高阶导数函数的微分

合集下载

第二章2求导法则,隐函数求导,高阶导数,微分

第二章2求导法则,隐函数求导,高阶导数,微分

定理2. 设 y f (x)为 x f 1( y) 的反函数, f 1( y)
在y 的某邻域内单调可导, 且 [ f 1( y)] 0
f (x)
1
[ f 1( y)]

d y dx
1
dx
dy
证: 在 x 处给增量 x 0, 由反函数的单调性知
y
f
(x

x)
f
( x)

2, 2x,
0 1

x x

1 2

1 2
,
x2
由此可见:导函数的定义域不超过函数定义域.
课本128页 例28 已知函数 f (u)可导,求
[ f (ln x)], { f [( x a)n ]}, {[ f (x a)]n},
其中a为常数. 解:[ f (ln x)] f (ln x) (ln x) 1 f (ln x) x { f [( x a)n ]} f [( x a)n ][( x a)n ] n(x a)n1 f [( x a)n ]
f (x) lim f (x h) f (x) lim u(x h)v(x h) u(x)v(x)
h0
h
h0
h

lim
h 0
u(
x

h) h

u
(
x)
v(
x

h)

u(
x)
v(
x

h) h
v(
x)

u(x)v(x) u(x)v(x), 故结论成立.
(1 1 (x2 a2 ))
(x x2 a2 ) ln 10 2 x2 a2

3.5高阶导数与高阶微分

3.5高阶导数与高阶微分

例: 设y x2
解: (1)x为自变量时,有dy 2xdx, d 2 y d(dy) d(2xdx) 2dx dx 2dx2.
(2)x不是自变量而是另一个变量t的函数时, 例x t 2,于是y t 4,故dy 4t3dt.d 2 y d (dy) d (4t3dt) 12t 2dt dt 12t 2dt 2. 由此可见: 求d 2 y时,如果从d 2 y 2dx2出发,以x t2代入, 则d 2 y 2dx2 2(dx)2 2[d(t2 )]2 2[2tdt]2 2[4t2 (dt)2 ] 8t2 (dt)2 8t2dt2.
3.5、高阶导数与高阶微分
设y f (x)在(a,b)内可导,则它的导函数y f (x)和微分函数dy df (x) f (x)dx 作为(a, b)内的点x的函数, 我们仍然可以讨论它们的可导性与可微性, 这就产生了 高阶导数与高阶微分.
一、高阶导数
定义3.4 : 如果y f (x)在点 x0 处可导,则称y f (x)在点 x0 处二阶可导, 且称y f (x)在点 x0 处的导数为函数f (x)在点 x0 的二阶导数,用f (x0 )
如果记(dx)n dxn.
由定义3.5知: d 2 y d(dy) d[ f (x)dx] dx d[ f (x)] dx f (x)dx f (x)[dx]2 f (x)dx2.
由数学归纳法知 : d n y d (d (n1) y) d[ f (n1) (x)dxn1] dxn1 d[ f (n1) (x)]
dxn1 f (n) (x)dx f (n) (x)dxn
从而高阶导数可用高阶微分定义 :
f
( x)
d2y dx2
,
f
(n) (x)

高等数学2导数与微分3.

高等数学2导数与微分3.

《高等数学》上册教案第二章导数与微分第二章导数与微分§3、高阶导数教学目的:熟练初等函数的求导方法,了解高阶导数的概念,会求简单的n阶导数教学重点:高阶导数的求法教学难点:高阶导数的归纳方法变速直线运动的质点的路程函数为s=s(t),则速度为v(t)=s′(t)=lim加速度a(t)=lims(t+Δt)−s(t) Δt→0ΔtΔvv(t+Δt)−v(t),即a(t)=v′(t)=[s′(t)]′。

=limΔt→0ΔtΔt→0Δt定义、设函数y=f(x)在点x的邻域内一阶导数f′(x)存在,如果极限Δx→0limf′(x+Δx)−f′(x) Δx存在,称函数y=f(x)在点x二阶可导,并称极限值为y=f(x)在点x的二阶导数,记d2yd⎛dy⎞d2f作:2=⎜⎟,2,f′′(x)或y′′ 。

dxdx⎝dx⎠dx同理,如果将二阶导数f′′(x)作为函数,可以定义出三阶导数:d3yf′′(x+Δx)−f′′(x)=lim 3Δx→0dxΔxd3yd⎛d2y⎞d3fdn−1y⎟,3,y′′′或f′′′(x);一般利用函数y=f(x)的n−1阶导数n−1,记作:3=⎜2⎟⎜dxdxdx⎝dx⎠dxdnydnyf(n−1)(x+Δx)−f(n−1)(x)(n)可以定义出n阶导数:n=lim;并记为:y,n 等;称函数的Δx→0dxΔxdx二阶及其以上阶的导数为高阶导数。

通常记作:y′,y′′,y′′′,y(4),y(5),L,y(n),L。

d2s由此定义,质点的加速度可以写作:a(t)=s′′(t)=2。

dt例1.设函数y=sinx2,求y′′。

解:y′=2xcosx2,y′′=2xcosx2()′=2(cosx2+x−2xsinx2=2cosx2−4x2sinx2 ())《高等数学》上册教案第二章导数与微分例2.求函数y=ln(x++x2)的二阶导数。

解:y′=1x++x2⋅(1+12x2+x2=1+x32 −x122 y′′=(y′)′=( ′=−(1+x)⋅2x=−222+x(1+x)注:求二阶导数之前,应该将一阶导数作适当的化简、整理。

高阶导数的运算法则

高阶导数的运算法则

应用
高阶微分方程在描述复杂系统的行为和解决某些数学问题中有重要应用。
05
高阶导数的物理应用
速度与加速度的关系
总结词
描述速度和加速度之间的数学关系
详细描述
在物理学中,速度和加速度是描述物体运动状态的两 个重要物理量。速度是描述物体位置变化的量,而加 速度是描述物体速度变化快慢的量。通过高阶导数, 我们可以更精确地描述速度和加速度之间的关系。例 如,物体的运动方程可以表示为速度关于时间的导数 (即加速度),而加速度关于时间的导数则表示加加 速度(即物体速度变化的速率)。
举例
$y'' = f(x, y, y', y'')$,其中 $f$ 是可微函数,$y$ 是未知函数,$x$ 是自变量。
应用
二阶微分方程在振动、波动和曲率等领域有广泛应 用。
高阶微分方程
定义
高阶微分方程是包含一个未知函数及其高阶导 数的方程。
举例
$y^{(n)} = f(x, y, y', ldots, y^{(n)})$,其中 $f$ 是可微函数,$y$ 是未知函数,$x$ 是自变 量。
幂的导数法则
总结词
幂的导数法则是计算幂函数的高阶导数的规 则。
详细描述
幂的导数法则是说,如果幂函数y=x^n对x有 n阶导数,则其高阶导数的形式为 d^ny/dx^n=(n!)*x^(n-1)/[(n-
1)!]+...+2*x/1+0*1/x,其中n为非负整数。
03
高阶导数的应用
求极值
极值判定定理
04
高阶导数在微分方程中的应 用
一阶微分方程
定义
01
一阶微分方程是包含一个未知函数及其导数的方程。

高等数学导数微分学习辅导及公式总结

高等数学导数微分学习辅导及公式总结

高等数学(1)学习辅导(三)第三章 导数与微分导数与微分这一章是我们课程的学习重点之一。

在学习的时候要侧重以下几点:⒈理解导数的概念;了解导数的几何意义;会求曲线的切线和法线;会用定义计算简单函数的导数;知道可导与连续的关系。

)(x f 在点0x x =处可导是指极限xx f x x f x ∆-∆+→∆)()(lim000存在,且该点处的导数就是这个极限的值。

导数的定义式还可写成极限0)()(limx x x f x f x x --→函数)(x f 在点0x x =处的导数)(0x f '的几何意义是曲线)(x f y =上点))(,(00x f x 处切线的斜率。

曲线)(x f y =在点))(,(00x f x 处的切线方程为)())((000x f x x x f y +-'=函数)(x f y =在0x 点可导,则在0x 点连续。

反之则不然,函数)(x f y =在0x 点连续,在0x 点不一定可导。

⒉了解微分的概念;知道一阶微分形式不变性。

⒊熟记导数基本公式,熟练掌握下列求导方法 (1)导数的四则运算法则 (2)复合函数求导法则 (3)隐函数求导方法 (4)对数求导方法(5)参数表示的函数的求导法正确的采用求导方法有助于我们的导数计算,如一般当函数表达式中有乘除关系或根式时,求导时采用取对数求导法, 例如函数xx y 2)1(-=,求y '。

在求导时直接用导数的除法法则是可以的,但是计算时会麻烦一些,而且容易出错。

如果我们把函数先进行变形,即21212322212)1(-+-=+-=-=xx x xx x xx y再用导数的加法法则计算其导数,于是有2321212123----='x x x y这样计算不但简单而且不易出错。

又例如函数321-+=x x y ,求y '。

显然直接求导比较麻烦,可采用取对数求导法,将上式两端取对数得)2ln(31)1ln(21ln --+=x x y 两端求导得)2(31)1(21--+='x x y y 整理后便可得)2(682123---⋅-+='x x x x x y若函数由参数方程⎩⎨⎧==)()(t y t x ϕψ 的形式给出,则有导数公式)()(d d t t x y ϕψ''=能够熟练地利用导数基本公式和导数的四则运算法则、复合函数的求导法则计算函数的导数,能够利用隐函数求导法,取对数求导法,参数表示的函数的求函数的导数。

高等数学第二章导数知识总结

高等数学第二章导数知识总结

高等数学第二章知识总结在这一章里需要掌握的是求一阶导数的多种方法和求高阶导数的计算公式。

微分和导数的关系求导数与求微分方法相同,只不过在求微分时要在后面加上dx.函数在某点处的导数就是函数在该点处的变化率. 导数有很多种表现形式.一.(1)单侧导数即左右导数.函数可导的充要条件是:左右导数存在且相等. (2)可导与连续的关系:可导必然连续,连续不一定可导.注:函数的导数就是函数在某点处因变量与自变量比值的极限.◆求导数的方法有:(1)利用导数的定义.(简单一点就是△y/△x的极限)(2)利用导数的几何意义解决几何及物理,化学的实际问题.(3)利用初等函数的求导公式.(在书P59)(4)利用反函数求导法.(反函数的导数就是原函数导数的倒数.)(5)利用复合函数求导法.(由外到内,逐层求导)(6)利用隐函数求导法(7)利用参数方程确定函数的求导法.(8)利用分段函数求导法.(9)利用函数连续,可导的定义,研究讨论函数的连续性与可导性.二.高阶导数高阶导数可细分为:一阶导数,二阶导数,三阶导数……N阶导数等等.(一阶导数的导数是二阶导数) 应该掌握的是高阶导数的运算.方法有两种:(1)直接法.(2)间接法.间接法适用于阶数较高的运算.其规律性较强.常用的高阶导数公式在书P63上.注意查看.■计算uv相乘形式的高阶导数时,首先要判断u,v从一阶到n阶的结果,再运用莱布尼兹公式求出结果。

三.隐函数和由参数方程确定的函数的导数什么是隐函数?如果变量x,y的函数关系可以用一个二元方程表示,且对在给定范围内的每一个x,通过方程有确定的y与之对应,即Y是X的函数,这种函数就叫做隐函数F(x,y)=0从二元方程中解出y的值,就是隐函数的显化.有些隐函数不易显化,甚至不能显化.隐函数的求导方法:(例题在书P66 例40,41)(1)把y看做是复合函数的中间变量,把y看作y(x)即可。

再在方程两边分别对X求导.(2)从求导后的方程中求出y’.(3)在隐函数的求导结果中允许含有y,但是求某一以知点的导数时不仅要代X的值,还要代Y的值. 对数求导法:先两边取对数,再关于X求导.例题在书P68,例44(遇到指数形式的函数时就采用此类方法)对参数方程确定的函数求导方法很简单,就是用y’/x’.四.函数的微分.可微就可导,可导就可微.求函数的微分就是对函数求导,主要就是在所求结果后面加上dx.微分的几何意义是某点处的切线纵坐标的增量.常用的微分公式在书P76.五.微分的应用.1.微分在近似计算,误差估计中的应用.在书P80 P81.。

高等数学第二章高阶导数

高等数学第二章高阶导数
§2.3 高阶导数
高阶导数的定义 几个基本初等函数的n阶导数 莱布尼茨(Leibniz)公式 小结 思考题 作业
1
第二章 导数与微分
一、高阶导数的定义 高阶导数也是由实
问题:变速直线运动的加速度. 际需要而引入的.
设 s s(t), 则瞬时速度为v(t) s(t)
加速度a是 速度v对时间t的变化率
y

x2

1 3x

2

1
AB
(x 2)(x 1) x 2 x 1
A (x 2) 原式
1
x2
B (x 1) 原式
1
x 1
y 1 1
x 2 x 1
y(n)

(1)n
n!
( x
1 2)n1

(x
1

1)
n1

18
(4) y sin6 x cos 6 x
d2 y 或 d2 y d (dy) dx2 d x 2 d x dx
2
二阶导数的导数称为三阶导数, f ( x),
y,
d3 y dx 3
.
三阶导数的导数称为四阶导数, f (4)( x),
y(4) ,
d4 y dx4 .
一般地, 函数f ( x)的n 1阶导数的导数称为
函数f ( x)的n阶导数,记作

2)n
cos
x2
16
,

f (n) (2)
n!
2 2
提示:
各项均含因
(x 2)n(x 1)n cos x2 子 ( x – 2 )
16
n !(x 1)n cos x2

3.3 高阶导数与微分概念

3.3 高阶导数与微分概念
dy | x x0 f ( x0 )x
dy f ( x )x yx
ex 9. 设 y x , 求 dy.
Solution. y 1, dy x dx x.
通常把自变量 x的增量 x称为自变量的微分, 记作 dx , 即dx x .
ex 3.设 f ( x ) cos x , 求 f
( n)
( x ).
Solution. f ( x ) sin x cos x 2
x cos x cos x 2 f ( x ) sin 2 2 2 2
dx 1 d2x ex 5.由 , 求 2 . dy y dy
Solution.
d2x d 1 2 dy y dy
d 1 dx dx y dy
1 1 2 y y y y 3 y
二. 高阶导数的运算法则
则 y( n) a0 n!
ex 2.设 y a x , 求 y (n ) .
Solution. y a x ln a ,
y a x ln 2 a ,,
y ( n ) a x ln n a.
注意: 求n阶导数时,求出1-3或4阶后,不要急于合并,分析结
果的规律性,写出n阶导数.(数学归纳法证明)
注意:求高阶导数的方法可归纳为三种
方法1(直接法): 即利用高阶导数的定义,再由不完全归 纳法得出结论. 方法2: 即利用高阶导数的运算法则来得结论.
方法3(间接法): 即利用已知的高阶导数公式, 通过四则 运算, 变量代换等方法, 求出n阶导数.
x2 5 ex 7.设 y 2 , 求 y( n) . x 2x 3

高等数学武大社课件第三章导数与微分

高等数学武大社课件第三章导数与微分
ห้องสมุดไป่ตู้
定义2 设函数y=f(x)在点x0的某左(右)邻域内有定义,若
存在,则称y=f(x)在点x0的左(右)导数存在,记作f′-(x0)(f′+(x0)). 函数的左(右)导数,又称函数的单侧导数.
显然,当函数y=f(x)在点x0处导数存在时,有结论:
f′(x0)
f′-(x0)和右导数f′+(x0)存在并且相等.
第一节 导数的概念
以上两个问题,虽然它们所代表的具体内容不同,但从 数量上看,它们有共同的本质:都是计算当自变量的增量趋 于零时,函数的增量与自变量的增量之比的极限.在自然科学 、工程技术问题和经济管理中,还有许多非均匀变化的问题 ,也都可归结为这种形式的极限.因此,抛开这些问题的不同 的实际意义,只考虑它们的共同性质,就可得出函数的导数 定义.
一、导数概念的两个引例 为了说明微分学的基本概念——导数,我们先讨论以下两 个问题:速度问题和切线问题. 1. 变速直线运动的瞬时速度 我们知道在物理学中,物体做匀速直线运动时,它在任何 时刻的速度可由公式
v=s/t
第一节 导数的概念
来计算,其中s为物体经过的路程,t为时间.如果物体作非匀 速运动,它的运动规律是s=s(t),那么在某一段时间[t0,t1 ]内,物体的位移(即位置增量)s(t1)-s(t0)与所经历的时间(即 时间增量)t1-t0的比,就是这段时间内物体运动的平均速度.我 们把位移增量s(t1)-s(t0)记作Δs,时间增量t1-t0记作Δt,平均 速度记作v,得
高等数学
directories


第三章 导数与微分
• 第一节 导数的概念 • 第二节 函数的求导法则 • 第三节 高阶导数 • 第四节 相关变化率 • 第五节 函数的微分

高等数学中的极限与微分

高等数学中的极限与微分
应用场景:在研究函数的极值、曲数u(x) 在某点的可微分,且u 对x的导数存在,则复 合函数f(u(x))在该点 的导数等于u的导数与
f的导数的乘积
添加标题
应用:链式法则在求 复合函数的导数时非 常有用,可以简化计
算过程
添加标题
举例:例如,如果f(u) = u^2,u(x) = x^2, 则f'(u) = 2u,u'(x) = 2x,根据链式法则, f'(x) = u'(x) * f'(u)
对数函数的导数与微分形式不变性的应用:在求解对数函数极值、求不定积分等 问题中,可以利用微分形式不变性简化计算过程
添加标题
定义:将一个函数表示为无穷级数的方法
添加标题
应用:近似计算、函数逼近、数值分析等领域
添加标题
展开式形式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f(n)(a)(x-a)^n/n!+...
微分近似计算公式:通过微分近似计算函数在某点的导数,进而求得近似值。 误差估计:利用微分近似计算时,可以估计误差的大小。 近似线性化:利用微分近似将非线性问题转化为线性问题,便于求解。 近似计算在物理中的应用:例如,利用微分近似计算物体的加速度、速度等物理量。
定义:微分中值定理是关于函数在某一点处的导数的等价描述,即函数 在某一点的导数等于该函数在该点处的切线的斜率。
= 2x * 2u = 4x^2
添加标题
注意事项:链式法则 只适用于复合函数的 导数计算,不适用于 高阶导数或偏导数的
计算
乘积法则:两 个函数的乘积 的导数等于两 个函数的导数
的乘积

高中极限导数积分知识总结

高中极限导数积分知识总结
sin′x=cosx
csc′x=-cscxcotx
cos′x=-sinxsec′x=secxtanxtan′x=sec2x
cot′x=-csc2x
arcsin′x=
arctan′x=
arccos′x=-
arccot′x=-
③高阶导数:
1.微分导数定义:
①导数定义:设函数y=f(x)在点x0的某个邻域内有定义,当自变量x在点x0取得该变量△x(x≠0)时,相应地函数y=f(x)也有改变量,△y=f(x0+△x)-f(x0)。如果 存在,则称函数y=f(x)在点x0可导,并称这个极限值为函数y=f(x)在点x0的导数。其几何意义是x0点的斜率。
②微分定义:设函数y=f(x)在区间I上有定义,x0,x0+△x∈I,如果函数的改变量△y=f(x0+△x)-f(x0)可表示为△y=A△x+0(△x),其中A是不依赖△x常数,而0(△x)是比△x高阶无穷小,则称函数y=f(x)在点x0可微:dy=Adx。其几何意义是△y线性部分。
③可导与连续性:如果函数y=f(x)在点x0可导,则函数在该点x0连续。一个函数在点x0连续却不一定可导。
2.计算方法原则:
①四则运算:
[f(x)±g(x)]′=f′(x)±g′(x)
[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x)
y=f(u),u=g(x)→y′=f′(u)·g′(x)
②常用导数:
C′=0
(xa)′=axa-1
(ax)′=axlna
(ex)′=ex
(logax)′=
(lnx)′=

12高阶导数 函数的微分

12高阶导数 函数的微分

(4) 对数求导法
先在方程两边取对数,然后利用隐函数的求导方法 求出导数. 适用范围:
多个函数相乘和幂指函 数u( x ) v ( x ) 的情形.
(5) 隐函数求导法则
用复合函数求导法则直接对方程两边求导.
(6) 参变量函数的求导法则
x (t ) 若参数方程 确定y与x间的函数关系, y (t ) dy 2 dy dt ( t ) d y ( t ) ( t ) ( t ) ( t ) ; . 2 3 dx dx ( y 的线性主部. (微分的实质) 注: (1) 当 A 0 时, dy 与 Δy 是等价无穷小 ;
(2) 当 A 0, 而 Δx 很小时,
Δy dy AΔx.
既容易计算又是较好的近似值
yf(x) 在点 x0 可微 yAxo(x) dyAx •可微与可导的关系 函数 f(x) 在点 x0 可微 函数 f(x) 在点 x0 可导 且函数 y=f(x)在点 x0 的微分一定是dyf (x0)x 这是因为 一方面
微分 dy 叫做函数增量 Δy 的线性主部. (微分的实质) 问题:是否所有函数的改变量都可表示为
yAxo(x) ?
线性函数 Ax 中的 A 是什么?
微分的定义 如果函数 yf(x) 的增量可表示为 yf(x0x)f(x0)Axo(x) 其中 A 是与 x 无关的常数, 则称函数 yf(x)在点 x0可微. 而 Ax 叫做函数 yf(x) 在点 x0 相应于自变量增量 x 的 微分 记作 dy 即 dyAx
例6 设 y
1 ( n) n n! ( ) ( 1) n 1 x x
y
(5)
1 5! 5! [ ] 6 6 2 ( x 1) ( x 1) 1 1 60[ ] 6 6 ( x 1) ( x 1)

2.4-高阶导数与函数的微分

2.4-高阶导数与函数的微分
思考: 设 y x ( 为任意常数), 问
例2 求 y = ex 的各阶导数. 解 y ex
y ( y) (ex ) ex
y(n) ex
y = ex 的任何阶导数仍为 ex
(ex )(n) ex (n N)
例3. 设 y eax , 求 y(n).
解: y aeax , y a2 eax , y a3eax , ,
y
x5
的三阶导数记作
y

d3y dx3

……
四阶及其以上的高阶导数则记作 y (n) , d n y . dx n
对一般的函数也是同样.
例1. 设

解: y a1 2a2 x 3a3x2 nan xn1 y 2 1a2 3 2a3x n(n 1)an xn2
依次类推 , 可得
y(n) n!an
y(n) aneax 特别有: (ex )(n) e x
例4. 设

解:
y 1 , 1 x
y
1 (1 x)2
,
y
(1)2
1 (1
2 x)3
,
,
y(n)
(1)n1
(n 1)!
(1 x)n
规定 0 ! = 1
思考:
例5. 设

解:
y
cos x
sin(x
2
)
y
cos(
x
2
)
sin(x
2
2
)
sin(x
2
2
)
y
cos( x
2
2
)
sin(x
3
2
)
一般地 ,
(sin
x)(n)

7.5高阶偏导数与高阶全微分

7.5高阶偏导数与高阶全微分

′′ ′′ ′′ ′′ = ( f xx dx + f yx dy )dx + ( f xy dx + f yy dy )dy
2 2
′′ ′′ ′′ = f xx (dx) + 2 f xy dxdy + f yy (dy )
习惯上记(dx) = dx , (dy ) = dy
2 2 2 2
′′ ′′ ′′ ∴ d 2 z = f xx dx 2 + 2 f xy dxdy + f yy dy 2
∂z ∂f ∂u ∂f ∂v ∂u ∂v = • + • = f1′ + f 2′ = yf1′+ 2 xf 2′ ∂x ∂u ∂x ∂v ∂x ∂x ∂x
其中f1′, f 2′是关于u , v的函数
∂f1′ ∂u ∂f1′ ∂v Q ( yf1′)′x = y ( f1′)′x = y • + • ∂u ∂x ∂v ∂x
dx + 2dy + dz = e
x− y − z
(dx − dy − dz )
= ( x + 2 y + z )(dx − dy − dz )
x + 2 y + z −1 x + 2y + z + 2 ∴ dz = dx − dy 1+ x + 2 y + z 1+ x + 2 y + z
∂z x + 2 y + z − 1 2 ∴ = = 1− ∂x 1 + x + 2 y + z 1+ x + 2 y + z
′′ ′′ ′′ ′′ = f1′+ xyf11 − y f12 + 2 x f 21 − 4 xyf 22

高等数学第四版教材答案

高等数学第四版教材答案

高等数学第四版教材答案第一章导数与微分1.1 函数与极限在这一章中,我们将学习函数的性质以及如何计算函数的极限。

了解函数的极限是理解微积分的基础。

1.2 导数的定义与性质导数是描述函数变化率的概念。

我们将研究导数的定义、性质以及常见函数的导数。

1.3 高阶导数与隐函数求导高阶导数是导数的导数。

我们将学习如何计算高阶导数,并介绍隐函数求导的方法。

1.4 微分微分是导数的应用之一,它可以帮助我们更好地理解函数的变化。

我们将研究微分的概念和性质,并解决一些应用问题。

第二章微分学的应用2.1 极值与最值极值是函数取得的最大值或最小值。

我们将研究如何找到函数的极值,并解决一些极值应用问题。

2.2 中值定理中值定理是微分学中重要的定理之一,它描述了函数在某个区间内的平均变化率与瞬时变化率相等的关系。

我们将学习中值定理的几种形式以及其应用。

2.3 函数的单调性与曲线的凹凸性函数的单调性描述了函数的增减趋势,曲线的凹凸性则描述了函数曲线的弯曲程度。

我们将学习如何确定函数的单调区间和凹凸区间,并解决相关的应用问题。

第三章定积分3.1 定积分的概念与性质定积分是微积分中的一个重要概念,它描述了曲线下面积的大小。

我们将学习定积分的定义、性质以及计算方法。

3.2 定积分的几何应用定积分的几何应用包括计算曲线下面积、计算旋转体的体积等。

我们将解决一些相关的几何应用问题。

3.3 定积分的物理应用定积分在物理学中也有广泛的应用,如计算质点的质量、计算功、计算质心等。

我们将学习如何应用定积分解决物理问题。

第四章微分方程4.1 微分方程的基本概念微分方程是描述函数与其导数之间关系的方程。

我们将学习微分方程的基本概念,并分析一些简单的微分方程。

4.2 一阶线性微分方程一阶线性微分方程是一类特殊的微分方程,其解可以通过积分得到。

我们将学习一阶线性微分方程的解法以及应用。

4.3 高阶线性微分方程高阶线性微分方程是多个导数的函数关系。

我们将学习高阶线性微分方程的解法,并解决一些实际问题。

高阶偏导数与高阶全微分

高阶偏导数与高阶全微分

2 f2 y2 f11 4xyf12 4x2 f22 ,
2z xy
f1
y
f11
u y
f
22
v y
2
x
fy[ xf11 2 yf12 ] 2x[ xf21 2 yf22]
f1 xyf11 2( x2 y2 ) f12 4xyf22 .
例3 设由方程 x 2 y z e x yz 确定的隐函数 为 z z(x, y), 求 2z .
2
,
x 1 x 2 y z 1 x 2 y z
z x 2 y z 2 1
1
.
y 1 x 2 y z
1 x2y z
从而
2z xy
(1
2 2 z y x2y
z)2
2( x 2 y z) (1 x 2 y z)3
.
二、高阶全微分
考虑 z f (x, y) 的全微分 dz f x( x, y)dx f y( x, y)dy
xy 解 方程 x 2 y z ex yz 两边求全微分, 得
dx 2dy dz ex yz (dx dy dz)
因此
( x 2 y z)(dx dy dz)
dz x 2 y z 1dx x 2 y z 2dy 1 x2y z 1 x2y z
由此可得
z x 2 y z 1 1
[1
2x3 y ( xy)2
]2
d2z zxxdx2 2zxydxdy zyydy2
[1
1 ( xy)2
]2
[2
xy 3dx 2
2(1
x2
y2
)dxdy
2
x3
ydy
2
].
三、二元函数的泰勒公式

微分方程阶数判断

微分方程阶数判断

微分方程阶数判断
微分方程的阶数是指微分方程中最高阶导数的阶数。

判断微分方程的阶数有以下几种方法:
1.观察微分方程中最高阶导数:最高阶导数是指微分方程中出现的最高阶的导数。

如果方程中只出现了一阶导数,则该微分方程是一阶微分方程。

如果方程中出现了二阶导数,则该微分方程是二阶微分方程。

依此类推,可以通过观察微分方程中最高阶导数的阶数来确定微分方程的阶数。

2.推导法:如果给定方程本身不明确表明其阶数,可以通过对给定方程进行推导,逐步求得阶数。

例如,我们可以对给定方程进行重复求导,直到其中一次求导后得到一个不依赖于未知函数及其导数的恒等式为止。

这样,求导的次数就是原方程的阶数。

3.整理方程法:对微分方程进行整理,重新排序,使其变为明确的阶数形式。

例如,如果方程中出现了一阶导数和二阶导数的线性组合,则可以通过整理方程为二阶导数形式,从而确定方程的阶数。

4.常系数法:对于常系数齐次线性微分方程,通过观察特征方程的阶数,可以确定微分方程的阶数。

特征方程的阶数等于微分方程的阶数。

5.常微分方程标准形式:一些特定形式的微分方程已经被定义为特定阶数的微分方程,例如,一阶线性常系数微分方程、二阶齐次线性微分方程等。

对于这些标准形式的微分方程,其阶数已经通过定义确定。

总结起来,判断微分方程的阶数可以通过观察最高阶导数、推导法、整理方程法、常系数法和常微分方程标准形式等方法。

在实际应用中,需要依据具体的微分方程形式和问题背景,选择合适的方法来判断微分方程的阶数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档