4-9 凑微分法
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模块基本信息
一级模块名称
积分学
二级模块名称
计算模块
三级模块名称
凑微分法
模块编号
4-9
先行知识
1、积分基本公式
模块编号
4-7
2、牛顿—莱布尼茨公式
模块编号
4-6
知识内容
教学要求
掌握程度
1.凑微分法求不定积分
1.会运用凑微分法求不定积分
熟练掌握
2.凑微分法求定积分
2.会运用凑微分法求定积分
能力目标
1.培养学生的知识迁移能力
(1)
(2)
(3)
(4)
特别地,
(5)
(6)
(7)
(8)
(9)
(10)
例3.求下列函数的不定积分
(1) (二级)(2) (a0)(二级)
(3) (二级)
解:(1)
即
(2)
即
(3)
即
这样,我们 得到三个积分公式:
(选讲)例4求下列函数的不定积分(提高部分,可选讲)
(1) (三级)(2) (三级)
解: (1)
(2)
=
2、定积分的凑微分法(第一换元积分法)
由牛顿—莱布尼茨公式可知,定积分的凑微分法与不定积分的凑微法类似,只是多了一步将上、下限代入的步骤.
类似于不定积分的思路,我们可以得到如下定理
定理2设f(u)ቤተ መጻሕፍቲ ባይዱ有原函数可导F(u)则有换元公式
例5 求下列函数的定积分
(1) (一级)(2) (一级)
(3) (二级)(4) (二级)
2.培养学生的计算能力
时间分配
90分钟
编撰
尧克刚
校对
熊文婷
审核
危子青
修订人
张云霞
二审
危子青
一、正文编写思路及特点
思路:在熟练掌握积分基本公式的基础上,引入凑微分法,按照由易到难的顺序讲题例题、安排习题,使学生能够灵活运用凑微分积分法求函数的不定积分。在学习完不定积分的凑微分法后再来学习定积分的凑微分法。
1、不定积分的凑微分法(第一换元积分法)
(1)基本积分公式的推广
定理:若 ,则
例如:
(2)引例:求不定积分
分析:在基本积分公式中只有 .比较 与 这两个积分,我们发现区别只是 的幂次相差一个常数因子,但显然 .如果将 中的 凑上一个常数因子2,使之成为下式
然后再令 ,那么上述积分就变为
这样就将原不定积分化为可用基本积分公式的问题了,而
(4)案例讲解
例1.求下列函数的不定积分
(1) (一级)(2) (一级)
(3) (一级)
解:(1) (令 )
注:此题利用凑微分公式 ,从而凑出了 这个积分公式
(2) (令 )
注:此题利用凑微分公式 ,从而凑出了
这个积分公式
(3) ()
( )
注:此题利用凑微分公式 ,从而凑出了
这个积分公式
在计算比较熟练以后,换元这一步可以省略,即按如下方法写出计算过程:
(二级) (一级)
(二级) (二级)
,最后将 代回,从而有
由于 ,所以计算结果正确.
(3) 不定积分的凑微分法(第一换元法)
将引例抽象化,对于具有形如 的不定积分,可利用下面的积分方法:
定理1设f(u)具有原函数u(x)可导则有换元公式
其中, , 此称为积分形式的不变形,又称为第一换元积分法或凑微分法。
总结:凑微分法的关键是凑成微分 的形式,即通过凑成某个函数的微分,进一步的凑成基本积分公式,然后利用基本公式积出来
例2.求下列函数的不定积分
(1) (二级)(2) (二级)
(3) (二级)(4) (二级)
(5) (二级)(6) (二级)
(7) (二级)
解:(1)
(2)
(3)
(4)
(5)
(6)
(7)
由以上题目可见,凑微分是通过凑出某个函数的微分进一步的凑成基本的积分公式,从而掌握一些常用的凑微分方法是必要的,下面是一些常用的凑微分方法:
(5) (二级)
(1)解:
(2)解:
=
(3)解:
(4)解:
(5)解:
3、能力反馈部分
1、用凑微分法求下列函数的不定积分
(1) (一级)(2) (二级)
(3) (二级)(4) (二级)
(5) (二级)(6) (二级)
(7) (二级)(8) (二级)
(9) (三级)(10) (三级)
2、用凑微分法求下列函数的定积分
特点:通过变换习题的手段,一方面进一步的巩固积分基本公式,另一方面锻炼学生的观察能力和知识的迁移能力。
2、授课部分
(一)新课讲授
利用基本积分公式与不定积分的性质,所能计算的不定积分是非常有限的.因此有必要进一步来研究不定积分的求法.由微分运算与积分运算的互逆关系,我们可以把复合函数的微分法反过来用于求不定积分,利用中间变量的代换,得到复合函数的积分法,称为换元法积分法,简称换元法。我们来讨论两类换元法-----第一类换元法和第二类换元法.本节课我们来学习第一换元法,也称为凑微分法.
一级模块名称
积分学
二级模块名称
计算模块
三级模块名称
凑微分法
模块编号
4-9
先行知识
1、积分基本公式
模块编号
4-7
2、牛顿—莱布尼茨公式
模块编号
4-6
知识内容
教学要求
掌握程度
1.凑微分法求不定积分
1.会运用凑微分法求不定积分
熟练掌握
2.凑微分法求定积分
2.会运用凑微分法求定积分
能力目标
1.培养学生的知识迁移能力
(1)
(2)
(3)
(4)
特别地,
(5)
(6)
(7)
(8)
(9)
(10)
例3.求下列函数的不定积分
(1) (二级)(2) (a0)(二级)
(3) (二级)
解:(1)
即
(2)
即
(3)
即
这样,我们 得到三个积分公式:
(选讲)例4求下列函数的不定积分(提高部分,可选讲)
(1) (三级)(2) (三级)
解: (1)
(2)
=
2、定积分的凑微分法(第一换元积分法)
由牛顿—莱布尼茨公式可知,定积分的凑微分法与不定积分的凑微法类似,只是多了一步将上、下限代入的步骤.
类似于不定积分的思路,我们可以得到如下定理
定理2设f(u)ቤተ መጻሕፍቲ ባይዱ有原函数可导F(u)则有换元公式
例5 求下列函数的定积分
(1) (一级)(2) (一级)
(3) (二级)(4) (二级)
2.培养学生的计算能力
时间分配
90分钟
编撰
尧克刚
校对
熊文婷
审核
危子青
修订人
张云霞
二审
危子青
一、正文编写思路及特点
思路:在熟练掌握积分基本公式的基础上,引入凑微分法,按照由易到难的顺序讲题例题、安排习题,使学生能够灵活运用凑微分积分法求函数的不定积分。在学习完不定积分的凑微分法后再来学习定积分的凑微分法。
1、不定积分的凑微分法(第一换元积分法)
(1)基本积分公式的推广
定理:若 ,则
例如:
(2)引例:求不定积分
分析:在基本积分公式中只有 .比较 与 这两个积分,我们发现区别只是 的幂次相差一个常数因子,但显然 .如果将 中的 凑上一个常数因子2,使之成为下式
然后再令 ,那么上述积分就变为
这样就将原不定积分化为可用基本积分公式的问题了,而
(4)案例讲解
例1.求下列函数的不定积分
(1) (一级)(2) (一级)
(3) (一级)
解:(1) (令 )
注:此题利用凑微分公式 ,从而凑出了 这个积分公式
(2) (令 )
注:此题利用凑微分公式 ,从而凑出了
这个积分公式
(3) ()
( )
注:此题利用凑微分公式 ,从而凑出了
这个积分公式
在计算比较熟练以后,换元这一步可以省略,即按如下方法写出计算过程:
(二级) (一级)
(二级) (二级)
,最后将 代回,从而有
由于 ,所以计算结果正确.
(3) 不定积分的凑微分法(第一换元法)
将引例抽象化,对于具有形如 的不定积分,可利用下面的积分方法:
定理1设f(u)具有原函数u(x)可导则有换元公式
其中, , 此称为积分形式的不变形,又称为第一换元积分法或凑微分法。
总结:凑微分法的关键是凑成微分 的形式,即通过凑成某个函数的微分,进一步的凑成基本积分公式,然后利用基本公式积出来
例2.求下列函数的不定积分
(1) (二级)(2) (二级)
(3) (二级)(4) (二级)
(5) (二级)(6) (二级)
(7) (二级)
解:(1)
(2)
(3)
(4)
(5)
(6)
(7)
由以上题目可见,凑微分是通过凑出某个函数的微分进一步的凑成基本的积分公式,从而掌握一些常用的凑微分方法是必要的,下面是一些常用的凑微分方法:
(5) (二级)
(1)解:
(2)解:
=
(3)解:
(4)解:
(5)解:
3、能力反馈部分
1、用凑微分法求下列函数的不定积分
(1) (一级)(2) (二级)
(3) (二级)(4) (二级)
(5) (二级)(6) (二级)
(7) (二级)(8) (二级)
(9) (三级)(10) (三级)
2、用凑微分法求下列函数的定积分
特点:通过变换习题的手段,一方面进一步的巩固积分基本公式,另一方面锻炼学生的观察能力和知识的迁移能力。
2、授课部分
(一)新课讲授
利用基本积分公式与不定积分的性质,所能计算的不定积分是非常有限的.因此有必要进一步来研究不定积分的求法.由微分运算与积分运算的互逆关系,我们可以把复合函数的微分法反过来用于求不定积分,利用中间变量的代换,得到复合函数的积分法,称为换元法积分法,简称换元法。我们来讨论两类换元法-----第一类换元法和第二类换元法.本节课我们来学习第一换元法,也称为凑微分法.