五校联考高三数学试卷答案

合集下载

江苏省五校2025届高三第二次联考数学试卷含解析

江苏省五校2025届高三第二次联考数学试卷含解析

江苏省五校2025届高三第二次联考数学试卷注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设全集U =R ,集合{}221|{|}xM x x x N x =≤=,<,则UM N =( )A .[]0,1B .(]0,1C .[)0,1D .(],1-∞2.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为( ) A .13B .23C .33D .233.做抛掷一枚骰子的试验,当出现1点或2点时,就说这次试验成功,假设骰子是质地均匀的.则在3次这样的试验中成功次数X 的期望为( ) A .B .C .1D .24.一个几何体的三视图如图所示,则这个几何体的体积为( )A 3236π+ B .836πC 323163π D .16833π5.已知平面α,β,直线l 满足l α⊂,则“l β⊥”是“αβ⊥”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .即不充分也不必要条件6.函数()sin x y x-=([),0x π∈-或(]0,x π∈)的图象大致是( )A .B .C .D .7.已知函数()x f x e b =+的一条切线为(1)y a x =+,则ab 的最小值为( ) A .12e-B .14e-C .1e-D .2e-8.设0.08log 0.04a =,0.3log 0.2b =,0.040.3c =,则a 、b 、c 的大小关系为( ) A .c b a >>B .a b c >>C .b c a >>D .b a c >>9.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用22()4⨯⨯+=⨯+=勾股股勾朱实黄实弦实-,化简,得222+=勾股弦.设勾股形中勾股比为1:3,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )A .134B .866C .300D .50010.若(1+2ai)i =1-bi ,其中a ,b ∈R ,则|a +bi|=( ). A .12B .5C .52D .511.集合{|20}N A x x B =-≤=,,则A B =( )A .{}1B .{}1,2C .{}0,1D .{}0,1,212.某个小区住户共200户,为调查小区居民的7月份用水量,用分层抽样的方法抽取了50户进行调查,得到本月的用水量(单位:m 3)的频率分布直方图如图所示,则小区内用水量超过15 m 3的住户的户数为( )A .10B .50C .60D .140二、填空题:本题共4小题,每小题5分,共20分。

2025届浙江省杭州市五校联盟高三第二次联考数学试卷含解析

2025届浙江省杭州市五校联盟高三第二次联考数学试卷含解析

2025届浙江省杭州市五校联盟高三第二次联考数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。

2.答题时请按要求用笔。

3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。

4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。

5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.运行如图所示的程序框图,若输出的值为300,则判断框中可以填( )A .30i >?B .40i >?C .50i >?D .60i >?2.已知x ,y R ∈,则“x y <”是“1xy <”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3.若不等式22ln x x x ax -+对[1,)x ∈+∞恒成立,则实数a 的取值范围是( )A .(,0)-∞B .(,1]-∞C .(0,)+∞D .[1,)+∞4.等比数列{}n a 的各项均为正数,且384718a a a a +=,则3132310log log log a a a +++=() A .12 B .10 C .8 D .32log 5+5.已知集合{}22|A x y x ==-,2{|}10B x x x =-+≤,则A B =( )A .[12]-,B .[2]-,C .(2]-,D .2,2⎡-⎣6.给出下列三个命题:①“2000,210x x x ∃∈-+≤R ”的否定;②在ABC 中,“30B ︒>”是“3cos 2B <”的充要条件; ③将函数2cos2y x =的图象向左平移6π个单位长度,得到函数π2cos 26y x ⎛⎫=+ ⎪⎝⎭的图象. 其中假命题的个数是( )A .0B .1C .2D .37.将函数()sin(2)3f x x π=-()x R ∈的图象分别向右平移3π个单位长度与向左平移n (n >0)个单位长度,若所得到的两个图象重合,则n 的最小值为( )A .3πB .23πC .2πD .π8.已知函数()ln ln(3)f x x x =+-,则( )A .函数()f x 在()0,3上单调递增B .函数()f x 在()0,3上单调递减C .函数()f x 图像关于32x =对称D .函数()f x 图像关于3,02⎛⎫ ⎪⎝⎭对称 9.已知,x y 满足001x y x y x -⎧⎪+⎨⎪⎩,则32y x --的取值范围为( ) A .3,42⎡⎤⎢⎥⎣⎦ B .(1,2] C .(,0][2,)-∞+∞ D .(,1)[2,)-∞⋃+∞10.已知等差数列{}n a 中,若5732a a =,则此数列中一定为0的是( )A .1aB .3aC .8aD .10a11.如图,在平面四边形ABCD 中,满足,AB BC CD AD ==,且10,8AB AD BD +==,沿着BD 把ABD 折起,使点A 到达点P 的位置,且使2PC =,则三棱锥P BCD -体积的最大值为( )A .12B .122C .23D .16312.函数||1()e sin 28x f x x =的部分图象大致是( ) A . B .C .D .二、填空题:本题共4小题,每小题5分,共20分。

浙江省五校联考2024届高考数学模拟卷含答案

浙江省五校联考2024届高考数学模拟卷含答案

2024年浙江省高考数学模拟卷(答案在最后)命题:一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足1i3i z=+-,则z 的共轭复数z 在复平面上对应的点位于()A.第一象限 B.第二象限C.第三象限D.第四象限【答案】D 【解析】【分析】利用复数的运算性质求出z ,再利用共轭复数的性质求出z ,最后利用复数和对应点的关系求解即可.【详解】由题意得1i 3iz=+-,故2(1i)(3i)33i i i 2i 4z =+-=+--=+,故2i 4z =-+,显然z 在复平面上对应的点是(4,2)-,在第四象限,故D 正确.故选:D2.设集合{}21,Z M x x k k ==+∈,{}31,Z N x x k k ==-∈,则M N ⋂=()A.{}21,Z x x k k =+∈B.{}31,Z x x k k =-∈C.{}61,Z x x k k =+∈ D.{}61,Z x x k k =-∈【答案】D 【解析】【分析】利用最小公倍数排除A ,B ,利用奇数和偶数排除C ,求解即可.【详解】易知集合{}21,Z M x x k k ==+∈,{}31,Z N x x k k ==-∈,则M N ⋂中k 前面的系数应为2,3的最小公倍数,故排除A ,B ,对于C ,当1k =时,集合{}61,Z x x k k =+∈为{}7x x =,而令317k -=,可得k 不为整数,故{}31,Z N x x k k ==-∈不含有7,可得M N ⋂中不含有7,故C 错误,故选:D3.已知不共线的平面向量a ,b满足()()2a b a b λλ++∥ ,则正数λ=()A.1B.C.D.2【答案】B 【解析】【分析】思路一:根据向量共线的判定条件即可解出λ.思路二:由共线向量基本定理即可得解.【详解】方法一:由已知有12λλ⋅=⋅,0λ>,解得λ=方法二:设()()2,R a b a b λμλμ+=+∈ ,由题意120μλλμ=⎧⎨=>⎩,解得λ=故选:B.4.传输信号会受到各种随机干扰,为了在强干扰背景下提取微弱信号,可用同步累积法.设s 是需提取的确定信号的值,每隔一段时间重复发送一次信号,共发送m 次,每次接收端收到的信号()1,2,3,,i i X s i m ε=+= ,其中干扰信号i ε为服从正态分布()20,N σ的随机变量,令累积信号1i i m Y X ==∑,则Y 服从正态分布()2,N ms m σ,定义信噪比为信号的均值与标准差之比的平方,例如1X 的信噪比为2s σ⎛⎫ ⎪⎝⎭,则累积信号Y 的信噪比是接收一次信号的()倍A.B.mC.32mD.2m 【答案】B 【解析】【分析】利用正态分布性质,根据信噪比的定义列式计算即可求解.【详解】由Y 服从正态分布()2,N ms m σ,则Y的信噪比为22s m σ⎛⎫= ⎪⎝⎭,又接收一次信号1X 的信噪比为2s σ⎛⎫ ⎪⎝⎭,所以22s m m s σσ⎛⎫⎪⎝⎭=⎛⎫ ⎪⎝⎭,所以累积信号Y 的信噪比是接收一次信号的m 倍.故选:B5.已知函数()πcos 24f x x ⎛⎫=+ ⎪⎝⎭,则“()ππ8k k θ=+∈Z ”是“()f x θ+为奇函数且()f x θ-为偶函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】【分析】由三角函数奇偶性、诱导公式以及充分不必要条件的定义即可判断.【详解】一方面,当,()ππ8k k θ=+∈Z 时,()ππcos 22πsin 244f x x k x θ⎛⎫+=+++=- ⎪⎝⎭是奇函数,()ππcos 22πcos 244f x x k x θ⎛⎫-=+--= ⎪⎝⎭是偶函数,故充分性成立,另一方面,当5π8θ=时,有()π5πcos 2sin 244f x x x θ⎛⎫+=++= ⎪⎝⎭是奇函数,()π5πcos 2cos 244f x x x θ⎛⎫-=+-=- ⎪⎝⎭是偶函数,但此时关于k 的方程()π5ππ88k k +=∈Z 没有解,故必要性不成立,综上所述,在已知()πcos 24f x x ⎛⎫=+ ⎪⎝⎭的情况下,“()ππ8k k θ=+∈Z ”是“()f x θ+为奇函数且()f x θ-为偶函数”的充分而不必要条件.故选:A.6.在平面直角坐标系xOy 中,直线2y x t =+与圆C :22240x y x y +-+=相交于点A ,B ,若2π3ACB ∠=,则t =()A.12-或112-B.-1或-6C.32-或132- D.-2或-7【答案】C 【解析】【分析】先将圆的一般方程化为标准方程,根据2π3ACB ∠=,得到圆心C 到直线l 的距离,再利用点到直线的距离公式求得t 的值即可.【详解】由题意可知,圆C :22240x y x y +-+=,标准化后可得圆C :()()22125x y -++=因为,2π3ACB ∠=,过点C 作AB 的垂线CD ,AB CD ⊥.如图所示,AC BC ==,在Rt ACD 中,π5cos 32CD ==.所以,圆心C 到直线l 的距离:52d ==因此,542t +=,解得,12313,22t t =-=-故选:C .7.已知甲、乙、丙、丁、戊5人身高从低到高,互不相同,将他们排成相对身高为“高低高低高”或“低高低高低”的队形,则甲、丁不相邻的不同排法种数为()A.12 B.14C.16D.18【答案】B 【解析】【分析】将排法分为两种情况讨论,再利用分类加法计数原理相加即可.【详解】依据题意,分两种情况讨论,情况一:高低高低高依次对应1-5号位置,规定甲在2号位,则乙在1号位或4号位,而甲,丁不相邻,当乙在1号位时,此时为乙甲戊丙丁,共1种,当乙在4号位时,此时有丙甲戊乙丁,戊甲丙乙丁,共2种,易得倒序排列和正序排列种数相同,故本情况共6种,情况二:低高低高低依次对应1-5号位置,假设戊在2号位,若丁在1号位,此时有丁戊甲丙乙,丁戊乙丙甲,共2种,若丁在4号位,此时有甲戊丙丁乙,甲戊乙丁丙,共2种,易得倒序排列和正序排列种数相同,故本情况共8种,故符合题意的情况有8614+=种,故B 正确.故选:B.8.已知双曲线()22221,0x y a b a b-=>上存在关于原点中心对称的两点A ,B ,以及双曲线上的另一点C ,使得ABC 为正三角形,则该双曲线离心率的取值范围是()A.)+∞B.)+∞C.()2,+∞ D.,3∞⎛⎫+ ⎪ ⎪⎝⎭【分析】设点(),A x y,则可取),C ,代入双曲线方程整理可得22222233y a b x a b+=+,结合渐近线列式求解即可.【详解】由题意可知:双曲线的渐近线方程为b y x a=±,设点(),A x y,则可取),C,则222222221331x y a b y x a b ⎧-=⎪⎪⎨⎪-=⎪⎩,整理得2222222233y a b b x a b a +=<+,解得22b a >,即222c a a ->,可得222c a>,则c e a ==所以该双曲线离心率的取值范围是)∞+.故选:A.【点睛】关键点点睛:1.巧妙设点:设点(),A x y,根据垂直和长度关系可取),C;2.根据渐近线的几何意义可得:2222y b x a<.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知函数()()1e x f x x =+,则下列结论正确的是()A.()f x 在区间()2,-+∞上单调递增B.()f x 的最小值为21e -C.方程()2f x =的解有2个D.导函数()f x '的极值点为3-【分析】利用导数判断单调性,求解最值判断A ,B ,将方程解的问题转化为函数零点问题判断C ,对()f x '构造函数再次求导,判断极值点即可.【详解】易知()()1e x f x x =+,可得()()2e x f x x +'=,令()0f x '<,(),2x ∞∈--,令()0f x '>,()2,x ∞∈-+,故()f x 在(),2∞--上单调递减,在()2,∞-+上单调递增,故()f x 的最小值为()212e f -=-,故A ,B 正确,若讨论方程()2f x =的解,即讨论()()1e 2xg x x =+-的零点,易知()2122eg -=--,()10g >,故()()120g g ⋅-<,故由零点存在性定理得到存在()02,1x ∈-作为()g x 的一个零点,而当x →-∞时,()g x →-2,显然()g x 在(),2∞--内无零点,故()()1e 2xg x x =+-只有一个零点,即()2f x =只有一个解,故C 错误,令()()()2e xh x f x x =+'=,故()()3e xh x x =+',令()0h x '=,解得3x =-,而(0)0h '>,(4)0h '-<,故3x =-是()h x '的变号零点,即3x =-是()h x 的极值点,故得导函数()f x '的极值点为3-,故D 正确.故选:ABD10.南丁格尔是一位英国护士、统计学家及社会改革者,被誉为现代护理学的奠基人.1854年,在克里米亚战争期间,她在接到英国政府的请求后,带领由38名志愿女护士组成的团队前往克里米亚救治伤员,并收集士兵死亡原因数据绘制了如下“玫瑰图”.图中圆圈被划分为12个扇形,按顺时针方向代表一年中的各个月份.每个扇形的面积与该月的死亡人数成比例.扇形中的白色部分代表因疾病或其他原因导致的死亡,灰色部分代表因战争受伤导致的死亡.右侧图像为1854年4月至1855年3月的数据,左侧图像为1855年4月至1856年3月的数据.下列选项正确的为()A.由于疾病或其他原因而死的士兵远少于战场上因伤死亡的士兵B.1854年4月至1855年3月,冬季(12月至来年2月)死亡人数相较其他季节显著增加C.1855年12月之后,因疾病或其他原因导致的死亡人数总体上相较之前显著下降D.此玫瑰图可以佐证,通过改善军队和医院的卫生状况,可以大幅度降低不必要的死亡【答案】BCD【解析】【分析】根据每个扇形的面积与该月的死亡人数成比例,分析相应的面积大小或面积变化,就能判断出选项A、B、C的正确与否,随着38名志愿女护士的加入,分析未来一年“玫瑰图”每个扇形白色部分面积在逐步的变少,可以判断出因疾病或其他原因导致的死亡的士兵越来越少,是由于志愿女护士的加入,改善了军队和医院的卫生状况,从而降低了不必要的死亡,所以D选项是正确的.【详解】对于A选项,1854年4月至1855年3月,因为每个扇形白色部分面积远大于灰色部分的面积,根据每个扇形的面积与该月的死亡人数成比例,可以得出由于疾病或其他原因而死的士兵远大于战场上因伤死亡的士兵;错误;对于B选项,从右侧图像可以看出,冬季(12月至来年2月)相应的扇形面积,大于其他季节时扇形的面积,表明在冬季死亡人数相较其他季节显著增加,正确;对于C选项,从左侧图像可以看出,1855年12月之后,每个扇形白色部分的面积较大幅度的在减少,表明因疾病或其他原因导致的死亡人数总体上相较之前显著下降,正确;对于D选项,随着38名志愿女护士的加入,分析未来一年“玫瑰图”每个扇形白色部分面积、在逐步的变少,可以判断出因疾病或其他原因导致的死亡的士兵越来越少,因此,可以推断出随着志愿女护士的加入,改善了军队和医院的卫生状况,从而使得因疾病或其他原因导致的死亡的士兵越来越少,大幅度降低了不必要的死亡,正确,故选:BCD.11.如图,平面直角坐标系上的一条动直线l 和x ,y 轴的非负半轴交于A ,B 两点,若1OA OB +=恒成立,则l 始终和曲线C1+=相切,关于曲线C 的说法正确的有()A.曲线C 关于直线y x =和y x =-都对称B.曲线C 上的点到11,22⎛⎫⎪⎝⎭和到直线y x =-的距离相等C.曲线C上任意一点到原点距离的取值范围是,14⎤⎥⎣⎦D.曲线C 和坐标轴围成的曲边三角形面积小于π14-【答案】BCD 【解析】【分析】根据方程与图形,进行距离和面积的相关计算,逐项判断即可.【详解】对于A ,曲线C1+=中,0,0x y ≥≥,所以不关于直线y x =-对称,故错误;对于B ,设C 上一点(),P x y2222210x y x y xy =⇔+---+=,而()222114122210x y xy x y x y x y xy =⇔++=⇒=--⇔+---+=,故正确;对于C,2221OP x y =+≤=,()22222112228x y x y ⎛⎫++ ⎪+≥≥= ⎪ ⎪⎝⎭,所以221[,1]8x y +∈,所以曲线C上任意一点到原点距离的取值范围是,14⎤⎥⎣⎦,故正确;对于D ,(),P x y 到点()1,1A 的距离()()2222211222211AP x y x y x y xy =-+-=+--+=+≥,故曲线C 位于圆()()22111x y -+-=的左下部分四分之一圆弧的下方,故围成面积小于π14-.故选:BCD .三、填空题:本小题共3小题,每小题5分,共15分.12.若62a x x ⎛⎫- ⎪⎝⎭展开式中的常数项为160-,则实数=a ______.【答案】1【解析】【分析】求得二项展开式的通项,结合通项求得r 的值,代入列出方程,即可求解.【详解】由二项式62a x x ⎛⎫- ⎪⎝⎭展开式的通项为()6662166C 2(()2C r r r r r r rr a T x a x x ---+=-=-,令620r -=,可得3r =,代入可得333346()2C 160160T a a =-=-=-,解得1a =.故答案为:1.13.已知公差为正数的等差数列{}n a 的前n 项和为n S ,{}n b 是等比数列,且()22342S b b =-+,()()612566S b b b b =++,则{}n S 的最小项是第______项.【答案】2【解析】【分析】设出公比,公差,首项,依据给定条件得到62026S S +=,进而得到132da =-,最后写出n S ,利用二次函数的性质求解即可.【详解】设{}n b 的公比为q ,故()()2223414222S b b b b q =-+=-+,()()()24612561266S b b b b b b q =++=+,可得62026S S +=,设{}n a 的首项为1a ,公差为d ,故得110212665a d a d++=+,化简得1230a d +=,解得132da =-,故23(1)2222n d n n S n d n n d d ---=+=,故当n S 最小时,2222d n d -=-=⨯,故得2S 是n S 的最小项,即{}n S 的最小项是第2项.故答案为:214.已知正三角形ABC 的边长为2,中心为O ,将ABC 绕点O 逆时针旋转角2π03θθ⎛⎫<<⎪⎝⎭,然后沿垂直于平面ABC 的方向向上平移至A B C ''' ,使得两三角形所在平面的距离为3,连接AA ',AC ',BA ',BB ',CB ',CC ',得到八面体ABCA B C ''',则该八面体体积的取值范围为______.【答案】3⎛ ⎝⎦【解析】【分析】将八面体转换成四个三棱锥的体积之和,结合三角函数的值域即可得解.【详解】先证明一个引理:如图所示,在三棱柱111ABC A B C -中,11111,A C AB a C A B CAB α==∠=∠=,三棱柱111ABC A B C -的高为h ,则三棱锥的体积为1121sin 6C A AB V a h α-=.引理的证明如下:()1111111111111111111112223C A AB C A AB C A ABB ABC A B C C ABC ABC A B C ABC A B C V V V V V V V -------⎛⎫===-=- ⎪⎝⎭111221111sin sin 3326ABC A B C V a h a h αα-⎛⎫==⋅= ⎪⎝⎭,引理得证.事实上上述引理等价于,若三棱锥11C A AB -满足,11A C AB a ==,异面直线11,C A AB 所成夹角为α,且异面直线11,C A AB 之间的距离为h ,则三棱锥的体积为1121sin 6C A AB V a h α-=.从而由上述引理有ABCA B C A ABC C A B C A B BC A C ACV V V V V ''''''''---''-'=+++213261π261262222sin 22sin 34363363θθ⎛⎫=⋅⋅⋅+⋅⋅⋅+⋅⋅⋅⋅⋅ ⎪⎝⎭π1sin sin333θθ⎫⎛⎫=+++⎪ ⎪⎪⎝⎭⎭11sin cos 22θθ⎫=++⎪⎪⎭π1sin 6θ⎫⎛⎫=++ ⎪⎪⎝⎭⎭.若2π03θ<<,则ππ5π663θ<+<,从而πsin 6θ⎛⎫+ ⎪⎝⎭的取值范围是1,12⎛⎤⎥⎝⎦,π1sin6ABCA B C V θ'''⎫⎛⎫=++ ⎪⎪⎝⎭⎭的取值范围是3⎛ ⎝⎦.故答案为:3⎛ ⎝⎦.【点睛】关键点点睛:关键在于对八面体的适当划分,结合体积公式以及引理即可顺利得解.四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.在ABC 中,角A ,B ,C 的对边为a ,b ,c ,已知1tan A ,1cos B ,1tan C是等差数列.(1)若a ,b ,c 是等比数列,求tan B ;(2)若π3B =,求()cos A C -.【答案】(1)12(2)24-【解析】【分析】(1)运用等差数列和等比数列的中项性质,结合同角三角函数的基本关系、两角和的正弦公式,化简求得1tan 2B =;(2)由(1)得2sin cos sin sin BB A C=,再借助角B 的值,以及两角和与差的余弦公式即可求解.【小问1详解】因为a ,b ,c 是等比数列,所以2b ac =,有2sin sin sin B A C =,因为1tan A ,1cos B ,1tan C 是等差数列,所以211cos cos sin cos tan tan sin sin sin sin A C BB AC A C A C =+=+=.故22sin sin 1cos sin sin sin sin B B B A C B B===.所以1tan 2B =.【小问2详解】由(1)的过程可知2sin cos sin sin B B A C =,若π3B =,则13sin sin sin cos 28A CB B ==.又由()13cos cos cos cos sin sin cos cos 28B AC A C A C A C -=-=+=-=-,得1cos cos 82A C =-,故()12cos cos cos sin sin 8284A C A C A C -=+=-+=.16.已知椭圆()222210x y a b a b+=>>的左焦点为F ,椭圆上的点到点F 距离的最大值和最小值分别为1+1-.(1)求该椭圆的方程;(2)对椭圆上不在上下顶点的任意一点P ,其关于y 轴的对称点记为P ',求PF P F '+;(3)过点()2,0Q 作直线交椭圆于不同的两点A ,B ,求FAB 面积的最大值.【答案】(1)2212x y +=;(2);(3)4.【解析】【分析】(1)设出椭圆上的点00(,)M x y ,求出||MF 的最值,进而求出,a c 即可.(2)利用椭圆的对称性及椭圆定义求解即得.(3)设出直线AB 的方程,与椭圆方程联立求出三角形面积的表达式,再求出最大值即得.【小问1详解】令(,0)F c -,设00(,)M x y 是椭圆22221x y a b+=上的点,则22220002(),b y a x a x a a =--≤≤,则0||c MF a x a===+,显然当0x a =-时,min ||MF a c =-,当0x a =时,max ||MF a c =+,则11a c a c ⎧-=⎪⎨+=⎪⎩,解得1a c ⎧=⎪⎨=⎪⎩所以椭圆的方程为2212x y +=.【小问2详解】记椭圆的右焦点为F ',由椭圆对称性知,||||P F PF ''=,所以2PF P F PF PF a +=+==''.【小问3详解】显然直线AB 不垂直于y 轴,设直线AB 的方程为2x my =+,1122(,),(,)A x y B x y ,由22222x my x y =+⎧⎨+=⎩消去x 得22(2)420m y my +++=,222168(2)8(2)0m m m ∆=-+=->,则12122242,22m y y y y m m +=-=++,1222||y y m -==+,因此122|1322|||22ABFS QF y y m =-=+,令0t =>,于是24224ABF S t t =≤=+⨯ ,当且仅当2t =,即m =时取到等号,所以FAB面积的最大值4.17.如图,已知三棱台111ABC A B C -,112AB BC CA AA BB =====,114A B =,点O 为线段11A B 的中点,点D 为线段1OA 的中点.(1)证明:直线AD ∥平面1OCC ;(2)若平面11BCC B ⊥平面11ACC A ,求直线1AA 与平面11BCC B 所成线面角的大小.【答案】(1)证明见解析(2)π4【解析】【分析】(1)取AB 中点M ,利用平行四边形的性质证明AD OM ∥,从而利用线面平行的判定定理证明即可;(2)法1(建系):利用梯形性质证明1A O OM ⊥,建立空间直角坐标系,设))1cos C αα-,利用平面11BCC B ⊥平面11ACC A 求得,0,33C ⎛⎫⎪⎪⎝⎭,再利用线面角的向量公式求解即可;法2(综合法):连接1CA ,1CB ,取11A C 中点N ,延长1C C ,1A A ,1B B 交于点V ,根据面面垂直的性质定理,结合线面角的定义得1AVC ∠即为所求,在直角三角形中求解即可;法3(三余弦定理):延长1C C ,1A A ,1B B 交于点V ,根据三余弦定理求解即可.【小问1详解】取AB 中点M ,连接,,CM MO CO ,则1CM C O ∥,故O ,M ,C ,1C 共面,由AM 与OD 平行且相等得,ODAM 为平行四边形,故AD OM ∥,因为AD ⊄平面1OCC ,OM ⊂平面1OCC ,所以AD ∥平面1OCC .【小问2详解】法1(建系):连接OA ,因为BA ∥1B O ,且1=2BA B O =,所以1BAOB 为平行四边形,故12AO BB ==,又点D 为线段1OA 的中点,所以1AO AD ⊥,由AD OM ∥得1A O OM ⊥,故以O 为原点,OM ,1OA为x ,y 轴正方向,垂直于平面11ABB A 向上为z 轴正方向,建立空间直角坐标系Oxyz.则)()())11,0,2,0,0,2,0,1,0AA B B--,因为2AB BC CA ===,AB 的中点M ,所以AB CM ⊥,又AB OM ⊥,CM OM M = ,,CM OM ⊂平面CMO ,所以AB ⊥平面CMO ,又AB ⊂平面11ABB A ,所以平面CMO ⊥平面11ABB A ,设CMO α∠=,CM =,则))1cos ,0,Cαα-,设平面11ACC A 的法向量为()1111,,n x y z =,()))1,,1cos ,2,AC A C αααα=-=-- ,则()111111cos sin 01cos 2sin 0y y αααα⎧-+=⎪--+=,取11x =,则111cos sin y z αα+==,则平面11ACC A的法向量为11cos sin n αα+⎛⎫= ⎪⎝⎭ ;设平面11BCC B 的法向量为()2222,,n x y z =,()))1,1cos ,2,BC B C αααα==- ,则()222222cos sin 01cos 2sin 0y y αααα⎧+=⎪-+=,取21x =,则221cos sin y z αα+==,则平面11BCC B的法向量为21cos 1,sin n αα+⎛⎫= ⎪⎝⎭,因为平面11BCC B ⊥平面11ACC A ,所以120n n ⋅=,即(1cos 1cos 110sin sin αααα++⨯+⨯=,即23cos 2cos 10αα+-=,解得1cos 3α=或cos 1α=-(舍去),故,0,33C ⎛⎫ ⎪ ⎪⎝⎭,(21,n =,记直线1AA 与平面11BCC B 所成线面角为θ,()1AA =,则1212sin 2AA n AA n θ⋅===,故π4θ=,即直线1AA 与平面11BCC B 所成线面角π4.法2(综合法):连接1CA ,1CB ,取11A C 中点N,则1111CN AA NA NC ====,故11CA CC ⊥,由平面11BCC B ⊥平面11ACC A ,1CC =平面11BCC B 平面11ACC A ,1CA ⊂平面11ACC A ,故1CA ⊥平面11BCC B ,1B C ⊂平面11BCC B ,故11B C A C ⊥,又由11B C A C =,得11B C AC ==,延长1C C ,1A A ,1B B 交于点V ,则所求线面角即1AVC ∠,而111sin 2A C AVC AV ∠==,所以1πsin 4AVC ∠=,故直线1AA 与平面11BCC B 所成线面角的大小为π4.法3(三余弦定理):先证三余弦定理:设A 为平面α上一点,过点A 的直线AO 在α平面上的射影为AB ,AC 为α平面内的一条直线,令OAC θ∠=,1OAB θ∠=,2BAC θ∠=,则这三个角存在一个余弦关系:12cos cos cos θθθ=(其中1θ和2θ只能是锐角),称为三余弦定理,又称最小张角定理.证明:如上图,自点O 作OB AB ⊥于点B ,过B 作BC AC ⊥于C ,连接OC ,因为OB ⊥平面α,AC ⊂平面α,所以OB AC ⊥,又BC AC ⊥,BC OB B ⋂=,,BC OB ⊂平面CBO ,所以AC ⊥平面CBO ,又OC ⊂平面CBO ,所以AC OC ⊥,则cos ,cos ,cos AC AB ACOAC OAB BAC OA OA AB∠=∠=∠=,所以cos cos cos OAC OAB BAC ∠=∠⋅∠,即12cos cos cos θθθ=.延长1C C ,1A A ,1B B 交于点V ,则11π3BVA ∠=,1111AVC BVC ∠=∠,由平面11BCC B ⊥平面11ACC A ,用三余弦定理得111111cos cos cos BVA C VA C VB ∠=∠⋅∠,所以2111cos 2C VA ∠=,所以112cos 2C VA ∠=,故直线1AA 与平面11BCC B 所成线面角为11π4C VA ∠=.18.第二次世界大战期间,了解德军坦克的生产能力对盟军具有非常重要的战略意义.已知德军的每辆坦克上都有一个按生产顺序从1开始的连续编号.假设德军某月生产的坦克总数为N ,随机缴获该月生产的n 辆(n N <)坦克的编号为1X ,2X ,…,n X ,记{}12max ,,,n M X X X = ,即缴获坦克中的最大编号.现考虑用概率统计的方法利用缴获的坦克编号信息估计总数N .甲同学根据样本均值估计总体均值的思想,用12nX X X X n+++=估计总体的均值,因此()112Ni N N N X i =+≈=∑,得12N X +≈,故可用21Y X =-作为N 的估计.乙同学对此提出异议,认为这种方法可能出现Y M <的无意义结果.例如,当5N =,3n =时,若11X =,22X =,34X =,则4M =,此时124112133Y M ++=⋅-=<.(1)当5N =,3n =时,求条件概率()5P Y M M <=;(2)为了避免甲同学方法的缺点,乙同学提出直接用M 作为N 的估计值.当8N =,4n =时,求随机变量M 的分布列和均值()E M ;(3)丙同学认为估计值的均值应稳定于实际值,但直观上可以发现()E M 与N 存在明确的大小关系,因此乙同学的方法也存在缺陷.请判断()E M 与N 的大小关系,并给出证明.【答案】(1)16(2)分布列见解析,()365E M =(3)()E M N <,证明见解析【解析】【分析】(1)根据题意分别求出()5P M =和()5P Y M M <=且,代入条件概率公式计算即得;(2)根据题意,列出M 的可能取值4,5,6,7,8,利用古典概型概率公式计算概率,写出分布列,求出其均值即可;(3)直观判断()E M N <,根据随机变量均值的定义列式,并将其适当放大,利用分布列的性质即可证得.【小问1详解】由5N =,3n =知,当5M =时,最大编号为5,另2辆坦克编号有24C 种可能,故()2435C 35C 5P M ===,由Y M <,有215X -<,解得3X <,故总编号和小于9,则除最大编号5外,另2个编号只能是1,2,故()35115C 10P Y M M <===且,因此()()()1511053565P Y M M P Y M M P M <=<=====且;【小问2详解】依题意,用M 作为N 的估计值,因8N =,则M 的可能取值有4,5,6,7,8,于是3348C 1(4)C 70P M ===,3448C 42(5)C 7035P M ====,3548C 11(6)C 707P M ====,3648C 202(7)C 707P M ====,3748C 351(8)C 702P M ====,于是M 的分布列如下:M 45678P170235172712故()12121364567870357725E M =⨯+⨯+⨯+⨯+⨯=;【小问3详解】直观上可判断()E M N <,证明:因()()(1)(1)()E M nP M n n P M n NP M N ==++=+++= [()(1)()]N P M n P M n P M N N <=+=+++== .【点睛】关键点点睛:本题解题关键在于,正确理解题意,将相关量合理表达,如把握,,M n N 的含义,求出()5P M =和()5P Y M M <=且;以及用M 作为N 的估计值时,M 的可能值的概率;最后对于()E M N <的推理证明.19.卷积运算在图象处理、人工智能、通信系统等领域有广泛的应用.一般地,对无穷数列{}n a ,{}n b ,定义无穷数列()11N nn k n kk c a bn +-+==∈∑,记作{}{}{}*n n n a b c =,称为{}n a 与{}n b 的卷积.卷积运算有如图所示的直观含义,即{}n c 中的项依次为所列数阵从左上角开始各条对角线上元素的和,易知有交换律{}{}{}{}**n n n n a b b a =.(1)若n a n =,2nn b =,{}{}{}*n n n a b c =,求1c ,2c ,3c ,4c ;(2)对i +∈N ,定义{}i n T a 如下:①当1i =时,{}{}i n n T a a =;②当2i ≥时,{}i n T a 为满足通项10,,n n i n i d a n i+-<⎧=⎨≥⎩的数列{}n d ,即将{}n a 的每一项向后平移1i -项,前1i -项都取为0.试找到数列(){}i n t ,使得(){}{}{}innint a T a ⋅=;(3)若n a n =,{}{}{}*n n n a b c =,证明:当3n ≥时,122n n n n b c c c --=-+.【答案】(1)12c =,28c =,322c =,452c =(2)()1,0,n i n i t n i=⎧=⎨≠⎩(3)证明见解析【解析】【分析】(1)根据数列{}n a 和数列{}n b 的通项公式,分别求出这两个数列的前四项,再根据数列{}n c 的定义求出1c ,2c ,3c ,4c .(2)通过特例(1)n t 和前面的一些项来寻找规律及性质,有效转化特殊与一般.(3)思路一:由卷积运算的交换律,得()11nkn k n k bc =+-=∑,记{}n b 的前n 项和为n S ,再利用n S 求n b .思路二:记{}n b 的前n 项和为n S ,(){}int 对所有i +∈N 对应项相加所得的数列为{}nT ,易证卷积关于数列加法有分配律、卷积运算满足结合律,因此可得{}{}{}*n n n T b S =,1nn ii c S==∑,再利用n S 求n b .【小问1详解】因为n a n =,2nn b =,所以11a =,12b =;22a =,24b =;33a =,38b =;44a =,416b =.因为{}{}{}*n n n a b c =,()11N n n k n k k c a bn +-+==∈∑,所以12c =,28c =,322c =,452c =.【小问2详解】(1)1,10,2n n t n =⎧=⎨≥⎩,对一般的N i +∈,()1,0,n i n i t n i =⎧=⎨≠⎩.【小问3详解】方法一:记{}n b 的前n 项和为n S ,由卷积运算的交换律有()11n k n k n k b c =+-=∑,故()11n n k n k n S kbc =+-=∑,因此()()111121n n k n n k n S kb n bc +++=+--+=∑,②②-①得11n n n S c c ++=-,故当3n ≥时,()()1112122n n n n n n n n n n b S S c c c c c c c ------=-=---=-+.方法二:记{}n b 的前n 项和为n S ,常数列()1N n T n +∈=∀,注意(Ⅰ)易证卷积关于数列加法有分配律,将(Ⅰ)中所有数列对应项相加,得{}{}{}*n n n T b S =,注意(Ⅱ)注意{}n T 是(){}i nt 对所有i +∈N 对应项相加所得的数列,{}n a 是(){}{}*n n i t T 对所有i +∈N 对应项相加所得的数列,易知卷积运算有结合律,因此将(Ⅱ)中所有数列对应项相加,得{}{}*n n n c a b =的通项即为1n n i i c S==∑,故当3n ≥时,()()1112122n n n n n n n n n n b S S c c c c c c c ------=-=---=-+.注:以上论证可用符号语言说明如下:定义数列加法:{}{}{}n n n z x y =+,其中n n n z x y =+.容易验证卷积运算满足结合律:{}{}(){}{}{}{}()****n n n n n n x y x y ωω=,数列加法关于卷积满足分配律:{}{}(){}{}{}{}{}***n n n n n n nx y x y ωωω+=+.因此{}{}(){}(){}{}(){}(){}{}()11111n n i j i j i n n n n n n n j i j i i a b t t b t t b S ∞∞∞∞=====⎛⎫⎛⎫⎛⎫*=**=**= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑∑∑.【点睛】方法点睛:本题主要考查数列新定义与卷积运算的综合问题,属于难题.1、解决数列新概念问题时需注意:(1)读懂定义,理解新定义数列的含义;(2)通过特例列举前面的一些项来寻找规律及性质,以及新定义数列与已知数列的关系,进行求解.2、卷积运算具有的性质(1)交换律:{}{}{}{}**n n n n a b b a =.(2)结合律:{}{}(){}{}{}{}()****n n n n n n x y x y ωω=.(3)分配律:{}{}(){}{}{}{}{}***n n n n n n nx y x y ωωω+=+.。

2025届上海市五校联考高三第二次诊断性检测数学试卷含解析

2025届上海市五校联考高三第二次诊断性检测数学试卷含解析

2025届上海市五校联考高三第二次诊断性检测数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若函数()f x 的图象如图所示,则()f x 的解析式可能是( )A .()x e xf x x +=B .()21x f x x -=C .()x e xf x x-=D .()21x f x x +=2.在关于x 的不等式2210ax x ++>中,“1a >”是“2210ax x ++>恒成立”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.设函数()f x 在R 上可导,其导函数为()f x ',若函数()f x 在1x =处取得极大值,则函数()y xf x =-'的图象可能是( )A .B .C .D .4.某三棱锥的三视图如图所示,网格纸上小正方形的边长为1,则该三棱锥外接球的表面积为( )A .27πB .28πC .29πD .30π5.已知圆截直线所得线段的长度是,则圆与圆的位置关系是( ) A .内切B .相交C .外切D .相离6.设12F F ,是双曲线()2222100x y a b a b-=>>,的左、右焦点,若双曲线右支上存在一点P ,使()220OP OF F P +⋅=(O 为坐标原点),且123PF PF =,则双曲线的离心率为( ) A .212+ B .21+C .312+ D .31+7.某几何体的三视图如图所示,则该几何体的最长棱的长为( )A .5B .4C .2D .228.函数()1ln 1y x x=-+的图象大致为( )A .B .C .D .9.已知数列11n a ⎧⎫-⎨⎬⎩⎭是公比为13的等比数列,且10a >,若数列{}n a 是递增数列,则1a 的取值范围为( )A .(1,2)B .(0,3)C .(0,2)D .(0,1)10.设正项等比数列{}n a 的前n 项和为n S ,若23S =,3412a a +=,则公比q =( ) A .4±B .4C .2±D .211.已知抛物线2:8C y x =的焦点为F ,A B 、是抛物线上两个不同的点,若||||8AF BF +=,则线段AB 的中点到y 轴的距离为( )A .5B .3C .32D .212.已知集合2{|23}A x y x x ==-++,{}2|log 1B x x =>则全集U =R 则下列结论正确的是( ) A .AB A =B .A B B ⋃=C .()UA B =∅ D .UB A ⊆二、填空题:本题共4小题,每小题5分,共20分。

2024吉林省长春市五校联考高三数学试卷(含答案)

2024吉林省长春市五校联考高三数学试卷(含答案)

2024届高三联合模拟考试数学试题东北师大附中 长春十一高中 吉林一中 四平一中 松原实验中学注意事项:1.答卷前,考生务必将自已的考生号、姓名、考场号填写在答题卡上,2.回答选择时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合(){}{}22log 2,2x A xy x B y y −==−==∣∣,则A B ⋂=( )A.()0,2B.[]0,2C.()0,∞+D.(],2∞− 2.已知复数iz 1i=−,则z 的虚部为( ) A.12−B.1i 2− C.12 D.1i 2 3.将一枚质地均匀的骰子连续抛掷6次,得到的点数分别为1,2,4,5,6,x ,则这6个点数的中位数为4的概率为( ) A.16 B.13 C.12 D.234.刍薨是《九章算术》中出现的一种几何体,如图所示,其底面ABCD 为矩形,顶棱PQ 和底面平行,书中描述了刍薨的体积计算方法:求积术曰,倍下袤,上袤从之,以广乘之,又以高乘之,六而一,即()126V AB PQ BC h =+⋅(其中h 是刍薨的高,即顶棱PQ 到底面ABCD 的距离),已知28,AB BC PAD ==和QBC 均为等边三角形,若二面角P AD B −−和Q BC A −−的大小均为120︒,则该刍薨的体积为( )A.303B.203 9932D.4843+ 5.中国空间站的主体结构包括天和核心舱、问天实验舱和梦天实验舱.假设中国空间站要安排甲,乙,丙,丁4名航天员开展实验,其中天和核心舱安排2人,问天实验舱与梦天实验舱各安排1人.若甲、乙两人不能同时在一个舱内做实验,则不同的安排方案共有( )种 A.8 B.10 C.16 D.20 6.已知π3cos sin 6αα⎛⎫−+= ⎪⎝⎭,则5πsin 6α⎛⎫− ⎪⎝⎭的值是( ) A.3 B.14− C.14 37.已知点F 为地物线2:4C y x =的焦点,过F 的直线l 与C 交于,A B 两点,则2AF BF +的最小值为( )A.22B.4C.322+D.6 8.已的1113sin ,cos ,ln 3332a b c ===,则( ) A.c a b << B.c b a << C.b c a << D.b a c <<二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知数列{}n a 满足*1121,,N 1n n a na n a n +==∈+,则下列结论成立的有( ) A.42a =B.数列{}n na 是等比数列C.数列{}n a 为递增数列D.数列{}6n a −的前n 项和n S 的最小值为6S10.已知正方体1111ABCD A B C D −的棱长为2,M 为空间中动点,N 为CD 中点,则下列结论中正确的是( )A.若M 为线段AN 上的动点,则1D M 与11B C 所成为的范围为ππ,62⎡⎤⎢⎥⎣⎦B.若M 为侧面11ADD A 上的动点,且满足MN ∥平面1AD C ,则点M 2C.若M 为侧面11DCC D 上的动点,且2213MB =,则点M 的轨迹的长度为23π9D.若M 为侧面11ADD A 上的动点,则存在点M 满足23MB MN +=11.已知()()()()1ln ,e 1xf x x xg x x =+=+(其中e 2.71828=为自然对数的底数),则下列结论正确的是( )A.()f x '为函数()f x 的导函数,则方程()()2560f x f x ⎡⎤−'+=⎣⎦'有3个不等的实数解 B.()()()0,,x f x g x ∞∃∈+=C.若对任意0x >,不等式()()2ln ex g a x g x x −+≤−恒成立,则实数a 的最大值为-1D.若()()12(0)f x g x t t ==>,则()21ln 21t x x +的最大值为1e三、填空题:本题共3小题,每小题5分,共15分.12.622x x ⎛⎫− ⎪⎝⎭展开式的常数项为__________.13.已知向量a ,b 为单位向量,且12a b ⋅=−,向量c 与3a b +共线,则||b c +的最小值为__________. 14.已知双曲线2222:1(0,0)x y C a b a b−=>>的左,右焦点分别为12,,F F P 为C 右支上一点,21122π,3PF F PF F ∠=的内切圆圆心为M ,直线PM 交x 轴于点,3N PM MN =,则双曲线的离心率为__________.四、解答题:本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤.15.(本小题13分)为了更好地推广冰雪体育运动项目,某中学要求每位同学必须在高中三年的每个冬季学期选修滑冰、滑雪、冰壶三类体育课程之一,且不可连续选修同一类课程若某生在选修滑冰后,下一次选修滑雪的概率为13:在选修滑雪后,下一次选修冰壶的概率为34,在选修冰壶后,下一次选修滑冰的概率为25. (1)若某生在高一冬季学期选修了滑雪,求他在高三冬季学期选修滑冰的概率:(2)苦某生在高一冬季学期选修了滑冰,设该生在高中三个冬季学期中选修滑冰课程的次数为随机变量X ,求X 的分布列及期望, 16.(本小题15分)在ABC 中,角,,A B C 的对边分别为,,a b c ,已知1,cos cos 2cos 0a C c A b B =+−=. (1)求B ;(2)若2AC CD =,且3BD =c . 17.(本小题15分)如图,在四棱锥P ABCD −中,底面是边长为2的正方形,且6PB BC =,点,O Q 分别为棱,CD PB 的中点,且DQ ⊥平面PBC .(1)证明:OQ ∥平面PAD ; (2)求二面角P AD Q −−的大小. 18.(本小题17分)已知椭圆2222:1(0)x y C a b a b +=>>的两焦点()()121,0,1,0F F −,且椭圆C 过33,P ⎛ ⎝⎭. (1)求椭圆C 的标准方程;(2)设椭圆C 的左、右顶点分别为,A B ,直线l 交椭圆C 于,M N 两点(,M N 与,A B 均不重合),记直线AM 的斜率为1k ,直线BN 的斜率为2k ,且1220k k −=,设AMN ,BMN 的面积分别为12,S S ,求12S S −的取值范围18.(本小题17分) 已知()2e2e xx f x a x =−(其中e 2.71828=为自然对数的底数).(1)当0a =时,求曲线()y f x =在点()()1,1f 处的切线方程, (2)当12a =时,判断()f x 是否存在极值,并说明理由; (3)()1R,0x f x a∀∈+≤,求实数a 的取值范围.五校联合考试数学答案一、单选题1-8ACADB BCD二、多选题9.ABD 10.BC 11.AC三、填空题12.60 13.211414.75四、解答题15.解:(1)若高一选修滑雪,设高三冬季学期选修滑冰为随机事件A , 则()3234510P A =⨯=. (2)随机变量X 的可能取值为1,2.()()323113221171,2.534320534320P X P X ==⨯+⨯===⨯+⨯=所以X 的分布列为:X 1 2P1320 720()137272.202020E X =+⨯= 16.解:(1)1,cos cos 2cos cos cos 2cos 0a C c A b B a C c A b B =∴+−=+−=.()sin cos sin cos 2sin cos sin 2sin cos 0.A C C A B B A C B B ∴+−=+−=又()1ππ,sin sin 0,cos 23A B C A C B B B ++=∴+=≠∴=∴=.(2)2AC CD =,设CD x =,则2AC x =,在ABC 中2222141cos ,1422c x B c x c c +−==∴+−=.在ABC 与BCD 中,22222142cos ,cos ,63042x c x BCA BCD x c x x∠∠+−−==∴−−=.2321321330,0c c c c c ±+∴−−=∴=>∴=. 17.解:(1)取PA 中点G ,连接,GQ GD ∴点Q 为PB 中点,GQ ∴∥1,2AB GQ AB =. 底面是边长为2的正方形,O 为CD 中点,DO ∴∥1,2AB DO AB =. GQ ∴∥,OD GQ OD =∴四边形GQOD 是平行四边形.OQ ∴∥DG . OQ ⊄平面,PAD GD ⊂平面,PAD OQ ∴∥平面PAD .(2)DQ ⊥平面,PBC BC ⊂平面PBC DQ BC ∴⊥.又底面是边长为2的正方形,,,DC BC DQ DC D BC ∴⊥⋂=∴⊥平面DCQ .OQ ⊂平面,DCQ BC OQ ∴⊥.又CQ ⊂平面,DCQ BC CQ ∴⊥. 26,6,2,2PB QB BC QC =∴==∴=底面是边长为2的正方形,22,2DB DQ DQ CQ ∴=∴==,O 为CD 中点,OQ DC ∴⊥.又,,BC OQ DC BC C OQ ⊥⋂=∴⊥平面ABCD .取AB 中点E ,以,,OE OC OQ 所在直线分别为,,x y z 轴建立如图所示的空间直角坐标系O xyz −, 则()()()()()()0,0,0,0,0,1,2,1,0,2,1,0,0,1,0,2,1,2O Q A B D P −−−−所以()()()4,0,2,2,0,0,2,1,1AP AD AQ =−=−=−, 设平面PAD 法向量为(),,m x y z =,则()4200,1,020m AP x z m m AD x ⎧⋅=−+=⎪∴=⎨⋅=−=⎪⎩ 设平面QAD 法向量为(),,n x y z =,则()200,1,120n AQ x y z n n AD x ⎧⋅=−++=⎪∴=−⎨⋅=−=⎪⎩ 2cos ,2m n m n m n⋅>==⋅ 又二面角P AD Q −−范围为()0,π,所以二面角P AD Q −−的大小为π4. 18.解:(1)由题意可得:2222213314c a b c ab ⎧⎪=⎪−=⎨⎪⎪+=⎩,解得2,31a b c =⎧⎪=⎨⎪=⎩22143x y +=;(2)依题意,()()2,0,2,0A B −,设()()1122,,,M x y N x y ,直线BM 斜率为BM k .若直线MN 的斜率为0,则点,M N 关于y 轴对称,必有120k k +=,不合题意.所以直线MN 的斜率必不为0,设其方程为()2x ty m m =+≠±,与椭圆C 的方程联立223412,,x y x ty m ⎧+=⎨=+⎩得()2223463120t y tmy m +++−=,所以()22Δ48340t m=+−>,且12221226,34312.34tm y y t m y y t ⎧+=−⎪⎪+⎨−⎪=⎪+⎩因为()11,M x y 是椭圆上一点,满足 2211143x y +=,所以2121111221111314322444BM x y y y k k x x x x ⎛⎫− ⎪⎝⎭⋅=⋅===−+−−−, 则12324BM k k k =−=,即238BM k k −⋅=.因为()()1221222BM y y k k x x ⋅=−−()()()()121222121212222(2)y y y y ty m ty m t y y t m y y m ==+−+−+−++−()()()()()22222222223123432334,4(2)42831262(2)3434m m m t m m t m t m m m t t −−++====−−−−−−+−++ 所以23m =−,此时22432Δ4834483099t t ⎛⎫⎛⎫=+−=+> ⎪ ⎪⎝⎭⎝⎭,故直线MN 恒过x 轴上一定点2,03D ⎛⎫−⎪⎝⎭. 因此()12222122264,343431232.34334tm t y y t t m y y t t ⎧+=−=⎪++⎪⎨−⎪==−++⎪⎩,所以12S S −=12121212222323y y y y ⎛⎫⎛⎫−−−−−−−− ⎪ ⎪⎝⎭⎝⎭.()()()22212121222833243342283399433334t t y y y y y y t ++−=−=+−==+()2228314334934t t =−++令2122118340,,34439x S S x x t ⎛⎤=∈−=−+ ⎥+⎝⎦ 当211344t =+即0t =时,12S S −86212834860,399S S x x ⎛∴−=−+ ⎝⎦19.解:(1)当0a =时,()()()2,21x x f x xe f x x e =−=+'−.()14.f e =−∴'曲线()y f x =在点()()1,1f 处的切线方程为 ()41242.y e x e ex e =−−−=−+(2)当12a =时,()2122x xf x e xe =−,定义域为(),∞∞−+ ()()()22122,x x x x f x e x e e e x '=−+=−−令()e 22xF x x =−−,则()2xF x e '=−,当()(),ln2,0x F x ∞∈−'<;当()()ln2,,0x F x ∞∈+'>; 所以()F x 在(),ln2∞−递减,在()ln2,∞+上递增,()min ()ln222ln222ln20F x F ==−−=−< ()()2110,260F F e e−=>=−> 存在()11,ln2x ∈−使得()10F x =,存在()2ln2,2x ∈使得()20F x =,()1,x x ∞∈−时,()()()0,0,F x f x f x >'>单调递增; ()12,x x x ∈时,()()()0,0,F x f x f x <'<单调递减; ()1,x x ∞∈+时,()()()0,0,F x f x f x >'>单调递增;所以12a =时,()f x 有一个极大值,一个极小值. (3)()()()222121xx x x f x ae x e e ae x '=−+=−−,由()()21111,0,00a x f x f a aa a a+∀∈+≤+=+=≤R ,得0a <,令()e 1xg x a x =−−,则()g x 在R 上递减,0x <时,()()()e 0,1,e ,0,e 11x x xa a g x a x a x ∈∈∴=−−>−−,则()()1110g a a a ∴−>−−−=又()110g ae −−=<,()01,1x a ∃∈−−使得()00g x =,即()000e 10x g x a x =−−=且当()0,x x ∞∈−时,()0g x >即()0f x '>; 当()00,x x ∞∈+时,()0g x <即()0f x '<,()f x ∴在()0,x ∞−递增,在()0,x ∞+递减,()002max 00()2x x f x f x ae x e ∴==−,由()000001e 10,exx x g x a x a +=−−==, 由max 1()0f x a+≤得()000000e 1e 201x x x x x e x +−+≤+即()()00011101x x x −++≤+, 由010x +<得20011,21x x −≤∴−<−,001,e x x a +=∴设()1(21)e x x h x x +=−≤<−,则()0xxh x e −=>', 可知()h x 在)2,1⎡−⎣上递增,()((()()221221210h x h e h x h e −−≥−==<−=实数a 的取值范围是()212e ⎡⎣.。

福建省宁德市2024-2025学年高三上学期期中五校联考数学试题及答案

福建省宁德市2024-2025学年高三上学期期中五校联考数学试题及答案

福宁古五校教学联合体2024-2025学年第一学期期中质量监测高三数学试题(考试时间:120分钟,试卷总分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.1. 已知集合{}30,21x M x Q x x x −=≤=∈≤ + N ,则M Q ∩=( )A. {}0,1,2B. []0,2C. (]2,2−D. {}1,22. 某一物质在特殊环境下的温度变化满足:1015ln w w T w w −=−(T 为时间,单位为0min,w 为特殊环境温度,1w 为该物质在特殊环境下的初始温度,w 为该物质在特殊环境下冷却后的温度),假设一开始该物质初始温度为100℃,特殊环境温度是20℃,则经过15min ,该物质的温度最接近(参考数据:e 2.72≈)( ) A. 54℃B. 52℃C. 50℃D. 48℃3. 在ABC 中,已知tan tan A,B 是关于x 方程2670x x −+=的两个实根,则角C 的大小为( ) A.3π4B.2π3C.π3D.π44. 对任意实数()2,x ∈+∞,“4a x x<+”是“4a ≤”的( ) A 充分不必要条件 B. 必要不充分条件 C 充要条件D. 既不充分也不必要条件的..5. 函数221sin ln x y x x+=−⋅的大致图象是( ) AB.C. D.6. 已知函数()332e e 1x xf x x x −=−+−+,若()()2232f a f a−+≥,则实数a 的取值范围为( )A. (],1−∞B. []3,1−C. (][),13,−∞−+∞D. (][),31,−∞−∪+∞7. 已知1215sin ,ln ,223a b c −===,则( )A. c b a <<B. a b c <<C. a c b <<D. b a c <<8. 已知函数()2e ln xf x x x x a x =−−−,若对任意的0x >,都有()1f x ≥恒成立,则实数a 的取值范围为( ) A. []4,4− B. []3,3− C. []22−,D. []1,1−二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9. 已知三次函数()f x 的图象如图,则下列说法正确的是( ).A. ()()()Δ01Δ1lim 1Δx f x f f x→+−=−′B. ()()23f f ′′<C. 0f=D. ()0xf x ′>的解集为()(),10,1−∞−∪10. 已知函数()()ππ2cos 2,2sin 236f x x g x x =+=−,则( ) A. ()f x 与()g x 的图象有相同的对称中心 B. ()f x 与()g x 图象关于x 轴对称 C. ()f x 与()g x 的图象关于y 轴对称 D. ()()f x g x ≥的解集为()5πππ,π1212k k k−++∈Z11. 已知函数()f x 的定义域为R ,且()10f ≠,若()()()f x y f x f y xy +−=−,则( ) A. ()00f = B. ()f x 关于()1,0−中心对称 C. e xx >ff (xx )D. 函数()y xf x =−有最大值三、填空题:本题共4小题,每小题5分,共15分12. 已知复数z 满足()34i 5i z −=,则z =______. 13. 已知,,20,1a b a b a b ∈>>+=R ,则112a b b+−的最小值为______.14. 已知()()()eln e ,xxf x ax ag x x=−∈=R ,若函数()()y f g x a =−恰有三个零点,则a 的取值范围为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 已知函数()1e 1xf x a =++为R 上的奇函数. (1)求a ;(2)若函数()()()2e 12xg x f x x =++,讨论()g x 的极值.16. 在锐角ABC 中,内角,,A B C 的对边分别为,,a b c,且tan tan A B +=. (1)求角A 的大小;的(2)若BC =,点D 是线段BC 的中点,求线段AD 长的取值范围.17. 在三棱锥P ABC −中,PM ⊥底面ABC ,AB AC ⊥,1AB =,AC =,,M N 分别为,BC AC的中点,E 为线段AP 上一点.(1)求证:BN ⊥平面APM ; (2)若平面EBN ⊥底面ABC 且12PM =,求二面角A EN B −−的正弦值. 18. 已知函数()()2311ex x f x a x b −=−−−−,其中,a b 是实数. (1)若1a =,求()f x 的单调区间;(2)若函数()f x 在定义域上是单调函数,求实数a 的取值范围; (3)若()0f x ≤恒成立,求5a b +的最小值. 19. 已知函数()(πsin ,0,2f x x ωϕωϕ =+><图象的相邻两条对称轴间的距离为π2,且函数()f x 图象过点 . (1)若函数()y f x m =+是偶函数,求m 的最小值; (2)令()()41g x f x =+,记函数()g x 在17π31π,1212x∈−上的零点从小到大依次为12,,,n x x x ,求1231222n n x x x x x −+++++ 的值;(3)设函数(),y x x D ϕ=∈,如果对于定义域D 内的任意实数x ,对于给定的非零常数P ,总存在非零常数T ,恒有()()x T P x ϕϕ+=⋅成立,则称函数()x ϕ是D 上的“P 级周期函数”,周期为T .请探究是否存在非零实数λ,使函数()1π26xh x f x λ =−是R 上的周期为T 的T 级周期函数,并证明你的结论.福宁古五校教学联合体2024-2025学年第一学期期中质量监测高三数学参考答案一、单选题:1 【答案】A【详解】不等式301x x −≤+的解集等价于不等式组()()31010x x x −+≤ +≠的解集, 即131x x −≤≤≠−,得13x −<≤,又2x ≤,解得22x −≤≤, 于是{}30131x M xx x x−=≤=−<≤ +,{}{}{}2220,1,2Q x x x x =∈≤=∈−≤≤=N N ,则{}0,1,2M Q ∩=. 故选:A 2.【答案】C【详解】由初始温度为100℃,特殊环境温度是20℃,时间15min 代入题中式子得:100201515ln20w −=−,即80e 20w =−,即8080202049.41e 2.72w =+≈+≈. 故选:C.3. 【答案】D【详解】由题意,tan tan 6,tan tan 7A B A B +=⋅=, 所以()tan tan 6tan 11tan tan 17A B A B A B ++===−−⋅−,由()()tan tan πtan A B C C +=−=−,故tan 1C =, 又0πC <<,所以π4C =. 故选:D 4. 【答案】C.【详解】对于函数4y x x=+,根据均值不等式a b +≥(当且仅当a b =时取等号),则44y x x =+≥=. 当4x x =即2x =时取等号,但是(2,)x ∈+∞,所以44y x x=+> 判断充分性: 若4a x x <+,因为(2,)x ∈+∞时44x x+>,那么4a ≤,所以充分性成立. 判断必要性:若4a ≤,当(2,)x ∈+∞时44x x+>,显然4a x x <+,所以必要性成立.所以“4a x x<+”是“4a ≤”的充要条件. 故选:C. 5. 【答案】C【详解】函数221sin ln x y x x +=−⋅的定义域为()(),00,∞∞−∪+, ()()()()()222211sin ln ln x x f x x x f x x x −++−=−−⋅=⋅=−−, 则函数为奇函数,排除选项A 和B ; 当πx =时,函数值为0,取2π4ln 102πf =−+<,排除选项D , 故选:C . 6. 【答案】D【详解】由已知222()92e e 9290x x f x x x x −′=−++≥−+=≥,当且仅当0x =时等号成立,所以()f x 是R 上的增函数,又2()33e e 1x x f x x x −−=−++−+2()f x =−, 所以不等式()()2232f a f a−+≥化为2()2(23)(32)f a f a f a ≥−−=−,所以232a a ≥−,解得1a ≥或3a ≤−. 故选:D . 7. 【答案】B【详解】令ff (xx )=xx −sin xx (xx >0),gg (xx )=xx −1−ln xx ,ℎ(xx )=ln xx −2(xx−1)xx+1,则()()()()()()22211141cos 0,,011x x f x x g x h x x x x x x −−′=−≥==−=+′′≥+,显然01x <<时()0g x ′<,1x >时()0g x ′>, 所以()(),f x h x 在(0,+∞)上单调递增,()g x 在(0,1)上单调递减,在(1,+∞)上单调递增,所以ff (xx )>ff (0)⇒sin xx <xx ,gg (xx )≥gg (1)=0⇒xx −1≥ln xx (1x =时取得等号), ()()()()21101ln 1x h x h x x x −≥=≥⇒≥+(1x =时取得等号),故52111523sin ln 5223313−<=<<<+a b c <<. 故选:B 8. 【答案】D【详解】()()2ln 1,e2ln 1x xf x x x x a x +≥∴−++−≥ ,即()2ln e 2ln 11x x x x a x+−+−−≤,令()()e 1e 1xxg x x g x =−−⇒=−′, 显然0x >时()0g x ′>,0x <时()0g x ′<,即()g x 在(0,+∞)上单调递增,在(),0∞−上单调递减,所以()()00g x g ≥=, 则()2ln e 1,e 2ln 10xx xx x x +≥+∴−+−≥,又∵xx >0,∴ee 2xx+ln xx −(2xx+ln xx )−1xx≥0,当且仅当2ln 0x x +=时,等号成立.()2ln min2ln 10,10,11x x e x x a a x + −+−∴=∴−≤∴−≤≤ . 故选:D .二、多选题:9. 【答案】ACD【详解】由图可知,三次函数()f x 为奇函数,且()f x 的极值点为1、1−, 设()32f x bx cx dx e =+++,则()00f e ==,可得()32f x bx cx dx =++,由奇函数的定义可得ff (−xx )=−ff (xx ),即()()()3232b x c x d x bx cx dx ⋅−+⋅−+⋅−=−−−, 所以0c =,可得()3f x bx dx =+,则()23f x bx d ′=+,由题意可得()130f b d ′=+=,可得3d b =−,则()233f x bx b ′=−,由图可知,函数()f x 的单调递增区间为(−1,1),故不等式ff ′(xx )=3bbxx 2−3bb >0解集为(−1,1),所以0b <, 对于A 选项,由题意可知,()()110f f ′−′==,由导数的定义可得()()()()Δ01Δ1lim11Δx f x f f f x→+−=′′=−,故A 正确;对于B 选项,()21239f b b b −′==,()327324f b b b =−=′, 由0b <,924b b >,所以()()23f f ′>′,故B 错误; 对于C 选项,()33f x bx bx =−,所以0f=−=,故C 正确;对于D 选项,由xxff ′(xx )=xx ⋅3bb (xx 2−1)=3bbxx (xx −1)(xx +1)>0, 可得()()110x x x −+<,解得1x <−或01x <<,因此,不等式()0xf x ′>的解集为()(),10,1∞−−∪,故D 正确. 故选:ACD 10. 【答案】ABD【详解】()()πππ2sin 22cos 2323g x x x f x =+−=−+=−, 即()f x 与()g x 的图象关于x 轴对称, 令ππππ2π32122k x k x +=+⇒=+, 的且有相同的对称中心()ππ,0Z 122k k+∈,故A 、B 正确,C 错误; 由不等式()()()π20cos 203f x g x f x x≥⇒≥⇒+≥, 令()πππ5ππ2π22ππ,πZ 2321212k x k x k k k+≥+≥−+⇒∈−++∈,故D 正确. 故选:ABD 11.【答案】BD【详解】令0,1x y ==,则()()()1010f f f −⋅=, 又()()10,01f f ≠∴=,故A 错误;令1,1x y ==−,则()()()()()0111,110f f f f f −⋅−=∴⋅−=, 又()10f ≠,()10f ∴−=,再令()()()()1,11,1y f x f x f x f x x =−−−⋅−=∴−=,()()1,f x x f x ∴=+∴的图象关于()1,0−中心对称,故B 正确;由B 得()1f x x =+,当0x =时,1x e x =+,故C 错误;由B 得()()21,f x x y xf x x x =+=−=−−,在12x =−时取到最大值,故D 正确.三、填空题:12. 【答案】1【详解】由()()()()5i 34i 5i 3434i 5i i 34i 34i 34i 55z z +−=⇒===−−−+,则1z z ===. 故答案为:113.【答案】4+;【详解】因为20a b >>,1a b +=,所以111132()(23)44222b a ba b b a b b a b b a b b−+=+−+=++≥+−−−,当且仅当322b a b a b b −=−,即a b ==时等号成立, 故答案:4+. 14. 【答案】e 1,2【详解】设()g x t =,则()f t a =,()21ln e 0xg x x−′=⋅=,得e x =, 当()()()0,e ,0,x g x g x >′∈单调递增,当()()()e,0,x g x g x ′∈+∞<,单调递减, 当e x =时,函数()g x 取得最大值1, 如图1,画出函数()t x g =的图象,由()f t a =,即e t at a −=,则()()e 1,1a t y a t =+=+恒过点()1,0−,如图,画出函数e t y =的图象,设过点()1,0−的切线与e t y =相切于点()00,e tt ,则00e e 1t t t =+,得00t =,即切点()0,1,所以切线方程为1y x =+, 如图2,则()1y a t =+与e t y =有2个交点,1a >,如图可知,若函数()()y f g x a =+恰有三个零点,则110t −<<,201t <<,则()le 11a >+,所以e 2a <,为综上可知,e 12a <<. 故答案为:e 1,2四、解答题:15.【答案】(1)12a =− (2)极大值为2ln21−;无极小值.【解析】【小问1详解】因为函数()1e 1x f x a =++为RR 上的奇函数, 由()100,2f a =∴=−, 此时()()1e 2e 1xx f x −=+, 则()()111e e 1e e 11e e ()1e 2(e 1)2(e 1)2(e 1)2e 121e x x x x xxx x x x x x f x f x −−−−−−−−===×==−=−+++ ++ , 所以()f x 为奇函数.所以12a =−; 【小问2详解】由(1)得:()()()()2e 122e 1,x x g x f x x x g x =++=−+定义域为RR , ()2e x g x ∴=−′,由()0g x ′>,得ln2x <;由()0g x ′<,得ln2x >,()g x ∴在(),ln2∞−上单调递增,()g x 在()ln2,∞+上单调递减,所以()g x 在ln2x =处取得极大值,()g x 极大值()ln22ln21f ==−;无极小值.16. 【答案】(1)π3A =;(2)32.【解析】【小问1详解】因为tan tan A B +=,所以由正余弦定理得tan tan A B +===, 又()sin sin sin sin cos sin cos sin tan tan cos cos cos cos cos cos cos cos A B A B A B B A C A B A B A B A B A B +++=+===,sin cos cos C A B=,又ABC 是锐角三角形,所以sin 0,cos 0C B >>,所以sin A A =,所以tan A =又π0,2A∈ ,所以π3A =. 【小问2详解】由余弦定理可得222222cos 3a c b cb A c b cb =+−=+−=,即223c b cb +=+, 又()12AD AB AC =+ , 所以()()222222111()2444AD AB AC AB AC AB AC c b bc =+=++⋅=++ ()13132442bc bc =+=+, 又由正弦定理可得2sin sin sin a b c A B C===,所以2sin b B =,2π12sin 2sin 2sin 32c C B B B ==−=+,所以2111cos24cos sin 4222B bc B B B B −=+=+⋅111π4cos22cos212sin 214426B B B B B =−+=−+=−+,由题意得π0,22ππ0,32B B << <−< 解得ππ62B <<,则ππ5π2,666B −∈ , 所以π1sin 2,162B−∈,所以(]2,3bc ∈, 所以279,44AD ∈ ,所以线段AD长的取值范围为32 . 17. 【答案】(1)证明见解析(2【解析】【小问1详解】解法一:连接AM 交BN 与点O ,则MAC MCA ∠=∠,tan AB MCA AC ∠==,tan AN ABN AB ∠==, 故ABN MCA MAC ∠=∠=∠,从而90MAB ABN MAB MAC ∠+∠=∠+∠=°,从而AM BN ⊥, PM ⊥ 底面ABC ,BN ⊂ABC ,∴PM BN ⊥, 又AM PM M = ,AM PM ⊂,平面APM ,故BN ⊥平面APM 解法二:连接AM ,由,M N 分别为BC ,AC 的中点,所以1122AM AB AC =+ , 12BN AB AC =−+ , 又因为AB AC ⊥,1AB =,AC = 所以1110222AM BN AB AC AB AC ⋅=+⋅−+= ,故AM BN ⊥ ,从而AM BN ⊥, ∵PM ⊥底面ABC ,BN ⊂底面ABC ,∴PM BN ⊥, 又AM PM M = ,AM PM ⊂,平面APM ,故BN ⊥平面APM【小问2详解】因为AB AC ⊥,故以点A 为坐标原点,,AB AC 所在直线分别为,x y 轴,过点A 作垂直于平面ABC 的直线为z 轴建立如图所示的空间直角坐标系,则()0,0,0A,()C ,()1,0,0B,1122P,N,12M ,则()AC =,BN =−,1122AP = ,因为平面EBN ⊥底面ABC ,且AM BN ⊥,则AM ⊥平面EBN,则12AM =,易得平面EBN的一个法向量为()1n = ,设平面PAC 的一个法向量为()2,,n x y z = , 则2200AP n AC n ⋅= ⋅=,可得110220x y z = =,令1x =可得()21,0,1n =− , 设二面角A EN B −−为θ,则12cos cos ,n n θ=〉〈== 故二面角A EN B −−18. 【答案】(1)()f x 在(),0−∞单调递增,()0,∞+单调递减; (2)413ea ≤−(3)1−.【解析】【小问1详解】 当1a =时,()()2311e x x f x x b −=−−−−,则()33e exx x f x −′−=,易知33e x y x =−−单调递减,且0x =时,0y =, 所以令ff ′(xx )>0,解得0x <,令ff ′(xx )<0,解得0x >, 所以()f x 在(),0∞−单调递增,(0,+∞)单调递减;【小问2详解】函数()f x 的图象是连续的,且在定义域上是单调函数,()330ex x f x a −∴=−≥′在定义域内恒成立, 或()330ex x f x a −=−≤′,在定义域内恒成立. 令()()()4ex x g x f x g x =′−⇒′=,显然()g x ′在(),4∞−为负,()4,∞+为正, 所以()33ex x f x a −′=−在(),4∞−单调递减,()4,∞+单调递增, ①若()330ex x f x a −=−≥′在定义域内恒成立, 只需()min 41()430e f x f a ==−−′≥′,即413ea ≤−, ②若()330e x x f x a −=−≤′在定义域内恒成立, x →−∞ 时,()f x ∞′→+,故该情况a 无解. 综上:413e a ≤−; 【小问3详解】 若()0f x ≤恒成立,则()23110ex x a x b −−−−−≤, 当2x =时,510a b −−−≤,即51a b +≥−, 下证51a b +=−成立,由51a b +=−得,()23150e x x a x a −−−+≤恒成立, 即()()2136230e e x x x a x x a − −−=−−≤, 易知12,3ex y x y a =−=−在R 上分别单调递增、单调递减, 又记()20F =,要满足题意需12,3e x y x y a =−=−零点相同, 即2130e a −=,解得213ea =, 即只需证()()221360e 3ex x F x x −=−−≤恒成立,()231e ex x F x ′−=−,由(2)得()F x ′在(),4∞−上单调递减,在()4,∞+上单调递增, 又()()20,F F x =′∴′在(),2∞−上为正,在()2,4上为负,在()4,∞+上为负, ()F x ∴在(),2∞−上单调递增,在()2,∞+上单调递减,()max ()20F x F ∴==, 即()0F x ≤恒成立,5a b ∴+最小值为1−.19. 【答案】(1)π12. (2)49π6(3)存在,证明见解析【解析】【小问1详解】()f x 图象的相邻的两条对称轴间的距离为π2()f x ∴的最小正周期为π2π2T =×=, 2π0,2Tωω>∴== ()()sin 2f x x ϕ∴=+,又()f x 的图象过点(),0sin f ϕ ∴== . ()πππ,,sin 2233f x x ϕϕ <∴==+, 因为函数()πsin 223y f x m x m=+=++是偶函数, ()()ππππ2π,32122k m k k m k ∴+=+∈∴=+∈Z Z . m ∴的最小值π12. 【小问2详解】由()()π414sin 2103g x f x x=+=++= 可得π1sin 234x +=−, 17π31ππ5π11π,,2,1212322x x ∈−∴+∈−, 设π23i i x t +=,由sin y t =与14y =−图象可知在5π11π,22 −共有8个交点.182736453πt t t t t t t t +=+=+=+=,1818ππ7π223π,336x x x x ∴+++=∴+=,同理2345672222227πx x x x x x +++++=, 1234567849π2222226x x x x x x x x ∴+++++++=. 【小问3详解】()()()π1π1sin 2,sin 23262x xf x x h x f x x λλ =+∴−=假设存在非零实数λ,使得函数()()1sin 22x h x x λ =是R 上的周期为T 的T 级周期函数,即x ∀∈R ,恒有()()h x T T h x +=⋅, 则x ∀∈R ,恒有()()11sin 22sin 222x T x x T T x λλλ+ +=⋅成立,则x ∀∈R ,恒有()()sin 222sin 2T x T T x λλλ+=⋅成立,当0λ≠时,x ∀∈R ,则2,22x x T λλλ∈+∈R R , 所以()1sin21,1sin 221x x T λλλ−≤≤−≤+≤,要使得()sin 222sin2T x T T x λλλ+=⋅恒成立,则有21T T ⋅=±①当21T T ⋅=时,则0T >,即12T T =,令()12x p x x=−,其中0x >,则()120,121102p p =−<=−=>, 且函数()p x 在()0,∞+上的图象是连续的,由零点存在定理可知,函数()p x 在()0,∞+上有唯一的零点, 此时,()sin 22sin2x T x λλλ+=恒成立,则()22T m m λπ=∈Z ,即()m m Tπλ=∈Z ; ②当21T T ⋅=−时,则0T <,即2T T −−=,作出函数y x =−、2x y −=的图象如下图所示:由图可知,函数2x y x y −=−=、的图象没有公共点, 故方程21T T ⋅=−无实数解. 综上所述,存在()πm m Tλ=∈Z 满足题意,其中T 满足21T T ⋅=。

2024届皖北五校联盟高三第二次联考数学试卷+答案

2024届皖北五校联盟高三第二次联考数学试卷+答案

颍上一中蒙城一中淮南一中怀远一中涡阳一中2024届高三第二次五校联考数学试题考生注意:1.本试卷满分150分,考试时间120分钟.2.答題前、考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚.3.考生作答时,请将答案答在答題卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.设全集,{10}U A x x ==+<R ∣,集合{}2log 1B xx =<∣,则集合()U A B ∩= ( ) A.[]1,2− B.()0,2 C.[)1,∞−+ D.[)1,1−2.已知z 为复数且()1i 13i z ⋅−=+(i 为虚数单位),则共轭复数z 的虚部为( ) A.2 B.2i C.-2 D.2i −3.已知等差数列{}n a 的公差0d ≠,且137,,a a a 成等比数列,则1a d=( ) A.2 B.4 C.5 D.64.“2a =”是“直线220ax y ++=与直线()110x a y +−+=平行”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件5.在锐角ABC 中,角,,A B C 的对边分别为,,a b c,若sin 3,3A c AB AC ==⋅= ,则sin sin b cB C+=+( )6.甲、乙等6名高三同学计划今年暑假在A B C D 、、、,四个景点中选择一个打卡游玩,若每个景点至少有一个同学去打卡游玩,每位同学都会选择一个景点打卡游玩,且甲、乙都单独1人去某一个景点打卡游玩,则不同游玩方法有( )A.96种B.132种C.168种D.204种7.已知不等式e 1ln x ax x x +>−有解,则实数a 的取值范围为( ) A.21,e ∞−+B.1,e ∞ −+C.21,e ∞ −D.1,e ∞ − 8.已知实数,x y 满足13y y x x +=1y +−的取值范围是( )A.)42B.)44C.22 −D.24二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多项符合题目要求.9.一组数据1210,,,x x x 是公差为-2的等差数列,若去掉首末两项,则( ) A.平均数变大 B.中位数没变 C.方差变小 D.极差没变10.已知ABC 的内角,,A B C 所对的边分别为,,a b c ,下列说法中正确的是( ) A.若cos cos a A b B =,则ABC 一定是等腰三角形B.若()()cos cos 1A B B C −⋅−=,则ABC 一定是等边三角形 C.若cos cos a C c A c +=,则ABC 一定是等腰三角形 D.若()cos 2cos 0B C C ++>,则ABC 一定是钝角三角形 11.已知正四面体O ABC −的棱长为3,下列说法正确的是( ) A.平面OAB 与平面ABC 夹角的余弦值为13B.若点P 满足()1OP xOA yOB x y OC =++−−,则OPC.在正四面体O ABC −D.点Q 在ABC 内,且2OQ QA =,则点Q 三、填空题:本题共3小题,每小题5分,共15分.12.若n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,则二项式12nx 的展开式的常数项是__________.13.已知抛物线2:2(0)C y px p =>的焦点为F ,抛物线C 的准线l 与x 轴交于点A ,过点A 的直线与抛物线C 相切于点P ,连接PF ,在APF 中,设sin sin PAF AFP ∠λ∠=,则λ的值为__________.14.对于函数()()cos 0f x x kx x =− ,当该函数恰有两个零点时,设两个零点中最大值为α,当该函数恰有四个零点时,设这四个零点中最大值为β求()()2221sin21cos21ααββαβ+++=−__________. 四、解答题:本题共5小题,共77分。

辽宁省五校联考(省实验,育才中学2025届高三下学期联考数学试题含解析

辽宁省五校联考(省实验,育才中学2025届高三下学期联考数学试题含解析

辽宁省五校联考(省实验,育才中学2025届高三下学期联考数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设,则"是""的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.已知b a bc a 0.2121()2,log 0.2,===,则,,a b c 的大小关系是( ) A .a b c <<B .c a b <<C .a c b <<D .b c a <<3.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()e xf x x =+,则32(2)a f =-,2(log 9)b f =,5)c f =的大小关系为( ) A .a b c >>B .a c b >>C .b a c >>D .b c a >>4.已知x ,y R ∈,则“x y <”是“1xy<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件5.在三角形ABC 中,1a =,sin sin sin sin b c a bA AB C++=+-,求sin b A =( ) A .32B .23C .12D .626.将函数2()322cos f x x x =-图象上各点的横坐标伸长到原来的3倍(纵坐标不变),再向右平移8π个单位长度,则所得函数图象的一个对称中心为( ) A .3,08π⎛⎫⎪⎝⎭B .3,18⎛⎫-- ⎪⎝⎭π C .3,08⎛⎫-⎪⎝⎭π D .3,18⎛⎫-⎪⎝⎭π 7.已知集合A={x|y=lg (4﹣x 2)},B={y|y=3x ,x >0}时,A∩B=( ) A .{x|x >﹣2} B .{x|1<x <2} C .{x|1≤x≤2} D .∅8.已知函数31()sin ln 1x f x x x x +⎛⎫=++⎪-⎝⎭,若(21)(0)f a f ->,则a 的取值范围为( ) A .1,2⎛⎫+∞ ⎪⎝⎭B .()0,1C .1,12⎛⎫⎪⎝⎭D .10,2⎛⎫ ⎪⎝⎭9.中,如果,则的形状是( )A .等边三角形B .直角三角形C .等腰三角形D .等腰直角三角形10.若21i iz =-+,则z 的虚部是A .3B .3-C .3iD .3i -11.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,D 是AB 的中点,若1CD =,且1sin 2a b A ⎛⎫-⎪⎝⎭()()sin sin c b C B =+-,则ABC 面积的最大值是( ) A .155B .15C .1510D .215512.函数()()241xf x x x e =-+⋅的大致图象是( )A .B .C .D .二、填空题:本题共4小题,每小题5分,共20分。

五校联考高三数学试卷答案

五校联考高三数学试卷答案

一、选择题1. 答案:D解析:根据三角函数的性质,正弦函数在第二象限是正值,故选D。

2. 答案:B解析:由题意知,函数在x=1时取得极值,结合导数的定义,可得f'(1)=0,故选B。

3. 答案:A解析:根据复数的乘法法则,i^4 = (i^2)^2 = (-1)^2 = 1,故选A。

4. 答案:C解析:由题意知,数列{an}是等差数列,首项a1=3,公差d=2,第n项an=3+(n-1)×2=2n+1,故选C。

5. 答案:D解析:由题意知,直线l的方程为y=kx+b,代入点A(2,3)得3=2k+b,代入点B(1,2)得2=k+b,解得k=1,b=1,故直线l的方程为y=x+1,故选D。

二、填空题6. 答案:$\frac{1}{3}$解析:根据等比数列的性质,an = a1 r^(n-1),其中a1是首项,r是公比,n是项数。

由题意知,a3 = 2,a5 = 32,代入公式得2 = a1 r^2,32 = a1 r^4,解得r=2,a1=1,所以an = 2^(n-1),故an = 2^(5-1) = 2^4 = 16,所以$\frac{a5}{a1} = \frac{16}{1} = 16$,化简得$\frac{1}{3}$。

7. 答案:$\sqrt{3}$解析:由题意知,$\triangle ABC$中,$\angle A = 60^\circ$,$\angle B = 30^\circ$,所以$\angle C = 180^\circ - \angle A - \angle B = 90^\circ$。

由正弦定理得$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$,代入数据得$\frac{a}{\frac{\sqrt{3}}{2}} = \frac{b}{\frac{1}{2}} =\frac{c}{1}$,解得a=2,b=1,c=2。

高三数学:2024年浙江省五校(杭二金一绍一衢二温中)联盟高三3月联考答案

高三数学:2024年浙江省五校(杭二金一绍一衢二温中)联盟高三3月联考答案

参考答案一、选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合要求的.题号 1 2 3 4 5 6 7 8 答案CBDBCACA选对的得6分,部分选对的得部分分,有选错的得0分.题号 9 10 11 答案BCABDACD12. 3(1,)4 (答案不唯一) 13.2514. 6− 四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分13分)(第Ⅰ问,6分;第Ⅱ问,7分)解:(Ⅰ)取BC 中点为M ,连接1B M ,∵1B 在底面内的射影恰好是BC 中点, ∴1B M ⊥平面ABC ,又∵AC ⊂平面ABC ,∴1B M AC ⊥, 又∵90ACB ∠=,∴AC BC ⊥, ∵1,B M BC ⊂平面11B C CB ,1B MBC M =,∴AC ⊥平面11B C CB ,又∵AC ⊂平面11ACC A ,∴平面11ACC A ⊥平面11B C CB .(Ⅱ)以C 为坐标原点,建立如图所示空间直角坐标系,∵2BC CA ==, ∴11(2,0,0),(0,2,0),(0,1,0),(0,1,3),(0,1,3),A B M B C − 111(2,1,3),(2,2,0),(0,2,0)AB AB B C =−=−=−,设平面1BAB 的法向量为(,,)n x y z =,∴100n AB n AB ⎧⋅=⎪⎨⋅=⎪⎩则有230220x y z x y ⎧−++=⎪⎨−+=⎪⎩,令3,z =则3x y ==,∴(3,3,3)n =,设平面1BAB 的法向量为(,,)m a b c =,∴1110m AB m B C ⎧⋅=⎪⎨⋅=⎪⎩则有23020a b c b ⎧−++=⎪⎨−=⎪⎩,令3a =则0,2b c ==,∴(3,0,2)n =,∴||535|cos ,|||||7993304n m n m n m ⋅<>===++⨯++,平面1ABB 与平面11AB C 夹角的余弦值为57.16.(本小题满分15分)(第Ⅰ问,6分;第Ⅱ问,9分)∴f (x )的最大值是f (e)=1-a e =-3,解得a =4e >0,舍去;②当a >0时,由f ′(x )=1x -a =1-ax x =0,得x =1a,当0<1a <e ,即a >1e 时,∴x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0;x ∈⎝⎛⎭⎫1a ,e 时,f ′(x )<0, ∴f (x )的单调递增区间是⎝⎛⎭⎫0,1a ,单调递减区间是⎝⎛⎭⎫1a ,e , 又f(x )在(0,e]上的最大值为-3,∴f (x )max =f ⎝⎛⎭⎫1a =-1-ln a =-3,∴a =e 2; 当e≤1a ,即0<a ≤1e 时,f (x )在(0,e]上单调递增,∴f (x )max =f (e)=1-a e =-3,解得a =4e >1e,舍去.综上,存在a 符合题意,此时a =e 217.(本小题满分15分) (第Ⅰ问,6分;第Ⅱ问,4分;第Ⅲ问,5分) (Ⅰ)由题意可知,可构成的复数为{}11i +, 且1112i i ====+=+=.X 的可能取值为1234,,,()11221166119C C P X C C ⋅===⋅,(1142116629C C P X C C ⋅===⋅,()11421166229C C P X C C ⋅===⋅,()11221166139C C P X C C ⋅===⋅,(1142116629C C P X C C ⋅===⋅,()11221166149C C P X C C ⋅===⋅,所以分布列为:(Ⅱ)共有666216C C C ⋅⋅=种, 满足32z ≤的情况有:①3个复数的模长均为1,共有1112228C C C ⋅⋅=种;②3个复数中,2个模长均为1,12,共有2111322448C C C C ⋅⋅⋅=种; 所以()38487221627P z +≤==. (Ⅲ)当1n =或2时,显然都满足,此时1n P =; 当3n ≥时,满足5n z <共有三种情况: ①n 个复数的模长均为1,则共有()122nn C =;②1n −个复数的模长为1,剩余12,则共有()11111242n n n n C C C n −−+⋅⋅=⋅;③2n −个复数的模长为1,剩余2或者2,则共有()()22111124412n n n n C C C C n n −−+⋅⋅⋅=−⋅.故()()()()211216212*********n n n n n nnnn n n n n P z C ++++⋅+−⋅+<===,此时当12n ,=均成立.所以()21253n nn P z +<=.18. (本小题满分17分)(第Ⅰ问,4分;第Ⅱ问,7分;第Ⅲ问,6分) 解:(Ⅰ)根据图形可知()()1,11232x x P x x +=++++=, (Ⅱ)固定x ,则(),P x y 为一个高阶等差数列,且满足()(),1,1P x y P x y x y +−=+−,()()1,,P x y P x y x y +−=+,所以()()()()()1,1,112112y y P x y P x y y x y x ++−=++++−=+−,()()()()11,1122y y x x P x y y x +++=+−+,所以()()()()()11,1122x x y y P x y x y +−=++−−,()()()()()111,2122x x y y P x y x y −−−=++−−,所以()()()()()()()()()()221111,11,21122222322,x x y y y y x x P x y P x y x y y x x y xy y x P x y −−++++−=++−−++−+=++−−+=(Ⅲ)()()()()1,1,11,1,12024P x y P x y P x y P x y +−+++++++=,等价于()()()(),,11,1,12023P x y P x y P x y P x y +++++++=,等价于()(),131,2023P x y P x y +++=,即()()()()()()131211212202322x x y y x x x y y x +++−++++−+=⎡⎤⎡⎤⎣⎦⎣⎦,化简得()()2221010121010y xy x y x x y x y x ++−+=⇔+−++=,由于x y +增大,()()1x y x y +−+也增大,当31x y +=时,()()129921010x y x y x +−++<<,当33x y +=时,()()1210561010x y x y x +−++>>,故当32x y +=时,()()1210109,23x y x y x x y +−++=⇒==, 即()91023229,2382247422P ⨯⨯=++⨯=.19. (本小题满分17分)(第Ⅰ问,4分;第Ⅱ问,5分;第Ⅲ问,8分) 解:(Ⅰ)设直线MN :1x my =+,1122(,),(,)M x y N x y联立241x xy y m =+=⎧⎨⎩,消去x ,得2440y my −−=,所以12124,4y y m y y +=⋅=−,3MF NF =,则123y y =−∴122212224,34y y y m y y y +=−=⋅=−=−,则213m=,又由题意0,m >∴3m =,直线的方程是y =(Ⅱ)(ⅰ)方法1:设112233(,),(,),(,)M x y N x y D x y因为,,,O M D N 四点共圆,设该圆的方程为220x y dx ey +++=,联立22204x y dx ey y x⎧+++=⎨=⎩,消去x ,得()42416160y d y ey +++=,即()()3416160y y d y e +++=,所以123,,y y y 即为关于y 的方程()3416160y d y e +++=的3个根,则()()()()312341616y d y e y y y y y y +++=−−−,因为()()()()()32123123122313123y y y y y y y y y y y y y y y y y y y y y −−−=−+++++−,由2y 的系数对应相等得,1230y y y ++=,所以MND ∆的重心的纵坐标为0.方法2:设112233(,),(,),(,)M x y N x y D x y ,则1213234444,,,OM ON MD ND k k k k y y y y y y ====++, 因为,,,O M C N 四点共圆,所以MON MDN π∠+∠=,即tan tan 0MON MDN ∠+∠=,21124()tan 116OM ON OM ON k k y y MON k k y y −−∠==+⋅+,1213234()tan 1()()16ND MD ND MD k k y y MDN k k y y y y −−∠==+⋅+++,化简可得:312y y y =−−, 所以MND ∆的重心的纵坐标为0.(ⅱ)记,OMN MND △△的面积分别为12,S S ,由已知得直线MN 的斜率不为0 设直线MN :1x my =+,联立241x xy y m =+=⎧⎨⎩,消去x ,得2440ymy −−=,所以12124,4y y m y y +=⋅=−,所以1121122S OF y y =⋅⋅−==, 由(i )得,()3124y y y m =−+=−, 所以()22233114444x y m m ==⨯−=,即()24,4D m m −, 因为()212122444MN x x m y y m =++=++=+,点D 到直线MN的距离d =,所以()22211448122S MN d m m =⋅⋅=⋅+=−,所以)221281181S S S m m =+=+−=+− M 在第一象限,即120,0y y ><,340y m =−<,依次连接O ,M ,D ,N 构成凸四边形OMDN ,所以()3122y y y y =−+< ,即122y y −<,又因为124y y ⋅=−,2242y y <,即222y <,即20y <<,所以122244m y y y y =+=−>=,即4m >,即218m >,所以)218116S m m =+−=设t =4t >, 令()()2161f t t t =−,则()()()2221611614816f t t t t t '='=−+−−,因为4t >,所以()248160f t t −'=>,所以()f t在区间,4∞⎛⎫+ ⎪ ⎪⎝⎭上单调递增, 所以()42f t f ⎛⎫>= ⎪⎪⎝⎭, 所以S的取值范围为,2∞⎛⎫+ ⎪ ⎪⎝⎭.。

江苏盐城五校联考2025届高三10月月考数学试题+答案

江苏盐城五校联考2025届高三10月月考数学试题+答案

(总分150江苏盐城五校联考2024/2025学年度第一学期联盟校第一次学情调研检测高三年级数学试题分考试时间120分钟)注意事项:1.本试卷中所有试题必须作答在答题纸上规定的位置,否则不给分.2.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题纸上.3.作答非选择题时必须用黑色字迹0.5毫米签字笔书写在答题纸的指定位置上,作答选择题必须用2B 铅笔在答题纸上将对应题目的选项涂黑。

如需改动,请用橡皮擦干净后,再选涂其它答案,请保持答题纸清洁,不折叠、不破损。

一、选择题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}2340A x x x =--≤,{}20B x x =∈->N ,则A B = ()A.{3,4}B.{0,1}C.{}1,0,1- D.{2,3,4}2.半径为2的圆上长度为4的圆弧所对的圆心角是()A.1B.2C.4D.83.已知0x >,0y >,则()A .ln ln ln ln 777x y x y+=+ B.()ln ln ln 777x y x y +=⋅C.ln ln ln ln 777x y x y⋅=+ D.()ln ln ln 777xy x y=⋅4.若正数,x y 满足2220x xy -+=,则x y +的最小值是()A.B.2C. D.25.已知()1sin 3αβ-=,tan 3tan αβ=,则()sin αβ+=()A.16B.13C.12D.236.若函数f (x )=()12,152,1a x x lgx x ⎧-+≤⎨-->⎩是在R 上的减函数,则a 的取值范围是()A.[)61-,B.()1-∞,C.()61-,D.()6-∞-,7.已知函数()()sin cos 06πf x x x ωωω⎛⎫=++> ⎪⎝⎭在[]0,π内有且仅有3个零点,则ω的取值范围是()A .811,33⎡⎫⎪⎢⎣⎭B .811,33⎛⎤⎥⎝⎦C .1013,33⎛⎤⎥⎝⎦D .1013,33⎡⎫⎪⎢⎣⎭8.已知1,1a b >>.设甲:e e b a a b =,乙:b a a b =,则()A.甲是乙的必要条件但不是充分条件B.甲是乙的充分条件但不是必要条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件二、选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.下列导数运算正确的是()10.已知函数()tan πf x x =,将函数()y f x =的图象向左平移13个单位长度,然后纵坐标不变,横坐标伸长为原来的2倍,得到函数()g x 的图象,则下列描述中正确的是().A.函数()g x 的图象关于点2,03⎛⎫-⎪⎝⎭成中心对称 B.函数()g x 的最小正周期为2C.函数()g x 的单调增区间为51,33k k ⎛⎫-++ ⎪⎝⎭,k ∈ZD.函数()g x 的图象没有对称轴11.已知实数a ,b 是方程()230x k x k --+=的两个根,且1a >,1b >,则()A.ab 的最小值为9B.22a b +的最小值为18C.3111a b +-- D.4a b +的最小值为12三、填空题(本题共3小题,每小题5分,共15分)12.命题“2024,lg x x ∀≥<”的否定为__________.13.若过点()0,0的直线是曲线()210y x x =+>和曲线ln 1ay x a x =-++的公切线,则a =________.14.已知函数()21y f x =+-为定义在R 上的奇函数,则()405112024i f i =-=∑______.四、解答题(本题共5小题,共77分,解答应写出文字说明、证明过程或演算步骤)15.(本题13分)已知函数44()cos 2sin cos sin f x x x x x =--.(1)求()f x 的最小正周期;(2)当0,2x π⎡⎤∈⎢⎥⎣⎦时,求()f x 的最小值以及取得最小值时x 的集合.16.(本题15分)已知定义在R 上的奇函数()221x x af x -=+,其中0a >.(1)求函数()f x 的值域;(2)解不等式:()()2231f x f x +≤+17.(本题15分)如图所示,在平面直角坐标系xOy 中,角α和角π2π023βαβ⎛⎫<<<< ⎪⎝⎭的顶点与坐标原点重合,始边与x 轴的非负半轴重合,终边分别与单位圆交于点A 、B 两点,点A 的横坐标为35,点C 与点B 关于x 轴对称.(1)求2πcos 22sin cos 2ααα⎛⎫- ⎪⎝⎭+的值;(2)若63cos 65AOC ∠=-,求cos β的值.18.(本题17分)已知函数()12ln f x x x=+,()g x ax =.(1)求()f x 的单调区间;(2)当[1,)x ∈+∞时,()()g x f x ≥,求实数a 的取值范围;19.(本题17分)设集合A 为非空数集,定义{|,,},{|,,}A x x a b a b A A x x a b a b A +-==+∈==-∈.(1)若集合{}1,1A =-,直接写出集合A +及A -;(2)若集合{}12341234,,,,A x x x x x x x x =<<<且A A -=,求证1423x x x x +=+;(3)若集合{|02024,N}A x x x ⊆≤≤∈且A A +-⋂=∅,求A 中元素个数的最大值.2024/2025学年度第一学期联盟校第一次学情调研检测高三年级数学参考答案及评分标准1-8BBDADAAB 9-11ACD,ABD,ABC12-142024,lg x x ∃≥≥,4,405115.(1)44()cos 2sin cos sin f x x x x x =-- ,2222(cos sin )(cos sin )sin 2x x x x x =-+-,cos 2sin 2x x =-,)4x π=+,7分故()f x 的最小正周期T π=;8分(2)由[0,]2x π∈可得2[44x ππ+∈,5]4π,10分当得24x ππ+=即38x π=时,函数取得最小值.所以38x π⎧⎫∈⎨⎬⎩⎭,时()min f x =13分16.(1)()f x 为定义在上的奇函数,()0020021af -∴==+,1a ∴=,2分当1a =时,()()21122121x xx x f x f x -----===-++,符合题意,()21212121x x xf x --∴==+++,20x > ,22021x-\-<<+,()11f x ∴-<<,∴的值域为−1,1;7分(2)由(1)有()10f x +>,8分∴原不等式可化为()()()21231f x f x f x ⎡⎤⎡⎤⋅++≤+⎣⎦⎣⎦,令()f x t =,则2210t t --≤,112t ∴-≤≤,即1211221x --≤+≤+,12分123x ∴≥,21log 3x ∴≥,14分∴不等式的解集为21log ,3∞⎡⎫+⎪⎢⎣⎭.15分17.(1)因为A 点的横坐标为35,且1OA =,A 点在第一象限,所以A 点纵坐标为45,所以3cos 5α=,4sin 5α=.2分所以2222πcos 2sin 22sin cos 2sin cos sin ααααααα⎛⎫- ⎪⎝⎭=++-2422sin cos 2sin 853cos cos 35ααααα⨯====.7分(2)因为63cos 65AOC ∠=-,由图可知:16sin 65AOC ∠=.9分而2,k AOC k βπα-+=-∠∈Z ,故2πAOC k αβ+=∠+(Z k ∈)⇒2πAOC k βα=∠-+(Z k ∈),12分所以()()cos cos 2πcos AOC k AOC βαα=∠-+=∠-cos cos sin sin AOC AOC αα=∠+∠633164565565513⎛⎫=-⨯+⨯=- ⎪⎝⎭.15分18.(1)由题意可知:()f x 的定义域为0,+∞,且()222121x f x x x x='-=-,2分令'>0,解得12x >;令'<0,解得102x <<;所以()f x 的单调递增区间为1,2∞⎛⎫+⎪⎝⎭,单调递减区间为10,2⎛⎫⎪⎝⎭.6分(2)设()()()12ln h x g x f x ax x x=-=--,当[1,)x ∈+∞时,()()g x f x ≥,即()0h x ≥对任意[1,)x ∈+∞恒成立,取1x =,解得1a ≥;若1a ≥,则()112ln 2ln h x ax x x x x x=--≥--,设()12ln ,1m x x x x x =--≥,则()()22212110x m x x x x-='=-+≥,可知()m x 在[1,)+∞上单调递增,则()()10m x m ≥=,此时()0h x ≥,符合题意;综上所述:实数a 的取值范围为[1,)+∞.17分19.(1)由{}1,1A =-,112,110,112--=--+=+=,故{2,0,2}A +=-;|1(1)||11|0,|11||1(1)|2---=-=--=--=,故{0,2}A -=.3分(2)由于集合{}12341234,,,,A x x x x x x x x =<<<且A A -=,所以A -中也只包含四个元素,即213141{0,,,}A x x x x x x -=---6分剩下的324321x x x x x x -=-=-,所以1423x x x x +=+;7分(3)设{}12,,k A a a a = 满足题意,其中12,k a a a <<< 1121312312......2,k k k k k k a a a a a a a a a a a a a a -<+<+<<+<+<+<<+<所以21,A k +≥-1121311...,k a a a a a a a a -<-<-<<-所以||A k -≥,因为,A A +-⋂=∅由容斥原理31,A A A A k +-+-⋃=+≥-A A +- 中最小的元素为0,最大的元素为2,k a 所以21,k A A a +-⋃≤+则()*31214049N ,k k a k -≤+≤∈所以1350k ≤,当{675,676,677,...,2024}A =时满足题意,证明如下:设{,1,2,...,2024}A m m m =++且N m ∈,则{2,21,22,...,4048}A m m m +=++,{0,1,2,...,2024}A m -=-,依题意有2024202423m m m -<⇒>,故m 的最小值为675,于是当675m =时A 中元素最多,即{675,676,677,...,2024}A =时满足题意,综上所述,集合A中元素的个数的最大值是1350.17分。

浙江省五校联盟2023-2024学年高三下学期3月联考试题 数学含答案

浙江省五校联盟2023-2024学年高三下学期3月联考试题 数学含答案

浙江省五校联盟2023-2024学年高三下学期3月联考数学试卷(答案在最后)命题:一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.若全集U ,集合A,B 及其关系如图所示,则图中阴影部分表示的集合是()A.()U A B ⋂ðB.()U A B ⋃ðC.()U A B⋂ð D.()U A B⋂ð2.已知(1,2),||2a b == ,且a b ⊥ ,则a b - 与a的夹角的余弦值为()A.5B.3C.4D.63.设b ,c 表示两条直线,,αβ表示两个平面,则下列说法中正确的是()A.若//,b c αα⊂,则//b cB.若//,b c b α⊂,则//c αC.若,//c αβα⊥,则c β⊥ D.若//,c c αβ⊥,则αβ⊥4.已知角α的终边过点(3,2cos )P α-,则cos α=()A.2B.2-C.2±D.12-5.设等比数列{}n a 的公比为q ,前n 项和为n S ,则“2q =”是“{}1n S a +为等比数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.已知实数x ,y 满足3x >,且2312xy x y +-=,则x y +的最小值为()A.1+B.8C. D.1+7.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,点A 为双曲线的左顶点,以12F F 为直径的圆交双曲线的一条渐近线于P ,Q 两点,且23PAQ π∠=,则该双曲线的离心率为()C.2138.在等边三角形ABC 的三边上各取一点D ,E ,F ,满足3,90DE DF DEF ︒==∠=,则三角形ABC 的面积的最大值是()A. B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.在学校组织的《青春如火,初心如炬》主题演讲比赛中,有8位评委对每位选手进行评分(评分互不相同),将选手的得分去掉一个最低评分和一个最高评分,则下列说法中正确的是()A.剩下评分的平均值变大B.剩下评分的极差变小C.剩下评分的方差变小D.剩下评分的中位数变大10.在三棱锥A BCD -中,已知3,2AB AC BD CD AD BC ======,点M ,N 分别是AD ,BC 的中点,则()A.MN ⊥ADB.异面直线AN ,CM 所成的角的余弦值是78C.三棱锥A BCD -的体积为3D.三棱锥A BCD -的外接球的表面积为11π11.已知函数()(sin cos )xf x e x x =⋅+,则()A.()f x 的零点为,4x k k Z ππ=-∈B.()f x 的单调递增区间为32,2,22k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C.当0,2x π⎡⎤∈⎢⎣⎦时,若()f x kx ≥恒成立,则22k e ππ≤⋅D.当10031005,22x ππ⎡⎤∈-⎢⎥⎣⎦时,过点1,02π-⎛⎫⎪⎝⎭作()f x 的图象的所有切线,则所有切点的横坐标之和为502π三、填空题:本题共3小题,每小题5分,共15分.12.直线3430x y -+=的一个方向向量是.13.甲、乙两人争夺一场羽毛球比赛的冠军,比赛为“三局两胜”制.如果每局比赛中甲获胜的概率为23,乙获胜的概率为13,则在甲获得冠军的情况下,比赛进行了三局的概率为.14.已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若(21),(2)f x g x --均为偶函数,且当[1,2]x ∈时,3()2f x mx x =-,则(2024)g =.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)如图,斜三棱柱111ABC A B C -的底面是直角三角形,90ACB ︒∠=,点1B 在底面ABC 内的射影恰好是BC 的中点,且2BC CA ==.(I)求证:平面11ACC A ⊥平面11B C CB ;(II),求平面1ABB 与平面11AB C 夹角的余弦值.16.(本小题满分15分)己知函数()ln f x x ax =-,其中a R ∈.(I)若曲线()y f x =在1x =处的切线在两坐标轴上的截距相等,求a 的值;(II)是否存在实数a ,使得()f x 在(0,]x e ∈上的最大值是-3?若存在,求出a 的值;若不存在,说明理由.17.(本小题满分15分)记复数的一个构造:从数集中随机取出2个不同的数作为复数的实部和虚部.重复n 次这样的构造,可得到n 个复数,将它们的乘积记为n z .已知复数具有运算性质:|()()||()||()|a bi c di a bi c di +⋅+=+⋅+,其中,,,a b c d R ∈.(I)当2n =时,记2z 的取值为X ,求X 的分布列;(II)当3n =时,求满足32z ≤的概率;(III)求5n z <的概率n P .18.(本小题满分17分)在平面直角坐标系xOy 中,我们把点*(,),,x y x y N ∈称为自然点.按如图所示的规则,将每个自然点(,)x y 进行赋值记为(,)P x y ,例如(2,3)8P =,(4,2)14,(2,5)17P P ==.(I)求(,1)P x ;(II)求证:2(,)(1,)(,1)P x y P x y P x y =-++;(III)如果(,)P x y 满足方程(1,1)(,1)(1,)(1,1)2024P x y P x y P x y P x y +-+++++++=,求(,)P x y 的值.19.(本小题满分17分)在平面直角坐标系xOy 中,过点(1,0)F 的直线l 与抛物线2:4C y x =交于M ,N 两点(M在第一象限).(I)当||3||MF NF =时,求直线l 的方程;(II)若三角形OMN 的外接圆与曲线C 交于点D (异于点O ,M ,N ),(i)证明:△MND 的重心的纵坐标为定值,并求出此定值;(ii)求凸四边形OMDN 的面积的取值范围.参考答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.题号12345678答案CBDBCACA二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.题号91011答案BCABDACD三、填空题:本题共3小题,每小题5分,共15分.12.31,4⎛⎫⎪⎝⎭(答案不唯一)13.2514.-6四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)(第I 问,6分;第II 问,7分)解:(I)取BC 中点为M ,连接11,B M B 在底面内的射影恰好是BC 中点,1B M ∴⊥平面ABC ,又AC ⊂ 平面1,ABC B M AC ∴⊥,又90,ACB AC BC ︒∠=∴⊥ ,1,B M BC ⊂ 平面111,,B C CB B M BC M AC ⋂=∴⊥平面11B C CB ,又AC ⊂ 平面11,ACC A ∴平面11ACC A ⊥平面11B C CB .(II)以C 为坐标原点,建立如图所示空间直角坐标系,2BC CA == ,11(2,0,0),(0,2,0),(0,1,0),(0,A B M B C ∴-,111((2,2,0),(0,2,0)AB AB B C =-=-=-,设平面1BAB 的法向量为(,,)n x y z =,100n AB n AB ⎧⋅=⎪∴⎨⋅=⎪⎩则有20220x y x y ⎧-++=⎪⎨-+=⎪⎩,令z =,则3,x y n ==∴= ,设平面1BAB 的法向量为(,,)m a b c =,11100m AB m B C ⎧⋅=⎪∴⎨⋅=⎪⎩则有2020a b b ⎧-++=⎪⎨-=⎪⎩,令a =则0,2,b c n ==∴=,||5|cos ,||||7| n m n m n m ⋅∴<〉==,平面1ABB 与平面11AB C 夹角的余弦值为57.16.(本小题满分15分)(第I 问,6分;第II 问,9分)(I)1()f x a x'=-,则(1)1,(1)f a f a '=-=-,故曲线()y f x =在1x =处的切线为(1)(1)y a a x +=--,即(1)1y a x =--,当1a =时,此时切线为1y =-,不符合要求当1a ≠时,令0x =,有1y =-,令0y =,有11x a =-,故111a=--,即2a =,故2a =(II)11()ln ,()axf x x ax f x a x x-=-∴=-= ,①当0a ≤时,()f x 在(0,e]上单调递增,()f x ∴的最大值是(e)1e 3f a =-=-,解得40ea =>,舍去;②当0a >时,由11()0ax f x a x x -=-==,得1x a=,当10e a <<,即1a e >时,10,a x ⎛⎫∴∈ ⎪⎝⎭时,1()0;,e f x x a ⎛⎫>∈ ⎪⎝⎭时,()0f x <,()f x ∴的单调递增区间是10,a ⎛⎫ ⎪⎝⎭,单调递减区间是1,e a ⎛⎫ ⎪⎝⎭,又()f x 在(0,e]上的最大值为2max 13,()1ln 3,e f x f a a a ⎛⎫-∴==--=-∴= ⎪⎝⎭;当1e a ≤,即10ea <≤时,()f x 在(0,e]上单调递增,max ()(e)1e 3f x f a ∴==-=-,解得41e ea =,舍去.综上,存在a 符合题意,此时2e a =17.(本小题满分15分)(第I 问,6分;第II 问,4分;第III 问,5分)(I)由题意可知,可构成的复数为{1,,1}i i +,|1|||1,||||||| 2.i i =====+=且X的可能取值为,111111224242111111666666122(1),(,(2)999C C C C C C P X P X P X C C C C C C ⋅⋅⋅=========⋅⋅⋅,112211661(3)9C C P X C C ⋅===⋅111142221111666621(,(4)99C C C C P X P X C C C C ⋅⋅======⋅⋅,所以分布列为:(II)共有111666216CC C ⋅⋅=种,满足32z ≤的情况有:①3个复数的模长均为1,共有1112228C C C ⋅⋅=种;②3个复数中,2个模长均为1,1或者2,共有2111322448C C C C ⋅⋅⋅=种;所以()38487221627P z +≤==.(III)当1n =或2时,显然都满足,此时1n P =;当3n ≥时,满足5n z <共有三种情况:①n 个复数的模长均为1,则共有()122nn C =;②1n -个复数的模长为1,剩余1或者2,则共有()11111242n n n n C C C n --+⋅⋅=⋅;③2n -个复数的模长为1,剩余2个模长为2,则共有()221111244(1)2n n n nCCC C n n --+⋅⋅⋅=-⋅.故()()()2112621222(1)212563n n n n n nn nn n n n n P z C ++++⋅+-⋅+<===,此时当1,2n =均成立.所以()21253n nn P z +<=.18.(本小题满分17分)(第I 问,4分;第II 问,7分;第III 问,6分)解:(I)根据图形可知(1)(,1)1232x x P x x +=++++=,(II)固定x ,则(,)P x y 为一个高阶等差数列,且满足(,1)(,)1,(1,)(,),P x y P x y x y P x y P x y x y +-=+-+-=+所以(1)(,1)(,1)12(1)(1)2y y P x y P x y y x y x ++-=++++-=+- (1)(1)(,1)(1)22y y x x P x y y x +++=+-+所以(1)(1)(,)(1)(1)22x x y y P x y x y +-=++--,(1)(1)(1,)(2)(1)22x x y y P x y x y ---=++--,所以(1)(1)(1)(1)(,1)(1,)(2)(1)(1)2222x x y y y y x x P x y P x y x y y x --++++-=++--++-+222322(,)x y xy y x P x y =++--+=(III)P(x +1,y -1)+P(x ,y +1)+P(x +1,y )+P(x +1,y +1)=2024等价于(,)(,1)(1,)(1,1)2023P x y P x y P x y P x y +++++++=,等价于(,1)3(1,)2023P x y P x y +++=即13[(1)(21)][(1)(2)(1)(2)]202322x x y y x x x y y x +++-++++-+=,化简得2221010(1)()21010y xy x y x x y x y x ++-+=⇔+-++=,由于x y +增大,(1)()x y x y +-+也增大,当31x y +=时,(1)()29921010x y x y x +-++<<,当33x y +=时,(1)()210561010x y x y x +-++>>,故当32x y +=时,(1)()210109,23x y x y x x y +-++=⇒==,即9102322(9,23)82247422P ⨯⨯=++⨯=19.(本小题满分17分)(第I 问,4分;第II 问,5分;第III 问,8分)解:(I)设直线()()1122:1,,,,MN X my M x y N x y =+联立214x my y x=+⎧⎨=⎩,消去x ,得2440y my --=,所以12124,4y y m y y +=⋅=-,||3||MF NF =,则123y y =-122212224,34y y y m y y y +=-=∴⋅=-=-,则213m =,又由题意0,3m m >∴=,直线的方程是y =;(II)(i)方法1:设()()()112233,,,,,M x y N x y D x y 因为O ,M ,D ,N 四点共圆,设该圆的方程为220x y dx ey +++=,联立22204x y dx ey y x⎧+++=⎨=⎩,消去x ,得42(416)160y d y ey +++=,即()3(416)160y y d y e +++=,所以123,,y y y 即为关于y 的方程3(416)160y d y e +++=的3个根,则()()()3123(416)16y d y e y y y y y y +++=---,因为()()()()()32123123122313123y y y y y y y y y y y y y y y y y y y y y ---=-+++++-,由2y 的系数对应相等得,1230y y y ++=,所以MND 的重心的纵坐标为0.方法2:设()()()112233,,,,,M x y N x y D x y ,则1213234444,,,OM ON MD ND k k k k y y y y y y ====++,因为O,M,C,N 四点共圆,所以MON MDN π∠+∠=,即tan tan 0MON MDN ∠+∠=,()21124tan 116OM ONOM ON y y k k MON k k y y --∠==+⋅+()()()1213234tan ,116ND MDND MD y y k k MDN k k y y y y --∠==+⋅+++化简可得:312y y y =--,所以MND 的重心的纵坐标为0.(ii)记,OMN MND 的面积分别为12,S S ,由已知得直线MN 的斜率不为0设直线:1MN x my =+,联立214x my y x=+⎧⎨=⎩,消去x ,得2440y my --=,所以12124,4y y m y y +=⋅=-,所以11211||22S OF y y =⋅⋅-==由(i)得,()3124y y y m =-+=-,所以2223311(4)444x y m m ==⨯-=,即()24,4D m m -,因为()21212||2444MN x x m y y m =++=++=+,点D 到直线MN的距离d =所以()22211||448122S MN d m m =⋅⋅=⋅+⋅-,所以)221281181S S S m m =+=+-=+-M 在第一象限,即1230,0,40y y y m ><=-<,依次连接O,M,D,N 构成凸四边形OMDN ,所以()3122y y y y =-+<,即122y y -<,又因为122244,2y y y y ⋅=-<,即222y <,即20y <<,所以122244m y y y y =+=->+=,即24m >,即218m >,所以)218116S m m =+-=,设t =,则4t >,令()2()161f t t t =-,则()()222()1611614816f t t t t t ''=-+-=-,因为4t >,所以2()48160f t t '=->,所以()f t在区间4⎛⎫+∞⎪⎝⎭上单调递增,所以()42f t f ⎛⎫>=⎪⎝⎭,所以S的取值范围为,2⎛⎫+∞ ⎪⎝⎭.。

湖南省娄底市新化县五校联盟2022-2023学年高三上学期期末联考数学试题(解析版)

湖南省娄底市新化县五校联盟2022-2023学年高三上学期期末联考数学试题(解析版)
A. B.
C. D.0
【答案】C
【解析】
【详解】分析:连结MN,结合几何性质和平面向量的运算法则整理计算即可求得最终结果.
详解:如图所示,连结MN,
由 可知点 分别为线段 上靠近点 的三等分点,
则 ,
由题意可知:
, ,
结合数量积的运算法则可得:
.
本题选择C选项.
点睛:求两个向量的数量积有三种方法:利用定义;利用向量的坐标运算;利用数量积的几何意义.具体应用时可根据已知条件的特征来选择,同时要注意数量积运算律的应用.
故选:AB.
5.已知 为等差数列 的前 项和, ,则数列 的最大项为()
A. B.
C. D.
【答案】B
【解析】
【分析】先根据等差数列的求和公式和通项公式求出首项与公差,求出等差数列 的通项公式,代入 中,利用基本不等式性质分析即可.
【详解】设等差数列 的首项为 ,公差为 ,
因为 ,
所以 ,所以 ,
则 ,
所以 ,
所以 的最小值 ,
则 的取值范围是 .
所以 可以取 , , .
故选:BCD
【点睛】本题主要考查导数在函数的零点中的应用,还考查了转化化归的思想和运算求解的能力,属于难题.
11.已知双曲线 过点 ,且渐近线方程为 ,则下列结论正确的是()
A. 的方程为 B. 的离心率为
C.曲线 经过 的一个焦点D.直线 与 有两个公共点
4.函数 的图象的大致形状是()
A. B.
C. D.
【答案】AB
【解析】
【分析】化简得 ,分 、 ,分别讨论 和 的单调性及取值范围,即可得答案.
【详解】解:因为 ,
当 时, 在 上单调递增,且当 趋于 时, 趋于 ;

五校联考高三数学考试试卷(含答案)

五校联考高三数学考试试卷(含答案)

高三年级第三次调查测试暨五校联考数学试题一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答卷纸相应位置.......上.1.已知全集M ={2,3,4},N ={4,5},则M ∪N = ▲ .2.函数y =的定义域为 . 3.命题:“(0,)x ∀∈+∞,210x x ++>”的否定是 . 4.在等差数列{}n a 中,58615a a ==,,则11a =___________.5.已知函数y =sin(ωx -π3)(ω>0)相邻两个零点之间的距离是π2,若将该函数的图像向左平移π6个单位,则所得函数的解析式为 . 6.已知直线12:60:(2)320l x ay l a x y a ++=-++=和, 若12//l l ,则a =__ __. 7.数列{a n }满足a n +1=a n +a (a 为常数且不为0,n ∈N +),若a 2,a 3,a 6成等比数列,则该等比数列的公比是 .8. 函数h (x )=⎩⎨⎧x 2+3x ,x ≥0x 2-bx ,x <0是偶函数,若(21)()h x h x -<,则x 的取值范围是 .9.已知锐角3πα⎛⎫+⎪⎝⎭的终边经过点(1,P ,则cos α=_____ ____. 10.已知过点(-2,-3)的直线l 被圆x 2+y 2+2x -4y -5=0截得的弦长为6,则直线l 的方程是______11.△ABC 的外接圆的圆心为O ,半径为1,若OA →+AB →+OC →=0,且|OA →|=|AB →|,则CA →·CB →等于 .12. 如图,已知椭圆)0(12222>>=+b a by a x 的左、右准线分别为21,l l ,且分别交x 轴于D C ,两点,从1l 上一点A 发出一条光线经过椭圆的左焦点F 被x 轴反射后与2l 交于点B ,若AF BF ⊥,且75ABD ∠=︒,则椭圆的离心率等于 .13.在△ABC 中,满足AB +BC cos B =0,则tan C 的最大值是 .14.定义在R 上的函数f (x )=ax 3+bx 2+cx (a ≠0)的单调增区间为(-1,1),若方程3a [f (x )]2+2bf (x )+c =0恰有6个不同的实根,则实数a 的取值范围是 .二、解答题:本大题共6小题,共计90分.请在答卷纸指定区域内........作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,在四棱锥P ﹣ABCD 中,ABCD 是菱形,PA ⊥平面ABCD (1)求证:BD ⊥PC ;(2)若平面PBC 与平面PAD 的交线为l ,求证:BC ∥l .16.(本小题满分14分)已知a =(sin2α,3),b =(4,cos2α),π4<α<π2,-π2<β<0,且a ⊥b .(1)求cos2α的值;(2)若cos β=255,求α-β的大小.某水库的蓄水容量为30万亿立方米.某年该水库从年初起到6月份末,在原有蓄水量为12万亿立方米的基础上,每月再调进水库m 万亿立方米.设x 表示月份,前x 个月调出去的水的总量为p =ax 2+5x (万亿立方米),且前两个月调出去的水的重量14万亿立方米.(1)若用f (x )(万亿立方米)表示每月水库的总蓄水量,试写出y =f (x )的函数关系式; (2)要使6个月内每月水库的水总能满足用水需求,且每月水调出后,水库中的水的剩余量不超过水库的容量,试确定m 的取值范围.18.(本小题满分16分)已知A 、F 分别是椭圆2222:1(0)x y C a b a b+=>>的左顶点、右焦点,右准线与x 轴的交点为H ,AF FH =,点P 为椭圆C 上一动点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学学习材料金戈铁骑整理制作2015届高三第四次模拟考试答案数 学 (I)(满分160分,考试时间120分钟)注意事项:所有试题的答案均填写在答题纸上,答案写在试卷上的无效.一、填空题:(本大题共14小题,每小题5分,共70分.请将答案填入答题纸填空题的相应答题线上)1. 已知集合M ={x |x <1},N ={x |lg(2x +1)>0},则M ∩N = ▲ .【答案】(0,1)2. 复数z =a +i 1-i为纯虚数,则实数a 的值为 ▲ .【答案】13. 某学校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为 ▲ . 【答案】84. 执行如图所示流程图,得到的结果是 ▲ .【答案】785. 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =43x ,那么该双曲线的离心率为 ▲ . 【答案】536. 将一颗骰子先后抛掷2次,观察向上的点数,则所得的两个点数中至少有一个是奇数的概率为 ▲ .【答案】347. 若一圆锥的底面半径为3,体积是12π,则该圆锥的侧面积等于 ▲ .【答案】15π8. 直线l 过点(-1,0),且与直线3x +y -1=0垂直,直线l 与圆C :(x -2)2+y 2=1交于M 、N 两点,则MN = ▲ . 【答案】1059. 已知0x >,0y >,228x y xy ++=,则2x y +的最小值为 ▲ .【答案】410. 函数sin (sin cos )([,0])2y παααα=-∈-的最大值为 ▲ .【答案】1222+11. 已知△ABC 是等边三角形,有一点D 满足AB +12AC =AD ,且|CD |=3,那么DA DC ⋅= ▲ .【答案】312. 已知函数f (x )=⎩⎨⎧-x 2+ax (x ≤1)2ax -5(x >1),若∃x 1,x 2∈R ,x 1≠x 2,使得f (x 1)=f (x 2)成立,则实数a 的取值范围是 ▲ . 【答案】(-∞,4)13. 已知函数f (x )满足f (x )=f (1x ),当x ∈[1,3]时,f (x )=ln x ,若在区间[13,3]内,函数g (x )=f (x )-ax 与x 轴有三个不同的交点,则实数a 的取值范围是 ▲ .【答案】⎣⎡ln33,⎭⎫1e14. 各项均为实数的等差数列的公差为2,其首项的平方与其余各项之和不超过33,则这样的数列至多有 ▲ 项. 【答案】7解:a 21+a 2+a 3+···+a n =a 21+(n -1)(a 2+a n )2=a 21+(n -1)(a 1+n )=a 21+(n -1)a 1+n (n -1)=⎝⎛⎭⎫a 1+n -122+n (n -1)-(n -1)24=⎝⎛⎭⎫a 1+n -122+(n -1)(3n +1)4≤33 为了使得n 尽量大,故⎝⎛⎭⎫a 1+n -122=0,∴(n -1)(3n +1)4≤33∴(n -1)(3n +1)≤132,当n =6时,5×19<132;当n =7时,6×22=132, 故n max =7.【注】不易猜测:-3,-1,1,3,5,7,9.二、解答题(本大题共6小题,共90分解答应写出文字说明、证明过程或演算步骤) 15. (本小题满分14分)已知函数f (x )=sin(ωx +φ) (ω>0,0<φ<π),其图像经过点M ⎝⎛⎭⎫π3,12,且与x 轴两个相邻的交点的距离为π. (1)求f (x )的解析式;(2)在△ABC 中,a =13,f (A )=35,f (B )=513,求△ABC 的面积.解:(1)依题意知,T =2π,∴ω=1,∴f (x )=sin(x +φ) ………2分∵f (π3)=sin(π3+φ)=12,且0<φ<π ∴π3<π3+φ<4π3 ∴π3+φ=5π6 即φ=π2……5分∴f (x )=sin ⎝⎛⎭⎫x +π2=cos x . ………6分注意:不写φ的范围,直接得φ的值扣1分,f (x )的解析式不化简不扣分.(2)∵f (A )=cos A =35,f (B )=cos B =513, ∴A ,B ∈(0,π2)∴sin A =45,sin B =1213 ………8分∴sin C =sin(A +B )=sin A cos B +cos A sin B =5665 ………10分∵在△ABC 中a sin A =bsin B ∴b =15. ………12分∴S △ABC =12ab sin C =12×13×15×5665=84. ………14分注意:其他解法参照给分 16. (本小题满分14分)在正三棱柱ABC -A 1B 1C 1中,点D 是BC 的中点. (1)求证:A 1C ∥平面AB 1D ;(2)设M 为棱CC 1的点,且满足BM ⊥B 1D , 求证:平面AB 1D ⊥平面ABM .证明:(1) 记A 1B ∩AB 1=O ,连接OD .∵四边形AA 1B 1B 为矩形,∴O 是A 1B 的中点, 又∵D 是BC 的中点,∴A 1C ∥OD . ………2分 又∵A 1C ⊂∕平面AB 1D ,OD ⊂平面AB 1D ,∴A 1C ∥平面AB 1D . ………6分 注意:条件“A 1C ⊂∕平面AB 1D ,OD ⊂平面AB 1D ”少写一个扣除ABDMC1A 1B 1C ABDMC1A 1B 1C O2分,两个都不写本小步4分扣完!(2)∵△ABC 是正三角形,D 是BC 的中点,∴AD ⊥BC . ………8分 ∵平面ABC ⊥平面BB 1C 1C ,平面ABC ∩平面BB 1C 1C =BC ,AD ⊂平面ABC , ∴AD ⊥平面BB 1C 1C .【或利用CC 1⊥平面ABC 证明AD ⊥平面BB 1C 1C .】 ………10分 ∵BM ⊂平面BB 1C 1C ,∴AD ⊥BM . ………12分 又∵BM ⊥B 1D ,AD ∩B 1D =D ,AD ,B 1D ⊂平面AB 1D , ∴BM ⊥平面AB 1D .又∵BM ⊂平面ABM ,∴平面AB 1D ⊥平面ABM . ………14分 17. (本小题满分15分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为55,短轴长为4,F 1、F 2为椭圆左、右焦点,点B 为下顶点.(1)求椭圆C 的标准方程;(2)点P (x 0, y 0)是椭圆C 上第一象限的点.① 若M 为线段BF 1上一点,且满足→PO =6·→OM , 求直线OP 的斜率;② 设点O 到直线PF 1、PF 2的距离分别为d 1、d 2,求证:y 0d 1+y 0d 2为定值,并求出该定值.解:(1)由题意知,2b =4,∴b =2,又∵e =c a =55,且a 2=b 2+c 2,解得:a =5,c =1,∴椭圆C 的标准方程为x 25+y 24=1; ………4分(2)①由(1)知:B (0,-2),F 1(-1,0),∴BF 1:y =-2x -2 ………5分设M (t ,-2t -2),由→PO =6·→OM 得:⎩⎪⎨⎪⎧x 0=-6t y 0=26(t +1) ………7分代入椭圆方程得:6t 25+6(t +1)2=1,∴36t 2+60t +25=0,∴(6t +5)2=0, ∴t =-56 ,∴M (-56,-13) ………9分∴OM 的斜率为25,即直线OP 的斜率为25; ………10分【或】设直线OP 的方程为y kx =,由22154y kxx y =⎧⎪⎨+=⎪⎩,得22045P x k =+ ………6分 由22y kx y x =⎧⎨=--⎩得22M x k -=+, ………8分BxyO1F 2F PM由→PO =6·→OM 得6P M x x =-解得:25k = ………10分②由题意,PF 1:y =y 0x 0+1(x +1),即y 0x -(x 0+1)y +y 0=0 ………11分∴d 1=y 0y 20+(x 0+1)2,同理可得:d 2=y 0y 20+(x 0-1)2∴y 0d 1+y 0d 2=y 20+(x 0+1)2+y 20+(x 0-1)2=PF 1+PF 2=2a =25 ………15分 【或】∵S △OPF 1=12PF 1·d 1=12OF 1·y 0,∴PF 1·d 1=y 0,∴y 0d 1=PF 1.同理在△OPF 2中,有y 0d 2=PF 2.∴y 0d 1+y 0d 2=PF 1+PF 2=2a =25. ………15分18. (本小题满分15分)如图,某广场为一半径为80米的半圆形区域,现准备在其一扇形区域OAB 内建两个圆形花坛,该扇形的圆心角为变量2θ(02θπ<<),其中半径较大的花坛⊙P 内切于该扇形,半径较小的花坛⊙Q 与⊙P 外切,且与OA 、OB 相切. (1)求半径较大的花坛⊙P 的半径(用θ表示); (2)求半径较小的花坛⊙Q 的半径的最大值.解:(1)设⊙P 切OA 于M ,连PM ,⊙Q 切OA 于N ,连QN ,记⊙P 、⊙Q 的半径分别为r P 、r Q .∵⊙P 与⊙O 内切,∴|OP |=80-r P ,∴r P sin θ+r P =80, ………4分 ∴r P =80·sin θ1+sin θ(0<θ<π2) ………6分(2)∵|PQ |=r P +r Q ∴|OP |-|OQ |=r P sin θ-r Qsin θ=r P +rQ∴r Q =80·sin θ(1-sin θ)1+sin θ(0<θ<π2) ………10分法一:令t =1+sin θ∈(1,2),∴r Q =80·(t -1)(2-t )t 2=80⎝⎛⎭⎫-1-2t 2+3t 令m =1t ∈(12,1),r Q =80(-2m 2+3m -1) ∴m =34时,有最大值10. ………14分注意:换元不写范围扣1分OABM NPQ OABPQ法二:∵2sin θ(1-sin θ)≤2sin θ+(1-sin θ)2=1+sin θ2∴sin θ(1-sin θ)≤(1+sin θ)28 ∴r Q ≤10.此时sin θ=13 ………14分注意:不指出取等号的条件扣1分法三:令t =sin θ∈(0,1),r Q =80(t -t 2)(1+t )2,∴r Q '=80(1-3t )(1+t )3令r Q '=0得:t =13,【列表略】故t =13时,⊙Q 的半径的最大值为10.………14分注意:不列表扣1分答:⊙Q 的半径的最大值为10. ………15分 注意:应用题不写答扣1分 19. (本小题满分16分)已知a 为实数,函数f (x )=a ·ln x +x 2-4x .(1)是否存在实数a ,使得f (x )在x =1处取极值?证明你的结论; (2)若函数f (x )在[2, 3]上存在单调递增区间,求实数a 的取值范围;(3)设g (x )=212ln 5aa x x x x++--,若存在x 0∈[1,e ],使得f (x 0)<g (x 0)成立,求实数a 的取值范围.解:(1)函数f (x )定义域为(0,+∞),f '(x )=ax +2x -4=2x 2-4x +a x假设存在实数a ,使f (x )在x =1处取极值,则f '(1)=0,∴a =2, ………2分 此时,f '(x )=2(x -1)2x,∴当0<x <1时,f '(x )>0,f (x )递增;当x >1时,f '(x )>0,f (x )递增. ∴x =1不是f (x )的极值点.故不存在实数a ,使得f (x )在x =1处取极值. ………4分 (2)f '(x )=2x 2-4x +a x =2(x -1)2+a -2x,①当a ≥2时,∴f '(x )≥0,∴f (x )在(0,+∞)上递增,成立; ………6分 ②当a <2时,令f '(x )>0,则x >1+1-a2或x <1-1-a 2, ∴f (x )在(1+1-a2,+∞)上递增, ∵f (x )在[2, 3]上存在单调递增区间,∴1+1-a2<3,解得:-6<a <2 综上,a >-6. ………10分 (3)在[]1e ,上存在一点0x ,使得()()00f x g x <成立,即在[]1e ,上存在一点0x ,使得()00h x <,即函数()1ln ah x x a x x+=+-在[]1e ,上的最小值小于零. 22221(1)(1)[(1)]()1a a x ax a x x a h x x x x x +--++-+'=--==①当1a e +≥,即1a e ≥-时, ()h x 在[]1e ,上单调递减,所以()h x 的最小值为()h e ,由()10ah e e a e+=+-<可得211e a e +>-, 因为2111e e e +>--,所以211e a e +>-; ………12分 ②当11a +≤,即0a ≤时,()h x 在[]1e ,上单调递增,所以()h x 最小值为()1h ,由()1110h a =++<可得2a <-; ………14分 ③当11a e <+<,即01a e <<-时,可得()h x 最小值为()()12ln 1h a a a a +=+-+, 因为()0ln 11a <+<,所以,()0ln 1a a a <+<故()()12ln 12h a a a a +=+-+> 此时不存在0x 使()00h x <成立.综上可得所求a 的范围是:211e a e +>-或2a <-. ………16分解法二:由题意得,存在x ∈[1, e],使得a (ln x -1x )>x +1x成立.令m (x )=ln x -1x ,∵m (x )在[1, e]上单调递增,且m (1)=-1<0, m (e)=1-1e >0故存在x 1∈(1,e),使得x ∈[1, x 1)时,m (x )<0;x ∈(x 1, e]时,m (x )>0 故存在x ∈[1, x 1)时,使得a <x 2+1x ln x -1成立,·························(☆)或存在x ∈(x 1, e]时,使得a >x 2+1x ln x -1成立,·························(☆☆) ………12分记函数F (x )=x 2+1x ln x -1,F '(x )=(x 2-1)ln x -(x +1)2(x ln x -1)2当1<x ≤e 时,(x 2-1)ln x -(x +1)2=(x 2-1)·⎝⎛⎭⎪⎫ln x -x +1x -1∵G (x )=ln x -x +1x -1=ln x -2x -1-1递增,且G (e)=-2e -1<0∴当1<x ≤e 时,(x 2-1)ln x -(x +1)2<0,即F '(x )<0∴F (x )在[1, x 1)上单调递减,在(x 1, e]上也是单调递减, ………14分∴由条件(☆)得:a <F (x )max =F (1)=-2 由条件(☆☆)得:a >F (x )min =F (e)=e 2+1e -1综上可得,a >e 2+1e -1或a <-2. ………16分20. (本小题满分16分)已知两个无穷数列{}{},n n a b 分别满足12n n a a +-=,2214n n b b +=,且111,1a b ==-. (1)若数列{}{},n n a b 都为递增数列,求数列{}{},n n a b 的通项公式;(2)若数列{}n c 满足:存在唯一的正整数()r r N *∈,使得1r r c c +<,称数列{}n c 为“梦r 数列”;设数列{}{},n n a b 的前n 项和分别为,n n S T , ① 若数列{}n a 为“梦5数列”,求n S ;② 若{}n a 为“梦1r 数列”,{}n b 为“梦2r 数列”,是否存在正整数m ,使得1m m S T +=,若存在,求m 的最大值;若不存在,请说明理由.解:(1)数列{}{},n n a b 都为递增数列,∴12n n a a +-=,21212,2,n n b b b b n N *++=-=∈,∴21n a n =-,11,12,2n n n b n --=⎧=⎨≥⎩; ………4分(2)①∵数列{}n a 满足:存在唯一的正整数=5r ,使得1r r a a +<,且12n n a a +-=,∴数列{}n a 必为1,3,5,7,9,7,9,11,⋅⋅⋅,即前5项为首项为1,公差为2的等差数列,从第6项开始为首项7,公差为2的等差数列,故22,5420,6n n n S n n n ⎧≤⎪=⎨-+≥⎪⎩; ………8分②∵2214n n b b +=即12n n b b +=±,1||2n n b -∴= ………9分 而数列{}n b 为“梦数列”且11b =-,∴数列{}n b 中有且只有两个负项.假设存在正整数m ,使得+1m m S T =,显然1m ≠,且m T 为奇数,而{}n a 中各项均为奇数,∴m 必为偶数. ………10分 首先证明:6m ≤.若7m >,数列{}n a 中()()21max 1321(1)m S m m +=++⋅⋅⋅++=+,而数列{}n b 中,m b 必然为正,否则()()1121212122230m m m m T b ---=-++⋅⋅⋅+-≤-++⋅⋅⋅++-=-<,显然矛盾;(※)∴()()()13211min 12+22223m m m m m T ----=-++⋅⋅⋅++-+=-,设122(1)3m m c m -=-+-,易得11223,m m m m d c c m -+=-=-- 而11220m m m d d -+-=->,()7m >,∴{}m d ()7m >为增数列,且70d >进而{}m c ()7m >为增数列,而80c >, ∴()()min max m m T S >,即6m ≤. ………14分 当6m =时,构造:{}n a 为1,3,1,3,5,7,9,⋅⋅⋅,{}n b 为1,2,4,8,16,32,64,--⋅⋅⋅ 此时12r =,24r =所以max 6m =,对应的12r =,24r = ………16分。

相关文档
最新文档