics.Mul-tidisciplinary environments are particularly appropriate for educational purposes:scientific studies showed that human learning usually happens for83%by sight,only10%by hearing and the rest by other senses[17].On the other hand, collaborative environments provide learners with several advantages such as the opportunity to experience the multi-ple standpoints of other learners with different backgrounds and the ability to develop critical thinking skills through the process of judging and valuing.In order to improve col-laboration,advanced digital technologies may help students for incrementing learning by simulating real design process operations and by sharing the design outcomes[10].A recent study shows that design education can be implemented by two main different approaches[22]:•face-to-face education,that improves the learners-learners and learners-instructors interaction.The main problems in experience-based learning application are related to retrieving information,developing collaborative work and experiencing design solutions in real time;•distance education,that implies learners and instruc-tors in geographically separated sites.Three different approaches and related communication media are pro-posed:(a)one-way instruction by mail,radio and televi-sion,(b)single technology instruction by computer-based or web-based learning,and(c)blended learning that com-bines face-to-face with asynchronous and/or synchronous computer technology.The same study demonstrates that face-to-face is more suc-cessful than distance learning in mechanical product design where the understanding of design topics requires a concrete experimentation of general principles.The concept of expe-rienced-based learning has been widely explored in design teaching.It basically consists of the following steps:con-crete experience of technical problems and solutions,obser-vation of the achieved results and formulation of abstract concepts and generalizations[14].Other researches claimed that learning without execution of action remains at the state of mental action and therefore distant from real action[21]. These preliminary considerations point out the importance of adopting educational methods and tools that make students experience design topics in an effective way.A suitable learn-ing set-up ought to answer students’needs and to enable them to reach educational goals.2.2Potentialities of VR in mechanical product designteachingTraditional teaching is almost entirely centred on2D rep-resentations that make difficult the interpretation of differ-ent design solutions and errors detection.Nowadays CAD systems offer3D models visualization and animation that support assembly comprehension by a better visual charac-terization.Otherwise perception is still limited only to sight and it does not significantly increment the learning process. It is worth to notice that CAD systems functionalities are not able to support the identification of awkward reach angles or relevant assembly/disassembly issues.The use of experimental laboratories may overcome the above-mentioned problems.They allow students to experi-ence mechanical equipments and manufacturing operations. High costs of maintenance,great initial investments and the increasing number of classroom students make laboratories not easy to be kept up.VR-based environments seem to be a valid solution to improve mechanical design topics learning.However this intuitive assumption needs to be objectively demonstrated. Researches into the use of VR have indicated that it may offer more useful artefacts representations and simulate the relevant characteristics of a product such as engineering, manufacturing and maintenance aspects[6].In particular,in assembly and tolerances analysis VR environments can sup-port realistic interaction between parts by real-time simula-tion of physical constraints and an intuitive interface,which allows natural manipulation.Some studies have suggested also that adding force feedback to assembly,virtual anal-ysis increases task efficiency and performance[1,25]while eliminating physical prototypes gives substantial cost savings [23].Finally,virtual environments may easily create collabo-rative spaces where students learn multiple-level information about the product,listen to different interpretations and share their learning experience to develop their own practical and cognitive skills.Most of the recent studies on face-to-face design education highlight the potentialities of VR technologies to improve perception in education and training applications[4,20,24].The main advantages recognized to VR applications are:•the improvement of the spatial ability of learners as they allow not only the visualization of3D models but also their experimentation.Furthermore studentsfind them much easier to understand things from diagrams or mod-els simply looking at graphs or mathematical algorithms;•the knowledge sharing facilitation and the collaboration in multidisciplinary teamwork;•the achievement of sense of presence instead of traditional visualization technologies;•the interaction with virtual models in a very intuitive and natural manner.Although the above-mentioned advantages,no experimen-tal results have been achieved in selecting the most suitable technologies for mechanics education tasks.This is mainly due to the high costs of VR technology implementation,the difficulty to identify the proper VR technologies combina-tion for the specific learning purposes and the complexity to understand how it impacts on the learning curve.2.3Evaluation of VR technologies in the learning process The ability of a mechanical designer is earned by experience and practice and could be considered the outcome of his/her learning process.Over the years,several models were devel-oped to capture the human performance in carrying out a task. They are usually based on two main learning curves forms: time-based or performance-based representations.Outlining learning curve has become a very popular method thanks to its simplicity of use and its ability tofit empirical data well [15].From the learning point of view,mechanical product design implies a sequence of mental and practical activi-ties,such as the creation of solid models,their assembly, the comprehension of their interrelations and their particular functions.The transfer of acquired expertise depends on both the individual aptitude for learning and traducing action into experience(cognitive level)and the support and ease to use of tools(technical level).Considering the case under inves-tigation,the thinking processes allow students to elaborate the right procedure for product design,but the mere course of actions does not lead to a successful result.Furthermore, tools’usability and learnability influence the learning pro-cess.Several studies stressed the need to understand how new technologies affect learning curves in order to establish the appropriate training and assessment[8].Recent works are notably oriented to considerfinal learning as the sum of cog-nitive and technical components.Hamade et al.[7]develop a method to assess the speed and proficiency of CAD sys-tems learning,based on test exercises and on the measure of two objective factors,performance time and feature count. The study interest lies not only in the objectivity and porta-bility to other contexts,but also in the distinction between procedural and declarative knowledge.Total learning curve is set up and decomposed into its cognitive and behavioural components through a dual-phase learning model approach. However the method leaves out the usability of equipment and it uses only objective metrics underestimating the sub-jective components.Distinction of cognitive and technical aspects is cited also by Blavier et al.[3].They achieve a more complete evalu-ation and include the perceptual and the technology impact on the learning performance.The research estimates learning curves in a comparative study between classical and robotic laparoscopy and appeals both to objective data collected dur-ing experimental tests and subjective data collected by ques-tionnaires.Both objective and subjective data are required for an accurate evaluation of a VR-based set-up for mechanical learning purpose.This is the focus of the present research. This way allows measuring performance advantages and establishing how much the VR system contributes to stu-dents’learning experience.3The VR-based set-up for mechanical product design learning3.1VR technologies classification based on perception Perception in design education plays a crucial role in incrementing knowledge.Although several researchers areconcentrated on visual perception[18],it is worth to notice that individuals perceive objects and the space surrounding them also by all other sensorial modalities.Human beings depend onfive senses to experience their surroundings and infer from the physical objects and envi-ronment around ers interact with objects and their interface by experiencing them with their sensorial modali-ties that generate a set of stimuli.They arefirst elaborated at a cognitive level and then transformed into actions.In order to obtain similar conditions by VR,it is necessary to identify which technology better stimulates each sense and provides deep sensations in the users.The proposed classification starts from the Burdea’s def-inition of VR as“a high-end user-computer interface that involves real time simulation and interactions through mul-tiple sensorial channels”[2].Available VR technologies are divided into four classes(visual,sound,haptic and motion) that correspond to the four sensorial channels involved in the virtual experience(vision,hear,touch and motion).Each of them provides the corresponding sensorial feedback to the users(Fig.1).The sense of motion,sometimes called the sixth human sense,is usually achieved via some means of position and orientation tracking that mediate the user’s input into the VR simulation.They include all navigation and manipulation technologies.The sense of touch is performed by what are called haptic technologies.Tactile and force feedback devices seek to simulate tactile cues.The sense of vision is provided by visualization technologies.They can be divided into sin-gle-user displays and multi-users displays.Thefirsts are gen-erally desk-supported while the seconds are large volume displays that allow the simultaneous collaboration of several individuals.They can beflat or curved,front of rear projec-tion-based;they may provide passive or active stereoscopic experience.The sense of hearing is provided by sound tech-nologies:stereo sound,specializing multiple sound sources and3D sound.They differ from each other in the level of realistic feedback they supply to the user.In order to achieve a fully immersive environment that improves students’perception of the virtual scene,also smell and taste feedback must be simulated but the complexity of these senses has made them difficult for available VR tech-nology to conquer.All these technologies are also combined with the com-puting hardware for VR real-time simulation and interaction support and with the software toolkits to map the input/output devices with the digital scene,model3D objects and create libraries for optimising VR simulations.Fig.1The proposedclassification of VR technologies and the correlation with the humansenses3.2A method for VR benchmarking to achieve the learninggoalsIn order to improve experimental-based learning by VR tech-nologies,students should feel being involved in the virtual environment and be allowed to test principles by touching, hearing and moving the objects they are working with.It has been demonstrated that the communication medium influ-ences the form of interaction and knowledge perception and cognition,particularly when learners are unfamiliar with the communication technologies used to deliver instruction and perform design tasks[19].Therefore we state that in VR applications for education,it is important to evaluate not only the level of involvement perceived by the user but also the system’s usability.Based on these considerations,the benchmarking of VR technologies combination is based on three different clas-ses of heuristics:usability,presence and depth of sensations. Usability concerns the capacity of the VR interfaces to meet the users’needs.The degree of the system usability depends on different characteristics such as the adopted tools bar-rier free,ease-to-use,intuitiveness.Presence means“being immersed”and refers to an emotional and mental state of being involved in the virtual scene;it denotes the level of engagement.The sense of presence is determined by some characteristics of the system such as interactivity,collabo-ration,non constraining or navigation support.Finally,the depth of sensation refers to the degree of the sensory feed-back(visual,tactile,auditory)that users feel while exploring the virtual space.In order to manage the complexity of all possible combi-nations of VR technologies,a matrix-based method is intro-duced.Two3D matrices are used to connect technologies and human senses:thefirst allows the management of the combination between haptic,visual and navigation technol-ogies,while the latter matches thefirst achieved arrange-ment with sound technologies and assigns a value for each final combination to each heuristics for assessing the system’s performance(Fig.2).In order to identify which VR combina-tion is suited to teach specific mechanical design subjects we introduce an additional matrix,which correlates the activ-ities necessary to perform experienced-based learning and the levels of sensory feedback necessary for perception and cognition.On the contrary of previous matrices,that are ful-filled by VR experts as they relate to technical and functional performances and are not design learning-oriented,this addi-tional matrix needs to be fulfilled by professors of mechanical product design for their deep experience of learning environ-ments.The method application preliminarily requires the analy-sis of which activities should be performed to gain a good understanding of the lesson subjects.In the study context, two different mechanical product design topics have been explored and for each of them the necessary teaching activi-ties have been traced.•Product functional design and assembly principles.The topic aims to develop a critical attitude in the interpretation of mechanical components and assemblies,in functional errors detection and in the identification of assembly problems.In functional design the tutor generally shows different functional alternatives in order to clarify these concepts.The use of examples is considered fundamental to improve general principles understanding.•Dimensional and geometric tolerances.The topic aims to develop the ability of identifying assembly and manufacturing problems in different design solutions and the relation between tolerances andfinal product quality.In particular students should be able to ver-ify the consequences of tolerances prescription onthe Fig.2Synthesis of the proposed methodTable 1Assessment of the sensory feedback necessary to undertake the necessary activities for learning product functional and assembly principles and geometric and dimensional tolerances prescriptionValuationLevels of sensory feedback Definition of the levels of sensory feedback for teaching purposes Sense of sight Sense of touch Sense of hearing Sense of motionAssessment of design solution alternatives combining different standard components with similar functions5513Assessment of the impact of design decisions on manufacturing and assembly operations5353Identification of manufacturing and assembly problems by analyzing manufacturing operations and equipments 251Identification of the rightfunctional design solution by analyzing the manufacturing and assembly cycle costs of different alternatives3411Detection of functional and assembly errors in different design solutions5555Understanding components interaction in assemblies and identification of the proper sequence of assembly operations 3555Absolute Importance ( bij)61Relative Importance (ai*bij)253Requested value of sensory feedback ( ai*bij/ 5*bij)0.87Interpretation of a design solution and identification of the tolerances352Identification of the dimensional and geometric tolerancesreferences and of the difference between them3524Understanding of the differences between tolerances according to the control techniques433Identification of the manufacturing and assembly problems deriving from wrong tolerances chain 5513Assessment of the impact oftolerances chain on the assembly operations 5515Absolute Importance ( bij)44Relative Importance (ai*bij)188Requested value of sensory feedback ( ai*bij/5*bij)0.7manufacturing and quality control processes and of tol-erances variation on product functionalities.Students should also be able to recognize tolerance chains and identify the proper references.Professors in mechanical product design have been involved in the definition of the most significant activities and the lev-els of sensory feedback necessary to perform them.Table 1shows the necessary learning level of product functionaldesign and assembly principles and dimensional and geo-metric tolerances prescription.The evaluation values in the grey column are related to the importance that each activity represents for the learning process.The values in the side columns represent the sensory feedback required for performing every activity successfully,according to1–5scale.For example,it can be stated that the sense of sight is very important(the level is5)in assessing design solution alternatives while the sense of motion(3)and the sense of touch(1)are secondary.Hearing is useful in no way.On the contrary the functional and assembly errors detection involves the same three sensorial chan-nels but they all are key factors and gain an equal feed-back level(5).Absolute and relative importance values are calculated applying mathematical functions showed in table.Final values assess the level of sensory feedback requested to the proper VR set-up technology in order to support the concerning topic.In case study obtained feed-back values are equal respectively to0.87for functional and assembly principles learning and0.7for tolerances learning.An exhaustive description of the benchmarking method can be found in a previous research work where it was applied for identifying the VR system that better answers to design reviews activities requirements.Experimental results pointed out that most advantages in the use of VR are achieved when the technology is selected according to specific process char-acteristics and needs[19].At this point three different VR technologies combinations (C1,C2and C3)have been chosen for the assessment.C1is a single-user learning environment that consists of a head-mounted display(HMD)coupled with a common mouse. C2consists of a large volume display provided with ste-reo imaging and an optic tracking system that both improve visual perception of design solutions and create a collab-orative environment.C3associates a similar large volume display with afinger-based haptic device that gives force feedback and tactile perception of materials and compo-nents interaction.The evaluation method is based on a set of heuristics that are conveniently defined for virtual reality system context.Heuristics are grouped into three different dimensions(usability,presence and depth of sensation)as previously described.Each VR combination is evaluated by afive-point Likert scale[16].The method application allows the definition of a relative total value for every technological set-up(Fig.3).Comparing the obtained total values with the sensory feedback required by mechanical design learning topics it is possible to rec-ognize which technological combinationfits better for the specific purpose.The case study results highlight that C3combination is the best suited in supporting product functional design and assembly principles teaching while C2combination is the best suited in tolerances learning.If we would identify the combination that better answers to both topics,C3should be selected.Itsfinal value is the nearest to both requested feedback levels.4A structured experimental protocol to assess the learning process in mechanical product designIn order to verify the applicability of the proposed method and to test the main advantages connected with the use of the achieved VR technologies combinations,a structured experimental protocol is set.According to the educational standpoint it is worth to notice that learners’performances always depend on two main factors:the personal aptitude for specific subjects and the influence of the adopted hard-ware and software technologies.These two dimensions in mechanics education are strictly interconnected:it is difficult to distinguish their specific impact on the learning process. Therefore understanding how technology affects learning is a not a trivial task.In order to face this issue two evaluation levels are con-sidered inside the protocol:performance and usability.The first analysis aims at measuring the performances achieved by students during lessons and to quantify them in an objec-tive way.In this context time monitoring,error detection and learning curves could be useful indicators.The second anal-ysis aims at assessing the usability of the exploited support system.It can be stated that for learning scope a highly usable VR set-up is needed.4.1Performance analysisThe performance analysis is based on a set of objective met-rics and direct evaluation methods,such as user task analysis. Performance metrics are defined considering the main diffi-culties of students in mechanical product design learning. They are expressed by tangible entities,such as time and percentage mistakes,related to the following aspects:•assembly recognition capability,•assembly sequence identification,•assemblability error detection,•surfacefinishing comprehension,•design alternatives evaluation,•dimensional tolerances detection,•geometric tolerances detection,•mating type recognition,•tolerances chain comprehension,•geometrical tolerances impact.Each aspect represents a possible task for each mechanics education topic that is identified during the benchmarking。