一次函数教案

合集下载

一次函数的教案

一次函数的教案

一次函数的教案一、教学目标:1. 理解一次函数的概念,能够写出一次函数的一般形式。

2. 能够根据实际问题建立一次函数的数学模型,并能解决实际问题。

3. 理解直线的斜率和截距的概念,并能够利用斜率和截距来确定一次函数的特征。

4. 能够应用一次函数的特征描述实际问题。

二、教学重点与难点:1. 一次函数的概念和一般形式的掌握。

2. 斜率和截距的理解和确定。

3. 实际问题的数学建模。

三、教学过程:1. 导入新课:教师出示一张图纸,上面有一段直线并画上坐标轴。

引导学生观察这条直线并说明它是一种什么样的变化规律。

2. 探究一次函数:教师让学生观察这条直线上的点,引导学生观察直线上的两个点(x_1, y_1)和(x_2, y_2),并让学生计算出这两个点的斜率。

根据计算结果,引导学生讨论这两个点的斜率是否相同,进一步引导学生得出一次函数的特征:“两点间直线上的点的斜率相等”。

教师在黑板上写下这个特征,引导学生观察这个特征的推广形式:若过直线上的任意两个点,其斜率相等,则这条直线是一次函数。

3. 一次函数的概念与表达形式:教师向学生说明一次函数的定义:“若函数y=f(x)可以表示为y=kx+b(k和b为常数,k≠0),则称f(x)为一次函数。

”教师在黑板上写下一次函数的一般形式y=kx+b,并向学生解释k和b的含义:k是函数的斜率,表示直线的斜率大小;b是函数的截距,表示直线与y轴的交点。

让学生猜测当k为0时,这个函数是什么形式?学生猜测后,教师告知k为0时,这个函数是一条与x轴平行的直线,也就是常数函数。

4. 一次函数的特征与一般形式的联系:教师让学生观察一个具体的实例,求解这个一次函数的特征。

教师向学生展示一个具体的函数式y=2x+1,并引导学生观察这个函数式对应的一条直线。

然后,教师向学生提问:这个直线的斜率是多少?截距是多少?学生根据直线的特征给出答案。

教师向学生解释如何从一般形式y=kx+b中确定直线的斜率和截距。

一次函数的图象教案(优秀4篇)

一次函数的图象教案(优秀4篇)

一次函数的图象教案(优秀4篇)一次函数篇一〖教学目标〗◆1、理解正比例函数、一次函数的概念。

◆2、会根据数量关系,求正比例函数、一次函数的解析式。

◆3、会求一次函数的值。

〖教学重点与难点〗◆教学重点:一次函数、正比例函数的概念和解析式。

◆教学难点:例2的问题情境比较复杂,学生缺乏这方面的经验。

〖教学过程〗比较下列各函数,它们有哪些共同特征?提示:比较所含的代数式均为整式,代数式中表示自变量的字母次数都为一次。

定义:一般地,函数叫做一次函数。

当时,一次函数就成为叫做正比例函数,常数叫做比例系数。

强调:(1)作为一次函数的解析式,其中中,哪些是常量,哪些是变量?哪一个是自变量,哪一个是自变量的函数?其中符合什么条件?(2)在什么条件下,为正比例函数?(3)对于一般的一次函数,它的自变量的取值范围是什么?做一做:下列函数中,哪些是一次函数?哪些是正比例函数?系数和常数项的值各为多少?例1:求出下列各题中与之间的关系,并判断是否为的一次函数,是否为正比例函数:(1)某农场种植玉米,每平方米种玉米6株,玉米株数与种植面积之间的关系。

(2)正方形周长与面积之间的关系。

(3)假定某种储蓄的月利率是0.16%,存入1000元本金后。

本钱与所存月数之间的关系。

此例是为了及时巩固一次函数、正比例函数的概念,相对比较容易,可以让学生自己完成。

解:(1)因为每平方米种玉米6株,所以平方米能种玉米株。

得,是的一次函数,也是正比例函数。

(2)由正方形面积公式,得,不是的一次函数,也不是正比例函数。

(3)因为该种储蓄的月利率是0.16%,存月所得的利息为,所以本息和,是的一次函数,但不是的正比例函数。

练习:1.已知若是的正比例函数,求的值。

2.已知是的一次函数,当时,;当时,(1)求关于的一次函数关系式。

(2)求当时,的值。

例2:按国家1999年8月30日公布的有关个人所得税的规定,全月应纳税所得额不超过500元的税率为5%,超过500元至XX元部分的税率为10% (1)设全月应纳税所得额为元,且。

一次函数的图像和性质教案3篇

一次函数的图像和性质教案3篇

一次函数的图像和性质教案1课型:新授教学目标:一、知识与技能目标(1)能根据一次函数的图象和函数关系式,探索并理解一次函数的性质;(2)进一步理解正比例函数图象和一次函数图象的位置关系;(3)探索一次函数的图象在平面直角坐标系中的位置特征。

二、过程与方法目标通过组织学生参与由一次函数的图象来揭示函数性质的探索活动,培养学生观察、比较、抽象和概括的能力,培养学生用数形结合的思想方法探索数学问题的能力。

三、情感、态度与价值观目标通过师生共同探讨,体现数学学习充满着探索性和创造性,感受共同合作取得成功的快乐。

教学重点:一次函数图象的性质。

教学难点:通过图形探求性质以及分析图形的位置特征。

课前准备:本节课为了帮助同学们能正确理解函数的增减性,更清楚、快捷地通过图象探究函数的某些特征。

教师在课前准备好多媒体课件,并选择在多媒体教室完成本节课的教学任务。

【教学过程设计】一、创设情景,引导探究(1)复习一次函数图象的画法师:上节课我们了解了一次函数图象,并学习了图象的画法。

同学们能画出函数y=2x+4和y=-x-3的图象吗?说说看,如何画?生:能。

因为一次函数的图象是一直线,所以,我可以过(1,6)和(0,4)两点画直线y=2x+4。

过(1,-)、(0,-3)两点画直线y=-x-3。

师:很好。

还有不同的取点法吗?生:有,可经过(-2,0)和(0,4),画直线y=2x+4;经过(-2,0)和(0,-3)画直线-x-3。

师:大家说说看,哪一种取法更好呢?众:乙的方法好。

师:对。

我们可以针对函数中不同的k和b的值,灵活取值。

教师要求学生画出这两函数的图象。

【设计说明】:通过对两函数图象画法的讨论,引导学生得出简捷画法,并为后面新知识的研究作一些伏笔。

(2)探究一次函数的增减性师:教师用多媒体呈现给大家一幅画面。

图画上有两个一次函数的图象,而背景是一座山,两一次函数的图象正好对应着背景图中的上山和下山的路线,教师在课件中设计一个人从左边上山顶,并继续下山到右边山脚,并把这一活动来回放两遍给学生看,继而引导学生思考。

一次函数教案优秀3篇

一次函数教案优秀3篇

一次函数教案优秀3篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!一次函数教案优秀3篇作为一位杰出的老师,就难以避免地要准备教学设计,教学设计是实现教学目标的计划性和决策性活动。

一次函数教案【优秀10篇】

一次函数教案【优秀10篇】

一次函数教案【优秀10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!一次函数教案【优秀10篇】在数学的学习中等差求和公式是学习的重点的内容,以下内容是本店铺为您带来的10篇《一次函数教案》,亲的肯定与分享是对我们最大的鼓励。

八年级《一次函数》教学设计

八年级《一次函数》教学设计

课堂总结,发展潜能篇一1.y=k某+b(k,b是常数,k≠0)是一次函数.2.一次函数包含了正比例函数,即正比例函数是一次函数在b=0时的特例一次函数的概念优秀教学设计篇二教学目标1、了解正比例函数y=k某的图象的特点。

2、会作正比例函数的图象。

3、理解一次函数及其图象的有关性质。

4、能熟练地作出一次函数的图象教学重点正比例函数的图象的特点。

教学难点一次函数的图象的性质。

教学过程:1、新课导入上节课我们学习了如何画一次函数的图象,步骤为①列表;②描点;③连线。

经过讨论我们又知道了画一次函数的图象不需要许多点,只要找两点即可,还明确了一次函数的代数表达式与图象之间的对应关系。

本节课我们进一步来研究一次函数的图象的其他性质。

2、讲授新课(1)首先我们来研究一次函数的特例,正比例函数有关性质。

请大家在同一坐标系内作出正比例函数y=某,y=某,y=3某,y=-2某的图象。

如图:3、议一议(1)正比例函数y=k某的图象有什么特点?(都经过原点)(2)你作正比例函数y=k某的图象时描了几个点?(至少两点)(3)直线y=某,y=某,y=3某中,哪一个与某轴正方向所成的锐角最大?哪一与某轴正方向所成的锐角最小?4、小结:正比例函数的图象有以下特点:(1)正比例函数的图象都经过坐标原点。

(2)作正比例函数y=k某的图象时,除原点外,还需找一点,一般找(1,k)点。

(3)在正比例函数y=k某图象中,当k>0时,k的值越大,函数图象与某轴正方向所成的锐角越大。

(4)在正比例函数y=k某的图象中,当k>0时,y的值随某值的增大而增大;当k<0时,y的值随某值的增大而减小。

5、做一做在同一直角坐标系内作出一次函数y=2某+6,y=-某,y=-某+6,y=5某的图象。

一次函数y=k某+b的图象的特点:分析:在函数y=2某+6中,k>0,y的值随某值的增大而增大;在函数y=-某+6中,y的值随某值的增大而减小。

初二数学教案《一次函数》(优秀10篇)

初二数学教案《一次函数》(优秀10篇)

初二数学教案《一次函数》(优秀10篇)一次函数,也作线性函数,在x,y坐标轴中可以用一条直线表示,当一次函数中的一个变量的值确定时,可以用一元一次方程确定另一个变量的值。

为您带来了10篇《初二数学教案《一次函数》》,如果能帮助到亲,我们的一切努力都是值得的。

一次函数篇一教学目标:1、知道与正比例函数的意义。

2、能写出实际问题中正比例关系与关系的解析式。

3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性。

4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力。

教学重点:对于与正比例函数概念的理解。

教学难点:根据具体条件求与正比例函数的解析式。

教学方法:结构教学法、以学生“再创造”为主的教学方法教学过程:1、复习旧课前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容) 2、引入新课就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是。

顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了。

教师将学生的正确的例子写在黑板上)这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果。

)不难看出函数都是用自变量的一次式表示的,可以写成()的形式。

一般地,如果(是常数,)(括号内用红字强调)那么y叫做x的。

特别地,当b=0时,就成为(是常数,)3、例题讲解例1、某油管因地震破裂,导致每分钟漏出原油30公升(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式(2)破裂3.5小時后,共漏出原油多少公升分析:y与x成正比例解:(1)(2)(升)例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元)(1)列出小丸子的银行存款(不计利息)y与月数x 的函数关系式;(2)多长时间以后,小丸子的银行存款才能买随身听?分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱解:(1)(2)1680=500+90x解得x=13.…所以还需要14个月,小丸子才能买随身听例3、已知函数是正比例函数,求的值分析:本题考察的是正比例函数的概念解:说明:第一题让学生上黑板来完成,二、三题学生分组讨论每个组讨论出一个结果,写在黑板上4、小结由学生对本节课知识进行总结,教师板书即可。

一次函数教案设计

一次函数教案设计

一次函数教案设计一、教学目标1、知识与技能目标理解一次函数的概念,掌握一次函数的表达式。

能够根据已知条件,求出一次函数的解析式。

学会用待定系数法求一次函数的解析式。

2、过程与方法目标通过实际问题的引入,培养学生的数学建模能力和解决实际问题的能力。

经历探索一次函数图象和性质的过程,体会数形结合的思想方法。

3、情感态度与价值观目标激发学生对数学的兴趣,培养学生积极思考、勇于探索的精神。

让学生体会数学与生活的紧密联系,增强学生应用数学的意识。

二、教学重难点1、教学重点一次函数的概念和表达式。

用待定系数法求一次函数的解析式。

2、教学难点理解一次函数与正比例函数的关系。

一次函数图象的性质及其应用。

三、教学方法讲授法、讨论法、练习法、多媒体辅助教学法。

四、教学过程1、导入新课展示生活中常见的一些函数关系的例子,如汽车行驶的路程与时间的关系、电话费与通话时间的关系等。

引导学生思考这些例子中变量之间的关系,并提问:如何用数学式子来表示这些关系?2、讲解新课给出一次函数的定义:一般地,形如 y = kx + b(k,b 是常数,k ≠ 0)的函数,叫做一次函数。

当 b = 0 时,y = kx 叫做正比例函数,所以正比例函数是一种特殊的一次函数。

通过具体的例子,如 y = 3x + 2,y =-2x 等,让学生判断哪些是一次函数,哪些是正比例函数,并说明理由。

讲解用待定系数法求一次函数的解析式。

例如,已知一次函数的图象经过点(1,3)和(-2,-1),求这个一次函数的解析式。

设这个一次函数的解析式为 y = kx + b,将两个点的坐标代入解析式中,得到方程组,解方程组求出 k 和 b 的值,从而得到解析式。

3、课堂练习给出一些练习题,让学生判断哪些函数是一次函数,哪些是正比例函数。

给出一些已知点坐标求一次函数解析式的题目,让学生练习用待定系数法求解。

4、探究一次函数的图象和性质让学生在同一坐标系中画出 y = 2x,y = 2x + 1,y = 2x 1 的图象。

《一次函数》教案(共5则)

《一次函数》教案(共5则)

《一次函数》教案(共5则)第一篇:《一次函数》教案《一次函数》教案马才义一.教学目标1、经历一般规律的探索过程,发展学生的抽象思维能力。

2、理解一次函数和正比例函数的概念,能根据所给的条件写出简单的一次函数表达式,发展学生的数学应用能力。

教学重点、难点重点:理解一次函数和正比例函数的概念。

难点:能根据所给的条件写出简单的一次函数表达式。

二。

教学过程(一)问题的提出题的提出饮料每箱12瓶,售价55元,求买饮料的总价Y(元)与所买瓶数X(瓶)的关系式。

2 某弹簧的自然长度为3厘米,在弹簧限度内,所挂物体的质量X每增加12千克,弹簧长度Y增加0。

5厘米。

(1)计算所挂物体的质量为1千克2千克3千克4千克5千克、、、、、、X千克弹簧长度,并填入下表;X/千克 0 1 2 3 4 5、、、X Y/厘米(2)你能写出X与Y的函数之间的关系吗?(二)做一做某汽车油箱中原有汽油100升,汽车每行驶50千米耗油9升。

(1)完成下表路程X/千米 0 50 100 150 200 300、、、余油Y/升(2)你能写出X与Y的函数之间的关系吗?说明:各题中的X 都有一定的限制。

问:观察上述关系式的特点,总结规律。

(三)一次函数定义、正比例函数的定义若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k≠0)则称y是x的一次函数(x是自变量,y是因变量)。

特别地,当b=0时,称y是x的正比例函数。

(四)讲例例1写出下列各题中x与y之间的关系式,并判断y是否为x一次函数?是否为正比例函数?(1)汽车以60千米/时的速度行使,行使路程y(千米)与行使时间x(时)之间的关系。

(2)圆的面积y (cm2)与它的半径x(cm)之间的关系。

(3)一棵树现高50cm,每个月长高2cm,x月后这棵树的高度为y(cm)。

分析:本题较为简单,由学生完成。

例2 我国现行个人工资、薪金所得税征收办法规定:月收入不超过800元的部分不收税;月收入超过800元但不超过1300元的部分征收5%的所得税……如某人月收入1160元,他应缴个人工资、薪金所得税为(1160—800)*5%=18(元)。

一次函数教案

一次函数教案

一次函数教案【教案】一次函数一、教学内容:一次函数二、教学目标:1. 理解一次函数的含义和性质。

2. 掌握一次函数的图象和表示方法。

3. 熟练运用一次函数解决实际问题。

三、教学重点和难点:1. 理解一次函数的定义和概念。

2. 掌握一次函数的图象和表示方法。

四、教学准备:1. 教师准备:教学课件、教学资料。

2. 学生准备:笔记本、教材、计算器。

五、教学过程:步骤一:导入(10分钟)1. 向学生介绍一次函数的概念和定义。

2. 提问:你知道什么是一次函数吗?请举例说明。

3. 激发学生的学习兴趣,引导他们思考问题。

步骤二:概念解释(15分钟)1. 通过示例解释一次函数的定义。

(1) 函数的定义:一次函数是一个以x为变量的函数,其表达式为f(x)=ax+b,其中a和b是常数,且a不等于0。

(2) 函数的含义:一次函数表示的是一个直线。

(3) 函数的性质:一次函数的图象是一条直线,且直线上的点关于x轴对称。

2. 提示学生记住一次函数的定义和性质。

步骤三:图象讲解(15分钟)1. 解释一次函数的图象。

(1) 当a>0时,直线向上倾斜,表示函数是递增的。

(2) 当a<0时,直线向下倾斜,表示函数是递减的。

(3) 当b=0时,直线经过原点;当b≠0时,直线与y轴有交点。

2. 分析一次函数的图象对应的函数关系式。

步骤四:例题讲解(20分钟)1. 将一些常见的实际问题转化为一次函数的问题进行讲解。

2. 引导学生将实际问题与一次函数的概念结合起来,理解问题解决的方法。

步骤五:练习(20分钟)1. 让学生自主完成一些练习题,巩固所学的知识。

2. 解答学生遇到的问题。

步骤六:小结归纳(10分钟)1. 教师总结本节课的重点内容,并强调重点。

2. 学生积极参与小结,提出问题和疑惑。

3. 教师对学生提出的问题进行解答。

六、课堂作业:1. 让学生完成课后习题,巩固所学的知识。

2. 要求学生写一篇关于一次函数的总结。

七、教学反思:通过本节课的教学,学生对一次函数的概念、定义和性质有了初步的了解。

一次函数的应用教案

一次函数的应用教案

一次函数的应用教案一、教学目标1. 了解一次函数的定义和性质。

2. 掌握一次函数的图像特点。

3. 学会应用一次函数解决实际问题。

二、教学重点1. 一次函数的定义和性质。

2. 一次函数的图像特点。

三、教学难点1. 如何应用一次函数解决实际问题。

四、教学准备1. 教科书和课件。

2. 黑板和粉笔。

3. 实际应用问题的例子。

五、教学过程Step 1:导入教师可以通过提问的方式引导学生回顾一次函数的定义和性质,并与学生一起讨论一次函数存在的意义和应用领域。

Step 2:讲解一次函数的定义和性质1. 教师通过示例解释一次函数的定义:f(x) = ax + b,其中a和b是常数,且a≠0。

2. 强调一次函数的线性关系,即函数图像为一条直线。

3. 讲解一次函数的性质:线性关系、正比例关系及其相关性质。

Step 3:展示一次函数的图像特点1. 通过具体的函数表达式和图像展示,说明一次函数在直角坐标系中的图像特点。

2. 强调斜率和截距对图像的影响。

Step 4:应用一次函数解决实际问题1. 教师选取一些实际问题的例子,如汽车行驶问题、成本与产量问题等,让学生思考如何建立一次函数模型。

2. 学生分组合作,利用一次函数的知识,解决所给问题,并将答案展示给其他同学。

Step 5:巩固和扩展1. 教师提供更多的应用问题,让学生继续运用一次函数的知识解决。

2. 学生进行小组讨论,找出多种解决方法,并分析不同解决方法的适用性。

六、教学延伸1. 学生可以通过使用计算机软件绘制一次函数的图像,进一步理解函数的性质。

2. 学生可以深入研究一次函数在经济学、物理学等领域的应用,扩展应用知识。

七、课堂总结通过本节课的学习,我们了解了一次函数的定义和性质,掌握了一次函数的图像特点,并学会了应用一次函数解决实际问题。

一次函数作为数学中的重要工具,在实际应用中具有广泛的应用价值。

八、课后作业1. 完成课本上的练习题。

2. 搜集一些实际应用问题,尝试用一次函数解决。

《一次函数的图象和性质》教学设计优秀5篇

《一次函数的图象和性质》教学设计优秀5篇

《一次函数的图象和性质》教学设计优秀5篇一次函数的图象教案篇一一、学生起点分析八年级学生已在七年级学习了“变量之间的关系”,对利用图象表示变量之间的关系已有所认识,并能从图象中获取相关的信息,对函数与图象的联系还比较陌生,需要教师在教学中引导学生重点突破函数与图象的对应关系。

二、教学任务分析《一次函数的图象》是义务教育课程标准北师大实验教科书八年级(上)第六章《一次函数》的第三节。

本节内容安排了2个课时,第1课时是让学生了解函数与对象的对应关系和作函数图象的步骤和方法,明确一次函数的图象是一条直线,能熟练地作出一次函数的图象。

第2课时是通过对一次函数图象的比较与归类,探索一次函数及其图象的简单性质。

本课时是第一课时,教材注重学生在探索过程的体验,注重对函数与图象对应关系的认识。

为此本节课的教学目标是:1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象。

2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线。

3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力。

4.理解一次函数的代数表达式与图象之间的一一对应关系。

教学重点是:初步了解作函数图象的一般步骤:列表、描点、连线。

教学难点是:理解一次函数的代数表达式与图象之间的一一对应关系。

三、教学过程设计本节课设计了七个教学环节:第一环节:创设情境引入课题;第二环节:画一次函数的图象;第三环节:动手操作,深化探索;第四环节:巩固练习,深化理解;第五环节:课时小结;第六环节:拓展探究;第七环节:作业布置。

第一环节:创设情境引入课题内容:一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗?S=80t(t≥0)下面的图象能表示上面问题中的S与t的关系吗?我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。

初中一次函数教案优秀5篇

初中一次函数教案优秀5篇

初中一次函数教案优秀5篇一次函数的优秀教学设计篇一课题:14.2.2一次函数课时:57教学目标(一)教学知识点1.掌握一次函数解析式的特点及意义.毛2.知道一次函数与正比例函数关系.3.理解一次函数图象特征与解析式的联系规律.4.会用简单方法画一次函数图象.(二)能力训练要求1.通过类比的方法学习一次函数,体会数学研究方法多样性.2.进一步提高分析概括、总结归纳能力.3.利用数形结合思想,进一步分析一次函数与正比例函数的联系,从而提高比较鉴别能力.教学重点1.一次函数解析式特点.2.一次函数图象特征与解析式联系规律.3.一次函数图象的画法.教学难点1.一次函数与正比例函数关系.2.一次函数图象特征与解析式的联系规律.教学方法合作─探究,总结─归纳.教具准备多媒体演示.教学过程ⅰ.提出问题,创设情境问题:某登山队大本营所在地的气温为15℃,海拔每升高1km气温下降6℃.登山队员由大本营向上登高xkm时,他们所处位置的气温是y℃.试用解析式表示y 与x的关系.分析:从大本营向上当海拔每升高1km时,气温从15℃就减少6℃,那么海拔增加xkm时,气温从15℃减少6x℃.因此y与x的函数关系式为:y=15-6x(x≥0)当然,这个函数也可表示为:y=-6x+15(x≥0)当登山队员由大本营向上登高0.5km时,他们所在位置气温就是x=0.5时函数y=-6x+15的值,即y=-6×0.5+15=12(℃).这个函数与我们上节所学的正比例函数有何不同?它的图象又具备什么特征?我们这节课将学习这些问题.ⅱ.导入新课我们先来研究下列变量间的对应关系可用怎样的函数表示?它们又有什么共同特点?1.有人发现,在20~25℃时蟋蟀每分钟鸣叫次数c与温度t(℃)有关,即c 的值约是t的7倍与35的差.2.一种计算成年人标准体重g(kg)的方法是,以厘米为单位量出身高值h减常数105,所得差是g的值.3.某城市的市内电话的月收费额y(元)包括:月租费22元,拨打电话x分的计时费(按0.01元/分收取).4.把一个长10cm,宽5cm的矩形的长减少xcm,宽不变,矩形面积y(cm2)随x的值而变化.这些问题的函数解析式分别为:1.c=7t-35.2.g=h-105.3.y=0.01x+22.4.y=-5x+50.一次函数教案篇二教材分析《一次函数》是人教版的义务教育课程标准实验教科书数学八年级上册第十九章的内容。

一次函数全章教案新人教版

一次函数全章教案新人教版

一次函数全章教案-新人教版第一章:一次函数的定义与性质1.1 一次函数的定义引入:通过日常生活实例,如购物时计算总价,引出一次函数的概念。

讲解:一次函数是指函数表达式为y=kx+b(k、b为常数,k≠0,x 为自变量)的函数。

例题:解析生活中的实例,求出一次函数的表达式。

1.2 一次函数的性质讲解:一次函数的图像是一条直线,且斜率为k,截距为b。

性质1:当k>0时,函数图像从左下到右上递增;当k<0时,函数图像从左上到右下递增。

性质2:当b>0时,函数图像在y轴上方与y轴相交;当b<0时,函数图像在y轴下方与y轴相交。

例题:根据函数的性质,判断函数图像的走势及与y轴的交点位置。

第二章:一次函数的图像与解析式2.1 一次函数图像的画法讲解:通过直角坐标系,讲解如何画出一次函数的图像。

方法:先确定两个点,连接这两个点,即为一次函数的图像。

例题:给定一次函数,求出其图像上的两个点,并画出图像。

2.2 一次函数解析式的求法讲解:通过图像,反求出一次函数的解析式。

方法:已知图像上的两个点,求出斜率k和截距b。

例题:已知一次函数图像上的两个点,求出其解析式。

第三章:一次函数的应用3.1 线性方程的应用讲解:通过实际问题,引入线性方程的解法。

方法:将实际问题转化为线性方程,求解得到答案。

例题:已知某商品的原价和折扣后价格,求折扣率。

3.2 线性方程组的应用讲解:当实际问题中有两个未知数时,可转化为线性方程组求解。

方法:利用消元法或代入法,求解线性方程组。

例题:已知某商品的原价、折扣率及折后价格,求原价和折扣率。

第四章:一次函数的图象与几何变换4.1 一次函数图象的平移讲解:讲解一次函数图象如何进行平移变换。

方法:上下平移不变斜率,左右平移改变截距。

例题:给出一次函数,进行上下或左右平移,求新函数的解析式。

4.2 一次函数图象的缩放讲解:讲解一次函数图象如何进行缩放变换。

方法:横坐标缩放改变斜率,纵坐标缩放改变截距。

数学教案-一次函数

数学教案-一次函数

数学教案-一次函数一、教学目标1.让学生理解一次函数的定义和性质。

2.培养学生运用一次函数解决实际问题的能力。

3.培养学生的逻辑思维和数学素养。

二、教学重点与难点1.教学重点:一次函数的定义、性质和图像。

2.教学难点:一次函数图像与性质的关系。

三、教学过程1.导入新课师:同学们,我们之前学过一次方程和一次不等式,那么大家知道一次函数吗?今天我们就来学习一次函数的相关知识。

2.课堂讲解(1)一次函数的定义师:我们来看一下一次函数的定义。

一般地,如果一个函数的自变量x和因变量y之间的关系可以表示为y=kx+b(k≠0,k、b是常数),那么这个函数就叫做一次函数。

(2)一次函数的性质师:我们来探讨一次函数的性质。

一次函数的图像是一条直线,且斜率k表示直线的倾斜程度。

当k>0时,直线向上倾斜;当k<0时,直线向下倾斜。

截距b表示直线与y轴的交点。

(3)一次函数的图像师:现在,我们来绘制一次函数的图像。

以y=2x+1为例,我们可以先找出两个点,如(0,1)和(1,3),然后将这两个点连成一条直线,这就是一次函数y=2x+1的图像。

3.课堂练习师:同学们,下面我们来做一些练习题,巩固一下所学知识。

(1)判断下列函数是否为一次函数:a.y=3x+2b.y=2x^2+1c.y=x+3/x(2)根据一次函数的定义,写出下列函数的斜率和截距:a.y=4x-3b.y=-2x+1(3)绘制下列一次函数的图像:a.y=3x+2b.y=-2x+14.课堂小结师:通过今天的学习,我们知道了什么是一次函数,以及一次函数的性质和图像。

希望大家能够将所学知识运用到实际生活中,解决实际问题。

5.课后作业(1)复习一次函数的定义、性质和图像。

(2)完成课后练习题。

四、教学反思重难点补充:1.一次函数的定义师:同学们,我们说一次函数是形如y=kx+b的函数,这里的k和b都是常数,而且k不能为0。

比如y=2x+3,这里的2就是斜率k,3是截距b。

一次函数教案12篇

一次函数教案12篇

一次函数教案12篇(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如演讲稿、工作总结、工作计划、心得体会、教学总结、事迹材料、优秀作文、教学设计、合同范文、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of practical materials for everyone, such as speeches, work summaries, work plans, experiences, teaching summaries, deeds materials, excellent essays, teaching designs, contract samples, and other materials. If you want to learn about different data formats and writing methods, please pay attention!一次函数教案12篇一次函数教案1一、课程标准要求:①结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

探索归纳探索环节一:看看我们身边的例子:1、小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的存款数M与从现在开始的月份数x之间的函数关系式2、小红每天做5道数学课外练习,试写出小红所做题目的总数y和练习天数x之间的函数关系式3、仓库内原有粉笔400盒,如果每个星期领出36盒,求仓库内余下的粉笔盒数Q与星期数t之间的函数关系式4、容积为30m3的水池中已有水10m,现在以5m3/分钟的速度向水池注水,写出水池中水的容积y(m3)与注水时间x(分钟)之间的函数关系式5、写出多边形的内角和S(度)与它的边数n的函数关系式,自变量n可取哪些数值?独立思考交流回答听讲问题1小明暑假第一次去北京.汽车驶上A地的高速公路后,小明观察里程碑,发现汽车的平均车速是95千米/小时.已知A地直达北京的高速公路全程为570千米,小明想知道汽车从A地驶出后,距北京的路程和汽车在高速公路上行驶的时间有什么关系,以便根据时间估计自己和北京的距离.分析我们知道汽车距北京的路程随着行车时间而变化,要想找出这两个变化着的量的关系,并据此得出相应的值,显然,显然,应该探究这两个量的变化规律.应该探求这两个变量的变化规律.为此,我们设汽车在高速公路上行驶时间为t小时,汽车距北京的路程为s千米,可知s和t的函数关系式是57095s t=-.说明找出问题中的变量并用字母表示是探求函数关系的第一步,这里的s、t是两个变量,s是t的函数,t是自变量,s是因变量.问题2小张准备将平时的零用钱节约一些储存起来.他已存有50元,从现在起每个月节存12元.试写出小张的存款与从现在开始的月份之间的函数关系式.分析我们设从现在开始的月份数为x,小张的存款数为y元,得到所求的函数关系式为:5012y x=+.问题3按下列问题引导学生思考:(1)这些式子表示的是什么关系?(2)这些函数中的自变量是什么?函数是什么?(3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的什么式呢?(4)x的一次式的一般形式是什么?表示的这两个函数有什么共同点?归纳听3、知识拓展在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

写成式子是 k xy(一定)需指出,小学因为没有学过负数,实际的例子都是k >0的例子,对于正比例函数,k 也为负数。

其次,要注意引导学生找出一次函数与正比例函数之间的关系:正比例函数是特殊探索归纳探索1:请同学们根据画图象的步骤:列表、描点、连线,在同一平面直角坐标系中画出下列函数的图象.⑴12y x=;⑵122y x=+;⑶3y x=;⑷32y x=+.(写在一个表中)同学们观察并互相讨论,并回答:你所画出的图象是什么形状的吗?归纳1:观察上面四个函数的图象,发现它们都是直线.一次函数y kx b=+(k≠0)的图象是一条直线,这条直线通常又称为直线y kx b=+(k≠0).特别地,正比例函数y kx=(k≠0)是经过原点(0,0)的一条直线.加问:经过几点可以确定一条直线? 答:两点.问题l:以上四个一次函数图象是什么形状呢? 只要取两点。

教师指出,今后画一次函数的图象,只要取两点再过两点画直线即可.结论那么今后画一次函数图象时只要取两点,过两点画一条直线就可以了.(教师再用过两点的方法画图象,注意启发对两个点的选择)(马上做一个练习,列表法一般是6个点以上,改一下下面的二个题中的b⑶32y x=+与122y x=+.)画图交流回答听讲探索2:观察上面所画的四个一次函数的图象,比较下列各一对次函数的图象有什么共同点,有什么不同点?⑴3y x=与32y x=+;⑵12y x=与122y x=+;⑶32y x=+与122y x=+.你能否从中发现一些规律?对于直线y kx b=+(k≠0),常数k和b的取值对于其位置各有什么影响?归纳2:(几何画板课件)1、两个一次函数,当k一样,b不一样时,如⑴与⑵,有共同点:直线平行,平移关系!!都是由直线y kx=(k≠0)向上或向下移动得到;不同点:它们与y轴的交点不同;2、而当两个一次函数,b一样,k不一观察交流回答听讲样时,如⑶,有共同点:它们与y轴交于同一点(0,b);不同点:直线不平行.综上所述,对于直线11y k x b=+与直线22y k x b=+而言:⑴当12k k=、12b b≠时,两直线平行;⑵当12k k≠、12b b=时,两直线相交于点(0,b).Tx第一课时的、知识拓展(1)一次函数的图象的画法:问题:我们知道一次函数的图象是一条直线,那么今后我们画一次函数的图象是否还是通过描出许多点再连线呢?有没有简捷的方法呢?讨论:两点确定一条直线,画一次函数的图象只需描出两点,再过这两点作直线。

结论:一次函数图象的画法──“两点法”。

(2)取两适当点画正比例函数的图象:问题:取怎样的两点画函数y=0.5x,y=-0.5x的图象合适呢?讨论:计算简便,描点方便。

画图:师生分别画图。

结论:画正比例函数的图象时,常选取(0,0)、(1,k)两点连线。

正比例函数的图象必过原点。

(3)取两适当点画一次函数的图象:问题:怎样取合适的两点画一次函数y=kx+b 的图象呢?思考与讨论:①横坐标为0点在上,纵坐标为0点在上。

②在y kx b=+中,当x=0时,y= ;当y=0时,x= 。

画一次函数的图象,常选取(0, )、(,0)两点连线索归纳问题例题2:求直线23y x=--与x轴和y轴的交点,并画出这条直线.分析过点( 1.5-,0)和(0,3-)所作的直线就是直线23y x=--.画图归纳思考听讲直线y kx b=+与y轴的交点坐标是(0,b),与x轴的交点坐标是(bk-,0).说明:1.画出直线后,要在直线旁边写出一次函数解析式。

2.在坐标轴上取点有什么好处?例题讲解例3画出第一节课中问题(1)中小明距北京的路程s(千米)与在高速公路上行驶的时间t(时)之间函数57095s t=-的图象.学生先独立尝试画图象,会感到不太好画,自发性讨论后,1.这里s和t取的数悬殊较大,怎么办?让学生分组讨论,然后发表意见,教师引导并归纳为:在实际问题中,我们可以在表示时间的t轴和表示路程的s轴上分别选取适当的单位长度,画出平面直角坐标系,如图所示.2.作图要取几点?如何取点最好?3.你能画出这个函数图象吗?试试看.让学生动手画出函数s=570-95t的图象,教师巡视指导,及时纠正学生画图中可能出现的错误画法。

加问1:⑴这个函数是否是一次函数?⑵自变量t的取值范围是什么?⑶这个函数的图象是直线吗?如果不是,那应该是什么?分析这是一题与实际生活相关的函数应用题,自变量t是小明在高速公路上行驶的时间,所以0≤t≤6,画出的图象是直线的一部分.再者,本题中t和s取值悬殊很大,故横轴和纵轴所选取的单位长不一致.画图讨论回答听讲讨论回答听讲加问2:在实际问题中,一次函数的图象除了直线和本题的图形外,还有没有其他的情形?你能不能找出几个例子加以说明.练习4 作出下列函数的图象:⑴2y x=-(24x-<<)⑵112y x=-+(x≤4)画图交流听讲巩固练习基础巩固练习交流回答1、P44.13、P44. 2能力提升思考交流回答听讲2、已知函数24y x=-.⑴作出它的图象;⑵标出图象与x轴、y轴的交点坐标;⑶由图象观察,当2-≤x≤4时,函数值y的变化范围.4、去年夏天,全国大部分地区发生严重干旱.市自来水公司为了鼓励市民节约用水,采取分段收费标准,若某户居民每月应交水费y(元)是用水量x(吨)的函数,当0≤x≤5时,0.72y x=;当5x>时,0.90.9y x=-.⑴画出函数的图象;⑵观察图象,利用函数解析式,说明自来水公司采取的收费标准.解⑴函数的图象如图所示;⑵自来水公司的收费标准是:当用水量在5吨以内时,每吨0.72元;当用水量在5吨以上时,每吨0.90元.提高1 若直线y kx b=-+与直线y x=-平行,且与y轴交点的纵坐标为2-,求直线的表达式.提高2求函数332y x=-与x轴、y轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.概括总结1、一次函数直线y kx b=+与y轴的交点坐标是(0,b),与x轴的交点坐标是(bk-,0).2、在画实际问题中的一次函数图象时,要考虑自变量的取值范围,画出的图象往往不再是一条直线.回答听讲布置作业3、旅客乘车按规定可以免费携带一定重量的行李.如果所带行李超过了规定的重量,就要按超重的千克收取超重行李费.已知旅客所付行李费y(元)可以看成他们携带的行李质量x(千克)的一次函数为156y x=-.画出这个函数的图象,并说明旅客最多可以免费携带多少千克的行李?教后反思1.在坐标轴上取点有什么好处?如何取点?2.在实际问题中,当自变量x和因变量y取的数较大,应如何选取直角坐标系的单位长度?3.在实际问题中,一次函数的图象都是直线吗?为什么?课时总数第周星期第节2006年月日第课时教学内容§17.3一次函数3.一次函数的性质第一课时一次函数的性质(一)知识点一次函数的图象是一条直线,k b对图象的影响教学目标1、探索一次函数图象观察、分析等过程,提高学生数形结合意识,培养数形结合的能力.2、能结合图象理解掌握一次函数y=kx+b的性质。

教学重点.理解一次函数(含正比例函数)的性质;教学难在数形上结合进行学习一次函数的性质固练习P45页练习l 、2.习 交流 回答能力提升思考交流回答听讲2、已知函数24y x =-.⑴ 作出它的图象;⑵ 标出图象与x 轴、y 轴的交点坐标;⑶ 由图象观察,当2-≤x ≤4时,函数值y 的变化范围.4、去年夏天,全国大部分地区发生严重干旱.市自来水公司为了鼓励市民节约用水,采取分段收费标准,若某户居民每月应交水费y (元)是用水量x (吨)的函数,当0≤x ≤5时,0.72y x =;当5x >时,0.90.9y x =-.⑴ 画出函数的图象;⑵ 观察图象,利用函数 解析式,说明自来水公司采取的收费标准.解 ⑴ 函数的图象如图所示;⑵ 自来水公司的收费标准是:当用水量在5吨以内时,每吨0.72元;当用水量在5吨以上时,每吨0.90元.提高1 若直线y kx b =-+与直线y x =-平行,且与y 轴交点的纵坐标为2-,求直线的表达式.提高2 求函数332y x =-与x 轴、y 轴的交点坐标,并求这条直线与两坐标轴围成的三角形的面积.概括总结 一次函数y =kx +b 有哪些性质?回答 听讲布置作业六、作业P47页习题17.3 8、9(1)有条件的,补讲下面的一次函数y=kx+b有下列性质(1)当k>0时,y随x的增大而增大.这时函数图象从左到右上升.(2)当k<0时,y随x的增大而减小.这时函数图象从左到右下降.。

相关文档
最新文档