集合与常用逻辑用语,函数知识总结大全

合集下载

集合与常用逻辑用语知识点梳理

集合与常用逻辑用语知识点梳理

集合与常用逻辑用语,推理与证明,算法,复数,坐标系与参数方程知识点梳理一.集合的概念与运算1.集合与元素(1)集合中元素的三个特征:____________、________、__________.(2)元素与集合的关系是_____或_______两种,用符号____或_____表示.(3)集合的表示法:列举法、描述法.(4)常见数集的记法2.A∪B={_________}A∩B={_____________}∁A={_________}(1)若有限集A中有n个元素,则A的子集个数为____个,非空子集个数为______个,真子集有_________个.(2)A⊆B⇔A∩B=A⇔A∪B=B.[方法与技巧]1.集合中的元素的三个特征,特别是无序性和互异性在解题时经常用到.解题后要进行检¬验,要重视符号语言与文字语言之间的相互转化.2.对连续数集间的运算,借助数轴的直观性,进行合理转化;对已知连续数集间的关系,求其中参数的取值范围时,要注意单独考察等号能否取到.3.对离散的数集间的运算,或抽象集合间的运算,可借助Venn图.这是数形结合思想的又一体现.[失误与防范]1.解题中要明确集合中元素的特征,关注集合的代表元素(集合是点集、数集还是图形集).对可以化简的集合要先化简再研究其关系运算.2.空集是任何集合的子集,是任何非空集合的真子集,时刻关注对空集的讨论,防止漏解.3.解题时注意区分两大关系:一是元素与集合的从属关系;二是集合与集合的包含关系.4.Venn图图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法时要特别注意端点是实心还是空心.二.命题及其关系。

充分条件与必要条件1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们______的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系.3.充分条件与必要条件(1)如果p⇒q,则p是q的_____条件,同时q是p的________条件;(2)如果p⇒q,但q⇏p,则p是q________________条件;(3)如果p⇒q,且q⇒p,则p是q的____________条件;(4)如果q⇒p,且p⇏q,则p是q的______________条件;(5)如果p⇏q,且q⇏p,则p是q的既不充分又不必要条件.[方法与技巧]1.写出一个命题的逆命题、否命题及逆否命题的关键是分清原命题的条件和结论,然后按定义来写;在判断原命题、逆命题、否命题以及逆否命题的真假时,要借助原命题与其逆否命题同真或同假,逆命题与否命题同真或同假来判定.2.充要条件的几种判断方法(1)定义法:直接判断若p则q、若q则p的真假.(2)等价法:即利用A⇒B与¬B⇒¬A;B⇒A与¬A⇒¬B;A⇔B与B⇔A的等价关系,对于条件或结论是否定形式的命题,一般运用等价法.(3)利用集合间的包含关系判断:设A={x|p(x)},B={x|q(x)}:若A⊆B,则p是q的充分条件或q是p的必要条件;若A真包含于B,则p是q的充分不必要条件,若A=B,则p是q的充要条件.[失误与防范]1.当一个命题有大前提而要写出其他三种命题时,必须保留大前提.2.判断命题的真假及写四种命题时,一定要明确命题的结构,可以先把命题改写成“若p,则q”的形式.3.判断条件之间的关系要注意条件之间关系的方向,正确理解“p的一个充分而不必要条件是q”等语言.三简单的逻辑联结词.全称量词与存在量词1.全称量词与存在量词(1)常见的全称量词有“所有”“每一个”“任何”“任意一条”“一切”等.(2)常见的存在量词有“有些”“至少有一个”“有一个”“存在”等.2.全称命题与特称命题(1)含有全称量词的命题叫全称命题.(2)含有存在量词的命题叫特称命题.3.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题.(2)p或q的否定:非p且非q;p且q的否定:非p或非q.4.简单的逻辑联结词(1)命题中的“且”、“或”、“非”叫作逻辑联结词.(2)简单复合命题的真值表:[方法与技巧]1.把握含逻辑联结词的命题的形式,特别是字面上未出现“或”、“且”时,要结合语句的含义理解.2.要写一个命题的否定,需先分清其是全称命题还是特称命题,再对照否定结构去写,并注意与否命题区别;否定的规律是“改量词,否结论”.[失误与防范]1.p或q为真命题,只需p、q有一个为真即可;p且q为真命题,必须p、q同时为真.2.两种形式命题的否定p或q的否定:非p且非q;p且q的否定:非p或非q.3.命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论.四.归纳与类比1.归纳推理根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性.我们将这种推理方式称为归纳推理.简言之,归纳推理是由部分到整体、由个别到一般的推理.归纳推理的基本模式:a、b、c∈M且a、b、c具有某属性,结论:任意d∈M,d也具有某属性.2.类比推理由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理.简言之,类比推理是两类事物特征之间的推理.类比推理的基本模式:A:具有属性a,b,c,d;B:具有属性a′,b′,c′;结论:B具有属性d′.(a,b,c,d与a′,b′,c′,d′相似或相同)3.归纳推理和类比推理是最常见的合情推理,合情推理的结果不一定正确.4.演绎推理是根据已知的事实和正确的结论,按照严格的逻辑法则得到新结论的推理过程.[方法与技巧]1.合情推理的过程概括为从具体问题出发―→观察、分析、比较、联想―→归纳、类比―→提出猜想2.演绎推理是根据已知的事实和正确的结论,按照严格的逻辑法则得到新结论的推理方法,是由一般到特殊的推理.数学问题的证明主要通过演绎推理来进行.[失误与防范]1.合情推理是从已知的结论推测未知的结论,发现与猜想的结论都要经过进一步严格证明.2.演绎推理是由一般到特殊的证明,它常用来证明和推理数学问题,注意推理过程的严密性,书写格式的规范性.3.合情推理中运用猜想时不能凭空想象,要有猜想或拓展依据.五.综合法与分析法。

集合与常用逻辑用语

集合与常用逻辑用语

集合与常用逻辑用语一、集合1、特定集合的表示①自然数集:N ②正整数集:+N③整数集:Z ④有理数集:Q⑤实数集:R ⑥正实数集:+R2、集合之间的关系①子集:A⊆B⇔ x∈A⇒x∈B。

真子集:A B⇔A⊆B且A≠B。

集合相等:A=B⇔A⊆B且B⊆A。

②空集是任何集合的子集,是任意非空集合的真子集。

③n个元素的集合有n2个子集;n个元素的集合有12-n个真子集。

3、集合的运算关系①交集:A∩B⇔x∈A且x∈B。

并集:A∪B⇔x∈A或x∈B。

补集:ACU⇔x∈U且x∉A。

②基本性质:A∩∅=∅;A∪∅=A;A∩B=A⇔A⊆B;A∪B=A⇔B⊆A。

③容斥原理:Card(A)+Card(B)=Card(A∩B)+Card(A∪B);Card(A)+Card(B)+Card(C)=Card(A∪B∪C)+Card(A∩B)+Card(B∩C) +Card(C∩A)-Card(A∩B∩C)。

④德摩根定律:(ACU )∩(BCU)=)(BACU⋃;(ACU)∪(BCU)=)(BACU⋂。

⑤其它性质:若{a1,a2…a m}⊆A⊆{a1,a2…a m,a m+1…a n},则集合A的个数为m n-2。

若{a1,a2…a m}∪B={a1,a2…a m,a m+1…a n},则集合B的个数为m2。

二、常用逻辑用语1、量词①全称量词:∀。

含有全称量词的命题为全称命题:∀x ∈M ,p(x)。

②存在量词:∃。

含有存在量词的命题为存在性命题:∃x ∈M ,p(x)。

2、基本逻辑连结词①∧(且):若p 、q 全真,则p ∧q 为真;若p 、q 一真一假,则p ∧q 为假。

②∨(或):若p 、q 至少一真,则p ∧q 为真;若p 、q 全假,则p ∧q 为假。

③⌝(非):若p 真则p ⌝假;若p 假则p ⌝真。

㈠正面叙述的否定:都是→不都是;任意的→某个;任意n 个→某n 个;所有的→某些; 至多有n 个→至少有n+1个;至少有n 个→至多有n-1个;至少有一个→一个也没有。

集合与常用逻辑用语知识点汇总

集合与常用逻辑用语知识点汇总

集合与常用逻辑用语知识点汇总知识点一集合的概念与运算(一)、集合的基本概念1.集合中元素的三个特性:确定性、互异性、无序性.2.元素与集合的关系是属于或不属于,符号分别为∈和∉.3.集合的三种表示方法:列举法、描述法、图示法.4.常用数集的符号:实数集记作R;有理数集记作Q;整数集记作Z;自然数集记作N;正整数集记作*N或N .+A B(四)、集合关系与运算的重要结论1.若有限集A中有n个元素,则A的子集有个,真子集有-1个.n2n22.传递性:A ⊆B ,B ⊆C ,则A ⊆C .3.A ∪B =A ⇔B ⊆A ; A ∩B =A ⇔A ⊆B .4.∁U (A ∪B )=(∁U A )∩(∁U B );∁U (A ∩B )=(∁U A )∪(∁U B ) .知识点二 命题及其关系、充分条件与必要条件(一)、命题的定义可以判断真假用文字或符号表述的语句叫做命题。

其中判断为真的语句叫做真命题,判断为假的语句叫做假命题。

(二)、四种命题及其相互关系 1.四种命题间的关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们具有相同的真假性. (2)两个命题互为逆命题或否命题,它们的真假性无关. (三)、充分条件、必要条件与充要条件的定义1.若p q ;则p 是q 的充分条件,q 是p 的必要条件。

2.若p q 且q p,则p 是q 的充要条件。

3.若有p q ,无q p ,则称p 是q 的充分不必要条件。

4.若有q p , 无p q ,则称p 是q 的必要不充分条件。

5.若无p q 且无q p,则p 是q 的非充分非必要条件。

(四)、充分、必要、充要条件的判断方法1.定义法根据p q ,q p 进行判断,适用于定义、定理判断性问题。

2.转化法根据一个命题与其逆否命题的等价性,把判断、定义的命题转化为其逆否命题再进行判断,适用于条件和结论带有否定词语的命⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒⇒题。

3.集合法根据p、q成立对象的集合间的包含关系进行判断,适用于命题中涉及字母范围的推断问题。

职高 第一章 集合与常用逻辑用语知识点

职高 第一章 集合与常用逻辑用语知识点

第一章集合与常用逻辑用语思维导图1.集合的有关概念(1)一般地,把一些能够确定的对象看成一个整体,就形成一个________,构成集合的每个对象都叫做这个集合的________.(2)集合中的元素的特征是________和________.(3)集合按元素的个数可分为________集和________集.(4)____________________叫做空集,记作________.(5)常用的数集符号2.元素与集合的关系如果a是集合A中的元素,就说元素a属于集合A,记作________,如果a不是集合A中的元素,就说a不属于集合A,记作________.3.集合的表示方法:有________、________和图示法(即文氏图法)三种.4.集合与集合的关系(1)子集:如果集合A中的____________元素都是集合B中的元素,那么集合A叫做集合B的子集,记作______或______,读作____________或____________.任何一个集合A都是它本身的______,即A⊆A.(2)集合相等:如果两个集合的元素__________,则称这两个集合相等,集合A等于集合B,记作______.(3)真子集:如果集合A是集合B的______,并且___________________________,那么集合A叫做集合B的真子集,记作______或______,读作____________或____________.(4)子集、真子集和集合相等的关系①如果A⊆B,则A B或A______B.②如果A⊆B,且B⊆A,则A______B;反之,如果A=B,则__________________.(5)常用结论①若集合A中有n(n∈N+)个元素,则A的子集有______个,真子集有______个,非空真子集有______个.②∅是任何集合的______,是任何非空集合的______.5.集合的运算(1)交集①定义:一般地,给定两个集合A,B,由_________________________________构成的集合,叫做集合A和集合B 的交集,记作______,读作______,即A∩B=______________,如下图阴影部分所示.②性质:A∩A=______,A∩B=______,A∩∅=______,若 A⊆B,则 A∩B=______.(3)补集①全集:一般地,如果在讨论的问题中,每一个集合都是某一个给定集合U的子集,那么就称U为这些集合的______.②定义:如果集合A是全集U的一个子集,由______________________________构成的集合,叫做集合A在U中的补集,记作______,读作__________________,如下图阴影部分所示.③性质:A∩∁UA=______,A∪∁UA=______,∁U(∁UA)=______.6.充要条件(1)当“如果p,那么q”正确时,我们就说p可推出q,记作______,读作“p推出q”.(2)若p⇒q,但q ⇏ p,则称p是q的____________条件.(3)若q⇒p,但p ⇏ q,则称p是q的____________条件.(4)若p⇒q且q⇒p,则称p是q的______条件,记作p⇔q,读作“p 与q等价”或“p与q互为充要条件”.7.子集与推出的关系一般地,设集合A={x|p},B={x|q},那么A⊆B与______等价;A =B与______等价.8.命题:________________________叫做命题.9.命题的真假:当命题给出的判断正确或符合客观实际时,称该命题真,否则称该命题假.“真”“假”常被称为命题的真值,其中______常用1表示,______常用0表示.注:(1)没有真假意义的语句都不是命题.如感叹句、疑问句、祈使句等等.(2)有的语句,尽管现在或将来也未必能判断真假,但它们所作判断是否符合客观实际这一点是确定的,也把它们算作命题.10.量词:常用的量词有“全称量词”和“存在量词”.(1)全称量词是指任意的,常用的全称量词有“所有”“一切”“每一个”“任何”“任意”等,用符号______表示.(2)存在量词是指存在,常用的存在量词有“存在”“有些”“有一个”“至少有一个”等,用符号______表示.(3)全称命题:__________________叫做全称命题.(4)存在命题:__________________叫做存在命题.11.常用的逻辑联结词:且、或、非,符号分别为∧、∨、﹁. 12.简单命题:不含____________的命题.13.复合命题:由简单命题和逻辑联结词构成的命题叫做复合命题.14.几种常见的复合命题设p,q是两个命题,则(1)“p且q”构成一个新命题,记作“______”,读作“______”;(2)“p或q”构成一个新命题,记作“______”,读作“______”;(3)命题p的非(否定)构成一个新命题,记作“______”,读作“______”.15.常用复合命题的真值表:﹁p﹁q。

高中数学新教材必修第一册第一章 集合与常用逻辑用语基础知识

高中数学新教材必修第一册第一章 集合与常用逻辑用语基础知识

第一章集合与常用逻辑用语1元素:研究的对象统称为元素,用表示元素三大性质:,,.2集合:一些元素组成的叫做集合,简称集,用表示.3集合相等:两个集合BA,的一样,记作BA=.4元素与集合的关系:属于:a A; 不属于:a A.5常用的数集及其记法:自然数集;正整数集;整数集;有理数集;实数集.6集合的表示方法:①列举法:把集合中的所有元素一一列举出来,并用花括号括起来表示集合的方法;①描述法:把集合中所有具有共同特征)P的元素x所组成的集合表示为(x的方法;①图示法(Venn图):用平面上封闭曲线的内部代表集合的方法.7集合间的基本关系:子集:真子集:8空集:不含任何元素的集合,用表示;空集的性质,空集是任何集合的,是任何的真子集.9集合的基本运算:并集;交集;补集(U为全集,全集是含有所研究问题中涉及的所有元素).运算性质:A∪B=B⇔; A∩B=A⇔; A∪∅=;A∩∅=; C U(C U A)=; C U∅=; C U U=;(C U A)∩(C U B)=; (C U A)∪(C U B)=;10充分条件与必要条件:p⇒,称p是q的充分条一般地,“若p,则q”为真命题,p可以推出q,记作q件,q是p的必要条件;p是q的条件的四种类型:若则p是q的充分不必要条件;若则p是q的必要充分不条件;若则p是q的充要条件;若则p是q的既不充分也不必要条件.11全称量词及全称量词命题:短语,在逻辑中叫做全称量词,并用符号表示,含有全称量词的命题成为全称量词命题.12存在量词及存在量词命题:短语,在逻辑中叫做存在量词,并用符号表示,含有存在量词的命题成为存在量词命题.13全称量词命题与存在量词命题的否定:全称量词命题的否定是;存在量词命题的否定是.库尔勒市第四中学。

精品高中数学专题:集合与常用逻辑用语、不等式、函数

精品高中数学专题:集合与常用逻辑用语、不等式、函数

专题二集合与常用逻辑用语、不等式、函数与导数第一讲集合与常用逻辑用语1.集合的概念、运算(1)集合元素的三个特性:确定性、互异性、无序性,是判断某些对象能否构成一个集合或判断两集合是否相等的依据.(2)集合的表示方法:列举法、描述法、图示法.(3)集合间的关系:子集、真子集、空集、集合相等,在集合间的运算中要注意空集的情形.(4)重要结论A∩B=A⇔A⊆B;A∪B=A⇔B⊆A.2.命题(1)两个命题互为逆否命题,它们有相同的真假性;(2)含有量词的命题的否定:∀x∈M,p(x)的否定是∃x∈M,綈p(x);∃x∈M,p(x)的否定是∀x∈M,綈p(x).3.充要条件从逻辑观点看从集合观点看p是q的充分不必要条件(p⇒q,q⇒p)A Bp是q的必要不充分条件(q⇒p,p⇒q)B Ap是q的充要条件(p⇔q)A=Bp是q的既不充分也不必要条件(p⇒q,q⇒p)A与B互不包含1.(2013·辽宁)已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B等于() A.(0,1) B.(0,2] C.(1,2) D.(1,2]答案 D解析A={x|1<x<4},B={x|x≤2},∴A∩B={x|1<x≤2}.2.(2013·北京)“φ=π”是“曲线y=sin(2x+φ)过坐标原点”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 当φ=π时,y =sin(2x +φ)=-sin 2x 过原点.当曲线过原点时,φ=k π,k ∈Z ,不一定有φ=π.∴“φ=π”是“曲线y =sin(2x +φ)过原点”的充分不必要条件.3. (2013·四川)设x ∈Z ,集合A 是奇数集,集合B 是偶数集.若命题p :∀x ∈A,2x ∈B ,则( )A .綈p :∀x ∈A,2x ∈B B .綈p :∀x ∉A,2x ∉BC .綈p :∃x ∉A,2x ∈BD .綈p :∃x ∈A,2x ∉B答案 D解析 命题p :∀x ∈A,2x ∈B 是一个全称命题,其命题的否定綈p 应为∃x ∈A,2x ∉B ,选D. 4. (2013·天津)已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等; ③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号是( )A .①②③B .①②C .①③D .②③答案 C解析 对于命题①,设球的半径为R ,则43π⎝⎛⎭⎫R 23=18·43πR 3,故体积缩小到原来的18,命题正确;对于命题②,若两组数据的平均数相同,则它们的标准差不一定相同,例如数据1,3,5和3,3,3的平均数相同,但标准差不同,命题不正确;对于命题③,圆x 2+y 2=12的圆心(0,0)到直线x +y +1=0的距离d =12=22,等于圆的半径,所以直线与圆相切,命题正确.5. (2013·四川)设P 1,P 2,…,P n 为平面α内的n 个点,在平面α内的所有点中,若点P 到点P 1,P 2,…,P n 的距离之和最小,则称点P 为点P 1,P 2,…,P n 的一个“中位点”.例如,线段AB 上的任意点都是端点A 、B 的中位点.现有下列命题: ①若三个点A ,B ,C 共线,C 在线段AB 上,则C 是A ,B ,C 的中位点; ②直角三角形斜边的中点是该直角三角形三个顶点的中位点; ③若四个点A ,B ,C ,D 共线,则它们的中位点存在且唯一; ④梯形对角线的交点是该梯形四个顶点的唯一中位点. 其中的真命题是________.(写出所有真命题的序号)答案①④解析∵|CA|+|CB|≥|AB|,当且仅当点C在线段AB上等号成立,即三个点A,B,C,∴点C在线段AB上,∴点C是A,B,C的中位点,故①是真命题.如图(1),在Rt△ABC中,∠C=90°,P是AB的中点,CH⊥AB,点P,H不重合,则|PC|>|HC|.又|HA|+|HB|=|P A|+|PB|=|AB|,∴|HA|+|HB|+|HC|<|P A|+|PB|+|PC|,∴点P不是点A,B,C的中位点,故②是假命题.如图(2),A,B,C,D是数轴上的四个点,若P点在线段BC上,则|P A|+|PB|+|PC|+|PD|=|AD|+|BC|,由中位点的定义及①可知,点P是点A,B,C,D的中位点.显然点P 有无数个,故③是假命题.如图(3),由①可知,若点P是点A,C的中位点,则点P在线段AC上,若点P是点B,D的中位点,则点P在线段BD上,∴若点P是点A,B,C,D的中位点,则P是AC,BD的交点,∴梯形对角线的交点是梯形四个顶点的唯一中位点,故④是真命题.题型一集合的概念与运算问题例1(1)(2012·湖北)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为() A.1 B.2 C.3 D.4(2)定义A-B={x|x∈A且x∉B},若M={1,2,3,4,5},N={2,3,6},则N-M等于()A.M B.N C.{1,4,5} D.{6}审题破题(1)先对集合A、B进行化简,注意B中元素的性质,然后根据子集的定义列举全部适合条件的集合C即可.(2)透彻理解A-B的定义是解答本题的关键,要和补集区别开来.答案(1)D(2)D解析(1)由x2-3x+2=0得x=1或x=2,∴A={1,2}.由题意知B={1,2,3,4},∴满足条件的C可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.(2)N -M ={x |x ∈N 且x ∉M }. ∵2∈N 且2∈M ,∴2∉N -M ; 3∈N 且3∈M ,∴3∉N -M ; 6∈N 且6∉M ,∴6∈N -M . ∴故N -M ={6}.反思归纳 (1)解答集合间关系与运算问题的一般步骤:先正确理解各个集合的含义,认清集合元素的属性;再依据元素的不同属性采用不同的方法对集合进行化简求解. (2)两点提醒:①要注意集合中元素的互异性;②当B ⊆A 时,应注意讨论B 是否为∅.变式训练1 (2013·玉溪毕业班复习检测)若集合S ={x |log 2(x +1)>0},T =⎩⎨⎧⎭⎬⎫x |2-x 2+x <0,则S ∩T 等于( )A .(-1,2)B .(0,2)C .(-1,+∞)D .(2,+∞)答案 D解析 S ={x |x +1>1}={x |x >0}, T ={x |x >2或x <-2}. ∴S ∩T ={x |x >2}. 题型二 命题的真假与否定问题 例2 下列叙述正确的个数是( )①l 为直线,α、β为两个不重合的平面,若l ⊥β,α⊥β,则l ∥α;②若命题p :∃x 0∈R ,x 20-x 0+1≤0,则綈p :∀x ∈R ,x 2-x +1>0;③在△ABC 中,“∠A =60°”是“cos A =12”的充要条件;④若向量a ,b 满足a ·b <0,则a 与b 的夹角为钝角. A .1 B .2 C .3 D .4审题破题 判定叙述是否正确,对命题首先要分清命题的条件与结论,再结合涉及知识进行判定;对含量词的命题的否定,要改变其中的量词和判断词. 答案 B解析 对于①,直线l 不一定在平面α外,错误;对于②,命题p 是特称命题,否定时要写成全称命题并改变判断词,正确;③注意到△ABC 中条件,正确;④a ·b <0可能〈a ,b 〉=π,错误.故叙述正确的个数为2. 反思归纳 (1)命题真假的判定方法:①一般命题p 的真假由涉及到的相关知识辨别;②四种命题的真假的判断根据:一个命题和它的逆否命题同真假,而与它的其他两个命题的真假无此规律;③形如p ∨q ,p ∧q ,綈p 命题的真假根据真值表判定.(2)区分命题的否定和否命题;含一个量词的命题的否定一定要改变量词. 变式训练2 给出下列命题:①∀x ∈R ,不等式x 2+2x >4x -3均成立; ②若log 2x +log x 2≥2,则x >1;③“若a >b >0且c <0,则c a >cb”的逆否命题;④若命题p :∀x ∈R ,x 2+1≥1,命题q :∃x ∈R ,x 2-x -1≤0,则命题p ∧綈q 是真命题.其中真命题只有( )A .①②③B .①②④C .①③④D .②③④答案 A解析 ①中不等式可表示为(x -1)2+2>0,恒成立;②中不等式可变为log 2x +1log 2x≥2,得x >1;③中由a >b >0,得1a <1b,而c <0,所以原命题是真命题,则它的逆否命题也为真;④中綈q :∀x ∈R ,x 2-x -1>0,由于x 2-x -1=⎝⎛⎭⎫x -122-54,则存在x 值使x 2-x -1≤0,故綈q 为假命题,则p ∧綈q 为假命题. 题型三 充要条件的判断问题例3 (1)甲:x ≠2或y ≠3;乙:x +y ≠5,则( )A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件,也不是乙的必要条件(2)设命题p :|4x -3|≤1;命题q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是( )A.⎣⎡⎦⎤0,12 B.⎝⎛⎭⎫0,12 C .(-∞,0)∪⎣⎡⎭⎫12,+∞ D .(-∞,0)∪⎝⎛⎭⎫12,+∞ 审题破题 (1)利用逆否命题判别甲、乙的关系;(2)转化为两个集合间的包含关系,利用数轴解决. 答案 (1)B (2)A解析 (1)“甲⇒乙”,即“x ≠2或y ≠3”⇒“x +y ≠5”,其逆否命题为:“x +y =5”⇒“x =2且y =3”显然不正确.同理,可判断命题“乙⇒甲”为真命题.所以甲是乙的必要不充分条件.(2)綈p :|4x -3|>1;綈q :x 2-(2a +1)x +a (a +1)>0,解得綈p :x >1或x <12;綈q :x >a +1或x <a .若綈p ⇐綈q ,则⎩⎪⎨⎪⎧ a ≤12a +1>1或⎩⎪⎨⎪⎧a <12a +1≥1,即0≤a ≤12.反思归纳 (1)充要条件判断的三种方法:定义法、集合法、等价命题法;(2)判断充分、必要条件时应注意的问题:①要弄清先后顺序:“A 的充分不必要条件是B ”是指B 能推出A ,且A 不能推出B ;而“A 是B 的充分不必要条件”则是指A 能推出B ,且B 不能推出A ;②要善于举出反例:如果从正面判断或证明一个命题的正确或错误不易进行时,可以通过举出恰当的反例来说明.变式训练3 (1)(2012·山东)设a >0且a ≠1,则“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 A解析 由题意知函数f (x )=a x 在R 上是减函数等价于0<a <1,函数g (x )=(2-a )x 3在R 上是增函数等价于0<a <1或1<a <2,∴“函数f (x )=a x 在R 上是减函数”是“函数g (x )=(2-a )x 3在R 上是增函数”的充分不必要条件. (2)设A ={x |xx -1<0},B ={x |0<x <m },若B 是A 成立的必要不充分条件,则m 的取值范围是( )A .m <1B .m ≤1C .m ≥1D .m >1答案 D解析 xx -1<0⇔0<x <1.由已知得,0<x <m ⇒0<x <1, 但0<x <1⇒0<x <m 成立. ∴m >1.典例 设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1};②若m =-12,则14≤l ≤1;③若l =12,则-22≤m ≤0.其中正确命题的个数是( )A .0B .1C .2D .3解析 ①m =1时,l ≥m =1且x 2≥1, ∴l =1,故①正确.②m =-12时,m 2=14,故l ≥14.又l ≤1,∴②正确.③l =12时,m 2≤12且m ≤0,则-22≤m ≤0,∴③正确. 答案 D得分技巧 创新性试题中最常见的是以新定义的方式给出试题,这类试题要求在新的情境中使用已知的数学知识分析解决问题,解决这类试题的关键是透彻理解新定义,抓住新定义的本质,判断给出的各个结论,适当的时候可以通过反例推翻其中的结论. 阅卷老师提醒 在给出的几个命题中要求找出其中正确命题类的试题实际上就是一个多项选择题,解答这类试题时要对各个命题反复进行推敲,确定可能正确的要进行严格的证明,确定可能错误的要举出反例,这样才能有效避免答错试题.1. 已知集合A ={x |x 2+x -2=0},B ={x |ax =1},若A ∩B =B ,则a 等于( )A .-12或1 B .2或-1C .-2或1或0D .-12或1或0答案 D解析 依题意可得A ∩B =B ⇔B ⊆A . 因为集合A ={x |x 2+x -2=0}={-2,1},当x =-2时,-2a =1,解得a =-12;当x =1时,a =1;又因为B 是空集时也符合题意,这时a =0,故选D.2. (2013·浙江)已知函数f (x )=A cos(ωx +φ)(A >0,ω>0,φ∈R ),则“f (x )是奇函数”是“φ= π2”的 ( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件答案 B解析 φ=π2⇒f (x )=A cos ⎝⎛⎭⎫ωx +π2=-A sin ωx 为奇函数,∴“f (x )是奇函数”是“φ=π2”的必要条件.又f (x )=A cos(ωx +φ)是奇函数⇒f (0)=0⇒φ=π2+k π(k ∈Z )⇒φ=π2.∴“f (x )是奇函数”不是“φ=π2”的充分条件.3. (2012·辽宁)已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))·(x 2-x 1)≥0,则綈p 是( )A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 答案 C解析 根据全称命题的否定是特称命题知. 綈p :∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0.4. 已知集合P ={x |x 2≤1},M ={a }.若P ∪M =P ,则a 的取值范围为( ) A .(-∞,-1] B .[1,+∞)C .[-1,1]D .(-∞,-1]∪[1,+∞)答案 C解析 由P ={x |x 2≤1}得P ={x |-1≤x ≤1}. 由P ∪M =P 得M ⊆P .又M ={a },∴-1≤a ≤1. 5. 下列命题中错误的是( )A .命题“若x 2-5x +6=0,则x =2”的逆否命题是“若x ≠2,则x 2-5x +6≠0”B .若x ,y ∈R ,则“x =y ”是“xy ≤⎝⎛⎭⎫x +y 22中等号成立”的充要条件 C .已知命题p 和q ,若p ∨q 为假命题,则命题p 与q 中必一真一假 D .对命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,x 2+x +1≥0 答案 C解析 易知选项A ,B ,D 都正确;选项C 中,若p ∨q 为假命题,根据真值表,可知p ,q 必都为假,故C 错.专题限时规范训练一、选择题1. (2013·陕西)设全集为R ,函数f (x )=1-x 2的定义域为M ,则∁R M 为( )A .[-1,1]B .(-1,1)C .(-∞,-1]∪[1,+∞)D .(-∞,-1)∪(1,+∞) 答案 D解析 由题意得M =[-1,1],则∁R M =(-∞,-1)∪(1,+∞).2. (2013·山东)给定两个命题p ,q .若綈p 是q 的必要而不充分条件,则p 是綈q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件答案 A解析 由题意知:綈p ⇐q ⇔(逆否命题)p ⇒綈q .3. (2012·湖南)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α ≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4答案 C解析 由命题与其逆否命题之间的关系可知,原命题的逆否命题是:若tan α≠1,则α≠π4.4. (2012·湖北)命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是( )A .∃x 0D ∈∁R Q ,x 30∈QB .∃x 0∈∁R Q ,x 30D ∈C .∀xD ∈∁R Q ,x 3∈Q D .∀x ∈∁R Q ,x 3D ∈Q 答案 D解析 “∃”的否定是“∀”,x 3∈Q 的否定是x 3D ∈Q .命题“∃x 0∈∁R Q ,x 30∈Q ”的否定是“∀x ∈∁R Q ,x 3D ∈Q ”.5. 设集合A ={x ∈R |x -2>0},B ={x ∈R |x <0},C ={x ∈R |x (x -2)>0},则“x ∈A ∪B ”是“x ∈C ”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件答案 C解析 A ={x |x -2>0}={x |x >2}=(2,+∞),B ={x |x <0}=(-∞,0),∴A ∪B =(-∞,0)∪(2,+∞),C ={x |x (x -2)>0}={x |x <0或x >2}=(-∞,0)∪(2,+∞).A ∪B =C .∴“x ∈A ∪B ”是“x ∈C ”的充要条件. 6. 下列关于命题的说法中错误的是( )A .对于命题p :∃x ∈R ,使得x 2+x +1<0,则綈p :∀x ∈R ,均有x 2+x +1≥0B .“x =1”是“x 2-3x +2=0”的充分不必要条件C .命题“若x 2-3x +2=0,则x =1”的逆否命题为:“若x ≠1,则x 2-3x +2≠0”D .若p ∧q 为假命题,则p ,q 均为假命题 答案 D解析 对于A ,命题綈p :∀x ∈R ,均有x 2+x +1≥0,因此选项A 正确.对于B ,由x =1可得x 2-3x +2=0;反过来,由x 2-3x +2=0不能得知x =1,此时x 的值可能是2,因此“x =1”是“x 2-3x +2=0”的充分不必要条件,选项B 正确.对于C ,原命题的逆否命题是:“若x ≠1,则x 2-3x +2≠0”,因此选项C 正确.7. 已知p :2xx -1<1,q :(x -a )(x -3)>0,若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是( )A .(-∞,1)B .[1,3]C .[1,+∞)D .[3,+∞)答案 C解析 2xx -1-1<0⇒x +1x -1<0⇒(x -1)(x +1)<0⇒p :-1<x <1.当a ≥3时,q :x <3或x >a ;当a <3时,q :x <a 或x >3.綈p 是綈q 的必要不充分条件,即p 是q 的充分不必要条件,即p ⇒q 且q ⇒,从而可推出a 的取值范围是a ≥1. 8. 下列命题中是假命题的是( )A .存在α,β∈R ,使tan(α+β)=tan α+tan βB .对任意x >0,有lg 2x +lg x +1>0C .△ABC 中,A >B 的充要条件是sin A >sin BD .对任意φ∈R ,函数y =sin(2x +φ)都不是偶函数 答案 D解析 对于A ,当α=β=0时,tan(α+β)=0=tan α+tan β,因此选项A 是真命题;对于B ,注意到lg 2x +lg x +1=⎝⎛⎭⎫lg x +122+34≥34>0,因此选项B 是真命题;对于C ,在△ABC 中,由A >B ⇔a >b ⇔2R sin A >2R sin B ⇔sin A >sin B (其中R 是△ABC 的外接圆半径),因此选项C 是真命题;对于D ,注意到当φ=π2时,y =sin(2x +φ)=cos 2x 是偶函数,因此选项D 是假命题.综上所述,选D. 二、填空题9. 已知集合A ={x ∈R ||x -1|<2},Z 为整数集,则集合A ∩Z 中所有元素的和等于________.答案 3解析 A ={x ∈R ||x -1|<2}={x ∈R |-1<x <3}, 集合A 中包含的整数有0,1,2,故A ∩Z ={0,1,2}. 故A ∩Z 中所有元素之和为0+1+2=3.10.设集合M ={y |y -m ≤0},N ={y |y =2x -1,x ∈R },若M ∩N ≠∅,则实数m 的取值范围是________.答案 (-1,+∞)解析 M ={y |y ≤m },N ={y |y >-1},结合数轴易知m >-1.11. 已知命题p :“∀x ∈[1,2],12x 2-ln x -a ≥0”是真命题,则实数a 的取值范围是________. 答案 ⎝⎛⎦⎤-∞,12 解析 命题p :a ≤12x 2-ln x 在[1,2]上恒成立,令f (x )=12x 2-ln x ,f ′(x )=x -1x=(x -1)(x +1)x ,当1<x <2时,f ′(x )>0,∴f (x )min =f (1)=12,∴a ≤12. 12.给出下列命题:①“数列{a n }为等比数列”是“数列{a n a n +1}为等比数列”的充分不必要条件;②“a =2”是“函数f (x )=|x -a |在区间[2,+∞)上为增函数”的充要条件;③“m =3”是“直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直”的充要条件; ④设a ,b ,c 分别是△ABC 三个内角A ,B ,C 所对的边,若a =1,b =3,则“A =30°”是“B =60°”的必要不充分条件.其中真命题的序号是________.(写出所有真命题的序号)答案 ①④解析 对于①,当数列{a n }是等比数列时,易知数列{a n a n +1}是等比数列;但当数列 {a n a n +1}是等比数列时,数列{a n }未必是等比数列,如数列1,3,2,6,4,12,8显然不是等比数列,而相应的数列3,6,12,24,48,96是等比数列,因此①正确.对于②,当a ≤2时,函数f (x )=|x -a |在区间[2,+∞)上是增函数,因此②不正确.对于③,当m =3时,相应的两条直线垂直;反过来,当这两条直线垂直时,不一定能得出m =3,也可能得出m =0,因此③不正确.对于④,由题意,得b a =sin B sin A =3,当B =60°时,有sin A =12,注意到b >a ,故A =30°;但当A =30°时,有sin B =32,B =60°或B =120°,因此④正确. 三、解答题13.已知函数f (x )= 6x +1-1的定义域为集合A ,函数g (x )=lg(-x 2+2x +m )的定义域为集合B .(1)当m =3时,求A ∩(∁R B );(2)若A ∩B ={x |-1<x <4},求实数m 的值.解 A ={x |-1<x ≤5},(1)当m =3时,B ={x |-1<x <3},则∁R B ={x |x ≤-1或x ≥3},∴A ∩(∁R B )={x |3≤x ≤5}.(2)∵A ={x |-1<x ≤5},A ∩B ={x |-1<x <4},故4是方程-x 2+2x +m =0的一个根,∴有-42+2×4+m =0,解得m =8.此时B ={x |-2<x <4},符合题意.因此实数m 的值为8.14.设集合A ={x |-2-a <x <a ,a >0},命题p :1∈A ,命题q :2∈A .若p ∨q 为真命题,p ∧q为假命题,求a 的取值范围.解 由命题p :1∈A ,得⎩⎨⎧ -2-a <1,a >1.解得a >1. 由命题q :2∈A ,得⎩⎨⎧-2-a <2,a >2.解得a >2. 又∵p ∨q 为真命题,p ∧q 为假命题,即p 真q 假或p 假q 真, 当p 真q 假时,⎩⎪⎨⎪⎧ a >1,a ≤2,即1<a ≤2, 当p 假q 真时,⎩⎪⎨⎪⎧ a ≤1,a >2,无解. 故所求a 的取值范围为(1,2].。

高中数学第一章集合与常用逻辑用语知识汇总大全(带答案)

高中数学第一章集合与常用逻辑用语知识汇总大全(带答案)

高中数学第一章集合与常用逻辑用语知识汇总大全单选题1、已知集合A={(x,y)||x|+|y|≤2,x∈Z,y∈Z},则A中元素的个数为()A.9B.10C.12D.13答案:D分析:利用列举法列举出集合A中所有的元素,即可得解.由题意可知,集合A中的元素有:(−2,0)、(−1,−1)、(−1,0)、(−1,1)、(0,−2)、(0,−1)、(0,0)、(0,1)、(0,2)、(1,−1)、(1,0)、(1,1)、(2,0),共13个.故选:D.2、已知集合S={s|s=2n+1,n∈Z},T={t|t=4n+1,n∈Z},则S∩T=()A.∅B.S C.T D.Z答案:C分析:分析可得T⊆S,由此可得出结论.任取t∈T,则t=4n+1=2⋅(2n)+1,其中n∈Z,所以,t∈S,故T⊆S,因此,S∩T=T.故选:C.3、设集合A={x|−2<x<4},B={2,3,4,5},则A∩B=()A.{2}B.{2,3}C.{3,4}D.{2,3,4}答案:B分析:利用交集的定义可求A∩B.由题设有A∩B={2,3},故选:B .4、以下五个写法中:①{0}∈{0,1,2};②∅⊆{1,2};③∅∈{0};④{0,1,2}={2,0,1};⑤0∈∅;正确的个数有()A.1个B.2个C.3个D.4个答案:B分析:根据元素与集合以及集合与集合之间的关系表示方法作出判断即可.对于①:是集合与集合的关系,应该是{0}⊆{0,1,2},∴①不对;对于②:空集是任何集合的子集,∅⊆{1,2},∴②对;对于③:∅是一个集合,是集合与集合的关系,∅⊆{0},∴③不对;对于④:根据集合的无序性可知{0,1,2}={2,0,1},∴④对;对于⑤:∅是空集,表示没有任何元素,应该是0∉∅,∴⑤不对;正确的是:②④.故选:B.5、已知集合A={x|-1<x<1},B={x|0≤x≤2},则A∪B=()A.{x|0≤x<1}B.{x|-1<x≤2}C.{x|1<x≤2}D.{x|0<x<1}答案:B分析:由集合并集的定义可得选项.解:由集合并集的定义可得A∪B={x|-1<x≤2},故选:B.6、集合A={x|x<−1或x≥1},B={x|ax+2≤0},若B⊆A,则实数a的取值范围是()A.[−2,2]B.[−2,2)C.(−∞,−2)∪[2,+∞)D.[−2,0)∪(0,2)答案:B分析:分B=∅与B≠∅两种情况讨论,分别求出参数的取值范围,最后取并集即可;解:∵B⊆A,∴①当B=∅时,即ax+2≤0无解,此时a=0,满足题意.②当B≠∅时,即ax+2≤0有解,当a>0时,可得x≤−2a,要使B⊆A,则需要{a>0−2a<−1,解得0<a<2.当a<0时,可得x≥−2a ,要使B⊆A,则需要{a<0−2a≥1,解得−2≤a<0,综上,实数a的取值范围是[−2,2).故选:B.7、在下列命题中,是真命题的是()A.∃x∈R,x2+x+3=0B.∀x∈R,x2+x+2>0C.∀x∈R,x2>|x|D.已知A={a∣a=2n},B={b∣b=3m},则对于任意的n,m∈N∗,都有A∩B=∅答案:B分析:可通过分别判断选项正确和错误,来进行选择/选项A,∃x∈R,x2+x+3=0,即x2+x+3=0有实数解,所以Δ=1−12=−11<0,显然此方程无实数解,故排除;选项B,∀x∈R,x2+x+2>0,x2+x+2=(x+12)2+74≥74>0,故该选项正确;选项C,∀x∈R,x2>|x|,而当x=0时,0>0,不成立,故该选项错误,排除;选项D,A={a∣a=2n},B={b∣b=3m},当n,m∈N∗时,当a、b取得6的正整数倍时,A∩B≠∅,所以,该选项错误,排除.故选:B.8、设集合A={2,a2−a+2,1−a},若4∈A,则a的值为().A.−1,2B.−3C.−1,−3,2D.−3,2答案:D分析:由集合中元素确定性得到:a=−1,a=2或a=−3,通过检验,排除掉a=−1.由集合中元素的确定性知a2−a+2=4或1−a=4.当a2−a+2=4时,a=−1或a=2;当1−a=4时,a=−3.当a=−1时,A={2,4,2}不满足集合中元素的互异性,故a=−1舍去;当a=2时,A={2,4,−1}满足集合中元素的互异性,故a=2满足要求;当a =−3时,A ={2,14,4}满足集合中元素的互异性,故a =−3满足要求.综上,a =2或a =−3.故选:D .多选题9、已知集合A ={x ∣1<x <2},B ={x ∣2a −3<x <a −2},下列命题正确的是A .不存在实数a 使得A =B B .存在实数a 使得A ⊆BC .当a =4时,A ⊆BD .当0⩽a ⩽4时,B ⊆AE .存在实数a 使得B ⊆A答案:AE分析:利用集合相等判断A 选项错误,由A ⊆B 建立不等式组,根据是否有解判断B 选项;a =4时求出B ,判断是否A ⊆B 可得C 错误,分B 为空集,非空集两种情况讨论可判断D 选项,由D 选项判断过程可知E 选项正确.A 选项由相等集合的概念可得{2a −3=1a −2=2解得a =2且a =4,得此方程组无解, 故不存在实数a 使得集合A=B ,因此A 正确;B 选项由A ⊆B ,得{2a −3≤1a −2≥2即{a ≤2a ≥4,此不等式组无解,因此B 错误; C 选项当a =4时,得B ={x ∣5<x <2}为空集,不满足A ⊆B ,因此C 错误;D 选项当2a −3≥a −2,即a ≥1时,B =∅⊆A ,符合B ⊆A ;当a <1时,要使B ⊆A ,需满足{2a −3≥1a −2≤2解得2≤a ≤4,不满足a <1,故这样的实数a 不存在,则当0≤a ≤4时B ⊆A 不正确,因此D 错误; E 选项由D 选项分析可得存在实数a 使得B ⊆A ,因此E 正确.综上AE 选项正确.故选:AE.小提示:本题主要考查了集合相等,子集的概念,考查了推理运算能力,属于中档题.10、已知p 是r 的充分条件而不是必要条件,q 是r 的充分条件,s 是r 的必要条件,q 是s 的必要条件.现有下列命题:①s 是q 的充要条件;②p 是q 的充分条件而不是必要条件;③r 是q 的必要条件而不是充分条件;④¬p 是¬s 的必要条件而不是充分条件;则正确命题序号是 ( )A.①B.②C.③D.④答案:ABD分析:根据题设有p⇒r⇔s⇔q,但r⇏p,即知否定命题的推出关系,判断各项的正误. 由题意,p⇒r⇔s⇔q,但r⇏p,故①②正确,③错误;所以,根据等价关系知:¬s⇔¬q⇔¬r⇒¬p且¬p⇏¬r,故④正确.故选:ABD11、已知x,y,z为非零实数,代数式x|x|+y|y|+z|z|+|xyz|xyz的值所组成的集合是M,则下列判断正确的是()A.0∉M B.2∈M C.−4∈M D.4∈M答案:CD分析:讨论x,y,z的正负数分布情况判断对应代数式的值,即可确定集合M,进而确定正确的选项.当x,y,z均为负数时,x|x|+y|y|+z|z|+|xyz|xyz=−4;当x,y,z两负一正时,x|x|+y|y|+z|z|+|xyz|xyz=0;当x,y,z两正一负时,x|x|+y|y|+z|z|+|xyz|xyz=0;当x,y,z均为正数时,x|x|+y|y|+z|z|+|xyz|xyz=4;∴M={−4,0,4},A、B错误,C、D正确.故选:CD12、已知集合A={y|y=x2+1},集合B={(x,y)|y=x2+1},下列关系正确的是().A.(1,2)∈B B.A=B C.0∉A D.(0,0)∉B答案:ACD分析:根据集合的定义判断,注意集合中代表元形式.由已知集合A={y}y≥1}=[1,+∞),集合B是由抛物线y=x2+1上的点组成的集合,A正确,B错,C正确,D正确,故选:ACD.小提示:本题考查集合的概念,确定集合中的元素是解题关键.13、对任意实数a,b,c,下列命题中真命题是()A.a=b是ac=bc的充要条件B.“a+5是无理数”是“a是无理数”的充要条件C.a>b是a2>b2的充要条件D.a<5是a<3的必要条件答案:BD分析:利用充分条件和必要条件的定义进行判断解:∵“a=b”⇒“ac=bc”为真命题,但当c=0时,“ac=bc”⇒“a=b”为假命题,故“a=b”是“ac=bc”的充分不必要条件,故A为假命题;∵“a+5是无理数”⇒“a是无理数”为真命题,“a是无理数”⇒“a+5是无理数”也为真命题,故“a+5是无理数”是“a是无理数”的充要条件,故B为真命题;∵“a>b”⇒“a2>b2”为假命题,“a2>b2”⇒“a>b”也为假命题,故“a>b”是“a2>b2”的既不充分也不必要条件,故C为假命题;∵{a|a<3}{a|a<5},故“a<5”是“a<3”的必要不充分条件,故D为真命题.故选:BD.填空题14、已知A={x∈R|2a≤x≤a+3},B={x∈R|x<-1或x>4},若A⊆B,则实数a的取值范围是________.答案:a<-4或a>2分析:按集合A为空集和不是空集两种情况去讨论即可求得实数a的取值范围.①当a>3即2a>a+3时,A=∅,满足A⊆B;.②当a≤3即2a≤a+3时,若A⊆B,则有{2a≤a+3a+3〈−1或2a〉4,解得a<-4或2<a≤3综上,实数a的取值范围是a<-4或a>2.所以答案是:a<-4或a>215、命题“∃x∈R,x≥1或x>2”的否定是__________.答案:∀x∈R,x<1根据含有量词的命题的否定,即可得到命题的否定分析:特称命题的否定是全称命题,∴命题“∃x∈R,x≥1或x>2”的等价条件为:“∃x∈R,x≥1”,∴命题的否定是:∀x∈R,x<1.所以答案是:∀x∈R,x<1.16、用符号∈或∉填空:3.1___N,3.1___Z, 3.1____N∗,3.1____Q,3.1___R.答案:∉∉∉∈∈分析:由元素与集合的关系求解即可因为3.1不是自然数,也不是整数,也不是正整数,是有理数,也是实数,所以有:3.1∉N;3.1∉Z;3.1∉N∗;3.1∈Q;3.1∈R.所以答案是:∉,∉,∉,∈,∈.解答题17、已知m>0,p:(x+1)(x−5)≤0,q:1−m≤x≤1+m.(1)若m=5,p∨q为真命题,p∧q为假命题,求实数x的取值范围;(2)若p是q的充分条件,求实数m的取值范围.答案:(1){x|−4≤x<−1或5<x≤6};(2)[4,+∞).分析:(1)由“p∨q”为真命题,“p∧q”为假命题,可得p与q一真一假,然后分p真q假,p假q真,求解即可;(2)由p是q的充分条件,可得[−1,5]⊆[1−m,1+m],则有{m>01−m≤−11+m≥5,从而可求出实数m的取值范围(1)当m=5时,q:−4≤x≤6,因为“p∨q”为真命题,“p∧q”为假命题,故p与q一真一假,若p真q假,则{−1≤x≤5x<−4或x>6,该不等式组无解;若p假q真,则{x<−1或x>5−4≤x≤6,得−4≤x<−1或5<x≤6,综上所述,实数的取值范围为{x|−4≤x<−1或5<x≤6};(2)因为p是q的充分条件,故[−1,5]⊆[1−m,1+m],故{m>01−m≤−11+m≥5,得m≥4,故实数m的取值范围为[4,+∞).18、已知集合A={x|2<x<4},B={x|a<x<3a}.(1)若A∩B={x|3<x<4},求实数a的值;(2)若A∩B=∅,求实数a的取值范围.答案:(1)3(2){a|a≤23或a≥4}分析:(1)根据交集结果直接判断即可.(2)按B=∅,B≠∅讨论,简单计算即可得到结果. (1)因为A∩B={x|3<x<4},所以a=3.(2)因为A∩B=∅,所以可分两种情况讨论:B=∅,B≠∅. 当B=∅时,有a≥3a,解得a≤0;当B≠∅时,有{a>0a≥4或3a≤2,解得a≥4或0<a≤23.综上,实数a的取值范围是{a|a≤23或a≥4}.。

2019新人教版高中数学必修第一册第1章集合与常用逻辑用语知识点总结

2019新人教版高中数学必修第一册第1章集合与常用逻辑用语知识点总结

2019新人教版高中数学必修第一册第1章集合与常用逻辑用语知识点总结的表示法是将a放在大括号中,表示一个只含有a这一个元素的集合。

2)描述法中,要注意符号的使用和表达的准确性。

3)在交集与并集的性质中,要注意交集和并集的交换律和结合律。

4)在全集和补集的性质中,要注意补集的定义和符号的使用。

第一章集合和常用逻辑用语1.1 集合的含义和表示集合是由一些元素组成的总体。

元素具有确定性、互异性和无序性。

我们通常用大写的拉丁字母A、B、C等表示集合,用小写拉丁字母a、b、c等表示元素。

如果元素x在集合A中,我们称x属于A,记为x∈A,否则称x不属于A,记作x∉A。

常用的数集有非负整数集(即自然数集)记作N,正整数集记作N*或N+,整数集记作Z,有理数集记作Q,实数集记作R。

集合的表示法有列举法、描述法和图示法。

列举法是把集合中的元素一一列举出来,然后用一个大括号括上。

描述法是用集合所含元素的公共特征表示集合的方法,可以用语言描述法和数学式子描述法。

图示法是用Venn图表示集合和元素之间的关系。

1.2 集合间的基本关系集合间有“包含”关系和“相等”关系。

如果集合A中的任何一个元素都是集合B中的元素,则A叫做B的子集,记为A⊆B,例如N⊆Z。

子集的个数为2的n次方(n为集合中元素个数)。

如果A是B的子集,而且B中存在元素不属于A,则A叫B的真子集。

真子集的个数为2的n次方减1(n为集合中元素个数)。

如果A是B的子集,B也是A的子集,则称A与B相等。

空集是不含任何元素的集合,用∅来表示。

空集∅是任何集合的子集,是任何非空集合的真子集。

1.3 集合的基本运算集合有交集和并集两种基本运算。

交集是指集合A和集合B中共同拥有的元素组成的集合,记为A∩B。

并集是指集合A和集合B中所有元素组成的集合,记为A∪B。

交集和并集有交换律和结合律。

全集是指包含所有元素的集合,通常用U来表示。

补集是指集合A中不属于集合B的元素组成的集合,记为CBA。

高中数学集合与常用逻辑用语知识点总结PPT课件

高中数学集合与常用逻辑用语知识点总结PPT课件

【注意】 (1)从集合的观点看,全称量词命题是陈述某集合中所有元素都具有某种 性质的命题; (2)一个全称量词命题可以包含多个变量; (3)有些全称量词命题中的全称量词是省略的,理解时需要把它补出来。 如:命题“平行四边形对角线互相平行”理解为“所有平行四边形对角线 都互相平行”。
2、存在量词与存在量词命题 (1)存在量词:短语“存在一个”“至少有一个”在逻辑中通常叫作存在 量词,并用符号“图片”表示. 【注意】常见的存在量词还有“有些”、“有一个”、“对某些”、“有 的”等; (2)存在量词命题:含有存在量词的命题,叫作存在量词命题。
2、集合运算中的常用二级结论(1)并集的性质:A∪∅=A;A∪A=A;A∪B= B∪A;A∪B=A⇔B⊆A. (2)交集的性质:A∩∅=∅;A∩A=A;A∩B=B∩A;A∩B=A⇔A⊆B. (3)补集的性质:A∪(∁UA)=U;A∩(∁UA)=∅.∁U(∁UA)=A;∁U(A∪B)= (∁UA)∩(∁UB);∁U(A∩B)=(∁UA)∪(∁UB).
【注意】 (1)从集合的观点看,存在量词命题是陈述某集合中有一些 元素具有某种性质的命题; (2)一个存在量词命题可以包含多个变量; (3)有些命题虽然没有写出存在量词,但其意义具备“存 在”、“有一个”等特征都是存在量词命题
3、命题的否定:对命题p加以否定,得到一个新的命题,记作“图片”, 读作“非p”或p的否定.
知识点5 全称量词与存在量词 1、全称量词与全称量词命题 (1)全称量词:短语“所有的”“任意一个”在逻辑中通常 叫作全称量词,并用符号“图片”表示.
【注意】 (1)全称量词的数量可能是有限的,也可能是无限的,由有 题目而定; (2)常见的全称量词还有“一切”、“任给”等,相应的词 语是“都” (2)全称量词命题:含有全称量词的命题,称为全称量词命 题.

知识点-集合与常用逻辑用语

知识点-集合与常用逻辑用语

知识点——集合与常用逻辑用语【知识梳理】一、集合及其运算1.集合与元素(1)集合中元素的三个特征:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于两种,用符号∈或∉表示.(3)集合的表示法:列举法、描述法、图示法.(4)常见数集的记法集合自然数集正整数集整数集有理数集实数集符号N N*(或N+)Z Q R 2.集合间的基本关系关系自然语言符号语言Venn图子集集合A中所有元素都在集合B中(即若x∈A,则x∈B)A⊆B(或B⊇A)真子集集合A是集合B的子集,且集合B中至少有一个元素不在集合A中A⊊B(或B⊋A)集合相等集合A,B中的元素相同或集合A,B互为子集A=B3.集合的基本运算运算自然语言符号语言Venn图交集由属于集合A且属于集合B的所有元素组成的集合A∩B={x|x∈A且x∈B}并集由所有属于集合A或属于集合B的元素组成的集合A∪B={x|x∈A或x∈B}补集由全集U中不属于集合A的所有元素组成的集合∁U A={x|x∈U且x∉A}【知识拓展】1.若有限集A中有n个元素,则集合A的子集个数为2n,真子集的个数为2n-1. 2.A⊆B⇔A∩B=A⇔A∪B=B.3.A∩(∁U A)=∅;A∪(∁U A)=U;∁U(∁U A)=A.二、命题及其关系、充分条件与必要条件1.四种命题及相互关系2.四种命题的真假关系(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题互为逆命题或互为否命题,它们的真假性没有关系. 3.充分条件与必要条件(1)如果p ⇒q ,则p 是q 的充分条件,同时q 是p 的必要条件; (2)如果p ⇒q ,但qp ,则p 是q 的充分不必要条件;(3)如果p ⇒q ,且q ⇒p ,则p 是q 的充要条件; (4)如果q ⇒p ,且p q ,则p 是q 的必要不充分条件; (5)如果p q ,且qp ,则p 是q 的既不充分也不必要条件.【知识拓展】1.两个命题互为逆否命题,它们具有相同的真假性. 2.若A ={x |p (x )},B ={x |q (x )},则 (1)若A ⊆B ,则p 是q 的充分条件; (2)若A ⊇B ,则p 是q 的必要条件; (3)若A =B ,则p 是q 的充要条件; (4)若A ⊊B ,则p 是q 的充分不必要条件; (5)若A ⊋B ,则p 是q 的必要不充分条件; (6)若A B 且A ⊉B ,则p 是q 的既不充分也不必要条件.【易错提醒】1.描述法表示集合时,一定要理解好集合的含义——抓住集合的代表元素.如:{x |y =lg x }——函数的定义域;{y |y =lg x }——函数的值域;{(x ,y )|y =lg x }——函数图象上的点集.2.易混淆0,∅,{0}:0是一个实数;∅是一个集合,它含有0个元素;{0}是以0为元素的单元素集合,但是0∉∅,而∅⊆{0}.3.集合的元素具有确定性、无序性和互异性,在解决有关集合的问题时,尤其要注意元素的互异性. 4.空集是任何集合的子集.由条件A ⊆B ,A ∩B =A ,A ∪B =B 求解集合A 时,务必分析研究A =∅的情况. 5.区分命题的否定与否命题,已知命题为“若p ,则q ”,则该命题的否定为“若p ,则q ⌝”,其否命题为“若p ⌝,则q ⌝”.6.对充分、必要条件问题,首先要弄清谁是条件,谁是结论.【必会习题】1.已知集合A={1,3,m},B={1,m},A∪B=A,则m等于()A.0或 3 B.0或3 C.1或 3 D.1或3答案 B解析∵A∪B=A,∴B⊆A,∴m∈{1,3,m},∴m=1或m=3或m=m,由集合中元素的互异性易知m=0或m=3.2.设集合A={x|1<x<2},B={x|x<a},若A⊆B,则a的取值范围是()A.{a|a≥2} B.{a|a≤1} C.{a|a≥1} D.{a|a≤2}答案 A解析若A⊆B,则a≥2,故选A.3.已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N等于()A.{x|-3<x<5} B.{x|-5<x<5} C.{x|x<-5或x>-3} D.{x|x<-3或x>5} 答案 C解析在数轴上表示集合M、N,则M∪N={x|x<-5或x>-3},故选C.4.满足条件{a}⊆A⊆{a,b,c}的所有集合A的个数是()A.1 B.2 C.3 D.4答案 D解析满足题意的集合A可以为{a},{a,b},{a,c},{a,b,c},共4个.5.已知集合U=R(R是实数集),A={x|-1≤x≤1},B={x|x2-2x<0},则A∪(∁U B)等于() A.[-1,0] B.[1,2] C.[0,1] D.(-∞,1]∪[2,+∞)答案 D解析B={x|x2-2x<0}=(0,2),A∪(∁U B)=[-1,1]∪(-∞,0]∪[2,+∞)=(-∞,1]∪[2,+∞),故选D.6.“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件答案 B解析ln(x+1)<0,解得0<x+1<1,∴-1<x<0,所以“x<0”是“-1<x<0”的必要不充分条件.7.给出以下四个命题: ①若ab ≤0,则a ≤0或b ≤0; ②若a >b ,则am 2>bm 2;③在△ABC 中,若sin A =sin B ,则A =B ;④在一元二次方程ax 2+bx +c =0中,若b 2-4ac <0,则方程有实数根. 其中原命题、逆命题、否命题、逆否命题全都是真命题的是( ) A .① B .② C .③ D .④ 答案 C8.设U 为全集,对集合A ,B 定义运算“*”,A *B =∁U (A ∩B ),若X ,Y ,Z 为三个集合,则(X *Y )*Z 等于( )A .(X ∪Y )∩∁U ZB .(X ∩Y )∪∁U ZC .(∁U X ∪∁U Y )∩ZD .(∁U X ∩∁U Y )∪Z 答案 B解析 ∵X *Y =∁U (X ∩Y ),∴对于任意集合X ,Y ,Z , ( X *Y )*Z =∁U (X ∩Y )*Z =∁U [∁U (X ∩Y )∩Z ]=(X ∩Y )∪∁U Z .9.已知M 是不等式ax +10ax -25≤0的解集且5∉M ,则a 的取值范围是________________.答案 (-∞,-2)∪[5,+∞) 解析 若5∈M ,则5a +105a -25≤0,∴(a +2)(a -5)≤0且a ≠5,∴-2≤a <5, ∴5∉M 时,a <-2或a ≥5.10.设命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0;命题q :实数x 满足x 2+2x -8>0,若q 是p 的必要不充分条件,则实数a 的取值范围是________. 答案 (-∞,-4]解析 由命题q :实数x 满足x 2+2x -8>0,得x <-4或x >2,由命题p :实数x 满足x 2-4ax +3a 2<0,其中a <0,得(x -3a )(x -a )<0,∵a <0,∴3a <x <a , ∵q 是p 的必要不充分条件,∴a ≤-4,∴a ∈(-∞,-4].11.已知命题p :⎪⎪⎪⎪1-x +12≤1,命题q :x 2-2x +1-m 2<0(m >0),若p 是q 的充分不必要条件,则实数m的取值范围是________. 答案 (2,+∞)解析 ∵⎪⎪⎪⎪⎪⎪1-x +12≤1⇔-1≤x +12-1≤1⇔0≤x +12≤2⇔-1≤x ≤3,∴p :-1≤x ≤3;∵x 2-2x +1-m 2<0(m >0)⇔[x -(1-m )][x -(1+m )]<0⇔1-m <x <1+m ,∴q :1-m <x <1+m . ∵p 是q 的充分不必要条件,∴[-1,3]是(1-m,1+m )的真子集,则⎩⎪⎨⎪⎧1-m <-1,1+m >3,解得m >2.。

集合与常用逻辑用语,函数知识总结大全

集合与常用逻辑用语,函数知识总结大全

第一章集合与常用逻辑用语知识结构【知识概要】一、集合的概念、关系与运算1. 集合中元素的特性:确定性、互异性、无序性•在应用集合的概念求解集合问题时,要特别注意这三个性质在解题中的应用,元素的互异性往往就是检验的重要依据。

2. 集合的表示方法:列举法、描述法.有的集合还可用Venn图表示,用专用符号表示,如N, N , N , Z, R,Q,等。

3. 元素与集合的关系:我们把研究对象统称为元素,把一些元素组成的总体叫做集合,若元素x是集合A的元素,贝U x A,否则x A。

4. 集合与集合之间的关系:①子集:若x A,则x B,此时称集合A是集合B的子集,记作A B。

②真子集:若A B,且存在元素x B,且x A,则称A是B的真子集,记作:A B.③相等:若A B,且A B,则称集合A与B相等,记作A= B.。

5. 集合的基本运算:①交集:AI B x x A且x B ②并集:AUB {xx A或x B}③补集:C U A {x|x U,且x A},其中U为全集,A U。

6. 集合运算中常用结论:①AI A A,AI,AI B BI A, AI B A A B。

②AUA A,AU A, AUB BUA, AUB A B A。

④由n个元素所组成的集合,其子集个数为2n个。

③ AU(C U A)U , (C U A)I AC u(AI B)(C U A)U(C U B), C U(AUB)(C U A)I(C U B)。

④由n个元素所组成的集合,其子集个数为2n个。

⑤空集是任何集合的子集,即A。

若p,则q 若q,则p 在解题中要特别留意空集的特殊性,它往往就是导致我们在解题中出现错误的一个对象,避免因忽视空集而出现错误。

• 7 .含参数的集合问题是本部分的一个重要题型,应多根据集合元素的互异性挖掘题目的隐含条件,并注意分类讨论思想、数形结合思想在解题中的运用。

、命题及其关系•1命题的概念:用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。

高中数学知识点总结(第一章 集合与常用逻辑用语)

高中数学知识点总结(第一章 集合与常用逻辑用语)

第一章 集合与常用逻辑用语第一节 集 合一、基础知识1.集合的有关概念(1)集合元素的三个特性:确定性、无序性、互异性.元素互异性,即集合中不能出现相同的元素,此性质常用于求解含参数的集合问题中. (2)集合的三种表示方法:列举法、描述法、图示法. (3)元素与集合的两种关系:属于,记为∈;不属于,记为∉. (4)五个特定的集合及其关系图:N *或N +表示正整数集,N 表示自然数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.2.集合间的基本关系(1)子集:一般地,对于两个集合A ,B ,如果集合A 中任意一个元素都是集合B 中的元素,则称A 是B 的子集,记作A ⊆B (或B ⊇A ).(2)真子集:如果集合A 是集合B 的子集,但集合B 中至少有一个元素不属于A ,则称A 是B 的真子集,记作A B 或B A .A B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ≠B .既要说明A 中任何一个元素都属于B ,也要说明B 中存在一个元素不属于A .(3)集合相等:如果A ⊆B ,并且B ⊆A ,则A =B .两集合相等:A =B ⇔⎩⎪⎨⎪⎧A ⊆B ,A ⊇B .A 中任意一个元素都符合B 中元素的特性,B 中任意一个元素也符合A 中元素的特性.(4)空集:不含任何元素的集合.空集是任何集合A 的子集,是任何非空集合B 的真子集.记作∅.∅∈{∅},∅⊆{∅},0∉∅,0∉{∅},0∈{0},∅⊆{0}.3.集合间的基本运算(1)交集:一般地,由属于集合A且属于集合B的所有元素组成的集合,称为A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B}.(2)并集:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.(3)补集:对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作∁U A,即∁U A={x|x∈U,且x∉A}.求集合A的补集的前提是“A是全集U的子集”,集合A其实是给定的条件.从全集U中取出集合A的全部元素,剩下的元素构成的集合即为∁U A.二、常用结论(1)子集的性质:A⊆A,∅⊆A,A∩B⊆A,A∩B⊆B.(2)交集的性质:A∩A=A,A∩∅=∅,A∩B=B∩A.(3)并集的性质:A∪B=B∪A,A∪B⊇A,A∪B⊇B,A∪A=A,A∪∅=∅∪A=A.(4)补集的性质:A∪∁U A=U,A∩∁U A=∅,∁U(∁U A)=A,∁A A=∅,∁A∅=A.(5)含有n个元素的集合共有2n个子集,其中有2n-1个真子集,2n-1个非空子集.(6)等价关系:A∩B=A⇔A⊆B;A∪B=A⇔A⊇B.第二节命题及其关系、充分条件与必要条件一、基础知识1.命题的概念用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.一个命题要么是真命题,要么是假命题,不能模棱两可.2.四种命题及其相互关系3.充分条件、必要条件与充要条件(1)如果p⇒q,则p是q的充分条件;①A是B的充分不必要条件是指:A⇒B且B A;②A的充分不必要条件是B是指:B⇒A且A B,在解题中要弄清它们的区别,以免出现错误.(2)如果q⇒p,则p是q的必要条件;(3)如果既有p⇒q,又有q⇒p,记作p⇔q,则p是q的充要条件.充要关系与集合的子集之间的关系设A={x|p(x)},B={x|q(x)},①若A⊆B,则p是q的充分条件,q是p的必要条件.②若A B,则p是q的充分不必要条件,q是p的必要不充分条件.③若A=B,则p是q的充要条件.二、常用结论1.四种命题中的等价关系原命题等价于逆否命题,否命题等价于逆命题,所以在命题不易证明时,往往找等价命题进行证明.2.等价转化法判断充分条件、必要条件p是q的充分不必要条件,等价于非q是非p的充分不必要条件.其他情况以此类推.第三节简单的逻辑联结词、全称量词与存在量词一、基础知识1.简单的逻辑联结词(1)命题中的“且”“或”“非”❶叫做逻辑联结词.①用联结词“且”把命题p和命题q联结起来,得到复合命题“p且q”,记作p∧q;②用联结词“或”把命题p和命题q联结起来,得到复合命题“p或q”,记作p∨q;③对命题p的结论进行否定,得到复合命题“非p”,记作非p.❷❶“且”的数学含义是几个条件同时满足,“且”在集合中的解释为“交集”;“或”的数学含义是至少满足一个条件,“或”在集合中的解释为“并集”;“非”的含义是否定,“非p”只否定p的结论,“非”在集合中的解释为“补集”.❷“命题的否定”与“否命题”的区别(1)命题的否定只是否定命题的结论,而否命题既否定其条件,也否定其结论.(2)命题的否定与原命题的真假总是相对立的,即一真一假,而否命题与原命题的真假无必然联系.(2)命题真值表:命题真假的判断口诀p∨q→见真即真,p∧q→见假即假,p与非p→真假相反.2.全称量词与存在量词3.全称命题与特称命题4.全称命题与特称命题的否定二、常用结论含逻辑联结词命题真假的等价关系(1)p∨q真⇔p,q至少一个真⇔(非p)∧(非q)假.(2)p∨q假⇔p,q均假⇔(非p)∧(非q)真.(3)p∧q真⇔p,q均真⇔(非p)∨(非q)假.(4)p∧q假⇔p,q至少一个假⇔(非p)∨(非q)真.。

高考数学必背知识手册 第一章 集合与常用逻辑用语(公式、定理、结论图表)

高考数学必背知识手册 第一章 集合与常用逻辑用语(公式、定理、结论图表)

第一章集合与常用逻辑用语(公式、定理、结论图表)1.集合的有关概念(1)集合元素的三大特性:确定性、无序性、互异性.(2)元素与集合的两种关系:属于,记为∈;不属于,记为∉.(3)集合的三种表示方法:列举法、描述法、图示法.(4)五个特定的集合集合自然数集正整数集整数集有理数集实数集符号N N*或N+Z Q R2.文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B子集集合A中任意一个元素均为集合B中的元素A⊆B真子集集合A中任意一个元素均为集合B中的元素,且集合B中至少有一个元素不是集合A中的元素BA⊂≠空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集符号表示 A ∪BA ∩B若全集为U ,则集合A 的补集为∁U A图形表示集合表示 {x |x ∈A ,或x ∈B }{x |x ∈A ,且x ∈B }{x |x ∈U ,且x ∉A }(1)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (2)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U ,∁U (∁U A )=A . 5.常用结论(1)空集性质:①空集只有一个子集,即它的本身,∅⊆∅; ②空集是任何集合的子集(即∅⊆A ); 空集是任何非空集合的真子集(若A ≠∅,则∅A ).(2)子集个数:若有限集A 中有n 个元素,则A 的子集有2n 个,真子集有2n -1个,非空真子集有22n -个.典例1:已知集合{}2,4,8A =,{}2,3,4,6B =,则A B ⋂的子集的个数为( ) A .3 B .4 C .7 D .8【答案】B【详解】因为集合{}2,4,8A =,{}2,3,4,6B =,所以{}2,4A B =, 所以A B ⋂的子集的个数为224=个.故选B.典例2:已知集合{}2N230A x x x =∈--≤∣,则集合A 的真子集的个数为( ) A .32 B .31 C .16 D .15【答案】D【详解】由题意得{}{}{}2N230N 130,1,2,3A x x x x x =∈--≤=∈-≤≤=∣∣, 其真子集有42115-=个.故选D.(3)A ∩B =A ⇔A ⊆B ;A ∪B =A ⇔A ⊇B .(4)(∁U A )∩(∁U B )=∁U (A ∪B ),(∁U A )∪(∁U B )=∁U (A ∩B ) . 6.充分条件、必要条件与充要条件的概念若p ⇒ q ,则p 是q 的充分条件,q 是p 的必要条件 p 是q 的充分不必要条件 p ⇒ q 且q ⇏ p p 是q 的必要不充分条件 p ⇏ q 且q ⇒ pp 是q 的充要条件p ⇔ qp是q的既不充分也不必要条件p ⇏q且q ⇏p7.充分、必要条件与集合的关系设p,q成立的对象构成的集合分别为A,B.(1)p是q的充分条件⇔A⊆B,p是q的充分不必要条件⇔A B;(2)p是q的必要条件⇔B⊆A,p是q的必要不充分条件⇔B A;(3)p是q的充要条件⇔A=B.8.全称量词和存在量词量词名称常见量词符号表示全称量词所有、一切、任意、全部、每一个等∀存在量词存在一个、至少有一个、有些、某些等∃9.全称命题和特称命题名称全称命题特称命题形式语言表示对M中任意一个x,有p(x)成立M中存在元素x0,使p(x0)成立符号表示∀x∈M,p(x)∃x0∈M,p(x0)10.全称命题与特称命题的否定<知识记忆小口诀>集合平时很常用,数学概念有不同,理解集合并不难,三个要素是关键,元素确定和互译,还有无序要牢记,空集不论空不空,总有子集在其中,集合用图很方便,子交并补很明显.<解题方法与技巧>集合基本运算的方法技巧:(1)当集合是用列举法表示的数集时,可以通过列举集合的元素进行运算,也可借助Venn 图运算;(2)当集合是用不等式表示时,可运用数轴求解.对于端点处的取舍,可以单独检验.集合常与不等式,基本函数结合,常见逻辑用语常与立体几何,三角函数,数列,线性规划等结合.充要条件的两种判断方法(1)定义法:根据p⇒q,q⇒p进行判断.(2)集合法:根据使p,q成立的对象的集合之间的包含关系进行判断.充分条件、必要条件的应用,一般表现在参数问题的求解上.解题时需注意:(1)把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间的关系列出关于参数的不等式(或不等式组)求解.(2)要注意区间端点值的检验.尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.(3)数学定义都是充要条件.。

2019新人教版高中数学必修第一册第1章集合与常用逻辑用语知识点总结

2019新人教版高中数学必修第一册第1章集合与常用逻辑用语知识点总结

第1章集合与常用逻辑用语1.1集合的含义与表示1、集合的含义:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合。

2、集合的中元素的三个特性:确定性、互异性、无序性 2、“属于”的概念:我们通常用大写的拉丁字母A,B,C, ……表示集合,用小写拉丁字母a,b,c, ……表示元素;元素在集合A 中,称属于A ,记为,否则称不属于A ,记作。

3、常用数集及其记法非负整数集(即自然数集)记作:N ;正整数集记作:N*或 N+ ;整数集记作:Z ;有理数集记作:Q ;实数集记作:R 4、集合的表示法(1)列举法:把集合中的元素一一列举出来,然后用一个大括号括上。

(2)描述法:用集合所含元素的公共特征表示集合的方法称为描述法。

①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x -3>2的解集是{x∈R| x -3>2}或{x| x -3>2} (3)图示法(Venn 图)1.2 集合间的基本关系 【知识要点】1、“包含”关系——子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为,例如。

子集的个数为2n (n 为集合中元素个数)2、“相等”关系:如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等。

3、真子集(个数怎么算):如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。

真子集的个数为2n -1(n 为集合中元素个数)。

4、空集:不含任何元素的集合称为空集,用来表示。

空集∅是任何集合的子集,是任何非空集合的真子集。

1.3 集合的基本运算 【知识要点】1、交集的定义:即A ∩B={x| x ∈A ,且x ∈B}.2、并集的定义:即A ∪B={x | x ∈A ,或x ∈B}.3、交集与并集的性质A ∩A = A ,A ∩φ= φ, A ∩B = B ∩A ,A ∪A = A ,A ∪φ= A , A ∪B = B ∪A 4、全集与补集(1)全集:通常用U 来表示。

集合与常用逻辑用语知识点总结与归纳

集合与常用逻辑用语知识点总结与归纳

集合与常用逻辑用语知识点总结与归纳本文旨在总结和归纳集合与常用逻辑用语的知识点。

以下是相关概念和要点的简要介绍:集合定义集合是由一组特定元素构成的整体。

常用符号- ∪:表示并集,包括所有在两个或多个集合中的元素。

- ∩:表示交集,包括同时存在于两个或多个集合中的元素。

- ∈:表示元素属于某个集合。

- ∅:表示空集,即不包含任何元素的集合。

常见概念- 子集:如果一个集合的所有元素都属于另一个集合,则前者是后者的子集。

- 真子集:一个集合是另一个集合的真子集,当且仅当它是该集合的子集且不等于该集合本身。

- 并集:两个或多个集合中的所有元素构成的集合。

- 交集:两个或多个集合中共有的元素构成的集合。

逻辑用语常用逻辑符号- ∧:表示逻辑与(and),指两个命题都为真才为真。

- ∨:表示逻辑或(or),指两个命题只要有一个为真就为真。

- ¬:表示逻辑非(not),指对命题的否定。

- ⇒:表示逻辑蕴含(implies),指如果前提为真,则结论也为真。

- ⇔:表示逻辑等价(equivalence),指前提与结论互相为真或互相为假。

常见概念- 命题:陈述性句子,可以判断为真或为假。

- 否定:与命题相反的判断。

- 合取:将多个命题通过逻辑与连接起来的复合命题。

- 析取:将多个命题通过逻辑或连接起来的复合命题。

- 蕴含:由前提推导出结论的关系。

- 等价:前提与结论互相为真或互相为假的关系。

总结本文对集合与常用逻辑用语进行了概念、符号和概念的介绍,希望能够帮助读者更好地理解和应用这些知识点。

深入学习和理解集合和逻辑用语将有助于在不同领域的问题解决和决策过程中的应用。

集合与常用逻辑用语重要知识点

集合与常用逻辑用语重要知识点

集合与简易逻辑重要知识点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾: (一) 集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0}) ③ 空集的补集是全集.④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R}二、四象限的点集.③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅)4. ①n 个元素的子集有2n 个. ②n 个元素的真子集有2n-1个. ③n 个元素的非空真子集有2n-2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题.解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ②,且21≠≠y x 3≠+y x . 解:逆否:x + y =3x = 1或y = 2.21≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围. 3. 例:若255 x x x 或,⇒. 4. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 5. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A U A A U A U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B )6. 有限集的元素个数定义:有限集A 的元素的个数叫做集合A 的基数,记为card( A)规定 card(φ) =0.基本公式:(1)()()()()(2)()()()()()()()()card A B card A card B card A B card A B C card A card B card C card A B card B C card C A card A B C =+-=++---+(3) card ( U A )= card(U)- card(A)(二)含绝对值不等式、一元二次不等式的解法及延伸 1.整式不等式的解法 根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便)②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.+-+-x 1x 2x 3x m-3x m-2xm-1x mx(自右向左正负相间)则不等式)0)(0(0022110><>++++--a a x a x a x a n n n n 的解可以根据各区间的符号确定.特例① 一元一次不等式ax>b 解的讨论;②一元二次不等式ax 2+box>0(a>0)解的讨论.0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x <有两相等实根abx x 221-==无实根的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R 的解集)0(02><++a c bx ax{}21x x xx <<∅∅2.分式不等式的解法原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互(1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f3.含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a ≠0) (1)根的“零分布”:根据判别式和韦达定理分析列式解之. (2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之. (三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 集合与常用逻辑用语知识结构【知识概要】一、集合的概念、关系与运算1. 集合中元素的特性:确定性、互异性、无序性. 在应用集合的概念求解集合问题时,要特别注意这三个性质在解题中的应用,元素的互异性往往就是检验的重要依椐。

2. 集合的表示方法:列举法、描述法. 有的集合还可用Venn 图表示,用专用符号表示,如,,,,,,N N N Z R Q φ*+等。

3. 元素与集合的关系:我们把研究对象统称为元素,把一些元素组成的总体叫做集合,若元素x 是集合A 的元素,则x A ∈,否则x A ∉。

4. 集合与集合之间的关系:①子集:若x A ∈,则x B ∈,此时称集合A 是集合B 的子集,记作A B ⊆。

②真子集:若A B ⊆,且存在元素x B ∈,且x A ∉,则称A 是B 的真子集,记作:A B .③相等:若A B ⊆,且A B ⊇,则称集合A 与B 相等,记作A =B .。

5. 集合的基本运算:①交集:{}A B x x A x B =∈∈I 且 ②并集:{}A B x x A x B =∈∈U 或 ③补集:{|,}U C A x x U x A =∈∉且,其中U 为全集,A U ⊆。

6. 集合运算中常用结论:①,,A A A A A B B A φφ===I I I I ,A B A A B =⇔⊆I 。

②,,A A A A A A B B A φ===U U U U ,A B A B A =⇔⊆U 。

③()U A C A U =U ,()U C A A ϕ=I ,()()()U U U C A B C A C B =I U ,()()()U U U C A B C A C B =U I 。

④由n 个元素所组成的集合,其子集个数为2n 个。

⑤空集是任何集合的子集,即A ϕ⊆。

在解题中要特别留意空集的特殊性,它往往就是导致我们在解题中出现错误的一个对象,避免因忽视空集而出现错误。

●7.含参数的集合问题是本部分的一个重要题型,应多根据集合元素的互异性挖掘题目的隐含条件,并注意分类讨论思想、数形结合思想在解题中的运用。

二、命题及其关系●1.命题的概念:用语言、符号或式子表达的,可以判断真假的陈述句叫做命题。

●2.四种命题的相互关系:●3. “若p 则q ”是真命题,即p q ⇒;“若p 则q ”是假命题,则p q ⇒/。

●4. 在判断命题真假的问题中,一方面可以直接写出命题进行判断,也可以通过命题的等价性进行判断,即原命题与逆否命题等价,否命题与逆命题等价。

●5. 充分必要条件的判断是本部分的一个重要题型,在解题中应注意:(1)注意问题的设问方式,我们知道,①p 是q 的充分不必要条件是指p q ⇒且p q ⇐/;②p 的必要不充分条件是q 是指p q ⇒且q p ⇒/。

这两种说法是在充分必要条件推理判断中经常出现且容易混淆的说法,在解题中一定要注意问题的设问方式,弄清它们的区别,以免出现判断错误。

(2)要善于举出恰当的反例来说明一个命题是错误的。

(3)恰当地进行转化,由原命题与逆否命题等价可知:若p 是q 的充分不必要条件,则p ⌝是q ⌝的必要不充分条件;若p 是q 的必要不充分条件,则p ⌝是q ⌝的充分不必要条件。

●6. 证明p 是q 的充要条件(1)充分性:把p 当作已知条件,结合命题的前提条件,推出q ; (2)必要性:把q 当作已知条件,结合命题的前提条件,推出p 。

三、逻辑联结词与量词●1.含有“且(∧)”“或(∨)”“非(⌝)”命题的真假性:●2.全称量词与存在量词:命题中的“对所有”、“任意一个”等短语叫做全称量词,用符号“∀”表示,“存在”、“至少有一个”等短语叫做存在量词,用符号“∃”表示。

含有全称量词的命题叫做全称命题,全称命题:“对M中任意一个x,有()p x成立”可用符号简记为,()∀∈。

x M p x含有存在量词的命题叫做特称命题,特称命题:“存在M中任意一个x,使()p x成立”可用符号简记为,()∃∈。

x M p x●3.全称命题与特称命题的关系:第二章函数知识结构一..函数的概念及其表示(1)函数的概念①设A、B是两个非空的数集,如果按照某种对应法则f,对于集合A中任何一个数x,在集合Bf x和它对应,那么这样的对应(包括集合A,B以及A到B的对应法则f)中都有唯一确定的数()→.叫做集合A到B的一个函数,记作:f A B②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法 (5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.二.函数的基本性质1.单调性函数的单调性是研究函数在定义域内某一范围的图象整体上升或下降的变化趋势,是研究函数图象在定义域内的局部变化性质。

⑴函数单调性的定义一般地,设函数()y f x =的定义域为A ,区间I A ⊆.如果对于区间I 内的______两个值1x ,2x ,当1x <2x 时,都有1()f x _____2()f x ,那么()y f x =在区间I 上是单调增函数,I 称为()y f x =的单调_____区间. 如果对于区间I 内的______两个值1x ,2x ,当1x <2x 时,都有1()f x _____2()f x ,那么()y f x =在区间I 上是单调减函数,I 称为()y f x =的单调_____区间.如果函数()y f x =在区间I 上是单调增函数或单调减函数,那么函数()y f x =在区间I 上具有________. 点评 单调性的等价定义:①)(x f 在区间M 上是增函数,,21M x x ∈∀⇔当21x x <时,有0)()(21<-x f x f0)]()([)(2121>-⋅-⇔x f x f x x 00)()(2121>∆∆⇔>--⇔xyx x x f x f ;②)(x f 在区间M 上是减函数,,21M x x ∈∀⇔当21x x <时,有0)()(21>-x f x f0)]()([)(2121<-⋅-⇔x f x f x x 00)()(2121<∆∆⇔<--⇔xyx x x f x f ;⑵函数单调性的判定方法①定义法;②图像法;③复合函数法;④导数法;⑤特值法(用于小题),⑥结论法等. 注意:①定义法(取值——作差——变形——定号——结论):设12[]x x a b ∈,,且12x x ≠,那么0)]()([)(2121>-⋅-x f x f x x 0)()(2121>--⇔x x x f x f )(x f ⇔在区间],[b a 上是增函数;0)]()([)(2121<-⋅-x f x f x x 0)()(2121<--⇔x x x f x f )(x f ⇔在区间],[b a 上是减函数。

②导数法(选修):在()f x 区间()a b ,内处处可导,若总有'()0f x >('()0f x <),则()f x 在区间()a b ,内为增(减)函数;反之,()f x 在区间()a b ,内为增(减)函数,且处处可导,则'()0f x ≥('()0f x ≤)。

相关文档
最新文档