苏教版初一上册数学有理数全章测试(一)

合集下载

苏教版初一数学上册第一章有理数复习练习卷及答案

苏教版初一数学上册第一章有理数复习练习卷及答案

第一章 有理数复习练习(时间:100分钟 满分:100分)一、选择题(每题2分,计20分)1.如果□+2=0,那么“□”内应填的数是( ). A .-2 B .-21 C .21D . 2 2.如果一个数的立方等于它的倒数,那么这个数一定是( ).A .0 B. 1 C. –1 D. 1或-13.在下列各数:— (—3),— (—32),—|—3|,(—3)2,—(—3)2中,负数的个数为( ). A.1 B.2 C.3 D.44.现将1000元人民币,存入年利率为m 的某银行,两年后本息共计( )元(不计利息税). A .1000 B .1000+m C .1000(1+m) D .1000(1+2m) 5.若a -(2b -3c)=a+( )成立,则括号应填入( ).A. 2b -3cB. 2b+3cC. -2b+3cD. -2b -3c 6.下列计算错误的是( ).A .31122112)3121(12⨯-⨯=-⨯B .71)35()51()35()35()7151(⨯-+-⨯-=-⨯+-C .1199112211)9922(÷+÷=÷+D .31182118)3121(18÷-÷=-÷ 7.在(-1)5,(-1)10,-22,(-3)2这四个数中,最大的数比最小的数要大( ).A. 8B. 10C. 13D. 5 8.绝对值小于4的非负整数有( )个 A .2B .3C .4D .59.若有理数a 、b 满足ab >0,且a + b <0,则下列说法正确的是( ) A .a 、b 可能一正一负 B .a 、b 都是正数C .a 、b 都是负数D . a 、b 中可能有一个为010.为了比较两个有理数的大小,现提出了4种新方法:(1)倒数大的反而小;(2)绝对值大的反而小;(3)平方后大的数较大;(4)把两数求商,若商大于1,则被除数较大;商等于1,则两数相等;商小于1,则除数较大.这4种方法( ).A .都正确B .都不正确C .只有一个正确D .有两个正确 二、填空题(每题3分,计24分)11.有一组数:5-2,10-2,15-2,20-2,…第20个数为 .12.据生物学统计,一个健康的成年女子体内的血量一般不低于4000毫升,每毫升血液中红细胞的数量约有4.19610⨯个,因此,一个健康的成年女子体内的红细胞数量一般不低于______个(保留三个有效数字).13.在数轴上,-4与-6之间的距离是____________________. 14.在下面等式的內填数,O 内填运算符号,使等式成立(两个式子中的运算符号不能相同):6=-O,6=-O.15.北京与巴黎两地的时差是-7小时(带正号的数表示同一时间比北京早的时间数),如果现在北京时间是7∶00,那么巴黎的时间是 .16.用“ 、 ”定义新运算:对于任意实数a ,b ,都有a b =a 和a b =b .例如.3 2=3,3 2=2,则(2006 2005) (2004 2003)= . 17.当x 的值为-3时,式子-3x 2 + a x -7的值是-2,则当x =-1时,这个式子的值为 .18.小明得到智慧老人给的钥匙后(如图),便去闯智慧屋.小明到屋前, 大门紧锁.锁上刻着“LH ”两个字母,门边上有26个英文字母的按键. 聪明的小明按了两个字母键,门立即开了.小明按的字母键分别是 . 三、解答题(共56分)19.(4分)动手做一做.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A 、B 、C 内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数之积为6,则填在A 、B 、C 内的三个数依次是多少?20.(4分)在所给数轴上画出表示数-3,-1,2-的点,并比较它们的大小.21.(6分)34)3(3161)211(1-+÷⨯---.22.(6分)小虫从某点O 出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程(单位:厘米)依次为:+ 5、– 3、+ 10、– 8、– 6、+ 12、– 10.(1)通过计算说明小虫是否回到起点;(2)如果小虫爬行的速度为0.5厘米/秒,小虫共爬行了多少时间? 23.(6分)先化简,再求值.已知x-y=3,求式子-4(y-x )-3x+3y+5的值.24.(6分)人在运动时心跳速率通常和人的年龄有关,用a 表示一个人的年龄,用b 表示正常情况下,这个人在运动时承受的每分钟心跳的最高次数,则0.8(220)b a =- (1)正常情况下,在运动时一个15岁的少年所能承受的每分钟心跳的最高次数是多少? (2)一个45岁的人运动时,10秒钟心跳的次数为22次,请问他有危险吗?为什么? 25.(6分)按照下列步骤做一做: (1)任意写一个两位数;(2)交换这个两位数的十位数字和个位数字,得到一个新数; (3)求这两个两位数的和.再写几个两位数重复上面的过程,这些和有什么规律?这个规律对任意一个两位数都成立吗?为什么?26.(6分)下表是小明记录的10月份某一周内每天中午12时的气温的变化情况(气温比(1)若上周日中午12时的气温为10ºC,那么本周每天的实际气温是多少?(请完成上表)(2)本周的最高气温与最低气温相差多少摄氏度?(3)请你用折线统计图表示该周的气温变化情况.27.(6分)按如图所示的方式摆放桌子和椅子(1)2(2)8张大桌子,共可坐人.(3)在(2)中,改成每8张桌子拼成1张大桌子,则共可坐人.28.(6分)下面是同学们玩过的“锤子、剪子、布”的游戏.规则:游戏在两位同学之间进行,用伸出拳头表示“锤子”,伸出食指和中指表示“剪子”,伸出手掌表示“布”,两人同时口念“锤子、剪子、布”,一念到“布”时,同时出手,“布”赢“锤子”,“锤子”赢“剪子”,“剪子”赢“布”,现在我们约定:“布”赢“锤子”得9分,同时出“锤子”者得−9分;“锤子”赢“剪子”得5分,同时出“剪子”者得−5分;“剪子”赢“布”得2分,同时出“布”者得−2分,其余不得分.在玩此游戏过程中,小明和小亮的游戏结果如下表:第一章 有理数复习一、选择题1.A 2.D 3.B 4.D 5.C 6.D 7.C 8.C 9.C 10.B 二、填空题11. 100—2 12.1.68×1010 13.2 14.略 15.0:00 16.2005 17.3218.OK 三、解答题19.A :—2,B :3,C :6 20.312->->- 21.122.(1)5—3+10—8—6+12—10=0,回到起点;(2)108秒 23.原式=x —y+5=8 24.(1)164;(2)没有 25.10x+y+10y+x=11(x+y),是11的倍数 26.(1)13,11,16,14,13,17,16;(2)6℃;(3)略 27.(1)8,10,12,2n+4;(2)(2×5+4)×8=112;(3)(2×8+4)×5=100 28.小明得分为:6×5+5×2+8×(—2)+10×(—9)=—66, 小亮得分为:6×(—5)+5×(—2)+8×2+10×9=66。

七年级上册数学第一章有理数测试题含答案

七年级上册数学第一章有理数测试题含答案

七年级数学(上)第一章 有理数单元测试题(120分)一、选择题(3分×10=30分) 1、2008的绝对值是( )A 、2008B 、-2008C 、±2008D 、200812、下列计算正确的是()A 、-2+1=-3B 、-5-2=-3C 、-112-=D 、1)1(2-=-3、近几年安徽省教育事业加快发展,据2005年末统计的数据显示,仅普通初中在校生就约有334万人,334万人用科学记数法表示为()A 、0.334×710人B 、33.4×510人C 、3.34×210人D 、3.34×610人 4、下列各对数互为相反数的是()A 、-(-8)及+(+8)B 、-(+8)及+︱-8︱C 、-2222)与(- D 、-︱-8︱及+(-8)5、计算(-1)÷(-5)×51的结果是()A 、-1B 、1C 、251D 、-25 6、下列说法中,正确的是()A 、有最小的有理数B 、有最小的负数C 、有绝对值最小的数D 、有最小的正数7、小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m ):500,-400,-700,800 小明同学跑步的总路程为()A 、800 mB 、200 mC 、2400 mD 、-200 m 8、已知︱x ︱=2,y 2=9,且x ·y<0,则x +y=( ) A 、5 B 、-1 C 、-5或-1 D 、±19、已知数轴上的A 点到原点的距离为2个单位长度,则在数轴上到A 点的距离是3个单位长度的点所表示的数有( )A 、1个B 、2个C 、3个D 、4个10、有一张厚度是0.1mm 的纸,将它对折20次后,其厚度可表示为( ) A 、(0.1×20)mm B 、(0.1×40)mm C 、(0.1×220)mm D 、(0.1×202)mm二、填空题(5分×3=15)11、妈妈给小颖10元钱,小颖记作“+10元”,则“-5元”可能表示什么_____ 12、一个正整数,加上-10,其和小于0,则这个正整数可能是.(写出两个即可) 13、某同学用计算器计算“2÷13”时,计算器上显示结果为0.153846153,将此结果保留三位有效数字为.14、观察下列各数,按规律在横线上填上适当的数。

苏科版七年级数学上册 有理数单元测试卷(含答案解析)

苏科版七年级数学上册 有理数单元测试卷(含答案解析)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上点表示的数为,是数轴上位于点左侧一点,且AB=20,动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,设运动时间t(t>0)秒.(1)写出数轴上点表示的数________;点表示的数________(用含的代数式表示)(2)动点从点出发,以每秒个单位长度的速度沿数轴向右匀速运动,若点、同时出发,问多少秒时、之间的距离恰好等于?(3)动点从点出发,以每秒个单位长度的速度沿数轴向左匀速运动,若点、同时出发,问多少秒时、之间的距离恰好又等于?(4)若为的中点,为的中点,在点运动的过程中,线段的长度是否发生变化?若变化,请说明理由,若不变,请画出图形,并求出线段的长.【答案】(1);(2)解:若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=2.25;②点P、Q相遇之后,由题意得3t-2+5t=20,解得t=2.75.答:若点P、Q同时出发,2.25或2.75秒时P、Q之间的距离恰好等于2(3)解:设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,则5x-3x=20-2,解得:x=9;②点P、Q相遇之后,则5x-3x=20+2解得:x=11.答:若点P、Q同时出发,9或11秒时P、Q之间的距离恰好又等于2(4)解:线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP= AP+ BP= (AP+BP)= AB= ×20=10,②当点P运动到点B的左侧时:MN=MP-NP= AP- BP= (AP-BP) AB=10,则线段MN的长度不发生变化,其值为10【解析】【解答】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8-20=-12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t>0)秒,∴点P表示的数是8-5t.故答案为-12,8-5t;【分析】(1)根据已知可得B点表示的数为8-20;点P表示的数为8-5t;(2)设t秒时P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(3)设点P运动x秒时,P、Q之间的距离恰好等于2.分两种情况:①点P、Q相遇之前,②点P、Q相遇之后,列出方程求解即可;(4)分①当点P 在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.2.如图,数轴上点A,B分别对应数a,b.其中a<0,b>0.(1)当a=﹣2,b=6时,线段AB的中点对应的数是________;(直接填结果)(2)若该数轴上另有一点M对应着数m.①当m=2,b>2,且AM=2BM时,求代数式a+2b+20的值;②当a=﹣2,且AM=3BM时,小安演算发现代数式3b﹣4m是一个定值.老师点评:你的演算发现还不完整!请通过演算解释:为什么“小安的演算发现”是不完整的?【答案】(1)2(2)解:①当m=2,b>2时,点M在点A,B之间,∵AM=2BM,∴m﹣a=2(b﹣m),∴2﹣a=2(b﹣2),∴a+2b=6,∴a+2b+20=6+20=26;②小安只考虑了一种情况,故老师点评“小安的演算发现”是不完整的.当点M在点A,B之间时,a=﹣2,∵AM=3BM,∴m+2=3(b﹣m),∴m+2=3b﹣3m,∴3b﹣4m=2,∴代数式3b﹣4m是一个定值.当点M在点B右侧时,∵AM=3BM,∴m+2=3(m﹣b),∴m+2=3m﹣3b,∴2m﹣3b=2,∴代数式2m﹣3b也是一个定值.【解析】【解答】解:(1)由题意得出,线段AB的中点对应的数是2,故答案为:2.【分析】(1)首先根据数轴的性质,即可得出中点对应的数值;(2)①首先判定点M 在点A,B之间,然后根据等式列出关系式,即可得解;②根据题意,分两种情况进行求解:点M在点A,B之间和点M在点B右侧时,通过列出等式,即可判定.3.已知,数轴上点A和点B所对应的数分别为,点P为数轴上一动点,其对应的数为.(1)填空: ________ , ________ .(2)若点 P到点 A、点 B 的距离相等,求点 P 对应的数.(3)现在点 A、点 B分别以 2 个单位长度/秒和 0.5 个单位长度/秒的速度同时向右运动,点 P以 3 个单位长度/秒的速度同时从原点向左运动.当点 A与点 B之间的距离为2个单位长度时,求点 P所对应的数是多少?【答案】(1)-1;3(2)解:依题可得:PA=|x+1|,PB=|3-x|,∵点P到点A、点B的距离相等,∴PA=PB,即|x+1|=|3-x|,解得:x=1,∴点P对应的数为1.(3)解:∵点A、点B 速度分别以 2 个单位长度/秒、 0.5 个单位长度/秒的速度同时向右运动,∴A点对应的数为2t-1,点B对应的数为3+0.5t,①当点A在点B左边时,∵AB=2,∴(3+0.5t)-(2t-1)=2,解得:t=,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴×3=4,∴P点对应的数为:-4.②当点A在点B右边时,∵AB=2,∴(2t-1)-(3+0.5t)=2,解得:t=4,∵点P以 3 个单位长度/秒的速度同时从原点向左运动,∴4×3=12,∴P点对应的数为:-12.【解析】【解答】解:(1)∵(a+1)2+|b-3|=0,∴,解得:.故答案为:-2;3.【分析】(1)根据平方和绝对值的非负性列出方程,解之即可得出答案.(2)根据题意可得PA=|x+1|,PB=|3-x|,再由PA=PB得|x+1|=|3-x|,解之即可得出点P对应的数.(3)根据题意可得A点对应的数为2t-1,点B对应的数为3+0.5t,分情况讨论:①当点A 在点B左边时,②当点A在点B右边时,由AB=2分别列出方程,解之得出t值,再由P 点的速度得出点P对应的数.4.观察下列等式:第1个等式: = = ×(1- );第2个等式: = = ×( - );第3个等式: = = ×( - );第4个等式: = = ×( - );…请回答下列问题:(1)按以上规律列出第5个等式: =________=________;(2)用含n的代数式表示第n个等式: =________=________(n为正整数);(3)求的值.【答案】(1);(2);(3)解:a1+a2+a3+a4+…+a2018= ×(1- )+ ×( - )+ ×( - )+ ×( -) +…+ = .【解析】【解答】解:(1)第5个等式:a5= ,故答案为 .( 2 )an= ,故答案为 .【分析】(1)根据前四个式子的规律,就可列出第5个等式,计算可求解。

新苏科版七年级数学上册《有理数》单元检测试卷

新苏科版七年级数学上册《有理数》单元检测试卷

《有理数》单元检测试卷姓名_____________班级____________学号____________分数_____________一、知识点填空1、有理数的加法(1)有理数的加法法则:同号两数相加,取的符号,并把绝对值;绝对值不等的异号两数相加,取的符号,并用;互为相反的两个数相加得;一个数同0相加,仍得。

(2)有理数加法的运算律:加法的交换律:加法的结合律:2、有理数的减法(1)有理数减法法则:减去一个数等于。

(2)有理数加减混合运算步骤:先把减法变成,再按有理数加法法则进行运算3、有理数的乘法(1)法则:两个有理数相乘,同号得,异号得,并把绝对值;任何数与0相乘都得。

(2)多个有理数相乘时,积的符号确定规律:多个有理数相乘,若有一个因数为0,则积为;几个都不为0的因数相乘,积的符号由的来决定,当负因数的个数为时积为负;当负因数的个数为时,积为正。

(3)有理数乘法的计算步骤:先确定积的,再求各因数绝对值的。

(4)运算律:交换律:结合律:交换律:4、有理数的除法(1)有理数的除法法则:两个数相除,得正,得负,并把绝对值,0除以任何都等于0。

(2)除法是乘法的逆运算,用法则“除以一个数,等于乘上”即可转化后它才满足乘法法则和运算律。

5、有理数的乘方(1)乘方的定义:求几个的的运算叫做乘方,记做“a”其中a叫,表示相同的因数,叫指数,表示相同因数的个数,“a”表示的意义是n个a相,乘方的结果叫(2)正数的任何次方都是,负数的次方是正数,负数的奇数次方是,0的任何非0次幂都是,1的任何非0次幂都是,?1偶数次幂是、?1奇数次幂是;(3)任何数的偶次幂都是,即annn2nnn?0 ,常用a2?0(平方的非负性) n(4)(?a)??a。

因为(?a)表示n个?a相乘,而?a 表示n个a的积的相反数。

6、有理数的混合运算(1)混合运算,一般可先,计算时,先开始,按,有,同时要注意灵活运用简化运算。

苏教版七年级数学上册第一章-有理数检测试卷(一)及答案

苏教版七年级数学上册第一章-有理数检测试卷(一)及答案

苏教版七年级数学上册第一章 有理数检测试卷(一)一、选择题1.下列说法中正确的是( )A.不带“-”的数都是正数B.不存在既不是正数,也不是负数的数C.如果a 是正数,那么a -一定是负数D.0C ︒表示没有温度2.如果某台家用电冰箱冷藏室的温度是4℃,冷冻室的温度比冷藏室的温度低22℃,那么这台电冰箱冷冻室的温度为( )A.26-℃ B.22-℃ C.18-℃ D.16-℃3.a ,b 为有理数,且a >0,b<0,a <b ,则a ,b ,-a ,-b 的大小关系是( )A. b<-a <a <-bB. -a <a <b<-bC. -a <b<a <-bD. -b<-a <a <-b4.,451021)245321121(6-+-=+-⨯-这步运算运用了( ) A.加法结合律B.乘法结合律 5.绝对值大于2且不大于4的整数有( )A.3个B.4个C.5个6.某项科学研究,以45分钟为1个时间单位,并记每天上午10时为0,10时以前记为负,10时以后记为正,例如,9:15记为-1,10:45记为1等等。

依此类推,上午7:45应记为( )A 、3B 、-3C D7.把四位数x 先四舍五入到十位,所得的数y ,再四舍五入到百位,所得的数z ,再四舍五入到千位,恰好是2000,则四位数的最小值、最大值分别是( )A .1500,2400B .1450,2440C .1445,2444D .1444,24458.如图所示,数轴上标出若干个点,每相邻两点相距一个单位长度,点A ,B ,C ,D 对应的数分别是数a ,b ,c ,d ,且d-2a=10,那么数轴的原点应是( ) D C B AA.点AB.点BC.点C二、填空题1.水位上升用正数表示,水位下降用负数表示,如图,水面从原来的位置到第二次变化后的位置,其变化值是_________。

初一数学上册《有理数》单元达标检测试题(苏教版)

初一数学上册《有理数》单元达标检测试题(苏教版)

初一数学上册《有理数》单元达标检测试题(苏教版)七上数学有理数单元达标测试题(附答案苏教版)【同步达纲练习】一、判断题( 2′×,10对的打“√”,错的打“×”)1.奇数个负数相乘结果为负.()2.任何数的绝对值都是正数.()3.数轴上离原点越远的点,表示的数就越大.()4.平方得 25 的有理数是 5.()5.两数之和必大于任何一个加数.()6.在 -23=-8 中 -2 是底数, 3 是指数 .()7.若是 a10.若 a 为理有数 ,则必然成立的关系式是().A.8aaB.8+aaC.8+a8D.≥8三、填空题( 4′×4)1.规定有、和的直线叫做数轴.2. 9×17=.3.已知 ab0,则 b.4. 1-2+3-4+5- 6++2019 -2019+2019-2019=.四、解答题( 5′× 2+6′×4)1.计算( -3.7) +(-2.4)+(+8.2)+(+0.7)+(-8.2)2.计算 (6-8)×1第1页/共3页3.计算 -32+(-2)2-(-2)3+4.计算 18.4 ×5.计算6.计算参照答案【同步达纲练习】一、√×××× , ×√×√×二、 ACCDDCBACB“教书先生”生怕是街市百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人敬慕甚或敬畏的一种社会职业。

可是更早的“先生”看法其实不是源于教书,最初出现的“先生”一词也其实不是有教授知识那般的含义。

《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?” 等等,均指“先生”为父兄或有学问、有道德的长辈。

其实《国策》中自己就有“先生长辈,有德之称”的说法。

可见“先生”之原意非真切的“教师”之意,倒是与现在“先生”的称呼更凑近。

苏科版数学七年级上册 有理数单元测试卷(含答案解析)

苏科版数学七年级上册 有理数单元测试卷(含答案解析)

一、初一数学有理数解答题压轴题精选(难)1.在学习绝对值后,我们知道,|a|表示数a在数轴上的对应点与原点的距离.如:|5|表示5在数轴上的对应点到原点的距离.而|5|=|5﹣0|,即|5﹣0|表示5、0在数轴上对应的两点之间的距离.类似的,有:|5﹣3|表示5、3在数轴上对应的两点之间的距离;|5+3|=|5﹣(﹣3)|,所以|5+3|表示5、﹣3在数轴上对应的两点之间的距离.一般地,点A、B在数轴上分别表示有理数a、b,那么A、B之间的距离可表示为|a﹣b|.请根据绝对值的意义并结合数轴解答下列问题:(1)画一条数轴,并在数轴上分别用A、B表示出1和3的两点(2)数轴上表示1和3的两点之间的距离是________;(3)点A、B、C在数轴上分别表示有理数1、3、x,那么C到A的距离与C到B的距离之和可表示为________(用含绝对值的式子表示)(4)若将数轴折叠,使得表示1和3的两点重合,则原点与表示数________的点重合【答案】(1)解:如图所示,(2)2(3)(4)4【解析】【解答】解:(2)数轴上表示1和3的两点之间的距离=,故答案为2;(3)由题意得,C到A的距离与C到B的距离之和可表示为:,故答案为:;(4)在数轴上,1和3中点的数为:,设与原点重合的点的数为x,由题意得:, ∴x-2=±2,解得x=0或4,∴则原点与表示数4的点重合,故答案为:4.【分析】(1)画出数轴,在数轴上找出1、3点,分别用A、B表示即可;(2)根据题意,计算数轴上表示1和3的两点之间的距离即可;(3)根据题意,把C到A的距离与C到B的距离之和表示出来即可;(4)首先求出1和3中点表示的数,再设与原点重合的点的数为x,根据题意列式求出x 即可.2.数轴上从左到右有A,B,C三个点,点C对应的数是10,AB=BC=20.(1)点A对应的数是________,点B对应的数是________.(2)动点P从A出发,以每秒4个单位长度的速度向终点C移动,同时,动点Q从点B 出发,以每秒1个单位长度的速度向终点C移动,设移动时间为t秒.①用含t的代数式表示点P对应的数是________,点Q对应的数是________;②当点P和点Q间的距离为8个单位长度时,求t的值.【答案】(1)﹣30;﹣10(2)4t﹣30,t﹣10;t的值为4或【解析】【解答】解:(1)∵AB=BC=20,点C对应的数是10,点A在点B左侧,点B 在点C左侧,∴点B对应的数为10﹣20=﹣10,点A对应的数为﹣10﹣20=﹣30.故答案为:﹣30;﹣10.(2)①当运动时间为t秒时,点P对应的数是4t﹣30,点Q对应的数是t﹣10.故答案为:4t﹣30;t﹣10.②依题意,得:|t﹣10﹣(4t﹣30)|=8,∴20﹣3t=8或3t﹣20=8,解得:t=4或t=.∴t的值为4或.【分析】(1)由AB,BC的长度结合点C对应的数及点A,B,C的位置关系,可得出点A,B对应的数;(2)①由点P,Q的出发点、运动方向及速度,可得出运动时间为t秒时点P,Q对应的数;②由①结合PQ=8,可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.3.阅读材料,并回答问题如图,有一根木棒MN放置在数轴上,它的两端M、N分别落在点A、B.将木棒在数轴上水平移动,当点M移动到点B时,点N所对应的数为20,当点N移动到点A时,点M所对应的数为5.(单位:cm)由此可得,木棒长为__________cm.借助上述方法解决问题:一天,美羊羊去问村长爷爷的年龄,村长爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,116岁了,哈哈!”美羊羊纳闷,村长爷爷到底是多少岁?(1)请你画出示意图,求出村长爷爷和美羊羊现在的年龄.(2)若羊村中的小羊均与美羊羊同岁,老羊均与村长爷爷同岁。

苏科版七年级上册数学 有理数单元测试卷(解析版)

苏科版七年级上册数学 有理数单元测试卷(解析版)

一、初一数学有理数解答题压轴题精选(难)1.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣4|=0;(1)点A表示的数为________;点B表示的数为________;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离=________;乙小球到原点的距离=________;当t=3时,甲小球到原点的距离=________;乙小球到原点的距离=________;②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.________【答案】(1)-2;4(2)3;2;5;2;能.理由:当0<t≤2时,t+2=4-2t解之:当t>2时,t+2=2t-4解之:t=6∴当或6时,甲乙两小球到原点的距离相等.【解析】【解答】解:(1)∵a、b满足|a+2|+|b﹣4|=0,∴a+2=0且b-4=0解之:a=-2且b=4,∵在数轴上A点表示数a,B点表示数b,∴点A表示的数是-2,点B表示的数是4.故答案为:-2,4.(2)当0<t≤2时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(4-2t)个单位长度;当t>2时,甲小球距离原点为(t+2)个单位长度;乙小球距离原点为(2t-4)个单位长度;①当t=1时,甲小球到原点的距离为:1+2=3;乙小球到原点的距离为4-2×1=2;当t=3时,甲小球到原点的距离为:3+2=5;乙小球到原点的距离为2×3-4=2;故答案为:3,2;5,2【分析】(1)利用几个非负数之和为0,则每一个数都是0,建立关于a,b的方程组,解方程组求出a,b的值,就可得到点A,B所表示的数。

初一数学上册《有理数》综合测试卷(苏教版)

初一数学上册《有理数》综合测试卷(苏教版)

初一数学上册《有理数》综合测试卷(苏教版)七上数学有理数单元综合测试题(带答案苏教版)1.判定题(24%)(1)没有最大的整数,也没有最小的负整数.()(2)任何有理数的平方差不多上正数.()(3)平方等于16的数是4.()(4)假如两个数的绝对值相等,那么这两个数一定相等.()(5)两个负数比较大小,绝对值大的反而小.()(6)任何两个互为相反数的商为-1.()(7)任何小于1的数,它的倒数一定大于1.()(8)由四舍五入得到的近似数0.0560有四个有效数字.()2.填空题(18%)(1)在-11,0,-2,3.14,12中最小的数是____.(2)比-小的数是_____.(3)绝对值小于4.2的正整数有_______.(4)-的倒数与-的相反数的和等于______.(5)比较大小:43____34,-(+)_____,|-|-0.33____-0.32.(6)数5.6784精确到千分位约等于_____.3.选择题(24%)(1)数零是()(A)整数(B)正整数(C)负整数(D)分数(2)大于-2.7而小于3.6的整数有()(A)7个(B)6个(C)5个(D)4个(3)假如一个数的相反数比它本身大,那么那个数为()(A)正数(B)负数(C)整数(D)不等于零的有理数(4)在有理数中,倒数等于本身的数有()(A)1个(B)2个(C)3个(D)许多个(5)下列各对数中,数值相等的是()(A)(-2)3和-2×3(B)54和45(C)(-2)3和-23(D)3×24和(3×2)4(6)一个有理数的偶数次幂是正数,那么那个有理数()(A)是正数(B)是负数(C)为正数或负数(D)任何有理数4.解下列各题(14%)(1)把下列各数填在相应的括号里:-,+1,4.7,-17,0,5,39,,5,-6①正整数集合:{,…}②整数集合:{,…}③分数集合:{,…}④有理数集合:{,…}(2)在数轴上表示下列各数,并按从大到小的顺序用“>”号连接起来.+5,-3,0,1,-45.运算(20%)(1)-23×(-3)2×(-1)11;(2)-1×[5÷(-)2-1]÷(-);(3)9×17;(4)(-+)×30;(5)-1-{+[-(-)]}.参考答案1.(1)√(2)×(3)×(4)×(5)√(6)×(7)×(8)×2.(1)-11(2)-(3)4,3,2,1(4)0(5)<,<,>(6)5. 6784(1)A(2)B(3)B(4)B(5)C(6)C4.(1)正整数集合:{+1,39,5,…}整数集合:{+1,-17,0,39,5,-6,…}分数集合{-,4,7,5,,…}有理数集合:{-,+1,4.7,-17,0,5,39,,5,-6,…}“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。

苏科版七年级上册数学 有理数单元测试题(Word版 含解析)

苏科版七年级上册数学 有理数单元测试题(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图1,A、B两点在数轴上对应的数分别为﹣12和4.(1)直接写出A、B两点之间的距离;(2)若在数轴上存在一点P,使得AP= PB,求点P表示的数.(3)如图2,现有动点P、Q,若点P从点A出发,以每秒5个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,当点Q到达原点O后立即以每秒3个单位长度的速度沿数轴向右运动,求:当OP=4OQ时的运动时间t的值.【答案】(1)解:A、B两点之间的距离是:4﹣(﹣12)=16(2)解:设点P表示的数为x.分两种情况:①当点P在线段AB上时,∵AP= PB,∴x+12=(4﹣x),解得x=﹣8;②当点P在线段BA的延长线上时,∵AP= PB,∴﹣12﹣x=(4﹣x),解得x=﹣20.综上所述,点P表示的数为﹣8或﹣20(3)解:分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动,此时Q点表示的数为4﹣2t,P点表示的数为﹣12+5t,∵OP=4OQ,∴12﹣5t=4(4﹣2t),解得t=,符合题意;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,此时Q点表示的数为3(t﹣2),P点表示的数为﹣12+5t,∵OP=4OQ,∴|12﹣5t|=4×3(t﹣2),∴12﹣5t=12t﹣24,或5t﹣12=12t﹣24,解得t=,符合题意;或t=,不符合题意舍去.综上所述,当OP=4OQ时的运动时间t的值为或秒【解析】【分析】(1)根据两点间的距离公式即可求出A、B两点之间的距离;(2)设点P表示的数为x.分两种情况:①点P在线段AB上;②点P在线段BA的延长线上.根据AP= PB列出关于x的方程,求解即可;(3)根据点Q的运动方向分两种情况:①当t≤2时,点Q从点B出发,以每秒2个单位长度的速度沿数轴向左运动;②当t>2时,点Q从原点O开始以每秒3个单位长度的速度沿数轴向右运动,根据OP=4OQ列出关于t的方程,解方程即可.2.已知:b是最小的正整数,且a、b满足,请回答问题:(1)请直接写出a、b、c的值: a=________; b=________; c=________.(2)a、b、c所对应的点分别为A、B、C,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,试计算此时BC—AB的值.(3)在(1)(2)的条件下,点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒3个单位长度和x(x>3)个单位长度的速度向右运动,请问:是否存在x,使BC-AB的值随着时间t的变化而不变,若存在求出x;不存在请说明理由.【答案】(1)-1;1;4(2)解:BC-AB=(4-1)-(1+1)=3-2=1.故此时BC-AB的值是1(3)解:t秒时,点A对应的数为-1-t,点B对应的数为3t+1,点C对应的数为xt+4.∴BC=(xt+4)-(3t+1)=(x-3)t+3,AB=(3t+1)-(-1-t)=4t+2,∴BC-AB=(x-3)t+3-(4t+2)=(x-7)t+1,∴BC-AB的值不随着时间t的变化而改变时,其值为7【解析】【解答】解:(1)∵b是最小的正整数,∴b=1,∵|c-4|+(a+b)2=0,∴c-4=0,a+b=0,∴a=-1,c=4【分析】(1)根据b是最小的正整数,即可确定b的值,然后根据非负数的性质,几个非负数的和是0,则每个数是0,即可求得a,b,c的值;(2)根据两点间的距离公式可求BC、AB的值,进一步得到BC-AB的值;(3)先求出BC=4t+3,AB=4t+2,从而得出BC-AB,从而求解.3.仔细观察下列等式:第1个:22﹣1=1×3第2个:32﹣1=2×4第3个:42﹣1=3×5第4个:52﹣1=4×6第5个:62﹣1=5×7…这些等式反映出自然数间的某种运算规律.按要求解答下列问题:(1)请你写出第6个等式:________;(2)设n(n≥1)表示自然数,则第n个等式可表示为________;(3)运用上述结论,计算: .【答案】(1)72﹣1=6×8(2)(n+1)2-1=n(n+2)(3)解:===【解析】【解答】解:(1)∵第1个:22-1=1×3第2个:32-1=2×4第3个:42-1=3×5第4个:52-1=4×6第5个:62-1=5×7,∴第6个等式:72-1=6×8;故答案为:72-1=6×82)设n(n≥1)表示自然数,则第n个等式可表示为:(n+1)2-1=n(n+2);故答案为:(n+1)2-1=n(n+2);【分析】(1)根据题中所给出的例子找出规律,即可得到第六个等式.(2)根据题中所给出的例子找出规律,进行解答即可.(3)根据所得结论,进行化简,即可得到答案.4.观察下面的式子:, , ,(1)你发现规律了吗?下一个式子应该是________;(2)利用你发现的规律,计算:【答案】(1)(2)解:==== .【解析】【解答】(1)根据规律,下一个式子是:【分析】(1)规律:两个自然数(0除外)的乘积的倒数等于这两个自然数倒数的差,据此写出结论即可;(2)利用规律将原式转化为加减运算,然后利用加法结合律进行计算即可.5.阅读材料:在数轴上,点 A 在原点 0 的左边,距离原点 4 个单位长度,点 B 在原点的右边,点 A 和点B 之间的距离为 14个单位长度.(1)点 A 表示的数是________,点 B 表示的数是________;(2)点 A、B 同时出发沿数轴向左移动,速度分别为 1 个单位长度/秒,3 个单位长度/秒,经过多少秒,点 A 与点 B重合?(3)点 M、N 分别从点 A、B 出发沿数轴向右移动,速度分别为 1 个单位长度/秒、2 个单位长度/秒,点 P 为 ON 的中点,设 OP-AM 的值为 y,在移动过程中,y 值是否发生变化?若不变,求出 y 值;若变化,说明理由.【答案】(1)-4;10(2)解:由题意知,此时为速度问题里面的追击问题,则由速度差×相遇时间=相距距离可知:设经过x秒后重合,即x秒后AB相遇.则(3-1)x=14解得:x=7故7秒后点A,B重合.(3)解:y不发生变化,理由如下:设运动时间为x秒,则AM=x而OP=则y=OP-AM=故y为定值,不发生变化.【解析】【解答】解:(1)由A在原点左边4个单位长度可知A点表示的数是-4,由B 在原点右边且与点A距离14个单位长度可知,-4+14=10,则B点表示的数是10.【分析】(1)由A在原点左边4个单位长度可知A点表示的数是-4,再根据B 在原点右边且与点A距离14个单位长度,可由-4+14=10可得B点表示的数.(2)把A,B看成距离为14个单位长度的追击问题,由速度差×相遇时间=相距距离列出等式求解.(3)设移动时间为x秒,用含有x的代数式表示出OP与AM的长度,然后根据y= OP-AM列出关系式判断,若式中不含x项则不发生变化,含x项则发生变化.6.观察下列等式,,,把以上三个等式两边分别相加得:.(1)猜想并写出: ________.(2)直接写出下面算式的计算结果:=________.【答案】(1)(2)【解析】【解答】解:(1);故答案为: .(2)..故答案为:.【分析】(1)分子是1,分母是两个连续自然数的乘积,可以拆成以这两个自然数为分母,分子为1的两个分数的差,由此规律得出答案即可;(2)根据规律将式子的每一项拆分,拆分后抵消得出答案即可.7.如图所示(1)A在数轴上所对应的数为﹣2.点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在A、B两点位于第(1)题所在的位置开始,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)当A、B两点位于第(2)题结束所在的位置,如果A点静止不动,B点以每秒2个单位长度沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.【答案】(1)解:−2+4=2. 故点B所对应的数为2;(2)解:(−2+6)÷2=2(秒),这时A对应的数为:-6,B对应的数为:2+2×2=6,故A,B两点间距离为是6-(-6)=12个单位长度;(3)解:分两种情况讨论:1)运动后的B点在A点右边4个单位长度,设经过x秒时间A,B两点相距4个单位长度,依题意有2x=12−4,解得x=4;2)运动后的B点在A点左边4个单位长度,设经过x秒时间A,B两点相距4个单位长度,依题意有 2x=12+4,解得x=8;故经过4秒或8秒长时间A,B两点相距4个单位长度。

苏科版七年级数学上册 有理数单元测试题(Word版 含解析)

苏科版七年级数学上册 有理数单元测试题(Word版 含解析)

一、初一数学有理数解答题压轴题精选(难)1.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位,动点P 从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半;点P从点A出发的同时,点Q从点C出发,以1单位/秒的速度沿着“折线数轴”的负方向运动,当点P到达B点时,点P、Q均停止运动.设运动的时间为t秒.问:(1)用含t的代数式表示动点P在运动过程中距O点的距离;(2)P、Q两点相遇时,求出相遇时间及相遇点M所对应的数是多少?(3)是否存在P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等时?若存在,请直接写出t的取值;若不存在,请说明理由.【答案】(1)解:设动点P在运动过程中距O点的距离为S,当P从A运动到O时,所需时间为:(秒),当0≤t≤5时,S=10﹣2t,当P从O运动到B时,所需时间为:(秒)∴P从A运动到B时,所需时间为:15秒当5<t≤15时,S=t﹣5,即动点P在运动过程中距O点的距离S=;(2)解:设经过a秒,P、Q两点相遇,则点P运动的距离为10+(a-5),点Q运动的距离为a,10+(a-5)+a=28解得,a=,则点M所对应的数是:18﹣=,即点M所对应的数是;(3)解:存在,t=2或t=,理由:当0≤t≤5时,10﹣2t=(18﹣10﹣t)×1,解得,t=2当5<t≤8时,(t﹣10÷2)×1=(18﹣10﹣t)×1,解得,t=,当8<t≤15时,(t﹣10÷2)×1=[t﹣(18﹣10)÷1]×1该方程无解,故存在,t=2或t= .【解析】【分析】(1)分点P在AO上和点P在OB上两种情况,先求出点P在每段时t 的取值范围,再根据题意分别列出代数式可得答案;(2)根据相遇时P,Q运动的时间相等,P,Q运动的距离和等于28可得方程,根据解方程,可得答案;(3)分0≤t≤5,5<t≤8,8<t≤15三种情况,根据PO=BQ,可得方程,分别解出方程,可得答案.2.已知数轴上点A对应的数是,点B对应的数是一只小虫甲从点A出发,沿着数轴由A向B以每秒2个单位的速度爬行,到B点运动停止;另一只小虫乙从点B出发,沿着数轴由B向A以每秒4个单位的速度爬行,到A点运动停止,设运动时间为t. (1)若小虫乙到达A点后在数轴上继续作如下运动:第1次向左爬行2个单位,第2次向右爬行4个单位,第3次向左爬行6个单位,第4次向右爬行8个单位,,依此规律爬下去,求它第10次爬行后,所停点对应的数:(2)用含t的代数式表示甲、乙的距离S;(3)当甲、乙相距40个单位长度时,求运动时间t;(4)若点Q是线段BA延长线上一点,QB的中点为M,QA的三等分点为N,当点Q运动时,探究是否为定值?如果是,请求出这个定值;如果不是,请说明理由. 【答案】(1)解:第10次爬行所对应的数为(2)解:当甲、乙相遇时,秒时,甲、乙相遇;当甲到达B点是,秒;当乙到达A点时,秒;①当时,甲、乙距离;②当时,甲、乙距离;③当时,乙到达A点,此时甲、乙距离 .(3)解:①当时,,;②当时,,;③当时,,;综上,运动时间t为,或20.(4)解:设点Q对应的数是a,则M表示的数是,①当N为靠近Q点三等分点时,N表示的数是,,故当N为靠近Q点三等分点时,是定值,定值为20;②当N为靠近A点三等分点时,N表示的数是,,故当N为靠近A点三等分点时,不是定值.【解析】【分析】(1)向左爬行用减法,向右爬行用加法,列出式子求出结果即可;(2)分三种情况,相遇前、相遇后和乙到达A点后,分别在数轴上找出数量关系列出式子即可;(3)借助第二问的结论,令求出t的值即可;(4)设点Q表示的数为a,用a的代数式表示出M和N表示的数,进而用t的式子表示出BN和QM的长,求出的值,如果结果中不含有a,则式子为定值;反之则不是定值.3.同学们,我们都知道:|5-2|表示5与2的差的绝对值,实际上也可理解为5与2两数在数轴上所对应的两点之间的距离;|5+2|表示5与-2的差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离,试探索:(1)|﹣4+6|=________;|﹣2﹣4|=________;(2)找出所有符合条件的整数x,使|x+2|+|x-1|=3成立;(3)若数轴上表示数a的点位于﹣4与6之间,求|a+4|+|a﹣6|的值;(4)当a=________时,|a﹣1|+|a+5|+|a﹣4|的值最小,最小值是________;(5)当a=________时,|a﹣1|+|a+2|+|a﹣3|+|a+4|+|a﹣5|+…+|a+2n|+|a﹣(2n+1)|的值最小,最小值是________.【答案】(1)2;6(2)解:此题可以理解为数轴上一点到-2,1的距离的和是3,由于1到-2 的距离就是3,,故当-2≤x≤1的时候即可满足条件,又因为x是整数,所以x的值可以为:-2,-1,0,1.(3)解:∵数轴上表示数a的点位于﹣4与6之间,∴a+4>0,a﹣6<0,∴|a+4|+|a﹣6|=a+4-a+6=10;(4)1;9(5)1;2n2+3n【解析】【解答】(1)|﹣4+6|=|2|=2,|﹣2﹣4|=|-6|=6;(4)此题可以理解为数轴上一点到1,-5,4的距离的和最小,根据两点之间线段最短,故当a表示的数是1的时候,|a﹣1|+|a+5|+|a﹣4|的值最小,当a=1的时候,|a﹣1|+|a+5|+|a﹣4|=|1﹣1|+|1+5|+|1﹣4|=9;(5)|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,则a=1当a=1时原式=3+2+5+4+……+(2n+1)+2n=2+3+4+5+……+2n+(2n+1)== 2n2+3n故:答案为1, 2n2+3n .【分析】(1)由于绝对值符号具有括号的作用,先按有理数的加减法法则算出绝对值符号里面的,再根据绝对值的意义去掉绝对值符号即可;(2)此题可以理解为数轴上一点到-2,1的距离的和是3,由于1到-2 的距离就是3,,从而找出1到-2 的整数即可;(3)根据有理数的加减法法则,首先判断出a+4>0,a﹣6<0,再根据绝对值的意义去掉绝对值符号合并同类项即可;(4)此题可以理解为数轴上一点到1,-5,4的距离的和最小,根据两点之间线段最短,故当a表示的数是介于4和-5之间的数1的时候,即可使其值最小,然后将a=1代入再根据绝对值的意义化简即可;(5)|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)| 表示的是a到1,-2,3,-4,5,……-2n,2n+1的距离和,故要使,|a-1|+|a+2|+|a-3|+|a+4|+|a-5|+…+|a+2n|+|a-(2n+1)|的值最小,则a=1,把a=1代入根据绝对值的意义即可求出答案。

江苏省苏州中学七年级数学上册第一章《有理数》经典习题(含答案解析)

江苏省苏州中学七年级数学上册第一章《有理数》经典习题(含答案解析)

1.数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是( ) A .94分 B .85分C .98分D .96分D解析:D 【分析】根据85分为标准,以及记录的数字,求出五名学生的实际成绩,即可做出判断. 【详解】解:根据题意得:859=94,854=81,8511=96,857=78,850=85+-+-- 即五名学生的实际成绩分别为:94;81;96;78;85, 则这五名同学的实际成绩最高的应是96分. 故选D . 【点睛】本题考查了正数和负数的识别,有理数的加减的应用,正确理解正负数的意义是解题的关键.2.按如图所示的运算程序,能使输出的结果为12的是( )A .x=-4,y=-2B .x=3, y=3C .x=2,y=4D .x=4,y=0C解析:C 【分析】根据y 的正负然后代入两个式子内分别求解,看清条件逐一排除即可. 【详解】当x=-4,y=-2时,-2<0,故代入x 2-2y ,结果得20,故不选A ; 当x=3,y=3时,3>0,故代入x 2+2y ,结果得15,故不选B ; 当x=2,y=4时,4>0,故代入x 2+2y ,结果得12,C 正确; 当x=4,y=0时,00≥,故代入x 2+2y ,结果得16,故不选D ; 故选C . 【点睛】此题考查了整式的运算,重点是看清楚程序图中的条件,分别代入两个条件式中进行求解.3.已知n 为正整数,则()()2200111n-+-=( )A.-2 B.-1 C.0 D.2C解析:C【解析】【分析】根据-1的偶次幂等于1,奇次幂等于-1,即可求得答案.【详解】∵n为正整数,∴2n为偶数.∴(-1)2n+(-1)2001=1+(-1)=0故选C.【点睛】此题考查了有理数的乘方,关键点是正确的判定-1的偶次幂等于1,奇次幂等于-1.4.下列说法正确的是()A.近似数5千和5000的精确度是相同的B.317500精确到千位可以表示为31.8万,也可以表示为5⨯3.1810C.2.46万精确到百分位D.近似数8.4和0.7的精确度不一样B解析:B【解析】【分析】根据近似数的精确度对各选项进行判断.【详解】A.近似数5千精确度到千位,近似数5000精确到个位,所以A选项错误;B.317500精确到千位可以表示为31.8万,也可以表示为5⨯,所以B选项正确;3.1810C.2.46万精确到百位,所以C选项错误;D.近似数8.4和0.7的精确度是一样的,所以D选项错误.故选B.【点睛】本题考查了近似数和有效数字:精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.5.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.6.在日历纵列上圈出了三个数,算出它们的和,其中正确的一个是()A.28 B.34 C.45 D.75C解析:C【分析】日历纵列上圈出相邻的三个数,下边的数总比上边上的数大7,设中间的数是a,则上边的数是a- 7,下边的数是a+ 7,则三个数的和是3a,因而一定是3的倍数,且3数之和一定大于等于24,一定小于等于72,据此即可判断.【详解】日历纵列上圈出相邻的三个数,下边的数总比上边的数大7,设中间的数是a,则上边的数是a - 7,下边的数是a+ 7,则三个数的和是3a,因而一定是3的倍数,当第一个数为1,则另两个数为8,15,则它们的和为24,当第一个数为17,则另两个数为24,31,则它们的和为72,所以符合题意的三数之和一定在24到72之间,所以符合题意的只有45,所以C选项是正确的.【点睛】此题主要考查了一元一次方程的应用和有理数的计算,正确理解图表,得到日历纵列上圈出相邻的三个数的和一定是3的倍数以及它的取值范围是关键.7.绝对值大于1小于4的整数的和是()A.0 B.5 C.﹣5 D.10A解析:A【解析】试题绝对值大于1小于4的整数有:±2;±3.-2+2+3+(3)=0.故选A.8.下列正确的是()A.5465-<-B.()()2121--<+- C.1210823-->D.227733⎛⎫--=--⎪⎝⎭A解析:A【分析】根据不等式的性质对各选项进行判断即可.【详解】 解:(1)∵5465>,∴5465-<-,故选项A 符合题意; (2)∵-(-21)=21,+(-21)=-21,21>-21,∴()()2121--+->,故选项B 错误; (3)∵11210=108223---<,故选项C 错误; (4)∵227=-733--,227=733⎛⎫-- ⎪⎝⎭,∴227733⎛⎫---- ⎪⎝⎭<; 故选:A . 【点睛】此题主要考查了有理数的大小比较,熟练掌握有理数比较大小的方法是解答此题的关键. 9.计算2136⎛⎫--- ⎪⎝⎭的结果为( ) A .-12 B .12C .56D .56A 解析:A 【分析】根据有理数加减法法则计算即可得答案. 【详解】2136⎛⎫--- ⎪⎝⎭=2136-+ =12-. 故选:A . 【点睛】本题考查有理数的加减,有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,一个数同零相加,仍得这个数,有理数减法法则:减去一个数,等于加上这个数的相反数.10.下列运算正确的是( ) A .()22-2-21÷= B .311-2-8327⎛⎫= ⎪⎝⎭C .1352535-÷⨯=- D .133( 3.25)6 3.2532.544⨯--⨯=- D解析:D 【分析】根据有理数的乘方运算可判断A 、B ,根据有理数的乘除运算可判断C ,利用乘法的运算律进行计算即可判断D . 【详解】A 、()22-2-2441÷=-÷=-,该选项错误;B 、33343191217-2-332727⎛⎫⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭,该选项错误; C 、1335539355-÷⨯=-⨯⨯=-,该选项错误; D 、13132713273( 3.25)6 3.25 3.25 3.25 3.25()32.5444444⨯--⨯=-⨯-⨯=-⨯+=,该选正确; 故选:D . 【点睛】本题考查了有理数的混合运算.注意:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化. 11.一名粗心的同学在进行加法运算时,将“-5”错写成“+5”进行运算,这样他得到的结果比正确答案( ) A .少5 B .少10C .多5D .多10D解析:D 【解析】根据题意得:将“-5”错写成“+5”他得到的结果比原结果多5+5=10. 故选D . 12.按键顺序是的算式是( ) A .(0.8+3.2)÷45= B .0.8+3.2÷45= C .(0.8+3.2)÷45= D .0.8+3.2÷45=B 解析:B 【分析】根据计算器的使用方法,结合各项进行判断即可. 【详解】解:按下列按键顺序输入:则它表达的算式是0.8+3.2÷45=, 故选:B . 【点睛】此题主要考查了计算器的应用,根据有理数的输入方法正确输入数据是解题关键.13.6-的相反数是()A.6 B.-6 C.16D.16- B解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B.14.某市11月4日至7日天气预报的最高气温与最低气温如表:日期11月4日11月5日11月6日11月7日最高气温(℃)1912209最低气温(℃)43-45其中温差最大的一天是()A.11月4日B.11月5日C.11月6日D.11月7日C 解析:C【分析】运用减法算出每一天的温差,再进行比较即可.【详解】11月4日的温差为19415-=(℃);11月5日的温差为12(3)15--=(℃);11月6日的温差为20416-=(℃);11月7日的温差为19514-=(℃).所以温差最大的一天是11月6日.故选C.【点睛】考核知识点:有理数减法运用.根据题意列出减法算式是关键.15.计算-2的结果是()A.0 B.-2 C.-4 D.4A解析:A【详解】解:因为|-2|-2=2-2=0,故选A.考点:绝对值、有理数的减法1.把67.758精确到0.01位得到的近似数是__.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数解析:76.【分析】根据要求进行四舍五入即可.【详解】解:把67.758精确到0.01位得到的近似数是67.76.故答案是:67.76.【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数.2.数轴上表示有理数-3.5与4.5两点的距离是___________.8【解析】试题分析:有理数-35与45两点的距离实为两数差的绝对值解:由题意得:有理数−35与45两点的距离为|−35−45|=8故答案为8解析:8【解析】试题分析:有理数-3.5与4.5两点的距离实为两数差的绝对值.解:由题意得:有理数−3.5与4.5两点的距离为|−3.5−4.5|=8.故答案为8.3.全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是_____.【解析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值大于10时n是正数;当原数的绝对解析:7⨯1.610【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.16000000 =71.610⨯.4.大肠杆菌每过20分钟便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成_____个.512【解析】分析:由于3小时有9个20分而大肠杆菌每过20分便由1个分裂成2个那么经过第一个20分钟变为2个经过第二个20分钟变为22个然后根据有理数的乘方定义可得结果详解:∵3小时有9个20分而解析:512【解析】分析:由于3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,然后根据有理数的乘方定义可得结果.详解:∵3小时有9个20分,而大肠杆菌每过20分便由1个分裂成2个,那么经过第一个20分钟变为2个,经过第二个20分钟变为22个,⋯经过第九个20分钟变为29个,即:29=512个.所以,经过3小时后这种大肠杆菌由1个分裂成512个.故答案为512.点睛:乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.5.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数有______.012【分析】根据题意可以确定被污染部分的取值范围继而求出答案【详解】设被污染的部分为a由题意得:-1<a<3在数轴上这一部分的整数有:012∴被污染的部分中共有3个整数分别为:012故答案为012解析:0,1,2【分析】根据题意可以确定被污染部分的取值范围,继而求出答案.【详解】设被污染的部分为a,由题意得:-1<a<3,在数轴上这一部分的整数有:0,1,2.∴被污染的部分中共有3个整数,分别为: 0,1,2.故答案为0,1,2.【点睛】考查了数轴,解决此题的关键是确定被污染部分的取值范围,理解整数的概念.6.在括号中填写题中每步的计算依据,并将空白处补充完整:(-4)×8×(-2.5)×(-125)=-4×8×2.5×125=-4×2.5×8×125______=-(4×2.5)×(8×125)______=____×____=____.乘法交换律乘法结合律-101000-10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可【详解】(-4)×8×(-25)×(-125)=-4×8×25×125=-4×25×8×解析:乘法交换律乘法结合律 -10 1000 -10000【分析】分别利用有理数乘法法则以及乘法分配律和乘法结合律求出即可. 【详解】 (-4)×8×(-2.5)×(-125) =-4×8×2.5×125=-4×2.5×8×125(乘法交换律) =-(4×2.5)×(8×125)(乘法结合律) =-10×1000 =-10000.故答案为:乘法交换律,乘法结合律,-10,1000,-10000. 【点睛】本题主要考查了有理数的乘法运算和乘法运算律,正确掌握运算法则和乘法运算律是解题的关键.7.我们知道,海拔高度每上升100米,温度下降0.6℃,肥城市区海拔大约100米,某时刻肥城市区地面温度为16℃,泰山的海拔大约为1530米,那么此时泰山顶部的气温大约为______.℃【分析】首先用泰山的海拔减去肥城市区海拔求出泰山的海拔比肥城市区海拔高多少米进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可【详解】解: 解析:7.42【分析】首先用泰山的海拔减去肥城市区海拔,求出泰山的海拔比肥城市区海拔高多少米,进而求出泰山顶部的气温比某时刻肥城市区地面温度低多少;然后用某时刻肥城市区地面温度减去此时泰山顶部低的温度即可. 【详解】解:()1615301001000.6--÷⨯1614301000.6=-÷⨯ 168.58=- 7.42=(℃);答:此时泰山顶部的气温大约为7.42℃. 故答案为:7.42. 【点睛】此题主要考查了有理数混合运算的实际应用,正确理解题意并列出算式是解题的关键. 8.下列各组式子:①a ﹣b 与﹣a ﹣b ,②a +b 与﹣a ﹣b ,③a +1与1﹣a ,④﹣a +b 与a ﹣b ,互为相反数的有__.②④【分析】直接利用互为相反数的定义分析得出答案【详解】解:①a -b 与-a-b=-(a+b )不是互为相反数②a+b 与-a-b 是互为相反数③a+1与1-a 不是相反数④-a+b 与a-b 是互为相反数故答案解析:②④【分析】直接利用互为相反数的定义分析得出答案.【详解】解:①a-b与-a-b=-(a+b),不是互为相反数,②a+b与-a-b,是互为相反数,③a+1与1-a,不是相反数,④-a+b与a-b,是互为相反数.故答案为:②④.【点睛】本题考查了互为相反数,正确把握相反数的定义是解题的关键.9.下面是七年级一班在学校举行的足球赛中的成绩,现规定赢球为“正”,输球为“负”,打平为“0”,请按照示例填空:例:若上半场输了2个球,下半场输了1个球,则全场输了3个球,也就是(-2)+(-1)=-3;(1)若上半场赢了3个球,下半场输了2个球,则全场赢了____个球,也就是____;(2)若上半场输了3个球,下半场赢了2个球,则全场输了___个球,也就是_____;(3)若上半场赢了3个球,下半场打平,则全场赢了___个球,也就是____.3+(-2)=11(-3)+2=-133+0=3【分析】根据定义赢球记为正输球记为负打平记为0先用有理数表示出输赢情况然后根据有理数的加减运算求解【详解】(1)上半场赢了3个为3下半场输了2个记为(解析:3+(-2)=1 1 (-3)+2=-1 3 3+0=3【分析】根据定义,赢球记为“正”,输球记为“负”,打平记为“0”,先用有理数表示出输赢情况,然后根据有理数的加减运算求解.【详解】(1)上半场赢了3个,为3,下半场输了2个,记为(-2),也就是:3+(-2)=1;(2)上半场输了3个,为(-3),下半场赢了2个,记为2,也就是:(-3)+2=-1;(3)上半场赢了3个,为3,下半场打平,记为0,也就是:3+0=3.【点睛】本题考查用正负数表示相反意义的量,并求解有理数的加法,解题关键是用正负数正确表示出输赢球的数量关系.10.在数轴上与表示 - 2的点的距离为3个单位长度的点所表示的数是 _________ .-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时当点在表示-2的点的右边时列出算式求出即可【详解】分为两种情况:①当点在表示-2的点的左边时数为-2-3=-5;②当点在表示-2的点的解析:-5或1【分析】根据题意得出两种情况:当点在表示-2的点的左边时,当点在表示-2的点的右边时,列出算式求出即可.【详解】分为两种情况:①当点在表示-2的点的左边时,数为-2-3=-5;②当点在表示-2的点的右边时,数为-2+3=1;故答案为-5或1.【点睛】本题考查了数轴的应用,注意符合条件的有两种情况.在数轴上到一个点的距离相等的点有两个,一个在这个点的左边,一个在这个点的右边.11.某班同学用一张长为1.8×103mm,宽为1.65×103mm的大彩色纸板制作一些边长为3×102mm的正方形小纸板写标题(不能拼接).则一张这样的大纸板最多能制作符合上述要求的正方形小纸板___________张.30【分析】分别用大彩纸的长宽除以小正方形的边长再取商的整数部相乘即可【详解】解:∵18×103÷(3×102)=6165×103÷(3×102)=55∵纸板张数为整数∴18×103÷(3×102)解析:30【分析】分别用大彩纸的长、宽除以小正方形的边长,再取商的整数部相乘即可.【详解】解:∵1.8×103÷(3×102)=6.1,65×103÷(3×102)=5.5,∵纸板张数为整数,∴1.8×103÷(3×102)=6.1≈6,65×103÷(3×102)=5.5≈5,∴最多能制作5×6=30(张).故答案为30.【点睛】本题考查了有理数的计算,正确应用正方形的边长是解答本题的关键.1.小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东跑回到自己家.(1)以小明家为原点,以向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小红家与学校之间的距离;(3)如果小明跑步的速度是250m/min,那么小明跑步一共用了多长时间?解析:(1)见解析;(2)4.5km;(3)36分钟【分析】(1)根据题意在数轴上标出小彬家和小红家,再标出学校即可;(2)根据数轴上两点距离的计算方法计算即可得出答案;(3)先计算小明总共跑的路程,先向东跑了3.5km,再向西跑了4.5km,再向东跑了1km,用总路程除以跑步速度即可得出答案.【详解】解:(1)如图所示:(2)3.5(1) 4.5()km --=,故小红家与学校之间的距离是4.5km ;(3)小明一共跑了(2 1.51)29()km ++⨯=,跑步用的时间是:900025036÷=(分钟).答:小明跑步一共用了36分钟.【点睛】本题主要考查了数轴上两点间的距离,根据题意列式计算式解决本题的关键. 2.计算:(1)()213433⎛⎫---+-+ ⎪⎝⎭; (2)()()202011232---+-+. 解析:(1)-6;(2)132- 【分析】(1)先化为省略括号的形式,将整数及分数分别相加,再计算加法;(2)先计算乘方,同时计算绝对值及去括号,再计算加减法.【详解】(1)解:原式=213433-+-+ ()213433⎛⎫=--++ ⎪⎝⎭71=-+6=-;(2)解:原式=11232--+ =142- =132-. 【点睛】 此题考查有理数的混合运算,掌握有理数加减混合运算法则及有理数乘方运算法则是解题的关键.3.计算:()22216232⎫⎛-⨯--⎪⎝⎭解析:2【分析】 原式先计算乘方,再运用乘法分配律计算,最后进行加减运算即可.【详解】解:()22216232⎫⎛-⨯-- ⎪⎝⎭=2136()432⨯-- =213636432⨯-⨯- =24-18-4=2.【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键. 4.计算:(1)5721()()129336--÷- (2)22115()(3)(12)23-+÷-⨯---⨯ 解析:(1)37;(2)50.【分析】(1)先把除法转化为乘法,然后根据乘法分配律计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】(1)原式=572()(36)152824371293--⨯-=-++=. (2)原式=15(3)(3)(14)2145650-+⨯-⨯---⨯=-++=. 【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.。

[苏教版七年级第一章有理数的乘除、乘方测试题(含答案)] 有理数乘方

[苏教版七年级第一章有理数的乘除、乘方测试题(含答案)] 有理数乘方

[苏教版七年级第一章有理数的乘除、乘方测试题(含答案)] 有理数乘方苏教版七年级第一章有理数的乘除、乘方测试题(含答案)一、填空题(每小题3分,共30分)1.3×(-2)=________,(-6)×(-)=________.2.(-3)2的底数是________,结果是________;-32的底数是________,结果是________.3.(-)÷(+ )=________;-÷(-1 )=________;(+8)÷(-)=________.4.23×(-)3=________;(-)÷(+ )2=________.5.(-)×________=1;(-)×________=-16.-×(-2.4)×(-)=________.7.-32× (-5)2÷(-)3=________.8.我国台湾省的面积约为3600平方公里,用科学记数法表示为________.9.+1 的倒数是________;________的倒数是-.10.用“>”“<”填空:①23________22 ②()2________()3③32________22 ④(-2)3________(-2)2二、判断题(每小题1分,共5分)11.零除以任何数都得零()12.互为相反数的两个数的积为负数()13.如果ab>0,则a>0且b>0()14.1除以一个非零数的商叫做这个数的倒数()15.(-3)5表示5个-3相乘()三、选择题(每小题3分,共21分)16.下列说法,其中错误的有①一个数与1相乘得原数;②一个数乘以-1得原数的相反数;③0乘以任何数得0;④同号两数相乘,符号不变.A.1个 B.2个C.3个 D.4个17.下列各对数:①1与1;②-1与1;③a-b与b-a;④-1与-1;⑤-5与|6|,其中互为倒数的是A.①②③ B.①③⑤C.①③④ D.①④18.下列各题中两个式子的值相等的是A.-23与(-2)3 B.32与23C.(-2)2与-22 D.|-2|与-|-2|19.下列结论中,其中正确的个数为①0的倒数是0;②一个不等于0的数的倒数的相反数与这个数的相反数的倒数相等;③其倒数等于自身的数是±1;④若a,b互为倒数,则-ab=-1.A.4 B.3C.2 D.120.下列各式中结果大于0的是A.1-910×3 B.(1-910)×3C.1-(9×3)10 D.(1-9)10×321.下列说法中正确的是A.一个数的平方必为正数B.一个数的平方必小于这个数的绝对值C.一个数的平方必大于这个数D.一个数的平方不可能为负数22.用科学记数法表示的数2.89×104,原来是A.2890 B.2890000C.28900 D.289 000四、计算题(共35分)23.(3分)(-3)×(-5)×(+12)×(-) 24.(3分)-6÷(+3)÷(-4)×(+2)25.(3分)-5-6÷(-3)26.(3分)(-81)÷2 × ÷(-16)27.(3分)-22× (-3)÷28.(3分)(-1)20 00×(-1)20xx×(-1)20xx÷(-1)20xx29.(3分)(-2)×(-20xx)×[--(-)]×1-20xx30.(3分)- 31.(3分)(-5)2÷5×632.(3分)(-2.5)÷(-)×(-3)33.(5分)30×(- + -)五、解答题(9分)34.已知A=a+a2+a3+……+a2000(1)若a=1,求A的值.(2)若a=-1,求A的值.参考答案一、1.-6 2 2.-3 9 3 -9 3.--32 4.--5.-6.-1.2 7.1800 8.3.6×103平方公里9.-1 10.>>><二、11.×12.×13.×14.√15.√三、16.A 17.D 18.A 19.B 20.D 21.D 22.C四、2 3.-90 24.1 25.-3 26.27.15 28.1 29.-20xx 30.1 31.30 32.-33.-4五、34.(1)2000 (2)0。

苏科版数学七年级上册 有理数单元测试卷(解析版)

苏科版数学七年级上册 有理数单元测试卷(解析版)

一、初一数学有理数解答题压轴题精选(难)1.如图,已知数轴上点A表示的数为-3,B是数轴上位于点A右侧一点,且AB=12.动点P从点A出发,以每秒2个单位长度的速度沿数轴向点B方向匀速运动,设运动时间为t秒.(1)数轴上点B表示的数为________;点P表示的数为________(用含t的代数式表示). (2)动点Q从点B出发,以每秒1个单位长度的速度沿数轴向点A方向匀速运动;点P、点Q同时出发,当点P与点Q重合后,点P马上改变方向,与点Q继续向点A方向匀速运动(点P、点Q在运动过程中,速度始终保持不变);当点P到达A点时,P、Q停止运动.设运动时间为t秒.①当点P与点Q重合时,求t的值,并求出此时点P表示的数.②当点P是线段AQ的三等分点时,求t的值.【答案】(1)9;-3+2t(2)解:①根据题意,得:(1+2)t=12,解得:t=4,∴-3+2t=-3+2×4=5,答:当t=4时,点P与点Q重合,此时点P表示的数为5;②P与Q重合前:当2AP=PQ时,有2t+4t+t=12,解得t= ;当AP=2PQ时,有2t+t+t=12,解得t=3;P与Q重合后:当AP=2PQ时,有2(8-t)=2(t-4),解得t=6;当2AP=PQ时,有4(8-t)=t-4,解得t= ;综上所述,当t= 秒或3秒或6秒或秒时,点P是线段AQ的三等分点【解析】【解答】解:(1)由题意知,点B表示的数是-3+12=9,点P表示的数是-3+2t,故答案为:9,-3+2t;【分析】(1)根据数轴上两点间的距离等于两坐标之差的绝对值可求得点B所表示的数;根据路程=速度×时间可得点P运动的距离,再根据平移的点的坐标的性质可得点P表示的数;(2)①由题意可列方程求解;②分两种情况讨论求解:P与Q重合前:当2AP=PQ时,可得关于t的方程求解;当AP=2PQ时,可得关于t的方程求解;P与Q重合后:当AP=2PQ时,可得关于t的方程求解;当2AP=PQ时,可得关于t的方程求解。

新苏科版七年级数学上册《有理数》单元测试题

新苏科版七年级数学上册《有理数》单元测试题

《有理数》单元测试题一、知识点填空1、三个重要的定义(1)正数: 的数叫做正数 (2)负数:在正数前面加上“-”号,表示比0小的数叫做负数; (3)0即不是正数也不是负数,0是正数和负数的分界,可以表示没有也可表示具体的温度。

2、有理数的概念及分类 (1)有理数包含 和 (2)有理数包含 、 和(3)有理数包含 、 、 、 和(4)整数包含 、 和 (5)分数包含 和(6)正有理数包含 和 (7)负有理数包含 和(8)任何有理数一定可以化成 和 ,只有有限小数和无限循环小数是有理数,因为它们都能化为分数,而无限不循环小数不能化成分数,所以无限不循环小数不是有理数。

(9)非负数包含 ;非负整数包含3、数轴:有 、 和 的 叫作数轴。

(1)任何一个有理数都能在数轴上找到 的点与之对应(2)数轴上的任何一个点都对应唯一一个数,不一定是有理数。

4、相反数:若两个数只有 ,则其中一个数叫另一个数的相反数或者叫它们互为相反数。

0的相反数是 ,相反数是它本身的数是 。

(1)互为相反数的两个数,在数轴上位于原点的 ,并且与原点的 ;互为相反数的两个数关于原点 。

数a 的相反数是 。

(2)如果数a 和数b 互为相反数,则a +b =0或a = —b ;)0(1≠-=ab b a 或)0(1≠-=ab ab (3)求一个数的相反数,只要在这个数的前面加上“—”即可;例如b a -的相反数是(4)多重符号的化简规律:当负号的个数为奇数个时,结果为 号;当负号的个数为偶数个时,结果为 号;与正号无关。

5、绝对值: 数轴上表示数a 的点与 叫做数a 的绝对值,记作(1)几何意义:一个数的绝对值就是数轴上表示 与 。

(2)代数意义:一个正数的绝对值是 ;0的绝对值是 ;一个负数的绝对值是 。

(3)非负数的绝对值是 ; 若0a ≥ ,则a = 。

若a = a , 则a非正数的绝对值是 ; 若0a ≤ ,则a = 。

若a =–a ,则a(4)绝对值非负性:“一个数的绝对值是数轴上表示该数的点与原点的距离”,而距离只能 是 ,也就是说任何一个数的绝对值都是非负数,即0≥a (5)互为相反数的两个数到原点的距离 ,也就是说互为相反数的两个数绝对值相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数全章测试(一)
一、填空题
(1)_______统称为有理数,有理数可以用数轴上的_______表示出来。

(2)在有理数2
1-,0,0.2,-2,51-,24%,31-,625中,互为倒数的是_______,互为相反数的是_______。

(3)10
110-的相反数是_______,倒数是_______,绝对值是_______。

(4)135790用科学记数法应记为_______,精确到万位应表示为_______,保留3个有效数字为_______。

(5)设)311()211(-⨯-=a ,)3
11()211(-+-=b ,则ab=_______。

(6)如图,已知两个有理数a 、b ,对应于数轴上的点分别为A 、B ,在同一数轴上作出表示-a 和-b 的点,并决定下列各式的符号:
a+b_______0,a-b_______0,(a+b )(a-b )_______0,_______0)1(2+ab ab 。

(7)若|-x|=|-8|,且x|y|<0,则x=_______。

(8)当a=_______时,2)1(35--a 的值最大,这个值是_______。

二、选择题
(1)下面四种说法中,正确的是()
(A )零除以任何有理数都得零
(B )相反数等于它本身的有理数只有零
(C )倒数等于它本身的有理数只有1
(D )绝对值等于它本身的有理数只有1
(2)如果a 表示有理数,那么下面说法正确的是()。

(A )-a 一定是负数
(B )+a 和-a 一定不相等
(C )+a 和-(-a )互为相反数
(D )+(-a )和-(+a )一定相等
(3)下列计算中,正确的是()
(A )13
13=÷
(B )1)21()21(=-÷- (C )(-5)×0÷0=0
(D )2)3
1(32-=-⨯÷
(4)两个有理数的和比其中任何一个加数都小,那么这两个数()。

(A )都是正数
(B )都是负数
(C )异号
(D )其中有一个为0
(5)设a 为有理数,则下式的值一定为正数的是()。

(A )2a (B )|a|
(C )a+1 (D )12+a
(6)下列语句,正确的个数是()
①如果两个数互为相反数,那么这两个数的商为-1;②两个有理数的和一定比其中任意一个加数大;③两个数的和是正数,那么这两个数一定是正数;④近似数53.0是精确到个位的近似数,有效数字是5,3
(A )0个 (B )1个
(C )2个 (D )3个
三、计算题(直接写出运算的结果)
(1)_______5
4)6.0()52
(=----; (2)_______)1()1(32434=---⨯--;
(3)_______)52(32822=⨯--⨯-;
(4)_______3
2)32(2)2(222
2=-+--; (5)_______)3
2(49223=-⨯÷-; (6)_______]1)43(4[3212=--⨯÷。

四、计算题
(1))48()12
1613614
1(-⨯+--。

(2)27
16)211(|42|415.0322⨯-----+-。

(3))4
1()2()411()1.0(2223-⨯---÷-+-。

(4))7221711()4.1113()1134.1(⨯÷-⨯-÷-。

答案与提示
一、
(1)整数和分数,点,
(2)2
1-
和-2,24%和625;0.2和51-; (3)10110,10110-,10110 (4)5103579.1⨯,5104.1⨯,51036.1⨯
(5)3
17- (6)>,>,>,<
(7)-8
(8)1,5
二、(1)B (2)D (3)B (4)B (5)D (6)A
三、(1)53-
(2)-14(3)-110(4)92(5)81128-(6)34 四、(1)326-;(2)-6;(3)-7.008;(4)4945-。

相关文档
最新文档