振动和波

合集下载

第三章-振动和波

第三章-振动和波

第三章振动和波当飞机以超过音速的速度飞行,飞机所发出的音波无法跑在飞机前方,全部叠在机身后方,形成了音爆(sonic boom),这种波传到时,我们会听到一声轰然巨响。

在飞机正好要加速穿过音障(sound barrier)时,在飞机的周围有时会有一团云雾形成。

这是一架F/A-18大黄蜂战机穿过音障的瞬间。

振动是物体一种普遍的运动形式。

物体在平衡位置附近的往复运动叫做机械振动,将机械振动范围这一概念加以推广,对描述物体运动状态的物理量在某一数值附近来回往复的变化时,均可称该物理量在振动。

如电路中电压、电流、电路中的电场强度和磁场强度等也都可能随时间作周期性的变化,这种变化也称为振动—电磁振动。

各种振动本质不同,基本规律相同。

振动可分为自由振动和受迫振动。

自由振动又包括阻尼自由振动和无阻尼自由振动(简谐运动)。

波动是振动状态在空间的传播,它是物质的一种特殊的运动形式。

常见的波有两大类:机械波和电磁波。

近代物理研究发现,微观粒子具有二相性-波动性和粒子性,因此研究微观粒子的运动规律时,波动概念也是很重要的基础。

各种波的本质不同,传播机理不同,但其基本传播规律相同。

本章主要讨论机械振动和机械波的概念和规律,其规律可推广到一般振动和波动。

简谐运动是一种最简单、最基本的振动,复杂振动可以看成是由若干简谐运动组成的。

描述简谐运动的三个特征量是振幅、周期和相位。

简谐运动物体的速度、加速度也是随时间变化的周期性函数,除解析方法外,简谐运动也可以用曲线法和旋转矢量法表示。

简谐运动过程中存在着势能与运动动能的相互转化,总机械能守恒。

简谐运动是一种最简单、最基本的振动,复杂振动可以看成是由若干简谐运动组成的。

当描述物体的变量如位移x(t)满足运动方程时,其解可以表示为x = A cos (w t+j),这种用时间t的正弦或余弦函数来描述的运动,叫做简谐振动或简谐运动(simple harmonic motion),上述两式分别叫做简谐运动的微分方程和积分方程。

第五章 振动与波 基本知识点

第五章 振动与波 基本知识点

o受迫振动振动系统在周期性驱动力的持续作用下产生的振动。

受迫振动的频率等于驱动力的频率cos()d A t ψωϕ=+tF F d ωcos 0=当驱动力的频率与系统的固有频率相等时,受迫振动振幅最大。

这种现象称为共振。

共振2)若两分振动反相(位相 相反或相差的奇数倍)x即 φ2φ1=(2k+1) (k=0,1,2,…)ox2x1T 2T合成振动3T 22T则A=|A1-A2|, 两分振动相 互减弱, 合振幅最小;  如果 A1=A2,则 A=0t11同方向不同频率简谐振动的合成1、分振动为简单起见,令A1  A2  Ay1  A cos(1t   ),y2  A0 cos(2t   )2、 合振动y  y1  y2  1  2    1  2  y   2 A cos  t    t   cos   2    2   合振动不是简谐振动12当1 、2很大且接近时, 2   1   2   1 令:y  A(t )cos  t2  1 )t 式中 A(t )  2 A0 cos( 2 2  1 cos  t  cos( )t 2随t 缓慢变化 随t 快速变化合振动可看作振幅缓慢变化的简谐振动 当频率 1 和  2 相近时,两个简谐振动的叠加,使得 合振幅时而加强、时而减弱,形成所谓拍现象。

13ψ1 t ψ2 t ψ t拍  拍: 合振动忽强忽弱的现象。

 拍频 :单位时间内强弱变化的次数。

1 拍  2 2  2  1   2   2 1      2 1  2 2 14波的产生与传播1、波的产生 波:振动在媒质中的传播,形成波。

 产生条件:1) 波源—振动物体; 2) 媒质—传播振动的弹性物质.2、机械波的传播机理(1) 波的传播不是媒质中质点的运输, 而是“上游” 的质点依次带动“下游”的质点振动 (2) 某时刻某质点的振动状态将在较晚时刻于“下游” 某处出现——波是振动状态的传播153、机械波的传播特征 波传播的只是振动状态,媒质中各质点并未 “随波逐流”。

第二章振动和波(教学用)

第二章振动和波(教学用)

作业
P33 3,5,
第二节波动
基本概念与平面简谐波
机械波的几个概念 平面简谐波的波函数
第二节
波动
•振动在空间的传播过程称为波动 •机械振动在弹性介质中的传播称为机械波 如声波、水波、地震波等 •交变电磁场在空间的传播称为电磁波 如无线电波、光波等
波动的特征
•具有一定的传播速度; •伴随着能量的传播; •能产生反射、折射、干涉和衍射等现象; •有相似的波动方程。
x x1 x2
1、应用解析法
x x1 x2
2 A A12 A2 2 A1 A2 cos( 2 1 )
=A1 cos t 1 +A2 cos t 2 A1 cos 1 A2 cos 2 cos t A1 sin 1 A2 sin 2 sin t
3 2 5 t 2 3 6 5 5
t 6


6
0.83s
四、简谐振动的能量
以水平的弹簧振子为例
x
x(t ) A cos(t ), k / m
简谐振动的动能:
o
A
简谐振动的势能:
1 1 2 Ek mv m[ A sin(t )]2 2 2 1 2 1 2 2 2 mA sin (t ) kA sin 2 ( 0t 0 ) 2 2
某质点同时参与两个同频率且在同一条直线上的简谐运动
x1 A1 cos t 1 x2 A2 cos t 2
合振动

A sin A1 sin1 A2 sin 2 A cos A1 cos1 A2 cos 2
x=A cos cos t A sin sin t =A cos t

高中物理振动和波公式总结

高中物理振动和波公式总结

高中物理振动和波公式总结高中物理振动和波公式1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用5.机械波、横波、纵波:波就是振动的传播,通过介质传播。

在同种均匀介质中,振动的传播是匀速直线运动,这种运动,用波速V表征。

对于匀速直线运动,波速V不变(大小不变,方向不变),所以波速V是一个不变的量。

介质分子并没有随着波的传播而迁移,介质分子的永不停息的无规则的运动,是热运动,其平均速度为零。

6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小}高中物理振动和波知识点1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.(1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°.(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3)作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.(3)机械波的特点①机械波传播的是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波迁移.②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③离波源近的质点带动离波源远的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等于波源的振动频率,与介质无关.(4)三者关系:v=λf7. ★波动图像:表示波的传播方向上,介质中的各个质点在同一时刻相对平衡位置的位移.当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线.由波的图像可获取的信息①从图像可以直接读出振幅(注意单位)②从图像可以直接读出波长(注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向.⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)高中物理学习方法听得懂高中生要积极主动地去听讲,把老师所说的每一句话都用心来听,熟记高中物理概念定义,这是“知其然”,老师讲解的过程就是“知其所以然”,听懂,才会运用。

第五讲 振动与波

第五讲 振动与波

第五讲 振动与波一、竞赛中涉及的问题 (一)简谐运动1.任何机械运动都可用数学方法分解成一系列简谐运动,简谐运动是最基本的机械振动,简谐运动的动力学特点:物体所受回复力与位移反向,大小与位移成正比,即:F=-kx 。

运动学特点;位移可用时间的正弦函数或余弦函数表示。

例1.判断下列各物体的振动是否简谐运动其中,(3)是质量均匀的地球通道中的小球,(4)为浮于水面上的木块,(5)为两端开口U 型管中的液面A 。

2.运动规律和参考圆用初等数学方法,不能得出简谐运动物体的V 、a 变化规律,采用参考圆却能有效解决此问题,任何一个简谐振动,都可看作 某一个作匀速圆周运动的参考点在某一直径上的投影的运动,这 种想象中的参考点的运动轨迹—参考圆,参考圆半径为A ,即为 简谐运动物体的振幅,如图,O 为振体m 的平衡位置,t=0时,x =x 0,V x =V 0,相应物在A 点,参考圆位置的P 0点,t 时刻,在P t 点(B 点),由图得(1)位移x=Acos(ωt +φ0),(2)速度V x )sin(0ϕωω+-=t A (3)加速度)cos(02ϕωω+-=t A a x x a x 2ω-=,其中,0ϕ是初相角,回复力x m ma F x 2ω-==(4)振幅A —振体离开平衡位置的最大距离,由初始条件t =0时,00,v v x x ==代入x 、v x 表达式中,得0000sin ,cos ϕωϕA v A x -==,解之得A=)(,)(00102020ωϕωx v tg v x -=+-位相)(0ϕω+t ,决定振体运动的状态的变量,0ϕ 是t =0时的初相角N ·B !上述方程的 原点均取在振体的静平衡位置。

例2:试求下图所示系统的振幅A 及初位相0ϕ,(a )中C 与B 中吊绳静止时断开,(b )中将(1)(2)(4)(a)xo (b)(3)(5)物B 无初速地放在物C 上。

3.简谐运动的圆频率,频率与周期(1)圆频率 即x 、v x 、a x 表达式中的ω ,由F=-kx =m k x m =∴-ωω,2(2)周期T ,T=k m πωπ2/2=。

高中物理振动和波公式总结

高中物理振动和波公式总结

高中物理振动和波公式总结高中物理振动和波公式1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用5.机械波、横波、纵波:波就是振动的传播,通过介质传播。

在同种均匀介质中,振动的传播是匀速直线运动,这种运动,用波速V表征。

对于匀速直线运动,波速V不变(大小不变,方向不变),所以波速V是一个不变的量。

介质分子并没有随着波的传播而迁移,介质分子的永不停息的无规则的运动,是热运动,其平均速度为零。

6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小}高中物理振动和波知识点1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.(1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°.(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3)作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.(3)机械波的特点①机械波传播的是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波迁移.②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③离波源近的质点带动离波源远的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等于波源的振动频率,与介质无关.(4)三者关系:v=λf7. ★波动图像:表示波的传播方向上,介质中的各个质点在同一时刻相对平衡位置的位移.当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线.由波的图像可获取的信息①从图像可以直接读出振幅(注意单位)②从图像可以直接读出波长(注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向.⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)高中物理学习方法听得懂高中生要积极主动地去听讲,把老师所说的每一句话都用心来听,熟记高中物理概念定义,这是“知其然”,老师讲解的过程就是“知其所以然”,听懂,才会运用。

振动和波详述

振动和波详述

第二节 波动学基础
惠更斯原理:在波的传播过程中,波阵面上的每一 点都可以看作发射次级子波的波源,在其后的任一 时刻,这些子波的包迹就成为新的波阵面.
ut
平 面 波
球 面 波
R1
O
R2
第二节 波动学基础
二、 波动方程(平面简谐波的波函数)
介质中任一质点(坐标为 x)相对其平衡位置的
位移(坐标为 y)随时间的变化关系,即 y(x,t) 称
G 切变模量
E 弹性模量
K体积模量
横波 纵波
343 m s 空气,常温
如声音的传播速度
4000 m s 左右,混凝土
第二节 波动学基础
例1 在室温下,已知空气中的声速 u1为340 m/s, 水中的声速 u2 为1450 m/s ,求频率为200 Hz和2000 Hz
的声波在空气中和水中的波长各为多少?
x/m
-1.0
t 1.0 s 时刻波形图
第二节 波动学基础
3) x 0.5m 处质点的振动规律并做图 . y (1.0m) cos[2 π( t - x ) - π] 2.0s 2.0m 2
x 0.5m 处质点的振动方程
y (1.0m) cos[(πs-1)t - π]
y
y/m
3
1.0
3*

y(x,t) Acos(t - kx )
➢ 质点的振动速度,加速度
角波数 k 2π
v y -Asin[(t - x) ]
t
u
a
2 y t 2
-
2
A cos[ (t
-
x) u
]
第二节 波动学基础
例1 已知波动方程如下,求波长、周期和波速.

第六章 振动和波

第六章  振动和波

x2 A12
y2 A22
2 xy A1 A2
cos
sin2
上式是个椭圆方程,具体形状由 相位差决定。
(20 10 )
质点的运动方向与 有关。当 0 时,
质点沿顺时针方向运动;当 2 时,
质点沿逆时针方向运动。
当 A1 A2 时,正椭圆退化为圆。
21
4.4 垂直方向、不同频率简谐振动的合成
Acos[ (t
x u
)
0
]
y( x, t)
A cos [(t
0 )
2
x ]
2 /T u /T
也即p点的相位落后于O点相位:2x
O
y
u
x
p
这就是右行波的波方程。
x
定义 k 为角波数
k 2 T
u T
2
2 2 ; T u u 因此下述几式等价
T
27
左行波的波函数:
0 20超前10
20 10 0 20落后10
=(2n1) 反相 =2n 同相
4
1-3 简谐振动的动力学方程
• 简谐振动的动力学方程 弹性力
mx kx
U ( x) 1 kx2 2
令k
m
2 0
x
2 0
x
0
其解:x(t)
结论
A
cos( 0 t
0
)
质点所受的外力与对平衡位置的位移成正比
且反向,或质点的势能与位移(角位移)的
以横波为例说明平面简谐波的波函数。
已知O点振动表达式: y Acos(t 0 )
y表示各质点在y方向上的
位移,A是振幅,是角频
率或叫圆频率, 0为O点在

大学物理-振动和波

大学物理-振动和波

t0
(静止)
1 2 3 4 5 6 7 8 9 10 11 12 13
tT 4
12
3
4
5
67
8
(振动状态传 9 10 11 12 13 至4)
tT 2
(振动状 1 2 3 4 5 6 7 8 9 10 11 12 13 态传至7)
t 3T 4
(振动状
1 2 3 4 5 6 7 8 9 10 11 12 13 态传至10 )
各类波的本质不同, 但都伴有能量的传播, 都能产生 反射、折射、干涉和衍射等现象, 且有相似的数学描述。
基本内容:
机械波的产生与传播 机械波的几个特征量 波动方程
波的叠加原理—(特例)波的干涉。
§16.1 机械波的产生与传播
一、产生机械波的条件
1、波源 2. 弹性媒质
二、机械波的分类
横波: 质点的振动方向和波的传播方向垂直 特点: 具有波峰和波谷(如绳子上的波)
( k =0 、+ 1、+ 2 ...)
A1
A = A2+A1
相位相同
A2
(2)若φ 2 φ 1 =(2k+1)π 合振动减弱
( k =0 、+ 1、+ 2 ...)
A = A2 A1
相位相反
A2 A1
一般情形: 二分振动既不同相位也不反相位,合振动 振幅在A1+A2与|A1-A2| 之间。
二、同方向、不同频率的两个谐振动的合成
x x1 x2 (A1Cos1 A2Cos2 )Cost (A1Sin1 A2Sin2 )Sint
令 A1Cos1 A2Cos2 ACos A1Sin1 A2Sin2 ASin

振动与波知识要点

振动与波知识要点

振动与波知识要点一、机械振动1、一种振动:简谐振动掌握:简谐振动的特征;一维简谐振动方程;描述简谐振动的基本物理量(振幅、周期、频率、圆频率、相位);简谐振动的能量要点:①一维简谐振动方程)cos(ϕω+=t A x →速度方程)sin(ϕωω+-==t A dtdx v (平衡位置处A v m ω=) →加速度方程x t A dt dv a 22)cos(ωϕωω-=+-== (正负最大位移处 A a m 2ω=) ②基本物理量:﹡振幅)0(>A 常量→由振动初始条件决定﹡圆频率)0(>ω常量→由振动系统本身性质决定 (弹簧振子mk =ω ;单摆l g =ω;摆杆l g 23=ω) ﹡周期、频率、圆频率关系:ωπν21==T ; ﹡相位ϕω+=Φt (反映振动状态): 初相ϕ(0=t )→常量,由振动初始条件决定;相位差=Φ-Φ=∆Φ12)(12t t -ω(用于单个物体不同时刻间状态变化分析)或相位差=Φ-Φ=∆Φ1212ϕϕ-(用于两个同频率振动相关问题分析) ③振动能量:振动总能量2222121kA A m E E E p k −−−→−=+=弹簧振子ω 动能Φ=2sin E E k ;势能Φ=2cos E E p (相位ϕω+=Φt )振动过程中,动能和势能随时间变化,变化周期是振动周期的一半,它们相互转化,总能量保持不变2、一种分析方法:旋转矢量法 (※利用旋转矢量法判断时一定要画出旋转矢量图) 掌握:应用旋转矢量法分析初相问题、相位差问题、振动合成问题 要点:①任一时刻旋转矢量相对于x 轴正向的夹角θ表征简谐运动物体此时的振动相位ϕω+=Φt ;在t =0时刻,与x 轴正向夹角0θ即表征振动初相ϕ;②任一时刻,旋转矢量端点在x 轴上投影点的位置、运动方向表征简谐运动物体此时的振动位置x 及振动方向;③旋转矢量逆时针方向匀速旋转一周,转过角度πθ2=∆,所用时间ωπ/2=∆t ,表征简谐振动物体作一次完全振动,相位变化π2=∆Φ,振动周期为ωπ/2=T ;某段时间t ∆内旋转矢量旋转过的角度θ∆即表征简谐振动物体在这段时间内的相位变化t ∆=∆=∆Φωθ.3、一种合成:两个同方向同频率简谐振动合成掌握:合振动的分析;振动相长、相消条件要点:同相{),2,1,0(2 =±=∆Φk k π}振动相长,合振幅最大21max A A A +=反相{),2,1,0()12( =+±=∆Φk k π}振动相消,合振幅最小21min A A A -=二、机械波1、平面简谐波的波动方程掌握:①波动方程的几种基本形式; ②波动方程中的物理量分析及相互联系;③波形图的分析; ④由质点振动方程推出波动方程或由波动方程推出某处质点方程的方法;⑤波线上任意两点相位差的分析要点: ①波动方程的基本形式:⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-=ϕλνπϕωx t A u x t A y 2cos cos 沿x 轴正向传播 ⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+=ϕλνπϕωx t A u x t A y 2cos cos 沿x 轴负向传播 ②基本物理量:﹡波的振幅A 、圆频率ω、周期T (频率ν)与参与波动的各质点振动的振幅A 、圆频率ω、周期T (频率ν)相同,都仅与波源的振动及性质有关﹡波速u →由传播介质的性质决定﹡波长λ=两相邻波峰(或波谷)间距【横波】或两相邻密部(或疏部)间距【纵波】与波速u 、周期T (频率ν)间关系为 νλ/u uT == ,而ωπν21==T ﹡同一波线上坐标为x 1和x 2的两质点的振动相位差)(2)(212112x x x x u -=-=Φ-Φ=∆Φλπω→沿x 轴正向传播)(2)(121212x x x x u -=-=Φ-Φ=∆Φλπω →沿x 轴负向传播 ﹡初相ϕ根据x =0处质点在t =0时刻的振动状态确定③波动方程的物理意义:),(t x y﹡代入坐标x →)(t y 坐标为x 处质点的振动方程(注:初相不可化简)﹡代入时刻t →)(x y t 时刻波形(x y -曲线为波形图,判断质点振动速度方向时要注意在振动曲线图和波形图上判断方法的区别)2、波的干涉掌握:①波的干涉现象分析:a. 波的相干条件 ;b. 从相位差角度,从波程差角度分析空间任意点干涉相长和相消问题 ②驻波分析:a. 形成驻波条件; b. 驻波方程的推导;c. 波腹和波节或任意振幅位置的分析d. 半波损失现象分析,由入射波(或反射波)方程推出反射波(或入射波)方程的方法 要点:①波的相干条件:频率相同,振动方向相同,相位差恒定②波的干涉 ﹡两列相干波在叠加点所引起两分振动相位差﹡相长干涉、相消干涉问题(从相位差角度分析;从波程差角度分析)注:从波程差角度分析相长干涉、相消干涉的规律只适用于两相干波源初相相等即21ϕϕ=的情况 λϕϕϕ1212π2r r ---=∆③驻波问题﹡形成条件:相干条件,振幅相同,传播速度相同,沿同一直线相反方向传播﹡驻波方程 21y y y += (要用到2cos 2cos 2cos cos βαβαβα-+=+)各质点振动频率相同,振幅不同(波腹振幅最大为2A ,波节振幅最小为0,其余质点振幅介于0~2A 之间),相位分布遵循段内同相、邻段反相规律。

高中物理振动和波公式总结

高中物理振动和波公式总结

高中物理振动和波公式总结高中物理振动和波公式1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用5.机械波、横波、纵波:波就是振动的传播,通过介质传播。

在同种均匀介质中,振动的传播是匀速直线运动,这种运动,用波速V表征。

对于匀速直线运动,波速V不变(大小不变,方向不变),所以波速V是一个不变的量。

介质分子并没有随着波的传播而迁移,介质分子的永不停息的无规则的运动,是热运动,其平均速度为零。

6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小}高中物理振动和波知识点1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.(1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°.(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3)作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g'等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.(3)机械波的特点①机械波传播的是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波迁移.②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③离波源近的质点带动离波源远的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等于波源的振动频率,与介质无关.(4)三者关系:v=λf7. ★波动图像:表示波的传播方向上,介质中的各个质点在同一时刻相对平衡位置的位移.当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线.由波的图像可获取的信息①从图像可以直接读出振幅(注意单位)②从图像可以直接读出波长(注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向.⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)高中物理学习方法听得懂高中生要积极主动地去听讲,把老师所说的每一句话都用心来听,熟记高中物理概念定义,这是“知其然”,老师讲解的过程就是“知其所以然”,听懂,才会运用。

振动和波动物体的振动和波的传播

振动和波动物体的振动和波的传播

振动和波动物体的振动和波的传播振动和波动是物体在空间中传播的一种现象,常见于我们生活中的各个领域。

振动是物体在平衡位置附近做往复运动的现象,而波动则是振动的传播过程。

本文将对振动和波动物体的振动和波的传播进行探讨。

一、振动的特点和传播振动是物体在平衡位置附近做往复运动的现象。

它具有以下几个特点:1. 频率:振动的频率是指单位时间内振动的次数,通常用赫兹(Hz)作为单位。

频率越高,振动的周期越短,振动的速度越快。

2. 振幅:振幅是指振动物体离开平衡位置的最大位移。

振幅越大,说明振动物体的能量越大,振动的幅度也越大。

3. 周期:振动的周期是指完成一次完整振动所需要的时间。

周期与频率之间呈倒数关系,即频率等于周期的倒数。

振动的传播可以通过介质传递,其中介质可以是固体、液体或气体。

在固体中,振动以弹性波的形式传播;在液体和气体中,振动以机械波的形式传播。

不同介质中的振动传播速度不同,固体中传播速度最快,而气体中传播速度最慢。

二、波动的特点和传播波是振动在介质中传播形成的一种现象,它具有以下几个特点:1. 波长:波长是指波的一个完整周期所占据的空间长度。

波长与频率之间呈反比关系,频率越高,波长越短。

2. 传播速度:波动的传播速度可以通过波长与频率的乘积来计算,即传播速度等于波长乘以频率。

不同介质中的波动传播速度也不同。

波动可以分为机械波和电磁波两种类型。

机械波需要介质传递,如水波、声波等;而电磁波可以在真空中传播,如光波、射线等。

三、振动和波动的相互关系振动和波动有着密切的联系,波动需要振动来产生,而振动又可以通过波动来传播。

例如,水面上扔入一块石头会引起水波的扩散。

石头下落时的振动产生了水波,水波以波动的形式传播到周围。

我们可以看到,波动实质上是振动在介质中的传播。

同样地,声波也可以作为一种机械波传播,它是由声源振动引起的,通过空气分子的振动传递,形成一种声波。

声波在我们的日常生活中非常常见,比如说我们说话时产生的声音就是声波的传播。

高中物理公式:振动和波(机械振动与机械振动的传播)

高中物理公式:振动和波(机械振动与机械振动的传播)

高中物理公式:振动和波(机械振动与机械振动的传播)发生共振条件:f驱动力=f固,A=max,共振的防止和应用机械波、横波、纵波注:(1)布朗粒子不是分子,布朗颗粒越小,布朗运动越明显,温度越高越剧烈;温度是分子平均动能的标志;分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快;分子力做正功,分子势能减小,在r0处F引=F斥且分子势能最小;气体膨胀,外界对气体做负功W<0;温度升高,内能增大ΔU >0;吸收热量,Q>0物体的内能是指物体所有的分子动能和分子势能的总和,对于理想气体分子间作用力为零,分子势能为零;r0为分子处于平衡状态时,分子间的距离;其它相关内容:能的转化和定恒定律能源的开发与利用.环保物体的内能.分子的动能.分子势能。

质点的运动(1)——直线运动理解口诀:1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。

物体位置的变化,准确描述用位移,运动快慢S比t,a用Δv与t比。

2.运用一般公式法,平均速度是简法,中间时刻速度法,初速为零比例法,再加几何图像法,求解运动好方法。

自由落体是实例,初速为零a等g.竖直上抛知初速,上升最高心有数,飞行时间上下回,整个过程匀减速。

匀变速直线运动平均速度V平=s/t(定义式)2.有用推论Vt2-V02=2as3.中间时刻速度Vt/2=V平=(Vt+V0)/2(分析纸带常用)末速度Vt=V0+at;5.中间位置速度Vs/2=[(V02+Vt2)/2]1/26.位移s=V平t=V0t+at2/2加速度a=(Vt-V0)/t{以V0为正方向,a与V0同向(加速)a>0;反向则a<0}实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}(分析纸带常用逐差法求加速度)主要物理量及单位:初速度(V0):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。

简谐振动

简谐振动

这一结论常常用来判断简谐振动并求出其振动周期。
二、阻尼振动 1、定义
阻尼振动: 在回复力和阻力作用下的振动。
无阻尼自由振动:振动物体不受任何阻力的影响, 只在回复力作用下所作的振动。 阻尼:消耗振动系统能量的原因。 2、阻尼振动的数学表达式
dx 阻力: F v dt
:比例系数
2 2
引入阻尼系数:
固 有 频 率:
2
2m
0 k m
d x dx 2 2β ω0 x 0 2 dt dt
线性阻尼振动系统的运动方程
在小阻尼条件下 (β ω0 ),微分方程的解为: t
x A0 e
cos(t 0 )
x A0 e
β t
cos(ω t 0 )
1 T 2
x A cos(t )
: 角频率
物体在2 秒内所作的完全运动的次数。
2 T 2
简谐振动的周期性
T: 周期
S( 秒 )
:
频率
: 角频率
rad /S(弧度/秒)
Hz(赫兹)
(t + ): 相位
决定简谐运动状态的物理量。 t = 0 时的相位。

回复力 F
(3)描述简谐振动的特征量: 振幅 A 周期 T
初相

总 结 周期 T :决定于振动系统本身的性质。 固有圆频率:
k m
固有周期: T 2
2 m / k
振幅 A :振幅决定于振动的能量。
初相 :决定于用数学公式表达简谐振动对时 间原点的选择,这一选择具有任意性。
x A cos(t )
x A cos(t )

高中物理振动和波公式总结

高中物理振动和波公式总结

高中物理振动和波公式总结高中物理振动和波公式1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ<100;l>>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用5.机械波、横波、纵波:波就是振动的传播,通过介质传播。

在同种均匀介质中,振动的传播是匀速直线运动,这种运动,用波速V 表征。

对于匀速直线运动,波速V不变(大小不变,方向不变),所以波速V是一个不变的量。

介质分子并没有随着波的传播而迁移,介质分子的永不停息的无规则的运动,是热运动,其平均速度为零。

6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波)8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同)10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小}高中物理振动和波知识点1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动.(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置.简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大.(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅.②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱.③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f.(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹.②特点:简谐运动的图像是正弦(或余弦)曲线.③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况.2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系.如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T.3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点.单摆是一种理想化模型.(1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°.(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力.(3)作简谐运动的单摆的周期公式为:①在振幅很小的条件下,单摆的振动周期跟振幅无关.②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关.③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g’等于摆球静止在平衡位置时摆线的张力与摆球质量的比值).4.受迫振动(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动.(2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关.(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振.共振的条件:驱动力的频率等于振动系统的固有频率. .5.机械波:机械振动在介质中的传播形成机械波.(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波.横波有凸部(波峰)和凹部(波谷).②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波.纵波有密部和疏部.[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波.(3)机械波的特点①机械波传播的是振动形式和能量.质点只在各自的平衡位置附近振动,并不随波迁移.②介质中各质点的振动周期和频率都与波源的振动周期和频率相同.③离波源近的质点带动离波源远的质点依次振动.6.波长、波速和频率及其关系(1)波长:两个相邻的且在振动过程中对平衡位置的位移总是相等的质点间的距离叫波长.振动在一个周期里在介质中传播的距离等于一个波长.(2)波速:波的传播速率.机械波的传播速率由介质决定,与波源无关.(3)频率:波的频率始终等于波源的振动频率,与介质无关.(4)三者关系:v=λf7. ★波动图像:表示波的传播方向上,介质中的各个质点在同一时刻相对平衡位置的位移.当波源作简谐运动时,它在介质中形成简谐波,其波动图像为正弦或余弦曲线.由波的图像可获取的信息①从图像可以直接读出振幅(注意单位)②从图像可以直接读出波长(注意单位).③可求任一点在该时刻相对平衡位置的位移(包括大小和方向)④在波速方向已知(或已知波源方位)时可确定各质点在该时刻的振动方向.⑤可以确定各质点振动的加速度方向(加速度总是指向平衡位置)高中物理学习方法听得懂高中生要积极主动地去听讲,把老师所说的每一句话都用心来听,熟记高中物理概念定义,这是“知其然”,老师讲解的过程就是“知其所以然”,听懂,才会运用。

振动和波的基础知识

振动和波的基础知识

1.机械振动:(1):机械振动即物体或物体的一部分在某一中心位置两侧所做的往返的运动(2):回复力F 回:指向“平衡”位置的合力叫回复力(3):振动位移x :都以“平衡”位置为位移的起点(4):振幅A :振动物体离开“平衡”位置的最大距离,振幅越大,振动的能量就越大(5):振动的周期T :指完成一次全振动的时间;周期表示振动的快慢,周期小表示振动的快(6):振动的频率f :指单位时间内完成振动的次数;频率大,表示振动的快;单位为:赫兹Hz(7):T=f 1;振动的周期T 的大小与振幅的大小无关:对于同一个振动系统,当振动的振幅变大时,其周期将保持不变,所以物体振动的周期又叫固有周期(8):平衡位置:振动的中心位置,是假冒的“平衡”,F 合不一定为0,如:单摆的“平衡”位置的加速度为:022≠==⇒==m F R v R v a m F F 指向圆心的合力向心向心指向圆心的合力2:简谐振动: 1:回复力F 回和位移x 成正比,但它们的方向相反;F 回=-kxx 为物体离开“平衡”位置的位移负号表示回复力F 回和位移x 的方向相反回复力就是一个指向“平衡”位置的合力(2):对于同一个振动系统,当振动的振幅变大时,其周期仍保持不变(3):简谐振动的x-t 图像:是一条正弦或余弦曲线(4):振动的周期T 的大小与振幅的大小无关所以把它叫国有周期;弹簧振子的T 与小球的质量、弹簧的劲度序数有关;单摆的T 与摆长、重力加速度g 有关3.单摆(1):当单摆的摆角小于80时,单摆的振动可以看做简谐振动(2):单摆振动时,也可以把它看做圆周运动R m R m m F F T R v 2222)(向心指向圆心的合力πω====多多从不同的角度分析问题(3):单摆的回复力由重力在切线方向的分力提供;当摆角小于80时,L x≈θsin ,mg F L x -=回复力如右图(3):当单摆的摆角小于80时,g LT π2=L 为物体摆动时的圆心悬点到物体重心的距离g 为当地的重力加速度g =2R GM;g ´=222)()(H R gR H R GM ++= g ´为离天体表面H 高处的重力加速度;g为天体表面的重力加速度;R 为天体的半经;M 为中心天体的质量;H 为离天体表面的高公式说明T 与振幅A 无关(4):单摆振动时,由于拉力始终与速度垂直,所以拉力不做功,如无阻力,则物体的机械能守恒(5):单摆振动时,如有阻力,则在短时间内,仍可把它看做简谐振动4、任何一个介质质点在一个周期内经过的路程都是4A,在半个周期内经过的路程都是2A,但在四分之一个周期内经过的路程就不一定是A 了多多用位移时间图像帮助分析问题5、受迫振动:(1):物体在周期性外力的作用下的振动叫受迫振动(2):物体做受迫振动时,它的频率等于驱动力的频率,而跟物体的固有频率无关,如图:假如L=g,则单摆的固有周期g L T π2==2π秒,如果每隔八秒推一下小球,则单摆的周期就为8秒,而不是2π秒(3):波在传播时,各质点都在做受迫振动各质点都在模仿波源的振动,所以波由一种介质传到另一介质时,波的频率不变等于波源的振动频率(4):物体在做受迫振动时,驱动力的频率跟物体的固有频率相等的时侯,物体的振幅最大,这种现象叫共振;驱动力的频率跟物体的固有频率越接近,物体的振幅也越大,如图为共振曲线(5):当f 驱动力=f 固时物体会发生共振,共振时的振幅比不共振时的振幅大(6):利用共振的有:共振筛、转速计、微波炉、打夯机、跳板跳水、打秋千……防止共振的有:机床底座、航海、军队过桥、高层建筑、火车车厢……6:简谐振动的图像如右图为水平振动的弹簧振子的振动图像:由图像可知:(1):振动图像表示的是某一质点在各个时刻的位移(2):振幅A 为15cm(3): 周期T 为8s(4):a 点对应的时刻,速度在增大,速度的方向向负方向;加速度在减小,加速度的方向负方向和位移的方向相反,此时位移为正10cm回复力在减小,回复力的方向向负方向和位移的方向相反动能在增大,弹性势能在减小机械能守恒b 点对应的时刻,速度在减小,速度的方向向负方向;加速度在增大,加速度的方向向正方向和位移的方向相反,此时位移为-5cm回复力在增大,回复力的方向向正方向和位移的方向相反动能在减小,弹性势能在增大机械能守恒d 点对应的时刻,速度在减小,速度的方向向正方向;加速度在增大,加速度的方向向负方向和位移的方向相反,此时位移为正5cm回复力在增大,回复力的方向向负方向和位移的方向相反动能在减小,弹性势能在增大机械能守恒(5):V a < V b = V d7:解振动问题的方法:(1):振动问题都是变力问题,一般选用动能定理、能量守恒定律解题;注意应用弹簧的弹性势能不变、了解:弹性势能221kx E P ,k 弹簧的劲度系数,x 为弹簧的形变量、弹力做的功= - 弹性势能的变化量等条件 (2):充分利用振动的对称性,如在两个对称点的加速度a 、速度v 、位移、动能E k 、弹性势能相等等条件(3):充分利用振动的图像解题画出振动的图像帮助解决问题(4):注意应用临界点的条件:如弹力为0、加速度a 、速度v 、位移相等等等(5):两物体的加速度a 1、a 2相等时,两物体可能将要分开物体分开的瞬间,物体间的弹力为零(6):弹簧的形变量或两次的形变量之差可能等于物体的位移:S=X 2-X 18:机械波:机械振动在介质中的传播过程所形成的波叫做机械波(1):有振源和传播介质时就会产生机械波(2):波是传播能量的一种方式,即传递某种信息(3):波信息向前传播时,各介质只在自己的平衡位置附近振动,并不会随波信息向前传播(4):波信息向前传播时,波形波形代表信息的内容不会发生变化;如下图,波信息向右传播过后,A 、B 、C 、D 各质点仍然回到各自原来的位置;当波信息传递到E 点时,它就开始振动,并按后面的波形振动即开始模仿振源的所有动作,所以质点起到了传递信息的作用;要判断E 如何振动,就看和它相邻的前一质点的运动情况即可解波动问题,就是逻辑推理的过程,由A 质点的情况推及到D 质点的情况,由9秒的情况推及到8秒的情况……(5):每经过一个周期,波就向前传播一个波长的距离;每经过41个周期,波就向前传播41个波长的距离 (6):波的频率就等于波源的振动频率,介质的振动频率也等于波源的振动频率受迫振动9:波速V :(1):T V λ=;t SV f V ==;λ(2):波速V 只与介质有关,与波长、频率无关;当介质相同时,波速就相同(3):当波由一种介质传播到另一介质时,频率不变各质点都在做受迫振动,波速、波长会发生改变 10:波长:(1):两个相邻的,在振动过程中对平衡位置的位移总是相等的质点间的距离,叫波长9秒末(2):在一个周期里,波向前传播的距离,叫波长(3):两个相邻的波峰之间的距离,叫波长;两个相邻的波谷之间的距离,叫波长11:波的周期、频率:波的频率就等于波源的振动频率,它们与速度、介质无关12:波的图像:由图像可知(1):波的图像表示的是某一时刻各个质点的位移的图像(2):振幅A 为15cm(3):波长为8cn(4):在9秒末,a 质点向下运动它模仿的前一质点在它的右下方(5):在9秒末,a 质点的速度在变大,加速度在变小,加速度的方向向下各质点的运动规律仍然遵循振动的规律13:波的衍射:(1): 波在传播中遇到障碍物时能绕过障碍物的现象,叫波的衍射(2):一切波均能发生衍射,即任何条件下波均能发生衍射,只是有的衍射我们觉擦不到,但是仍然存在(3):发生明显的衍射的条件是:障碍物或孔的直径比波长小或相差不多(4):楼上房间的人能听到楼底下人的声音,单缝衍射、眯眼看灯、隔并齐笔缝看灯、隔羽毛纱布缝看灯等呈彩色看到彩色的光,这些都是衍射14:波的干涉:(1):频率相同的两列波叠加,使某些区域的振动加强,某些区域的振动减弱,并且振动加强和振动减弱的区域相互间隔,这种现象叫波的干涉(2):两个波源的振动方向相同,频率相同的同类波干涉时,就能得到稳定的干涉图样(3):围绕正在发声的音叉走一圈,听到声音忽强忽弱,双缝干涉、肥皂泡膜、蝉翼、雨天公路上汽油等呈彩色,这些都是干涉(4):波的干涉加强区是波峰和波峰相遇处或波谷和波谷相遇处,加强区仍在振动,其位移有可能小于减弱区的,但它的振幅一定大于减弱区的;波的干涉减弱区则是波峰和波谷相遇处(5):当两个波源的振动方向相同,频率相同的同类波干涉时,某点到这两个波源的距离差为半个波长的偶数倍时,该点为振动的加强点;某点到这两个波源的距离差为半个波长的奇数倍时,该点为振动的减弱点;当两个波源的振动方向相反,频率相同的同类波干涉时,某点到这两个波源的距离差为半个波长的偶数倍时,该点为振动的减弱点;某点到这两个波源的距离差为半个波长的奇数倍时,该点为振动的加强点; 15:多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同波源与观测者相互接近时,接收频率变大;反之,变小16:波的分类:波分为横波和纵波;声波为纵波17:波的反射:遵循反射定律如:反射角等于入射角等等18:解波动问题的方法:(1):一定要画出波动图像(2):注意应用波形不变把整个波形拿来平移,一般不要把波形延长,各质点都在模仿波源的振动,通过逻辑推理导出答案由“现在”推导出“将来”,由“现在”推导出“过去”(3):还应考虑到波的周期性、重复性,质点振动的周期性、重复性。

第六章振动和波-简振模;复摆;阻尼振动;受迫振动和共振

第六章振动和波-简振模;复摆;阻尼振动;受迫振动和共振

P.1/33振动与波wzy 简谐振动特征量运动判据)cos(0ϕω+=t A x 判据1判据2判据3kxF −=0d d 222=++C x txωA , ω, ϕ22222020ωωv v +=+=x x A )(arctg 00x ωϕv −=振动曲线、旋转矢量法描述简谐振动)2πcos(d d 0++==ϕωωt A t x v )πcos(d d 02±+==ϕωωt A ta v P.2/33振动与波wzy 振动状态:(1) 给定振动系统,m、ω(T )、k 一定(2) 给定初始条件,A 、ϕ0一定(3) 给定系统后总能量与A 成正比P.3/33振动与波wzy lmO 1. 摆动的理想模型—单摆和复摆1) 单摆(simple pendulum):无伸长的轻线下悬挂质点作无阻尼摆动βττml ma F ==切向运动方程222d d sin t mlmgl θθ=−0sin d d 22=+θθlgt 二、简振模建立自然坐标, 受力分析如图τnθN mgP.4/33振动与波wzy 0sin d d 22=+θθl gt 0sin d d 222=+θωθt⋅⋅⋅−+−=!5!3sin 53θθθθ单摆运动的微分方程非线性微分方程无解析解令lg =2ω得:Q 很小时当θθθ≈sin 0d d 222=+θωθt角谐振动P.5/33振动与波wzy 0d d 222=+θωθtgl T π2π2==ω周期)cos(0m ϕωθθ+=t 由初始条件决定运动方程lg =2ω结论:单摆的振动是简谐振动.注意:(1) θ为振动角位移,不是相位.(2) ω、T 与m 无关,由l 、g 决定.P.6/33振动与波wzy 2) 复摆(compound pendulum ): 绕不通过质心的光滑水平轴摆动的刚体由刚体定轴转动定律βI M =22d d sin t Imgh θθ=−0sin d d 22=+θθImght 令Imgh =2ω0sin d d 222=+θωθt——复摆运动的微分方程也是非线性微分方程mgJCohθP.7/33振动与波wzy Q 很小时当θθθ≈sin 0d d 222=+θωθt 角谐振动mghI T π2π2==ω)cos(0m ϕωθθ+=t 由初始条件决定运动方程周期由于小角度摆动都是谐振动,可推广到:一切微振动均可用谐振动模型处理.例如晶体中原子或离子在晶格点平衡位置附近的振动.大角度摆动规律?P.8/33振动与波wzy 1582年伽利略注意到比萨教堂的吊灯(~20m)摆动:周期似与摆幅无关1602年:周期似与摆锤重量无关周期正比与摆长平方根5.420≅研究学习:如何得知任意形状物体的摆动周期?P.9/33振动与波wzy 简摆simple pendulum实体摆physical pendulum, compound pendulum 圆锥摆conic pendulum 球面摆spherical pendulum 双摆double pendulum 钟摆clock pendulum 扭摆torsional pendulum 弹簧摆spring pendulum 沙摆sand pendulum倒置摆inverted pendulum您知道几种摆?以人命名的摆?P.10/33振动与波wzy 伽利略摆钟1642双摆的轨迹小角度摆动时有两种正则频率P.11/33振动与波wzy 2211x k x k F −=−=证:设物体位移x ,弹簧分别伸长x 1和x 221x x x +=x k k k x 2112+=22212122d d tx m x k k k k x k =+−=−()0d d 212122=++x mk k k k t x 2. 简振模的计算系统的振动为简谐运动例1:证明图示系统的振动为简谐运动,其频率为()mk k k k 2121π21+=νOxxP.12/33振动与波wzy 2211x k x k F −=−=Q 21k F k F k F +=∴21111k k k +=串mk k k k )(2121+=ω()mk k k k 2121π21+=ν21k k k +=并Oxx21x x x +=P.13/33振动与波wzy 下列各运动是否为简谐振动? 振动周期怎样计算?P.14/33振动与波wzy m例2:质量为M 的平板两端用劲度系数均为k 的相同弹簧连到侧壁上,下面垫一个质量为m 的圆柱.求此系统的圆频率.解:2p 212kx E ×=222k 212121c m I x M E v ++=ω&c xv 2=&Rc ω=v 22222212212121⎟⎠⎞⎜⎝⎛+⎟⎠⎞⎜⎝⎛×+=x m R xmR x M &&&P.15/33振动与波wzy 2228116121x m x m xM &&&++=216321x m M &⎟⎠⎞⎜⎝⎛+=22k p 16321x m M kx E E E &⎟⎠⎞⎜⎝⎛++=+=机械能守恒0d d =tE01632122=⎟⎠⎞⎜⎝⎛++xx m M x kx &&&&016321=+⎟⎠⎞⎜⎝⎛+kx x m M &&mM k3816+=ωP.16/33振动与波wzy 例3: 已知一水平放置的振动系统,其弹簧质量为m 、长度为L 、劲度系数为k ,振子质量为M ,求系统的振动周期.解: 设振子位移为x速度:xLl &弹簧l 处的d l 位移:动能:2k d 21d v l E ρ=′20232k61d )2(x m l l x L x m E xL &&=+=′∫+x Ll ld lk x O2d 21⎟⎠⎞⎜⎝⎛+=x L l l x L m &P.17/33振动与波wzy 系统的能量222216121kx x m x M E ++=&&机械能守恒0d d =tE 061212=+⎟⎠⎞⎜⎝⎛+x kx x x m M &&&&031=+⎟⎠⎞⎜⎝⎛+kx x m M &&3/m M k+=ω周期:km M T 3/π2+=P.18/33振动与波wzy 哈密顿(Hamiltonian)原理另一种描述----哈密顿函数H (q i , p i , t )守恒系统, H =E k +E p描述物理系统----拉格朗日函数L (q i , , t )i q&广义坐标广义速度广义动量一个守恒系统, L =E k -E p作用量, 取决于运动过程∫=21d t t t L A 哈密顿原理:当系统从q i 演化到q f ,其真实的轨道总是满足作用量A 取极值的条件,即δA =0.P.19/33振动与波wzy δA =0@扰动δq i , 保持不变⎟⎠⎞⎜⎝⎛t q i d d δab哈密顿原理→稳定性原理(总是选择一条最稳定的轨道)→对称性原理哈密顿正则方程:⎪⎪⎩⎪⎪⎨⎧∂∂−=∂∂=i i i i q H tp p H t q d d d d 定义动量牛顿方程P.20/33振动与波wzy 例: 简单弹簧连接体2122221)(2122l x xk m p m p H −−++=⎪⎪⎩⎪⎪⎨⎧=∂∂=−−−=∂∂−==∂∂=−−=∂∂−=mp p H t x l x x k x H tp m p p H t x l x x k x H t p 22212221111211d d ),(d d d d ,)(d d 脱耦模型:系统由二个无相互作用(脱耦)的准粒子(非真实的粒子)组成,一个是质量为2m 的质心,是一个自由粒子; 另一个是劲度系数为k 质量为m /2的简谐振子.P.21/33振动与波wzy 简单弹簧连接体P.22/33振动与波wzy 定义:振动系统在回复力和阻尼力共同作用下发生的减幅振动.三、阻尼振动vr r γ−=r F 为阻尼系数γ物体速度较小时,rF v x k F v v −=O x x 22tx m kx d d =−−v γmm kγβω==2:20令(β:阻尼因子)0d d 2d d 2022=++x tx t x ωβ动力学方程:02202=++ωβr r 22222442ωββωββ−±−=−±−=r 微分方程的特征方程为:P.23/33振动与波wzy 220202βωβωββ−±−=−±−=i r 1. 小阻尼情况:阻力很小()()ϕωϕβωββ+=+−=−−t A t A x t t cos e cos e 220方程解:220π2βω−=T 周期:220βωω−=0ωβ<P.24/33振动与波wzy 讨论:阻尼较小(β<ω0)时,振动为减幅振动,振幅随时间按指数规律迅速减少.阻尼越大,减幅越迅速.振动周期大于自由振动周期.t A β−e P.25/33振动与波wzy 2. 过阻尼(over damping)情况:阻力很大22ωββ−±−=r ttA A x ⎟⎠⎞⎜⎝⎛−−−⎟⎠⎞⎜⎝⎛−+−+=202202ee21ωββωββ0ωβ>结论:阻尼较大(β< ω0)时, 振动从最大位移缓慢回到平衡位置, 不作往复运动.P.26/33振动与波wzy 3. 临界阻尼(critical damping)情况0ωβ=βωββ−=−±−=202r tt A A x β−+=e )(21方程解:结论:此时为“临界阻尼”的情况.是质点不作往复运动的一个极限.P.27/33振动与波wzy tx 阻尼较小时过阻尼振动: 阻尼较大时,振动从最大位移缓慢回到平衡位置,不作往复运动.过阻尼临界阻尼振动: 质点不作往复运动的极限状态.临界阻尼阻尼振动曲线:欠阻尼振动:振动为减幅振动,振幅随时间按指数规律迅速减少.阻尼越大,减幅越迅速.振动周期大于自由振动周期.P.28/33振动与波wzy 四、受迫振动共振受迫振动(forced vibration):系统在周期性的外力(称为策动力)持续作用下所发生的振动.策动力(driving force):周期性的外力tH F ωcos s =物体在弹性力、回复力、阻力的作用下的运动s F vrF v xk F v v −=OxxP.29/33振动与波wzy t H txkx t x mωγcos d d d d 22+−−=令:h mH mmk ===βγω220t h x t x tx ωωβcos d d 2d d 2022=++()()ϕωϕβωβ+++−=−t A t A x t cos cos e 02200在阻尼较小时,其通解为对应齐次方程的通解加上一个特解,为P.30/33振动与波wzy()2222204ωβωω+−=hA 22012tanωωωβϕ−−=−()()ϕωϕβωβ+++−=−t A t A x t cos cos e 02200暂态项,经过一端时间以后趋向于零稳定项,代入原方程求得受迫振动是阻尼振动和余弦振动的合成.经一段相当的时间后,阻尼振动衰减到可以忽略不计,这样就成为一余弦振动,其周期为强迫力的周期,振幅、初相位不仅与初条件有关,而且与强迫力的频率和力幅有关.P.31/33振动与波wzy 共振(resonance): 当策动力的频率接近于固有频率时,受迫振动的振幅达到最大值(位移共振)的现象.共振频率:2202βωωτ−=共振振幅:2202βωβτ−=hA 结论: 阻尼系数β越小,共振角频率越接近于系统的固有频率,同时共振振幅也越大.PωAo共振频率ω大阻尼小阻尼阻尼0→P.32/33振动与波wzy TACOMA 大桥情景再现1940年7月1日,桥龄仅4个月的美国Tocama 大桥在一场不算太强的大风中坍塌.风产生的周期性效果导致大桥共振,大桥在风中坚强的摇曳了近一天,最终轰然坠下…P.33/33振动与波wzy 共振小人作业: 6-17,6-19,6-20。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
x A cos(t )
解此方程得位移表达式:
x A cos(t )
速度表达式:
dx v A sin(t ) dt
加速度表达式:
d 2x a 2 2 A cos(t ) 2 x dt
二、SHM的特征量 1、 振幅A (amplitude) 2 、周期T(period) 频率(frequency)
消去参数t,得到xy平面内的轨迹方程
x 2 y 2 2 xy 2 cos( 2 1 ) sin 2 ( 2 1 ) 2 A1 A2 A1 A2
该方程是椭圆方程。其形状由振幅及相位差决定。
讨论:
1、 2 1 0,即两分振动 若
的初相位相同 得:
A2 y x A1
u

T

三、平面简谐波的波动方程
平面简谐波:
设原点O处的质点在任一时刻t的振动方程为 :
y A cos(t )
y A cos(t )
P点的振动落后O点 x/u时间 P点在t时刻完成的是O点(t–x/u)时刻的振动 O点在(t–x/u)时刻的振动方程为
x x y A cos t y A cos u u
体积元dV的总能量为:
x dE dV A sin t u
2 2 2
能量密度w :单位体积介质中的波动能量
x w A sin t u
2 2 2平均能量Βιβλιοθήκη 度 :能量密度在一个周期内的平均值。
1 2 2 w A 2
度为零,振动的周期为2s,求简谐振动的位移及速度
表示式。
例:如图所示,某质点的振动图形,已知 1000Hz 。
求该振动的初相位、a、b、c时刻的相位?到达a、b、
c时刻需花多少时间?
四、SHM的能量
在任意时刻,振动系统的动能为
1 2 1 Ek mv m 2 A2 sin 2 (t ) 2 2
二、能流和能流密度
能流 平均能流 通过面积S的平均能流为
P wuS
平均能流密度:单位时间内通过垂直于波的传播方向的 单位面积上的平均能量,又称波的强度I。即
P 1 2 2 I wu A u S 2
单位: W.m-2
三、波的衰减
①扩散衰减:由于波的散射、反射、发散等原因, 虽然波整体的能量不减少,但能量的分布面积增加,
系统的势能为
1 2 1 2 E p kx kA cos 2 (t ) 2 2
系统的总能量为
1 1 2 2 2 2 2 E Ek E p m A sin (t ) kA cos (t ) 2 2 1 1 2 2 2 m A kA 2 2
例题3-3 已知简谐波的周期T=0.5s,波长λ=1m,振幅
A=0.1m,并且初相位为0。试写出波动方程。
x y 0.1cos 4 t 2
练习:有一平面简谐波沿Ox轴正方向传播,已知振幅 A=1.0m, 周期T=2.0s, 波长=2.0m. 在t=0时, 坐标原点 处质点位于平衡位置,且沿oy 轴的正方向运动. 求: 1) 波函数; 2) t=1.0s时各质点的位移分布, 并画出 该时刻的波形图; 3) x=0.5m处质点的振动规律, 并画 出该质点位移与时间的关系曲线.
A A A2 1
(2)
2 1 (2k 1) (k 0, 1,)
A A A2 1
二、两个同方向频率相近的SHM的合成
x1 A cos1t
合位移
x2 A cos 2t
x x1 x2 A(cos1t cos2t ) 2 1 2 1 x 2 A cos t cos t 2 2 2 1 2 1 令: , x 2 A cos t cos t
x A cos(t )
合振动的振幅
A
2 A12 A2 2 A1 A2 cos( 2 1 )
合振动的初相位
A1 sin 1 A2 sin 2 arctan A1 cos1 A2 cos 2
讨论(1)
2 1 2k
(k 0, 1, 2,)
讨论:
x y A cos t u
1.当x一定时 y f (t ) A cos(t ' ) 2.当t一定时 y f (x) 3.当t和x都变化时,波动方程表示在任意时刻波线上 任意点的位移情况。 所以说波动方程描述了波的传播 。
3-6
一个作简谐振动的质点在t = 0时位移为5cm,速
度为零,振动的周期为2s,求简谐振动的位移及速度
表示式。
三、SHM的矢量图解法
x A cos(t )
当 位 移 是 最 大 位 移一
半 时 , 判 断 是 上 下哪
个点?
3-6
一个作简谐振动的质点在t = 0时位移为5cm,速
波动方程:
x y A cos t u
因为
2 2 T t x 所以 y A cos 2 T 或 x y A cos 2 t
mg
已知: U 型管的截面直径
为 d, 液体密度为 ρ 。试证
明 U 型管内的液体做的是
简谐振动
2、SHM的运动学描述 由牛顿第二定律,物体的运动方程为
F ma
d 2x kx m 2 dt
d 2x d 2x 2 2 x, x 0 2 2 dt dt
其中
k m
1、SHM的动力学描述
F kx
F 称为线性回复力 定义:物体在线性回复力的作 用下所作的振动称为简谐振动
例:如图一根不可伸长的细绳上端固定,下端挂一 小球做摆动。试证明,当偏角 很小时,单摆的小 球的运动为简谐运动。
l
Pt Q
O
s 大小:F mg sin mg mg l s mg 方向:F mg s l l
2、 2 1 / 2, 若 即两分振动的相位差为π /2 得:
x2 y2 2 1 2 A1 A2
3-14 已知两个同方向简谐振动如下: 1 2 x2 6 cos(10t π ), x1 5cos(10t π ), 3 3 式中x以m计,t以s计,求它们合成振动的振幅、初相位
及振动方程。
3-15 有两个同方向、同频率的简谐振动,其合成振动的
振幅为0.20m,相位与第一振动的相位差为π/6,若第一 振动的振幅为0.173m,求第二振动的振幅以及第一、第 二两振动之间的相位差。
第四节 一、波的产生与描述
波动的基本规律
振动在空间的传播过程叫做波动 常见的波有: 机械波 , 电磁波 , 物质波 机械波:机械振动在弹性介质中的传播过程 1、产生条件: 2、横波: 波源 媒质
第三章
振动和波
1.熟练掌握描述简谐运动的数学方法和旋转矢量模型;
熟练掌握平面简谐波波动方程的求解方法;掌握波的相
干条件。
2.理解振动的合成和分解,理解几种典型的简谐运动合
成规律;理解惠更斯原理及波的叠加原理,波的干涉和 驻波形成规律,理解波的能量传播特征、能流、能流密 度的概念。
第一节 简谐振动(simple harmonic motion) 一、SHM的方程
因而强度降低 。
②吸收衰减:由于弹性介质存在内摩擦等原因,波 的能量随传播距离的增加而逐渐转化为其他形式的能
量。
1.球面简谐波在各向同性介质中传播的规律
I1 4 r 2 I 2 4 r22 1 得 I1 r22 2 I2 r 1
此公式为反平方定律 因为
A1 r2 A2 r1
A0 r cos t 则 y r u
A0为离球心的距离为单位长度时的振幅
2.平面简谐波在各向同性介质中传播规律:
dI dx I
μ为介质的吸收系数,它与波的频率和介质的性质有关。 将上式积分,并将 x 0时I I0 代入得
角频率(angular frequency)
2
1 固有频率 2 2
固有周期 T 2
1
k m
m k
3、相位和初相位
t 为简谐振动在某一时刻t的相位
为振动初时刻的相位(-π , π),(反映计时的初始位置)
t 为振动在0-t时间内的相位增量
角频率的物理意义: 单位时间内振动的相位增量
弹性势能为
1 x 2 2 2 dE p dEk dV A sin t 2 u
体积元dV的总能量为其动能和势能之和 :
x dE dV A sin t u
2 2 2
表 明: 总能量随时间作周期性变化; 振动中动能与势能相位差为/2, 波动中动能和势能 同相; 波动是能量传播的一种形式.
纵波:
3、几个概念: 波面(波振面):某一时刻振动相位相同的各点所联成的面 平面波:波振面是平面的波动
球面波:波振面是球面的波动
波线:沿波传播方向所作的射线
二、波的基本特征量
1、波长 :振动相位差为2π的相邻两个质点间距离 2、波的周期T(频率) :波前进一个波长距离所需要的
时间
3、波速u : 单位时间波所传过的距离
第五节 波的能量与波的衰减
一、波的能量
振动动能 + 形变势能= 波的能量 设简谐波在密度为ρ的弹性介质中传播,体积元dV在t 时刻各物理量分别为
x y A cos t u
x v A sin t u
相关文档
最新文档