波利亚-怎样解题ppt课件

合集下载

波利亚《怎样解题表》

波利亚《怎样解题表》

波利亚的怎样解题表陕西师范大学罗增儒罗新兵1乔治·波利亚乔治·波利亚(George Polya,1887~1985)是美籍匈牙利数学家、数学教育家.在解题方面,是数学启发法(指关于发现和发明的方法和规律,亦译为探索法)现代研究的先驱.由于他在数学教育方面取得的成就和对世界数学教育所产生的影响,在他93岁高龄时,还被ICME(国际数学教育大会)聘为名誉主席.作为一个数学家,波利亚在函数论、变分法、概率、数论、组合数学、计算和应用数学等众多领域,都做出了开创性的贡献,留下了以“波利亚”命名的定理或术语;他与其他数学家合著的《数学分析中的问题和定理》、《不等式》、《数学物理中的等周问题》、《复变量》等书堪称经典;而以200多篇论文构成的四大卷文集,在未来的许多年里,将是研究生攻读的内容.作为一个数学教育家,波利亚的主要贡献集中体现在《怎样解题》(1945年)、《数学与似真推理》(1954年)、《数学的发现》(1962年)三部世界名著上,涉及“解题理论”、“解题教学”、“教师培训”三个领域.波利亚对数学解题理论的建设主要是通过“怎样解题”表来实现的,而在尔后的著作中有所发展,也在“解题讲习班”中对教师现身说法.他的著作把传统的单纯解题发展为通过解题获得新知识和新技能的学习过程,他的目标不是找出可以机械地用于解决一切问题的“万能方法”,而是希望通过对于解题过程的深入分析,特别是由已有的成功实践,总结出一般的方法或模式,使得在以后的解题中可以起到启发的作用.他所总结的模式和方法,包括笛卡儿模式、递归模式、叠加模式、分解与组合方法、一般化与特殊化方法、从后往前推、设立次目标、归纳与类比、考虑相关辅助问题、对问题进行变形等,都在解题中行之有效.尤其有特色的是,他将上述的模式与方法设计在一张解题表中,并通过一系列的问句或建议表达出来,使得更有启发意义.著名数学家互尔登在瑞士苏黎世大学的会议致词中说过:“每个大学生、每个学者、特别是每个教师都应该读这本引人入胜的书”(1952年2月2日).2怎样解题表波利亚是围绕“怎样解题”、“怎样学会解题”来开展数学启发法研究的,这首先表明其对“问题解决”重要性的突出强调,同时也表明其对“问题解决”研究兴趣集中在启发法上.波利亚在风靡世界的《怎样解题》(被译成14种文字)一书中给出的“怎样解题表”,正是一部“启发法小词典”.2.1“怎样解题”表的呈现弄清问题第一,你必须弄清问题未知是什么?已知是什么?条件是什么?满足条件是否可能?要确定未知,条件是否充分?或者它是否不充分?或者是多余的?或者是矛盾的?画张图,引入适当的符号.把条件的各个部分分开.你能否把它们写下来?拟定计划第二,找出已知数与未知数之间的联系.如果找不出直接的联系,你可能不得不考虑辅助问题.你应该最终得出一个求解的计划你以前见过它吗?你是否见过相同的问题而形式稍有不同?你是否知道与此有关的问题?你是否知道一个可能用得上的定理?看着未知数,试想出一个具有相同未知数或相似未知数的熟悉的问题.这里有一个与你现在的问题有关,且早已解决的问题.你能不能利用它?你能利用它的结果吗?你能利用它的方法吗?为了能利用它,你是否应该引入某些辅助元素?你能不能重新叙述这个问题?你能不能用不同的方法重新叙述它?回到定义去.如果你不能解决所提出的问题,可先解决一个与此有关的问题.你能不能想出一个更容易着手的有关问题?一个更普遍的问题?一个更特殊的问题?一个类比的问题?你能否解决这个问题的一部分?仅仅保持条件的一部分而舍去其余部分.这样对于未知数能确定到什么程度?它会怎样变化?你能不能从已知数据导出某些有用的东西?你能不能想出适合于确定未知数的其他数据?如果需要的话,你能不能改变未知数或数据,或者二者都改变,以使新未知数和新数据彼此更接近?你是否利用了所有的已知数据?你是否利用了整个条件?你是否考虑了包含在问题中的必要的概念?实现计划第三,实行你的计划实现你的求解计划,检验每一步骤.你能否清楚地看出这一步骤是正确的?你能否证明这一步骤是正确的?回顾第四,验算所得到的解.你能否检验这个论证?你能否用别的方法导出这个结果?你能不能一下子看出它来?你能不能把这一结果或方法用于其他的问题?下面是实践波利亚解题表的一个示例,能够展示波利亚解题风格的心路历程,娓娓道来,栩栩如生.2.2“怎样解题”表的实践例1给定正四棱台的高h,上底的一条边长a和下底的一条边长b,求正四棱台的体积F.(学生已学过棱柱、棱锥的体积)讲解第一,弄清问题.问题1.你要求解的是什么?要求解的是几何体的体积,在思维中的位置用一个单点F象征性地表示出来(图1).问题2.你有些什么?一方面是题目条件中给出的3个已知量a、b、h;另一方面是已学过棱柱、棱锥的体积公式,并积累有求体积公式的初步经验.把已知的三个量添到图示处(图2),就得到新添的三个点a、b、h;它们与F之间有一条鸿沟,象征问题尚未解决,我们的任务就是将未知量与已知量联系起来.第二,拟定计划.问题3.怎样才能求得F?由于我们已经知道棱柱、棱锥的体积公式,而棱台的几何结构(棱台的定义)告诉我们,棱台是“用一个平行于底面的平面去截棱锥”,从一个大棱锥中截去一个小棱锥所生成的.如果知道了相应两棱锥的体积B和A,我们就能求出棱台的体积F=B-A.①我们在图示上引进两个新的点A和B,用斜线把它们与F联结起来,以此表示这三个量之间的联系(图3,即①式的几何图示).这就把求F转化为求A、B.图3问题4.怎样才能求得A与B?依据棱锥的体积公式(V=13Sh),底面积可由已知条件直接求得,关键是如何求出两个棱锥的高.并且,一旦求出小棱锥的高x,大棱锥的高也就求出,为x+h.我们在图示上引进一个新的点x,用斜线把A与x、a连结起来,表示A能由a、x得出,A=13a2x;类似地,用斜线把B与b、h、x连结起来,表示B可由b、h、x得出,B=13b2(x+h)(图4),这就把求A、B转化为求x.图4问题5.怎样才能求得x?为了使未知数x与已知数a、b、h联系起来,建立起一个等量关系.我们调动处理立体几何问题的基本经验,进行“平面化”的思考.用一个通过高线以及底面一边上中点(图5中,点Q)的平面去截两个棱锥,在这个截面上有两个相似三角形能把a 、b 、h 、x 联系起来(转化为平面几何问题),由△VPO1∽△VQO2得图5x a x h b =+②这就将一个几何问题最终转化为代数方程的求解.解方程②,便可由a 、b 、h 表示x,在图示中便可用斜线将x 与a、b、h 连结起来.至此,我们已在F 与已知数a 、b 、h 之间建立起了一个不中断的联络网,解题思路全部沟通.第三,实现计划.作辅助线(过程略)如图5,由相似三角形的性质,得x a x h b =+,解得x=ah b a-. 进而得两锥体的体积为A=13a2x =13·3a h b a-, B=13b2(x+h)=13·3b h b a-, 得棱台体积为F=B-A=13·33()b a h b a --=13(a 2+ab +b 2)h .③第四,回顾. (1)正面检验每一步,推理是有效的,演算是准确的.再作特殊性检验,令a→0,由③可得正四棱锥体的体积公式;令a→b,由③可得正四棱柱体的体积公式.这既反映了新知识与原有知识的相容性,又显示出棱台体积公式的一般性;这既沟通了三类几何体极限状态间的知识联系,又可增进三个体积公式的联系记忆.(2)回顾这个解题过程可以看到,解题首先要弄清题意,从中捕捉有用的信息(如图1所示,有棱台,a、b、h、F共5条信息),同时又要及时提取记忆网络中的有关信息(如回想:棱台的定义、棱锥的体积公式、相似三角形的性质定理、反映几何结构的运算、调动求解立体几何问题的经验积累等不下6条信息),并相应将两组信息资源作合乎逻辑的有效组合.这当中,起调控作用的关键是如何去构思出一个成功的计划(包括解题策略).由这一案例,每一个解题者还可以根据自己的知识经验各自进一步领悟关于如何制定计划的普遍建议或模式.(3)在解题方法上,这个案例是分析法的一次成功应用,从结论出发由后往前找成立的充分条件.为了求F,我们只需求A、B(由棱台体积到棱锥体积的转化——由未知到已知,化归);为了求A、B,我们只需求x(由体积计算到线段计算的转化——由复杂到简单,降维);为了求x,我们只需建立关于x的方程(由几何到代数的转化——数形结合);最后,解方程求x,解题的思路就畅通了,在当初各自孤立而空旷的画面上(图1),形成了一个联接未知与已知间的不中断网络(图5),书写只不过是循相反次序将网络图作一叙述.这个过程显示了分析与综合的关系,“分析自然先行,综合后继;分析是创造,综合是执行;分析是制定一个计划,综合是执行这个计划”.(4)在思维策略上,这个案例是“三层次解决”的一次成功应用.首先是一般性解决(策略水平上的解决),把F转化为A,B的求解(F=A-B),就明确了解题的总体方向;其次是功能性解决(方法水平的解决),发挥组合与分解、相似形、解方程等方法的解题功能;最后是特殊性解决(技能水平的解决),比如按照棱台的几何结构作图、添辅助线找出相似三角形、求出方程的解、具体演算体积公式等,是对推理步骤和运算细节作实际完成.(5)在心理机制上,这个案例呈现出“激活——扩散”的基本过程.首先在正四棱台(条件)求体积(结论)的启引下,激活了记忆网络中棱台的几何结构和棱锥的体积公式,然后,沿着体积计算的接线向外扩散,依次激活截面知识、相似三角形知识、解方程知识(参见图1~图5),……直到条件与结论之间的网络沟通.这种“扩散——激活”的观点,正是数学证明思维中心理过程的一种解释.(6)在立体几何学科方法上,这是“组合与分解”的一次成功应用.首先把棱台补充(组合)为棱锥,然后再把棱锥截成(分解)棱台并作出截面,这种做法在求棱锥体积时曾经用过(先组合成一个棱柱、再分解为三个棱锥),它又一次向我们展示“能割善补”是解决立体几何问题的一个诀窍,而“平面化”的思考则是沟通立体几何与平面几何联系的一座重要桥梁.这些都可以用于求解其他立体几何问题,并且作为一般化的思想(化归、降维)还可以用于其他学科.(7)“你能否用别的方法导出这个结果?”在信念上我们应该永远而坚定地做出肯定的回答,操作上未实现只是能力问题或暂时现象.对于本例,按照化棱台为棱锥的同样想法,可以有下面的解法.如图6,正四棱台ABCD-A1B1C1D1中,连结DA 1,DB 1,DC1,DB,将其分成三个四棱锥D-A1B1C1D1,D-AA1B1B,D-BB1C1C,其中1111D A B C D V -=13b 2h, 11D AA B B V -=11D BB C C V -.(等底等高)图6 图7 为了求11D AA B B V -,我们连结A B1,将其分为两个三棱锥D-ABB1与D-AA1B1(图7),因11AA B S ∆=b a 1ABB S ∆, 故11D AA B B V -=b a 1D ABB V -, 但1D ABB V -=1B ABD V -=13·12a2·h=16a 2h, 故11D AA B B V -=1D ABB V -+11D AA B V - =16a 2h+b a ·16a 2h=16 (a 2+ab)h. 从而1111ABC D A B C D V -=11D AA B B V -+11D BB C C V -+1111D A B C D V -=16(a2+ab)h+16(a2+ab)h+13b2h=13(a2+ab+b2)h.(8)“你能不能把这一结果或方法用于其他问题?”能,至少我们可以由正四棱台体积公式一般化为棱台体积公式(方法是一样的).注意到a2=S1,b2=S2,ab=12S S,可一般化猜想棱台的体积公式为V台=13(S1+12S S+S2)h.3波利亚的解题观对于波利亚的怎样解题表及有关著作,人们从不同的角度阐发了对波利亚解题思想的认识(见参考文献),我们将其归结为5个要点.3.1程序化的解题系统怎样解题表,就“怎样解题”、“教师应教学生做些什么”等问题,把“解题中典型有用的智力活动”,按照正常人解决问题时思维的自然过程分成四个阶段——弄清问题、拟定计划、实现计划、回顾,从而描绘出解题理论的一个总体轮廓,也组成了一个完整的解题教学系统.既体现常识性,又体现由常识上升为理论(普遍性)的自觉努力.这四个阶段首先是一个四步骤的宏观解题程序,其中“实现计划”虽为主体工作,但较为容易完成,是思路打通之后具体实施信息资源的逻辑配置,“我们所需要的只是耐心”;其次,“弄清问题”是认识问题、并对问题进行表征的过程,应成为成功解决问题的一个必要前提;与前两者相比,“回顾”是最容易被忽视的阶段,波利亚将其作为解题的必要环节而固定下来,是一个有远见的做法,在整个解题表中“拟定计划”是关键环节和核心内容.“拟定计划”的过程是在“过去的经验和已有的知识”基础上,探索解题思路的发现过程,波利亚的建议是分两步走:第一,努力在已知与未知之间找出直接的联系(模式识别等);第二,如果找不出直接的联系,就对原来的问题做出某些必要的变更或修改,引进辅助问题,为此,波利亚又进一步建议:看着未知数,回到定义去,重新表述问题,考虑相关问题,分解或重新组合,特殊化,一般化,类比等,积极诱发念头,努力变化问题.这实际上是阐述和应用解题策略并进行资源的提取与分配.于是,这个系统就集解题程序、解题基础、解题策略、解题方法等于一身,融理论与实践于一体.3.2启发式的过程分析(1)还在当学生的时候,波利亚就有一个问题一再使他感到困惑:“是的,这个解答好像还行,它看起来是正确的,但怎样才能想出这样的解答呢?是的,这个实验好像还行,它看起来是个事实,但别人是怎样发现这样的事实?而且我自己怎样才能想出或发现它们呢?”从解题论的观点看,这实际上是既提出了“怎样解题”又提出了“怎样学会解题”的问题,波利亚说,这“终于导致他写出本书”(指《怎样解题》).波利亚认为“数学有两个侧面”,“用欧几里得方式提出来的数学看来像是一门系统的演绎科学;但在创造过程中的数学看来却像是一门实验性的归纳科学.这两个侧面都像数学本身一样古老.但从某一点说来,第二个侧面则是新的,因为以前从来就没有‘照本宣科’地把处于发现过程中的数学照原样提供给学生,或教师自己,或公众.”他以数十年的时间悉心研究数学启发法,其“怎样解题”的基本思想就可以概括为“知识+启发法”.在解题表中,波利亚给出了“启发法小词典”,让读者通过阅读词典来开阔思路、指导实践,自己学会怎样解题.这些看法来源于波利亚对数学教育宗旨的认识,波利亚认为,数学教育应“教会年轻人去思考”,培养学生的“独立性、能动性和创新精神”;他认为一个人在学校所受的教育应该受益终生,他赞成,良好的教育应该“系统地给学生自己发现事物的机会”,“应该帮助学生自己再发现所教的内容”,“学东西的最好途径是亲自去发现它”;他特别重视发展学生的数学思维能力,强调数学教学要加强思维训练,要发展学生运用所学知识的能力,发展技能、技巧、有益的思考方式和科学的思维习惯,他反复指出,数学教育的目的不仅仅是传授知识,还要“发展学生本身的内蕴能力”.教师要“教学生证明问题”,也要“教他们猜想问题”.波利亚提出“合情推理”的概念,号召:“让我们教猜想吧!”(2)在解题表的展开中,波利亚则通过剖析典型例题的思维过程来研究“发现和发明的方法和规律”.波利亚不断地提问、不断地建议,“怎样才能想出这样的解答呢?”“我自己怎样才能想出或发现它们呢?”既驱使人们去分析解题过程,又要求人们去总结发现的规律.波利亚在《数学的发现》序言中提出:“领会方法的最佳时机,可能是读者解出一道题的时候,或是阅读它的解法的时候,也可能是阅读解法形成过程的时候”.波利亚书中的例题,其实就是对典型例题进行解题过程的分析,就是暴露数学解题的思维过程,也就是教人“怎样学会解题”.在例1中,数学操作与思维开展相结合的图解或阐释,使我们既领会到了这样的意图,也见到了这样的行动.波利亚对解题过程淋漓尽致的剖析,实质上已接触到心理层面,但没有用到多少教育学或思维学的相关名词,基本上都是其数学前沿研究中切身体验的自然流露,数学功底和过程体验发挥了重要作用.这正是数学家研究数学教育的优势,处处有数学的“真刀真枪”,绝非“纸上谈兵”.波利亚说“货源充足和组织良好的知识仓库是一个解题者的重要资本”,在“知识”与“组织良好”之间,波利亚更强调后者,他说“良好的组织使得所提供的知识易于用上,这甚至可能比知识的广泛更为重要.”用现在的话来说,波利亚在这里强调了“原有的知识经验”和“优化的认知结构”对问题解决的基础作用.3.3开放型的念头诱发.波利亚解释说:“我们表中的问题和建议并不直接提到念头;但实际上,所有的问题和建议都与它有关(可以说解题表中的每一个问句,都是从认知或元认知的角度向读者启发解题念头.),弄清问题是为好念头的出现做准备;拟订计划是试图引发它;在引发之后,我们实现它;回顾此过程和求解的结果,我们试图更好地利用它.”他强调指出:“老师为学生所能做的最大的好事是通过比较自然的帮助,促使他自己想出一个好念头.”在《怎样解题》一书里,出现“念头”这个词不下四五十次.念头有什么用?波利亚说:“它会给你指出整个或部分解题途径”.“也许有些念头会把你引入歧途”,但这并不可怕,“在明显失败的尝试和一度犹豫不决之后”会“突然闪出一个‘好念头’”,最糟糕的是没有任何念头,还“笨头呆脑地干等着某个念头的降临,而不会做任何事情去加速其来到.”这里说的念头不仅在字面上比“问题表征”更为浅白,而且在内涵上更为丰富,其实质是开展积极活跃的思维活动,产生念头与找出解题途径完全可以理解为同义语.那么产生念头的基础是什么呢?波利亚的回答是:“过去的经验和已有的知识”.(解题力量)“如果我们对该论题知识贫乏,是不容易产生好念头的.如果我们完全没有知识,则根本不可能产生好念头.”波利亚一再提到“好念头”,其实这就是直觉、顿悟或灵感,“想出一个好念头是一种‘灵感运动’”,“想像力有了一个突然的跳跃,产生了一个好念头,这是天才的一次闪烁”,“是我们观点上的重大突变,我们看问题方式的一个骤然变动,在解题步骤方面的一个刚刚露头的有信心的预感”.波利亚关于念头的种种议论,正是开展积极思维活动的激发与激活.3.4探索性的问题转换这里说的“问题转换”,在《怎样解题》一书中亦叫“变化问题”、“题目变更”,它揭示了探索解题思路的数学途径,也体现了解题策略的实际运用.波利亚强调:“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒,为了找出哪个方面是正确的方面,哪一侧是好接近的一侧,我们从各个方面、各个侧面去试验,我们变更问题.”“变化问题使我们引进了新的内容,从而产生了新的接触,产生了和我们有关的元素接触的新可能性.”“新问题展现了接触我们以前知识的新可能性,它使我们做出有用接触的希望死而复苏.通过变化问题,显露它的某个新方面,新问题使我们的兴趣油然而生”.在“怎样解题”表中,波利亚拟出了启引我们不断转换问题的30多个问句或建议:把问题转化为一个等价的问题,把原问题化归为一个已解决的问题,去考虑一个可能相关的问题,先解决一个更特殊的问题、或更一般的问题、或类似的问题……那些启发新念头的问句,也往往与问题转换有关.“如果我们不用‘题目变更’,几乎是不能有什么进展的”——这就是波利亚的结论.3.5朴素的数学解题元认知观念.元认知是对认知的再认知,包括元认知知识,元认知体验和元认知监控.虽然元认知概念提出较晚,但元认知思想早就存在,在波利亚的解题思想中存在着朴素的元认知观念.波利亚解题表的大量问句或建议,都不是问别人,而是自己给自己提问题、提建议,这是解题者的自我诘问、自我反思.问题中的一部分,其对象针对具体的数学内容,属于认知性的;另一部分则以解题者自身为对象,属于元认知性的.比如,“你以前见过它吗?”“你是否知道一个与此有关的问题?”“这里有一个与你现在的问题有关,且早已解决的问题.你能不能利用它?”等等,都不涉及问题的具体内容,都是针对解题主体、对其解题思维活动的反思,都属于元认知提问,而不完全是认知提问.波利亚解题表中的“回顾”也并不完全是常规解题中的“检验”,主要是有分析地领会所得的解法(参见例1的回顾),它包含着把“问题及其解法”(认知)作为对象进行自觉反思的元认知意图.至于解题表本身所给出的解题程序(一种程序性知识),所体现的解题策略(一种策略性知识)及所进行的元认知提问,都属于元认知知识.波利亚对具体范例的分析,基本上是对“问题及其解法”的再认知,已反映出开发元认知的朴素意图.波利亚的另一些问句,如“你能不能重新叙述这个问题?你能不能用不同的方法重新叙述它?”“你能不能改变未知数或数据,或者二者都改变,以使新未知数和新数据彼此更接近?”(接近度),“你能不能一下子看出它来?”(题感)等,则属于朴素的元认知体验.至于解题表本身,则自始至终体现着元认知调控.综上所述,“解题系统”是波利亚解题思想的整体框架,“分析解题过程”是波利亚解题思想的思维实质,“念头诱发”是波利亚解题思想的外在表现,“问题转换”是波利亚解题思想的具体实现,朴素的元认知观念是波利亚解题思想的心理学基础.而这一切的背后,丰富的数学前沿研究经历和发现体验是波利亚解题思想的物质基础,现代启发法是波利亚解题思想的灵魂,揭示“发现和发明的方法和规律”是波利亚解题思想的目标.4波利亚解题研究的发展。

波利亚的“怎样解题表”

波利亚的“怎样解题表”

波利亚的“怎样解题表”第一:你必须弄清问题。

——弄清问题。

未知数是什么?已知数据是什么?条件是什么?满足条件是否可能?要确定未知数,条件是否充分?或者它是否不充分?或者它是多余的?或者是矛盾的?画张图。

引入适当的符号。

把条件的各个部分分开。

你能否把它们写下来?第二:找出已知数与未知数之间的关系。

如果找不出直接的联系,你可能不得不考虑辅助问题。

你应该最终得出一个求解的计划。

——拟订计划。

你以前见过它吗?你是否见过相同的问题而形式稍有不同?你是否知道与此有关的问题?你是否知道一个可能用得上的定理?看着未知数!试想出一个具有相同未知数或相似未知数的熟悉的问题。

这里有一个与你现在的问题有关,且早已解决的问题。

你能不能利用它?你能利用它的结果吗/你能利用它的方法吗?为了能利用它,你是否应该引入某些辅助元素?你能不能重新叙述这个问题?你能不能用不同的方法重新叙述它?回到定义去。

如果你不能解决所提出的问题,可先解决一个与此有关的问题。

你能不能想出一个更容易着手的有关问题?一个更普遍的问题?一个更特殊的问题?一个类比的问题?你能否解决这个问题的一部分?仅仅保持条件的一部分而舍去其余部分,这样对于未知数能确定到什么程度?它会怎样变化?你能不能从已知数据导出某些有用的东西?你能不能想出适于确定未知数的其他数据?如果需要的话,你能不能改变未知数或数据,或者二者都改变,以使新未知数和新数据彼此更接近?你是否利用了所有的已知数据?你是否利用了整个条件?你是否考虑了包含在问题中的所有必要的概念?第三:实行你的计划。

——实现计划。

实现你的求解计划,检验每一步骤。

你能否清楚地看出这一步骤是正确的?你能否证明这一步骤是正确的?第四:验算所得到的解。

——回顾。

你能否检验这个论证?你能否用别的方法导出这个结果?你能不能一下子看出它来?你能不能把这个结果或方法用于其他的问题?这一步骤是正确的?乔治·波利亚的简历美籍匈牙利数学家乔治·波利亚(George Polya,1887~1985)对回答上述问题非常感兴趣,他先后写出了《怎样解题》、《数学的发现》和《数学与猜想》。

波利亚《怎样解题表》

波利亚《怎样解题表》

波利亚的怎样解题表陕西师范大学罗增儒罗新兵1乔治·波利亚乔治·波利亚(GeorgePolya,1887~1985)是美籍匈牙利数学家、数学教育家.在解题方面,是数学启发法(指关于发现和发明的方法和规律,亦译为探索法)现代研究的先驱.由于他在数学教育方面取得的成就和对世界数学教育所产生的影响,在他93岁高龄时,还被ICME〔国际数学教育大会〕聘为名誉主席.作为一个数学家,波利亚在函数论、变分法、概率、数论、组合数学、计算和应用数学等众多领域,都做出了开创性的奉献,留下了以“波利亚”命名的定理或术语;他与其他数学家合著的《数学分析中的问题和定理》、《不等式》、《数学物理中的等周问题》、《复变量》等书堪称经典;而以200多篇论文构成的四大卷文集,在未来的许多年里,将是研究生攻读的内容.作为一个数学教育家,波利亚的主要奉献集中表达在《怎样解题》(1945年)、《数学与似真推理》(1954年)、《数学的发现》(1962年)三部世界名著上,涉及“解题理论”、“解题教学”、“教师培训”三个领域.波利亚对数学解题理论的建设主要是通过“怎样解题”表来实现的,而在尔后的著作中有所发展,也在“解题讲习班”中对教师现身说法.他的著作把传统的单纯解题发展为通过解题获得新知识和新技能的学习过程,他的目标不是找出可以机械地用于解决一切问题的“万能方法”,而是希望通过对于解题过程的深入分析,特别是由已有的成功实践,总结出一般的方法或模式,使得在以后的解题中可以起到启发的作用.他所总结的模式和方法,包括笛卡儿模式、递归模式、叠加模式、分解与组合方法、一般化与特殊化方法、从后往前推、设立次目标、归纳与类比、考虑相关辅助问题、对问题进行变形等,都在解题中行之有效.尤其有特色的是,他将上述的模式与方法设计在一张解题表中,并通过一系列的问句或建议表达出来,使得更有启发意义.著名数学家互尔登在瑞士苏黎世大学的会议致词中说过:“每个大学生、每个学者、特别是每个教师都应该读这本引人入胜的书”(1952年2月2日).2怎样解题表波利亚是围绕“怎样解题”、“怎样学会解题”来开展数学启发法研究的,这首先说明其对“问题解决”重要性的突出强调,同时也说明其对“问题解决”研究兴趣集中在启发法上.波利亚在风行世界的《怎样解题》〔被译成14种文字〕一书中给出的“怎样解题表”,正是一部“启发法小词典”.2.1“怎样解题”表的呈现弄清问题第一,你必须弄清问题未知是什么?已知是什么?条件是什么?满足条件是否可能?要确定未知,条件是否充分?或者它是否不充分?或者是多余的?或者是矛盾的?画张图,引入适当的符号.把条件的各个部分分开.你能否把它们写下来?拟定计划第二,找出已知数与未知数之间的联系.如果找不出直接的联系,你可能不得不考虑辅助问题.你应该最终得出一个求解的计划你以前见过它吗?你是否见过相同的问题而形式稍有不同?你是否知道与此有关的问题?你是否知道一个可能用得上的定理?看着未知数,试想出一个具有相同未知数或相似未知数的熟悉的问题.这里有一个与你现在的问题有关,且早已解决的问题.你能不能利用它?你能利用它的结果吗?你能利用它的方法吗?为了能利用它,你是否应该引入某些辅助元素?你能不能重新表达这个问题?你能不能用不同的方法重新表达它?回到定义去.如果你不能解决所提出的问题,可先解决一个与此有关的问题.你能不能想出一个更容易着手的有关问题?一个更普遍的问题?一个更特殊的问题?一个类比的问题?你能否解决这个问题的一部分?仅仅保持条件的一部分而舍去其余部分.这样对于未知数能确定到什么程度?它会怎样变化?你能不能从已知数据导出某些有用的东西?你能不能想出适合于确定未知数的其他数据?如果需要的话,你能不能改变未知数或数据,或者二者都改变,以使新未知数和新数据彼此更接近?你是否利用了所有的已知数据?你是否利用了整个条件?你是否考虑了包含在问题中的必要的概念?实现计划第三,实行你的计划实现你的求解计划,检验每一步骤.你能否清楚地看出这一步骤是正确的?你能否证明这一步骤是正确的?回顾第四,验算所得到的解.你能否检验这个论证?你能否用别的方法导出这个结果?你能不能一下子看出它来?你能不能把这一结果或方法用于其他的问题?下面是实践波利亚解题表的一个例如,能够展示波利亚解题风格的心路历程,娓娓道来,栩栩如生.2.2“怎样解题”表的实践例1给定正四棱台的高h,上底的一条边长a和下底的一条边长b,求正四棱台的体积F .(学生已学过棱柱、棱锥的体积)讲解第一,弄清问题.问题1.你要求解的是什么?要求解的是几何体的体积,在思维中的位置用一个单点F象征性地表示出来(图1).问题2.你有些什么?一方面是题目条件中给出的3个已知量a、b、h;另一方面是已学过棱柱、棱锥的体积公式,并积累有求体积公式的初步经验.把已知的三个量添到图示处(图2),就得到新添的三个点a、b、h;它们与F之间有一条鸿沟,象征问题尚未解决,我们的任务就是将未知量与已知量联系起来.第二,拟定计划.问题3.怎样才能求得F?由于我们已经知道棱柱、棱锥的体积公式,而棱台的几何结构(棱台的定义)告诉我们,棱台是“用一个平行于底面的平面去截棱锥”,从一个大棱锥中截去一个小棱锥所生成的.如果知道了相应两棱锥的体积B和A,我们就能求出棱台的体积F=B-A.①我们在图示上引进两个新的点A和B,用斜线把它们与F联结起来,以此表示这三个量之间的联系(图3,即①式的几何图示).这就把求F转化为求A、B.图3问题4.怎样才能求得A 与B?依据棱锥的体积公式(V =13Sh),底面积可由已知条件直接求得,关键是如何求出两个棱锥的高.并且,一旦求出小棱锥的高x ,大棱锥的高也就求出,为x+h.我们在图示上引进一个新的点x ,用斜线把A 与x 、a连结起来,表示A 能由a 、x得出,A =13a2x;类似地,用斜线把B 与b 、h、x连结起来,表示B 可由b、h、x得出,B=13b2〔x+h〕(图4),这就把求A 、B 转化为求x . 图4问题5.怎样才能求得x ?为了使未知数x 与已知数a 、b、h联系起来,建立起一个等量关系.我们调动处理立体几何问题的基本经验,进行“平面化”的思考.用一个通过高线以及底面一边上中点(图5中,点Q)的平面去截两个棱锥,在这个截面上有两个相似三角形能把a 、b 、h 、x 联系起来(转化为平面几何问题),由△VPO1∽△VQO2得图5x a x h b =+②这就将一个几何问题最终转化为代数方程的求解.解方程②,便可由a 、b 、h 表示x,在图示中便可用斜线将x 与a、b、h 连结起来.至此,我们已在F 与已知数a 、b 、h 之间建立起了一个不中断的联络网,解题思路全部沟通.第三,实现计划.作辅助线(过程略)如图5,由相似三角形的性质,得x a x h b =+,解得x=ah b a-.进而得两锥体的体积为A=13a2x=13·3a hb a-,B=13b2〔x+h〕=13·3b hb a-,得棱台体积为F=B-A=13·33()b a hb a--=13〔a2+ab+b2〕h.③第四,回忆.(1)正面检验每一步,推理是有效的,演算是准确的.再作特殊性检验,令a→0,由③可得正四棱锥体的体积公式;令a→b,由③可得正四棱柱体的体积公式.这既反映了新知识与原有知识的相容性,又显示出棱台体积公式的一般性;这既沟通了三类几何体极限状态间的知识联系,又可增进三个体积公式的联系记忆.(2)回忆这个解题过程可以看到,解题首先要弄清题意,从中捕捉有用的信息(如图1所示,有棱台,a、b、h、F共5条信息),同时又要及时提取记忆网络中的有关信息(如回想:棱台的定义、棱锥的体积公式、相似三角形的性质定理、反映几何结构的运算、调动求解立体几何问题的经验积累等不下6条信息),并相应将两组信息资源作合乎逻辑的有效组合.这当中,起调控作用的关键是如何去构思出一个成功的计划(包括解题策略).由这一案例,每一个解题者还可以根据自己的知识经验各自进一步领悟关于如何制定计划的普遍建议或模式.(3)在解题方法上,这个案例是分析法的一次成功应用,从结论出发由后往前找成立的充分条件.为了求F,我们只需求A、B(由棱台体积到棱锥体积的转化——由未知到已知,化归);为了求A、B,我们只需求x(由体积计算到线段计算的转化——由复杂到简单,降维);为了求x,我们只需建立关于x的方程(由几何到代数的转化——数形结合);最后,解方程求x,解题的思路就畅通了,在当初各自孤立而空旷的画面上(图1),形成了一个联接未知与已知间的不中断网络(图5),书写只不过是循相反次序将网络图作一表达.这个过程显示了分析与综合的关系,“分析自然先行,综合后继;分析是创造,综合是执行;分析是制定一个计划,综合是执行这个计划”.(4)在思维策略上,这个案例是“三层次解决”的一次成功应用.首先是一般性解决(策略水平上的解决),把F转化为A,B的求解〔F=A-B〕,就明确了解题的总体方向;其次是功能性解决(方法水平的解决),发挥组合与分解、相似形、解方程等方法的解题功能;最后是特殊性解决(技能水平的解决),比方按照棱台的几何结构作图、添辅助线找出相似三角形、求出方程的解、具体演算体积公式等,是对推理步骤和运算细节作实际完成.(5)在心理机制上,这个案例呈现出“激活——扩散”的基本过程.首先在正四棱台(条件)求体积(结论)的启引下,激活了记忆网络中棱台的几何结构和棱锥的体积公式,然后,沿着体积计算的接线向外扩散,依次激活截面知识、相似三角形知识、解方程知识(参见图1~图5),……直到条件与结论之间的网络沟通.这种“扩散——激活”的观点,正是数学证明思维中心理过程的一种解释.(6)在立体几何学科方法上,这是“组合与分解”的一次成功应用.首先把棱台补充(组合)为棱锥,然后再把棱锥截成(分解)棱台并作出截面,这种做法在求棱锥体积时曾经用过(先组合成一个棱柱、再分解为三个棱锥),它又一次向我们展示“能割善补”是解决立体几何问题的一个诀窍,而“平面化”的思考则是沟通立体几何与平面几何联系的一座重要桥梁.这些都可以用于求解其他立体几何问题,并且作为一般化的思想(化归、降维)还可以用于其他学科.(7)“你能否用别的方法导出这个结果?”在信念上我们应该永远而坚定地做出肯定的答复,操作上未实现只是能力问题或暂时现象.对于本例,按照化棱台为棱锥的同样想法,可以有下面的解法.如图6,正四棱台ABCD-A1B1C1D1中,连结DA 1,DB 1,DC1,DB,将其分成三个四棱锥D-A1B1C1D1,D-AA1B1B,D-BB1C1C,其中1111D A B C D V -=13b 2h, 11D AA B B V -=11D BB C C V -.〔等底等高)图6 图7 为了求11D AA B B V -,我们连结A B1,将其分为两个三棱锥D-ABB1与D-AA1B1〔图7〕,因11AA B S ∆=b a 1ABB S ∆, 故11D AA B B V -=b a1D ABB V -, 但1D ABB V -=1B ABD V -=13·12a2·h=16a 2h, 故11D AA B B V -=1D ABB V -+11D AA B V -=16a 2h+b a ·16a 2h=16 (a 2+ab)h. 从而1111ABC D A B C D V -=11D AA B B V -+11D BB C C V -+1111D A B C D V -=16(a2+ab)h+16(a2+ab)h+13b2h=13〔a2+ab+b2〕h.(8)“你能不能把这一结果或方法用于其他问题?”能,至少我们可以由正四棱台体积公式一般化为棱台体积公式(方法是一样的).注意到a2=S1,b2=S2,ab=12S S,可一般化猜想棱台的体积公式为V台=13(S1+12S S+S2)h.3波利亚的解题观对于波利亚的怎样解题表及有关著作,人们从不同的角度阐发了对波利亚解题思想的认识(见参考文献),我们将其归结为5个要点.3.1程序化的解题系统怎样解题表,就“怎样解题”、“教师应教学生做些什么”等问题,把“解题中典型有用的智力活动”,按照正常人解决问题时思维的自然过程分成四个阶段——弄清问题、拟定计划、实现计划、回忆,从而描绘出解题理论的一个总体轮廓,也组成了一个完整的解题教学系统.既表达常识性,又表达由常识上升为理论(普遍性)的自觉努力.这四个阶段首先是一个四步骤的宏观解题程序,其中“实现计划”虽为主体工作,但较为容易完成,是思路打通之后具体实施信息资源的逻辑配置,“我们所需要的只是耐心”;其次,“弄清问题”是认识问题、并对问题进行表征的过程,应成为成功解决问题的一个必要前提;与前两者相比,“回忆”是最容易被无视的阶段,波利亚将其作为解题的必要环节而固定下来,是一个有远见的做法,在整个解题表中“拟定计划”是关键环节和核心内容.“拟定计划”的过程是在“过去的经验和已有的知识”基础上,探索解题思路的发现过程,波利亚的建议是分两步走:第一,努力在已知与未知之间找出直接的联系(模式识别等);第二,如果找不出直接的联系,就对原来的问题做出某些必要的变更或修改,引进辅助问题,为此,波利亚又进一步建议:看着未知数,回到定义去,重新表述问题,考虑相关问题,分解或重新组合,特殊化,一般化,类比等,积极诱发念头,努力变化问题.这实际上是阐述和应用解题策略并进行资源的提取与分配.于是,这个系统就集解题程序、解题基础、解题策略、解题方法等于一身,融理论与实践于一体.3.2启发式的过程分析(1)还在当学生的时候,波利亚就有一个问题一再使他感到困惑:“是的,这个解答好似还行,它看起来是正确的,但怎样才能想出这样的解答呢?是的,这个实验好似还行,它看起来是个事实,但别人是怎样发现这样的事实?而且我自己怎样才能想出或发现它们呢?”从解题论的观点看,这实际上是既提出了“怎样解题”又提出了“怎样学会解题”的问题,波利亚说,这“终于导致他写出本书”(指《怎样解题》).波利亚认为“数学有两个侧面”,“用欧几里得方式提出来的数学看来像是一门系统的演绎科学;但在创造过程中的数学看来却像是一门实验性的归纳科学.这两个侧面都像数学本身一样古老.但从某一点说来,第二个侧面则是新的,因为以前从来就没有‘照本宣科’地把处于发现过程中的数学照原样提供应学生,或教师自己,或公众.”他以数十年的时间悉心研究数学启发法,其“怎样解题”的基本思想就可以概括为“知识+启发法”.在解题表中,波利亚给出了“启发法小词典”,让读者通过阅读词典来开阔思路、指导实践,自己学会怎样解题.这些看法来源于波利亚对数学教育宗旨的认识,波利亚认为,数学教育应“教会年轻人去思考”,培养学生的“独立性、能动性和创新精神”;他认为一个人在学校所受的教育应该受益终生,他赞成,良好的教育应该“系统地给学生自己发现事物的时机”,“应该帮助学生自己再发现所教的内容”,“学东西的最好途径是亲自去发现它”;他特别重视发展学生的数学思维能力,强调数学教学要加强思维训练,要发展学生运用所学知识的能力,发展技能、技巧、有益的思考方式和科学的思维习惯,他反复指出,数学教育的目的不仅仅是传授知识,还要“发展学生本身的内蕴能力”.教师要“教学生证明问题”,也要“教他们猜想问题”.波利亚提出“合情推理”的概念,号召:“让我们教猜想吧!”(2)在解题表的展开中,波利亚则通过剖析典型例题的思维过程来研究“发现和发明的方法和规律”.波利亚不断地提问、不断地建议,“怎样才能想出这样的解答呢?”“我自己怎样才能想出或发现它们呢?”既驱使人们去分析解题过程,又要求人们去总结发现的规律.波利亚在《数学的发现》序言中提出:“领会方法的最正确时机,可能是读者解出一道题的时候,或是阅读它的解法的时候,也可能是阅读解法形成过程的时候”.波利亚书中的例题,其实就是对典型例题进行解题过程的分析,就是暴露数学解题的思维过程,也就是教人“怎样学会解题”.在例1中,数学操作与思维开展相结合的图解或阐释,使我们既领会到了这样的意图,也见到了这样的行动.波利亚对解题过程淋漓尽致的剖析,实质上已接触到心理层面,但没有用到多少教育学或思维学的相关名词,基本上都是其数学前沿研究中切身体验的自然流露,数学功底和过程体验发挥了重要作用.这正是数学家研究数学教育的优势,处处有数学的“真刀真枪”,绝非“纸上谈兵”.波利亚说“货源充足和组织良好的知识仓库是一个解题者的重要资本”,在“知识”与“组织良好”之间,波利亚更强调后者,他说“良好的组织使得所提供的知识易于用上,这甚至可能比知识的广泛更为重要.”用现在的话来说,波利亚在这里强调了“原有的知识经验”和“优化的认知结构”对问题解决的基础作用.3.3开放型的念头诱发.波利亚解释说:“我们表中的问题和建议并不直接提到念头;但实际上,所有的问题和建议都与它有关(可以说解题表中的每一个问句,都是从认知或元认知的角度向读者启发解题念头.〕,弄清问题是为好念头的出现做准备;拟订计划是试图引发它;在引发之后,我们实现它;回忆此过程和求解的结果,我们试图更好地利用它.”他强调指出:“老师为学生所能做的最大的好事是通过比较自然的帮助,促使他自己想出一个好念头.”在《怎样解题》一书里,出现“念头”这个词不下四五十次.念头有什么用?波利亚说:“它会给你指出整个或部分解题途径”.“也许有些念头会把你引入歧途”,但这并不可怕,“在明显失败的尝试和一度犹豫不决之后”会“突然闪出一个‘好念头’”,最糟糕的是没有任何念头,还“笨头呆脑地干等着某个念头的降临,而不会做任何事情去加速其来到.”这里说的念头不仅在字面上比“问题表征”更为浅白,而且在内涵上更为丰富,其实质是开展积极活跃的思维活动,产生念头与找出解题途径完全可以理解为同义语.那么产生念头的基础是什么呢?波利亚的答复是:“过去的经验和已有的知识”.(解题力量)“如果我们对该论题知识贫乏,是不容易产生好念头的.如果我们完全没有知识,则根本不可能产生好念头.”波利亚一再提到“好念头”,其实这就是直觉、顿悟或灵感,“想出一个好念头是一种‘灵感运动’”,“想像力有了一个突然的跳跃,产生了一个好念头,这是天才的一次闪烁”,“是我们观点上的重大突变,我们看问题方式的一个骤然变动,在解题步骤方面的一个刚刚露头的有信心的预感”.波利亚关于念头的种种议论,正是开展积极思维活动的激发与激活.3.4探索性的问题转换这里说的“问题转换”,在《怎样解题》一书中亦叫“变化问题”、“题目变更”,它揭示了探索解题思路的数学途径,也表达了解题策略的实际运用.波利亚强调:“解题的成功要靠正确思路的选择,要靠从可以接近它的方向去攻击堡垒,为了找出哪个方面是正确的方面,哪一侧是好接近的一侧,我们从各个方面、各个侧面去试验,我们变更问题.”“变化问题使我们引进了新的内容,从而产生了新的接触,产生了和我们有关的元素接触的新可能性.”“新问题展现了接触我们以前知识的新可能性,它使我们做出有用接触的希望死而复苏.通过变化问题,显露它的某个新方面,新问题使我们的兴趣油然而生”.在“怎样解题”表中,波利亚拟出了启引我们不断转换问题的30多个问句或建议:把问题转化为一个等价的问题,把原问题化归为一个已解决的问题,去考虑一个可能相关的问题,先解决一个更特殊的问题、或更一般的问题、或类似的问题……那些启发新念头的问句,也往往与问题转换有关.“如果我们不用‘题目变更’,几乎是不能有什么进展的”——这就是波利亚的结论.3.5朴素的数学解题元认知观念.元认知是对认知的再认知,包括元认知知识,元认知体验和元认知监控.虽然元认知概念提出较晚,但元认知思想早就存在,在波利亚的解题思想中存在着朴素的元认知观念.波利亚解题表的大量问句或建议,都不是问别人,而是自己给自己提问题、提建议,这是解题者的自我诘问、自我反思.问题中的一部分,其对象针对具体的数学内容,属于认知性的;另一部分则以解题者自身为对象,属于元认知性的.比方,“你以前见过它吗?”“你是否知道一个与此有关的问题?”“这里有一个与你现在的问题有关,且早已解决的问题.你能不能利用它?”等等,都不涉及问题的具体内容,都是针对解题主体、对其解题思维活动的反思,都属于元认知提问,而不完全是认知提问.波利亚解题表中的“回忆”也并不完全是常规解题中的“检验”,主要是有分析地领会所得的解法(参见例1的回忆),它包含着把“问题及其解法”(认知)作为对象进行自觉反思的元认知意图.至于解题表本身所给出的解题程序(一种程序性知识),所表达的解题策略(一种策略性知识)及所进行的元认知提问,都属于元认知知识.波利亚对具体范例的分析,基本上是对“问题及其解法”的再认知,已反映出开发元认知的朴素意图.波利亚的另一些问句,如“你能不能重新表达这个问题?你能不能用不同的方法重新表达它?”“你能不能改变未知数或数据,或者二者都改变,以使新未知数和新数据彼此更接近?”(接近度),“你能不能一下子看出它来?”(题感)等,则属于朴素的元认知体验.至于解题表本身,则自始至终表达着元认知调控.综上所述,“解题系统”是波利亚解题思想的整体框架,“分析解题过程”是波利亚解题思想的思维实质,“念头诱发”是波利亚解题思想的外在表现,“问题转换”是波利亚解题思想的具体实现,朴素的元认知观念是波利亚解题思想的心理学基础.而这一切的背后,丰富的数学前沿研究经历和发现体验是波利亚解题思想的物质基础,现代启发法是波利亚解题思想的灵魂,揭示“发现和发明的方法和规律”是波利亚解题思想的目标.4波利亚解题研究的发展4.1反思数学上存在证明的方法与发现的方法,在逻辑实证主义占主导地位的历史时期,关于数学发现方法的研究一度陷于停顿,波利亚的奉献就在于自觉承担起复兴数学启发法的重任,并提出合情推理,为数学启发法的现代研究提供了必要基础.20世纪80年代初期,美国数学教育界兴起的“问题解决”研究是对波利亚现代启发法的直接继承,曾经有“对波利亚的重新发现”、“数学启发法…几乎成了问题解决的同义词”等提法.但是,已有数学实践却未能。

读波利亚的《怎样解题》

读波利亚的《怎样解题》

读波利亚的《怎样解题》波利亚致力于解题的研究,为了回答“一个好的解法是如何想出来的”这个令人困惑的问题,他专门研究了数学解题的思维过程,并把研究所得写成《怎样解题》一书。

这本书的核心是他分解解题的思维过程得到的一张《怎样解题》表。

波利亚的“怎样解题表”将解题过程分成了四个步骤,只要解题时按这四个步骤去做,必能成功。

怎样解题第一步:你必须弄清问题。

1.已知是什么?未知是什么?要确定未知数,条件是否充分?2.画张图,将已知标上。

3.引入适当的符号。

4.把条件的各个部分分开。

第二步:找出已知与未知的联系。

1.你能否转化成一个相似的、熟悉的问题?2.你能否用自己的语言重新叙述这个问题?3.回到定义去。

4.你能否解决问题的一部分?5.你是否利用了所有的条件?第三步:写出你的想法。

1.勇敢地写出你的方法。

2.你能否说出你所写的每一步的理由?第四步:回顾。

1.你能否一眼就看出结论?2.你能否用别的方法导出这个结论?3.你能否把这个题目或这种方法用于解决其他的问题?在这张包括“弄清问题”、“拟定计划”、“实现计划”和“回顾”四大步骤的解题全过程的解题表中,对第二步即“拟定计划”的分析是最为引人入胜的。

他指出寻找解法实际上就是“找出已知数与未知数之间的联系,如果找不出直接联系,可能不得不考虑辅助问题。

最终得出一个求解计划。

”他把寻找并发现解法的思维过程分解为五条建议和23个具有启发性的问题,它们就好比是寻找和发现解法的思维过程的“慢动作镜头”,使我们对解题的思维过程看得见,摸得着。

波利亚感叹:“学数学是一种乐趣!”教师如果能在平时的解题教学过程中不断实践和体会该表,必能很快地会发出这样一种感叹:“教会学生善解数学题目是学数学的乐趣的根本。

”1、教师最重要的任务之一是帮助学生。

学生解题时应当有尽可能多的独立的思考时间。

但是如果让他独自面对问题而得不到任何帮助或者帮助得不够,那么他很可能没有进步。

但若教师对他帮助过多,那么学生却又无事可干,教师对学生的帮助应当不多不少,恰好能使学生有一份合理的思考过程。

波利亚-怎样解题

波利亚-怎样解题

1.帮助学生第一部分在教室中目的教师最重要的任务之一是帮助学生。

这个任务并不很简单,它需要时间、实践、热忱以及健全合理的原则。

学生应当有尽可能多的独立工作经验。

但是如果让他独自面对问题而得不到任何帮助或者帮助得不够。

那么他很可能没有进步。

但若教师对他帮助过多,那么学生却又无事可干,教师对学生的帮助应当不多不少,恰使学生有一份合理的工作。

如果学生不太能够独立工作,那末教师也至少应当使他感觉自己是在独立工作。

为了做到这一点,教师应当考虑周到地、不显眼地帮助学生。

不过,对学生的帮助最好是顺乎自然。

教师对学生应当设身处地,应当了解学生情况,应当弄清学生正在想什么,并且提出一个学生自己可能会产生的问题,或者指出一个学生自己可能会想出来的步骤。

2.问题、建议、思维活动在打算对学生进行有效、不显眼而又自然的帮助时,教师不免一而再,再而三地提出一些相同的问题,指出一些相同的步骤。

这样,在大量的问题中,我们总是问:未知数是什么?我们可以变换提法,以各种不同的方式提问同一个问题:求什么?你想找到什么?你假定求的是什么?这类问题的目的是把学生的注意力集中到未知数上。

有时,我们用一条建议:看着未知数,来更为自然地达到同一效果。

问题与建议都以同一效果为目的:即企图引起同样的思维活动。

从作者看来,在与学生讨论的问题中,收集一些典型的有用问题和建议,并加以分类是有价值的。

前面这张表就包含了这类经过仔细挑选与安排的问题和建议;它们对于那些能独立解题的人也同样有用。

读者充分熟悉这张表并且看出在建议之后所应采取的行动之后,他会感到这张表中所间接列举的是对解题很有用的典型思维活动。

这些思维活动在表中的次序是按其发生的可能性大小排列的。

3.普遍性表中所提问题与建议的重要特点之一是普遍性,例如:未知数是什么?已知数是什么?条件是什么?这些问题都是普遍适用的,对于所有各类问题,我们提出这些问题都会取得良好效果。

它们的用途不限于任何题目。

我们的问题可以是代数的或几何的,数学的或非数学的,理论的或实际的,一个严肃的问题或仅仅是个谜语。

波利亚,怎样解题表

波利亚,怎样解题表

波利亚对数学解题的过程进行了深入的研究,认为整个解题过程分为四个阶段,即:弄清问题、拟定计划、实现计划、反思回顾,并给出了具有启发性的“怎样解题”表弄清问题拟定计划实现计划回顾弄清问题未知是什么?已知是什么?条件是什么?满足条件是否可能?要确定未知,条件是否充分?或者它是否不充分?或者是多余的?或者是矛盾的?画张图,引入适当的符号,把条件的各个部分分开,你能否把它写下来?拟定计划你以前见过它吗?你是否见过相同的问题而形式稍有不同?你是否知道与此有关的问题?你是否知道一个可能用得上的定理?看着未知数,试想出一个具有相同未知数或者相似未知数的熟悉的问题。

这是有一个与你现在的问题相关,且早已解决的问题。

你能不能利用它们?你能利用它的结果吗?你能利用它的方法吗?为了能够利用它,你是否应该引入某些辅助元素?你能不能够重新叙述这个问题?你能不能用不同的方法重新叙述它?如果你不能解决提出的问题,可先解决一些有关的问题,你能否想出一个更容易着手的有关的问题?一个更普遍的问题?一个更特殊的问题?一个类比的问题?你能否解决这个问题的一部分?仅仅保持条件的一部分而舍去其余部分,这样对于未知数能确定到什么程度?它会怎样变化?你能不能从已知数据导出某些有用的东西?你能不能想出适合于确定未知数的其它数据?如果需要的话,你能不能改变未知数或者数据,或者都改变,以使新未知数和新数据彼此更接近?你是否利用了所有已知数据?你是否利用了整个条件?你是否考虑了包含在问题中的必要概念?实现计划实现你的求解计划,检验每一步骤。

你能否清楚看出这一步骤的正确性?你能否证明这一步骤的正确性?回顾反思你能否检验这个论证?你能否用别的方法导出这个结果?你能不能一下子看出它来?你能不能将这一结果或方法用于其他问题?作者简介:乔治·波利亚(George Polya,1887~1985)是美籍匈牙利数学家、数学教育家.在解题方面,是数学启发法(指关于发现和发明的方法和规律,亦译为探索法)现代研究的先驱.由于他在数学教育方面取得的成就和对世界数学教育所产生的影响,在他93岁高龄时,还被ICME(国际数学教育大会)聘为名誉主席.作为一个数学家,波利亚在函数论、变分法、概率、数论、组合数学、计算和应用数学等众多领域,都做出了开创性的贡献,留下了以“波利亚”命名的定理或术语;他与其他数学家合著的《数学分析中的问题和定理》、《不等式》、《数学物理中的等周问题》、《复变量》等书堪称经典;而以200多篇论文构成的四大卷文集,在未来的许多年里,将是研究生攻读的内容.作为一个数学教育家,波利亚的主要贡献集中体现在《怎样解题》(1945年)、《数学与似真推理》(1954年)、《数学的发现》(1962年)三部世界名著上,涉及“解题理论”、“解题教学”、“教师培训”三个领域.波利亚对数学解题理论的建设主要是通过“怎样解题”表来实现的,而在尔后的著作中有所发展,也在“解题讲习班”中对教师现身说法.他的著作把传统的单纯解题发展为通过解题获得新知识和新技能的学习过程,他的目标不是找出可以机械地用于解决一切问题的“万能方法”,而是希望通过对于解题过程的深入分析,特别是由已有的成功实践,总结出一般的方法或模式,使得在以后的解题中可以起到启发的作用.他所总结的模式和方法,包括笛卡儿模式、递归模式、叠加模式、分解与组合方法、一般化与特殊化方法、从后往前推、设立次目标、归纳与类比、考虑相关辅助问题、对问题进行变形等,都在解题中行之有效.尤其有特色的是,他将上述的模式与方法设计在一张解题表中,并通过一系列的问句或建议表达出来,使得更有启发意义.著名数学家互尔登在瑞士苏黎世大学的会议致词中说过:“每个大学生、每个学者、特别是每个教师都应该读这本引人入胜的书”(1952年2月2日).。

波利亚解题

波利亚解题

波利亚解题----- 案例分析(0507)(总7 页)-本页仅作为文档封面,使用时请直接删除即可-“内页可以根据需求调整合适字体及大小-波利亚解题——案例分析例题:给定正四棱台的高力,上底的一条边长"和下底的一条边长久求正四棱台的体积V •(学生已学过棱柱、棱锥的体积)波利亚解题:一、弄清问题(理解题目的未知和已知条件)本题的已知条件有哪些本题的未知是什么①正四棱台的高力;②Jz底边长d ;正四棱台的体积V •③下底边长b -- ' /二、拟定计划(找到已知条件和未知之间的联系)1)怎样才能求得V由于我们已经知道棱柱、棱锥的体积公式,而棱台的几何结构(棱台的定义)告诉我们,棱台是“用一个平行于底面的平面去截棱锥",从一个大棱锥中截去一个小棱锥所生成的•如果知道了相应两棱锥的体积K和岭,我们就能求出棱台的体积"=%-岭。

①这样我们就引入两个新的符号K和匕,同时也找到了V、岭、匕三个量之间的联系,这就把求V 转化为求X和«•2)怎样才能求得叫和匕据棱锥的体积公式,底面积可由已知条件直接求得,关键是如何求出两个棱锥的高。

并且,一旦求出小棱锥的高■大棱锥的高也就求出,为x + h .我们再次引入了一个新符号■于是根据棱锥的体积公式就有匕十* V,=1Z,2(X +/7),这样,问题就由求叫和匕转化为了求x。

3)怎样才能求得x为了使未知数x与已知数方、“联系起来,建立起一个等量关系•我们调动处理立体几何问题的基本经验,进行“平面化"的思考•用一个通过高线以及底面一边上中点(如下图蓝色线条所示)的平面去截两个棱锥,在这个截面上有两个相似三角形能把“、力、x联系起来(转化为平面几何问题).由三角形相似的性质得:沪二7 ②b x + hV t =Lb 2(x+h) = ^b 2- 3 3 b'h3(〃这就将一个几何问题最终转化为代数方程的求解•解上述方程,便可由d 、b 、表示x,至此,我们已在V 与已知数d 、“、"之间建立起了一个不中断的联络网,解题思路全部沟 通・三、实现计划(利用找到的联系进行解题)作辅助线,由相似三角形的性质可得,专=— b x + h “心 cih 解得—o b_a所以两椎体的体积分别为有:所以棱台的体积:F 岛昔需S 也③四、回顾(1)正面检验每一步,推理是有效的,演算是准确的。

伯利亚《怎样解题》

伯利亚《怎样解题》

怎样解题最一部分:关于波利亚乔治·波利亚(George Polya,1887-1985)美籍匈牙利数学家。

先后在布达佩斯、维也纳、哥廷根,巴黎等地攻读法律、语言、数学、物理和哲学,获布达佩斯大学哲学博士学位,是法国巴黎科学院、美国全国科学院和匈牙利科学院的院士。

波利亚毕生从事数学研究和数学教学工作,他一生发表了200多篇论文和许多专著,他在数学的广阔领域内有精深的造诣,许多数学分支上都做出了开创性的贡献,留下了许多以他的名字命名的术语和定理。

波利亚热心数学教育,十分重视培养学生思考问题和分析问题的能力,他认为中学数学教育的根本宗旨是“教会年轻人思考”。

“学习数学的主要目的在于解题。

”“解题是一种本领,是只能靠模仿和实践才能学到的本领。

”解题关键在于找到合适的解题思路,认为“学习任何知识的最佳途径是由学生自己去发现,因为这种发现,理解最深,也最容易掌握其中的规律、性质和联系。

直接从老师或书本那儿被动的不假思索的接受过来的知识,可能很快忘掉,难于成为自己的东西。

”波利亚说:“掌握数学意味着什么?这就是说善于解题,不仅善于解一些标准的题,而且善于解一些要求独立思考,思路合理,见解独到和有发现创造的题。

”他认为中学数学教学的首要任务就是“加强解题的训练”,“解题”作为培养学生的数学才能和教会他们思考的一种手段和途径。

这种思想得到了国际数学教育界的一致赞同,国际数学管理者委员会把解题能力列为十项基本技能的首位,美国数学教师联合会理事会把解题提到了“学校数学的核心”这一高度。

“学习难,学习数学更难”,许多人对数学望而生畏,大有谈虎色变的趋势。

大家都有这样的经历:一道题,自己总也想不出解法,而别人却轻而易举地给出了一个绝妙的解法,这时你最希望知道的是“你是怎么想出这个解法的?为什么我没有想到呢?”作为数学教授的波利亚为了改变数学在公众心目中的形象,致力于解题的研究,为了回答“一个好的解法是如何想出来的”这个令人困惑的问题,他很早就开始探索数学中的发明创造,利用在大学任教的机会,通过与学生的交流和对学生的细致观察,认真研究了人们解题的过程,通过和一批数学大家的交流,花了整整三十年的时间,直到1944年才发展为名著《怎样解题》一书。

波利亚与怎样解题-四年级ppt课件

波利亚与怎样解题-四年级ppt课件

反对这种类型 “协助〞的缘由。 (1)假设学生已接近于问题的处理,他能
短少条件。 多余条件。
7.拟定方案 现实上,求解一个问题的主要成果是想象
出一个解题方案的思绪。这个思绪能够是 逐渐构成的。
假设我们对该论题知识贫乏,是不容易产 生好念头的。假设我们完全没有知识,那 么根本不能够产生好念头。
一个好念头的根底是过去的阅历和已有的 知识。仅仅靠记忆缺乏以产生好念头。
例如,知8与2求另一个数6的运算,知8 与6求另一个数2的运算,就是加法的逆运 算——减法。在自然数集合中,加法和乘法 总可实施。
减法运算5-3=2,虽然有2+3=5,但 2+5≠3,故减法运算,求被减数,加法是 减法的逆运算;求减数,那么加法不是减 法的逆运算。
所以减法是加法的逆运算,除法是乘 法的逆运算。但是,加法不是减法的逆运 算,乘法也不是除法的逆运算。
上述一些问题有几个益处。 首先,公式经过这么多的检验,这一现实不能不使一个聪明
的学消费生深化的印象。
学生以前就置信公式是正确的,由于公式是他仔细推导出来 的。但是如今经过这么多检验,他就更坚信无疑了,这种自 信心的添加来源于一种“实验的数据〞。正是由于上述问题, 公式的细节获得了新的意义,而且和不同的现实联络起来了。 这样,公式就更容易记住,学生的知识得以稳定。
加法减法是互逆运算吗?
1、什么是逆运算?
〔1〕在某个集合M中,对于恣意两个有序 元素a、b,根据某种法那么,可在M中找到 独一确定的元素c与它们对应,这种对应法 那么称为“运算〞。
例如,在自然数集合中,〔6,2〕
这对数按照某种法那么与8对应,这种法那
么就是自然数的加法运算;
〔2〕假设知c与a、b中的一个,求另一个元 素,那么这样的运算称为上述运算的“逆 运算〞。

怎样解题波利亚

怎样解题波利亚

波利亚的《怎样解题》——新浪:今日看点什么波利亚指出:解题的价值不是答案的本身,而在于弄清“是怎样想到这个解法的?”、“是什么促使你这样想,这样做的?”这就是说,解题过程还是一个思维过程,是一个把知识与问题联系起来思考、分析、探索的过程。

波利亚认为“对你自己提出问题是解决问题的开始”,“当你有目的地向自己提出问题时,它就变成你自己的问题了”,“怎样解题表”是《怎样解题》一书的精华。

波利亚的“怎样解题表”将解题过程分成了四个步骤,具体步骤如下:第一,弄清问题未知数是什么?已知数据(指已知数、已知图形和已知事项等的统称)是什么?条件是什么?满足条件是否可能?要确定未知数,条件是否充分?或者它是否不充分?或者是多余的?或者是矛盾的?画张图。

引入适当的符号。

把条件的各个部分分开。

你能否把它们写下来?第二,拟定计划找出已知数与求知数之间的联系。

如果找不出直接的联系,你可能不得不考虑辅助问题。

你应该最终得出一个求解的计划。

你以前见过它吗?你是否见过相同的问题而形式稍有不同?你是否知道与此有关的问题?你是否知道一个可能用得上的定理?看着未知数!试想出一个具有相同未知数或相似未知数的熟悉的问题。

这里有一个与你现在的问题有关,且早已解决的问题,你能应用它吗?你能不能利用它?你能利用它的结果吗?为了能利用它,你是否应该引入某些辅助元素?你能不能重新叙述这个问题?你能不能用不同的方法重新叙述它?回到定义去。

如果你不能解决所提出的问题,可先解决一个与此有关的问题。

你能不能想出一个更容易着手的有关问题?一个更普遍的问题?一个更特殊的问题?一个类比的问题?你能否解决这个问题的一部分?仅仅保持条件的一部分而舍去其余部分,这样对于未知能确定到什么程度?它会怎样变化?你能不能从已知数据导出某些有用的东西?你能不能想出适合于确定未知数的其它数据?如果需要的话,你能不能改变未知数和数据,或者二者都改变,以使新未知数和新数据彼此更接近?你是否利用了所有的已知数据?你是否利用了整个条件?你是否考虑了包含在问题中的所有必要的概念?第三,实现计划实现你的求解计划,检验每一步骤。

波利亚的解题理论

波利亚的解题理论

波利亚的解题理论(讲稿)同学们好!今天我们大家一起来学习波利亚的解题理论。

首先,让我们了解一下波利亚的生平。

乔治·波利亚(George Polya,1887-1985)美籍匈牙利数学家,生于匈牙利,青年时期曾在布达佩斯、维也纳、哥廷根、巴黎等地攻读数学、数学、物理和哲学,1912年获数学博士学位。

他是法国科学院、美国全国科学院和匈牙利科学院的院士,是20世纪举世公认的数学家和数学教育家,也是享有国际盛誉的数学方法论大师,为数学方法论的现代研究,特别是为数学解题教学研究奠定了必要的理论基础。

他的成就主要包括解题理论、数学教学理论和教师教育理论,发表200多篇论文和许多专著,主要著作包括:《怎样解题》(1944)、《数学的发现》(1954)、《数学与猜想》(1961)等。

其中《怎样解题》与《数学的发现》集中论述了怎样解题的问题,而《数学与猜想》则对合情推理进行了生动地、富有创造性地论述。

在数学方面,对实变函数、复变函数和概率论等若干分支领域作出了开创性的贡献,留下了以他的名字命名的术语和定理。

在数学解题研究领域,波利亚是一面旗帜,也是一代宗师。

这里主要介绍他的解题理论。

学习波利亚的解题理论,首先需要了解对“解题”过程的界定。

波利亚认为,解题是智力的特殊成就,题目是数学的心脏,数学教学的本质在于教会学生解题,解题思想“应当诞生在学生心里,教师仅仅像助产士那样行事”(苏格拉底语),由此,数学教师的首要任务是发展学生解决问题的能力。

为了帮助学生,为了回答“一个好的解法是如何想出来的”这个令人困惑的问题,他专门研究可解题的思维过程,用朴素而现代化的形式来阐明探索法(既有助于发现的探索方法),并集几十年教学与科研之大成写成《怎样解题》一书,与1948年出版,风靡世界。

其中“怎样解题”表仔细分析了求解各种数学问题时的思维过程,成为经典之作。

概括的说来,“怎样解题”表是波利亚的解题理论的核心内容。

所以,让我们详细学习一下“怎样解题”表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、反思解题思路。做完一道题后,应考虑能否根据该题的基 本特征与特殊因素,进行多角度的观察、联想,找到更多的思 维通路,也即培养学生数学思维的广阔性。
9
• 波利亚的《怎样解题》被译成16种文字,仅 平装本就销售100万册以上。著名数学家瓦尔 登1952年2月2日在瑞士苏黎世大学的会议致 词中说:“每个大学生,每个学者,特别是 每个老师都应该读读这本引人入胜的书”。
• 我想,波利亚关于怎样解题的思想对于广大 中学生同样也是非常需要的和有益的。
10
长、宽、高 这个问题的条件是否充分,能否确定未知数x?充分,如果知
道a,b,c,就能确定长方体,知道长方体就可以确定对角线。
26
2.拟定计划
首先,教师愿意向学生暴露自己的思维过程。 当学生问到某些较困难的问题时,他们愿意 和学生共同思考,寻找解决问题的思想方法。
其次,教师应指导学生对数学解题过程进行 分析、归纳,把解题过程概括、提炼,形成 数学学习最重要的内容——数学的思想和方 法。
数学问题来源于人类的生产、生活实践,来源于人们了解自 然、认识自然的活动。
传统的应用题条件不多不少,数量结构明显,使得学生用于 数学抽象的思考较少,到了最低限度,学生的信息处理能力、 独立思考能力受到了压抑。而新教材在解决实际问题的教学 中,需要教师鼓励学生利用已有的生活经验进行解题。
教师要根据题目的特点和学生的思维发展水平使学生掌握一 些常用的解题策略。
31
《怎样解题》表—回顾
你能否检验这个论证?你能否用别的方法导 出这个结果?你能不能一下子看出它来?你 能不能将这一结果或方法用于其他问题?
32
在解题后,教师可以训练学生进行以下三方面的 反思:
1、反思审题过程。对审题过程进行反思,就是在解题活动完 成后,对自己最初审题时在理解题意过程中是这样“获取信息” 进行再思考。
著作:《怎样解题》、《数学的发现》、《数学与 猜想》等,这些书被译成很多国家的文字出版,成 了世界范围内的数学教育名著。
4
波利亚的数学贡献
波利亚在数学的广阔领域内有精深的造诣。他的数 学研究的最显著特点是他有极为广泛的兴趣,对实 变函数、复变函数、概率论、纵使数学、数论,几 何和微分方程等若干分支领域都做出了开创性的贡 献,留下了以他的名字命名的术语和定理。
3、在教学中利用变式教学,将题设条件或结论作相应的变化,
按照一定的梯度设置变式题。
29
《怎样解题》表—实现计划
你能否清楚地看出这一步骤是正确的? 你能否证明这一步骤是正确的?
30
4.回顾
“回顾”阶段 ,就是加强解题后的反思教学 所谓解题后的反思是指在解决了数学问题后,通
过对审题过程、解题思路、解题途径、题目结论的 反思来进一步暴露数学解题的思维过程,从而开发 学习者的解题智慧,以达到事半功倍,提高数学学 科自我监控能力的目的。 教师可以在课堂小结,单元复习时,适时地对某种 数学思想方法的关键点或要素进行概括、强化和揭 示,对它的内容、规律、运用等有意识地适度点拨。
27
《怎样解题》表--拟定计划
你以前见过它吗?你是否见过相同的问题而形式稍有不同?你 是否知道与此有关的问题?你是否知道一个可能用得上的定理? 看着未知数,试想出一个具有相同未知数或者相似未知数的熟 悉的问题。这是有一个与你现在的问题相关,且早已解决的问 题。你能不能利用它们?你能利用它的结果吗?你能利用它的 方法吗?为了能够利用它,你是否应该引入某些辅助元素?你 能不能够重新叙述这个问题?你能不能用不同的方法重新叙述 它?如果你不能解决提出的问题,可先解决一些有关的问题, 你能否想出一个更容易着手的有关的问题?一个更普遍的问题? 一个更特殊的问题?一个类比的问题?你能否解决这个问题的 一部分?仅仅保持条件的一部分而舍去其余部分,这样对于未 知数能确定到什么程度?它会怎样变化?你能不能从已知数据 导出某些有用的东西?你能不能想出适合于确定未知数的其它 数据?如果需要的话,你能不能改变未知数或者数据,或者都 改变,以使新未知数和新数据彼此更接近?你是否利用了所有 已知数据?你是否利用了整个条件?你是否考虑了包含在问题 中的必要概念?
8
波利亚的《怎样解题》表的精髓是:启发你 去联想。
联想什么?怎样联想?让我们看一看他在表 中所提出的建议和启发性问题吧。"你以前见 过它吗?你是否见过相同的问题而形式稍有 不同?你是否知道与此有关的问题?你是否 知道一个可能用得上的定理?看着未知数试 指出一个具有相同未知数或相似未知数的熟 悉的问的发展,特别是使 学习困难的学生化被动学习为主动学习
作为老师,要面向每一位同学,鼓励大家要认真思 考,然后每一位成员阐述自己的想法,最后由发言 人发言(经常轮换角色)。强迫他接受知识,教师 则适时的给予激励。在他们听到你真棒!、你真聪 明!……等这些鼓励的话时,就能尝到成功的甜头, 大家都跃跃欲试。逐步学会思考、学会不懂多问、 主动探求知识。
波利亚解题表 不同的方法 教师的提问 好问题与坏问题
22
(一)波利亚解题表
1. 弄清问题 2. 拟定计划 3. 实现计划 4. 回顾
23
1.弄清问题
弄清问题就是重述问题,教会学生形成正确的审题 方法 。 首先,必须让学生了解问题的文字叙述。 已知 是什么? 未知是什么? 题目要求你干什么?可否画 一个图形?可否数学化? 其次,要教会学生形成正确的审题方法。教师 可以教学生利用数学语言的转换来培养学生好的审 题习惯,形成正确的审题方法。 另外,还要注意引导学生挖掘已知条件与所求 之间的关系,特别是挖掘题中的隐含条件。
波利亚-怎样解题
1
主要内容介绍
关于波利亚
波利亚生平简介 波利亚数学成就 波利亚与他的《怎样解题》
第一章在教室中
目的 主要部分,主要问题
2
前言:关于波利亚
波利亚的生平简介 波利亚的数学成就 波利亚与他的《怎样解题》
3
波利亚生平简介
波利亚(George Polya,1887-1985),美籍匈牙 利数学家。生于布达佩斯,卒于美国。青年时期曾 在布达佩斯、维也纳、巴黎等地攻读数学、物理和 哲学,获博士学位。1914年在瑞士苏黎世工业大学 任教,1938年任数理学院院长。1940年移居美国, 历任布朗大学、斯坦福大学教授。1963年获美国数 学会功勋奖。他是法国科学院、美国全国科学园和 匈牙利科学院的院士。
他认为只要解题按照这四个步骤去做,必定 成功。
7
• 他指出寻找解法实际上就是"找出已知数与未 知数之间的联系,如果找不出直接联系,你 可能不得不考虑辅助问题。最终得出一个求 解计划。"他把寻找并发现解法的思维过程分 解为五条建议和23个具有启发性的问题,它 们就好比是寻找和发现解法的思维过程的"慢 动作镜头",使我们对解题的思维过程看得见, 摸得着。
问题难易适中。 问题太难,不符合学生的知识水平和接受能力,会造成冷场, 达不到目的,过浅对答如流,无助于思维的锻炼。国外研究 表明:探测问题的难度可用公式:1减去(通过的人数除以 全班人数)来算,如果得数在0.3-0.8就可视为适中,如果得 数在0.3以下或超过0.8则是要求太低或过高。
19
(四)常识
第一章 在教室中
目的 主要问题,主要部分
11
一、目的
帮助学生 问题、建议、思维活动 普遍性 常识 教师与学生,模仿与实践
12
(一)帮助学生
波利亚说:“教师最重要的任务就是帮助学 生”,“教师对学生应当设身处地,应当了 解学生情况,应当弄清学生正在想什么,并 且能提出一个学生自己可能会产生的问题, 或者指出一个学生自己可能会想出来的步 骤。”
24
《怎样解题》表--

?已知是什么?条件是什么?满足
条件是否可能?要确定未知,条件是否充分?
或者它是否不充分?或者是多余的?或者是矛
盾的?画张图,引入适当的符号.把条件的各
个部分分开.你能否把它们写下来?
25
例子:已知长方体的长、宽、高,求其 对角线长度。
从例题中我们会发现问题: 未知数是?对角线 已知数是?长、宽、高 用哪个字母代表未知数?X 长、宽、高用哪个字母表示?a,b,c 联系a,b,c与x的条件是?X是长方体对角线,a,b,c是长方体的
18
(三)普遍性
问题具有普遍适应性。 提问题与建议的重要特点之一是普遍性,例如:未知数是什 么?已知数是什么?条件是什么?这些问题都是普遍适用的, 对于所有各类问题,我们提出这些问题都会取得良好效果。 它们的用途不限于任何题目。我们的问题可以是代数的或几 何的,数学的或非数学的,理论的或实际的,一个严肃的问 题或仅仅是个谜语。这没什么差别,上述问题都是有意义的, 而且有助于我们解题。
20
(五)教师与学生,模仿与实践
当教师向学生提出表中的问题或建议时,他 可能有两个目的:第一,帮助学生解决手头 的问题;第二,培养学生将来能够独立解题 的能力。
解题是一种本领,是只有模仿和实践才能实 现的本领。
教师通过培养学生的兴趣,然后给他们提供 大量的机会去模仿与实践。
21
二、主要部分,主要问题
另外,他一生发表达200多篇论文和许多专著,他 的论文被收集整理成四卷本的论文集,由美国麻省 理工学院出版社出版(前两卷在1974年出版,后两 卷在1984年出版).
5
波利亚与他的《怎样解题》
波利亚热心数学教育,十分重视培养学生 思考问题分析问题的能力。他认为中学数学 教育的根本宗旨是“教会年轻人思考”。学 习数学的主要目的在于解题。
13
教师应该怎样帮助学生?
1.以发展的眼光看待学生间的差异
有人的地方就有差异,因此我们必须承认差异的存在。对 于个体差异,作为老师要能注意到其潜能的一些特点。比如 有人以言语见长;有的却以动作技能超凡;有的惯于形象思 维;而有的抽象思维占优势。所以对于有差异的个体,既要 发现他们潜能的优势,也要考虑如何帮助他们扬长避短,以 点带面,最终获得全面的发展。
相关文档
最新文档