雨水排水系统的水力计算讲义教材
雨水排水系统的水力计算资料
![雨水排水系统的水力计算资料](https://img.taocdn.com/s3/m/4b1b64367ed5360cba1aa8114431b90d6d858953.png)
雨水排水系统的水力计算资料一、引言雨水排水系统在城市的建设中起着至关重要的作用。
它们被设计用于有效地收集和排除降雨期间产生的雨水,以避免洪水和滞水的发生。
为了确保雨水排水系统的设计符合实际需要,并且具备良好的水力性能,水力计算是必不可少的一项任务。
本文将介绍雨水排水系统水力计算所需的基本资料和计算方法。
二、雨水排水系统的基本构成雨水排水系统由下述几个主要组成部分组成:1. 排水管道:排水管道是雨水排水系统的核心组成部分。
它们负责将雨水从收集点输送到排放点。
排水管道的直径、长度和坡度是水力计算的重要参数。
2. 排水口:排水口是设计用于接收雨水的出水点。
它们通常位于地面上,通过排水管道将雨水排放到指定的位置,如河流、湖泊或下水道。
3. 水槽和沉积池:水槽和沉积池用于收集和处理排水过程中的杂质和沉积物,以确保排水系统的正常运行。
三、水力计算所需资料在进行雨水排水系统的水力计算时,需要收集和准备以下基本资料:1. 雨量资料:雨量资料用于确定设计雨量,并根据不同的设计频率选择适当的设计雨量。
通常使用的雨量数据包括年均雨量、极大雨量和持续时间曲线等。
2. 地形资料:地形资料包括城市的地形图、高程数据、建筑物分布图等。
这些资料将被用于确定排水系统的布局和地势差,进而影响水力计算的结果。
3. 排水系统布局图:排水系统布局图是指排水管道、排水口、水槽和沉积池的位置和互连关系图。
布局图可帮助识别排水管道长度、直径和接口参数。
4. 排水管道断面图和参数:排水管道断面图用来确定管道的几何形状及其参数,如直径、横截面积等。
这些参数对于计算流量和流速至关重要。
5. 地表渗透性资料:地表渗透性资料反映了地面的渗透能力,影响了雨水的入渗速率和排水速度。
四、水力计算方法进行雨水排水系统的水力计算时,可以采用下述常用的水力计算方法:1. 流量计算: 根据设计雨量和排水区域的面积,以及地表渗透性等因素,计算出入水量或总流量。
- 根据径流公式和设计雨量,计算出径流流量;- 根据地表渗透性和面积,计算出地表径流流量;- 将径流流量和地表径流流量相加,得到总流量。
(整理)第三章给水排水管道系统水力计算基础
![(整理)第三章给水排水管道系统水力计算基础](https://img.taocdn.com/s3/m/3be52eefb9d528ea80c7791f.png)
第三章给水排水管道系统水力计算基础本章内容:1、水头损失计算2、无压圆管的水力计算3、水力等效简化本章难点:无压圆管的水力计算第一节基本概念一、管道内水流特征进行水力计算前首先要进行流态的判别。
判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。
对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。
二、有压流与无压流水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。
水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。
从水流断面形式看,在给水排水管道中采用圆管最多三、恒定流与非恒定流给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。
四、均匀流与非均匀流液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。
从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。
对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。
均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。
对于非满管流或明渠流,只要长距离截面不变,也没有转弯或交汇时,也可以近似为均匀流,按沿程水头损失公式进行水力计算,对于短距离或特殊情况下的非均匀流动则运用水力学理论按缓流或急流计算。
第3章-给水排水管网水力学基础讲解
![第3章-给水排水管网水力学基础讲解](https://img.taocdn.com/s3/m/183df9ced0d233d4b14e69ea.png)
图3.1 圆形管道非满管流和满管流示意图 (a)非满管流;(b)满管流
图3.2 圆形管道充满度示 意图
3.3.1 非满流管道水力计算公式 管渠流量公式:
q
Av
A
R
2 3
I
1 2
式中
A―过水断面面积(m2);
n
I―水力坡度,对于均匀流,为管渠底坡。
N mn
d ( din ) m i 1
当并联管道直径相同时,等效直径:
n
d (N)m di
kqNn l
d
m N
干管配水情况
3.4.2 沿线均匀出流的简化
给水管网中的配水管沿线向用户供水,如图3.6所示。假设沿线出流是 均匀的,则管道内任意断面x上的流量可以表示为:
qx
qt
沿程水头损失计算公式的指数形式为:
或
或 hf sf qn
式中,k、n、m─指数公式的参数。见表3.6; α―比阻,即单位管长的摩阻系数, α =k/Dm; sf―摩阻系数,sf= α l=kl/Dm。
沿程水头损失指数公式的参数
表3.6
3.3 非满流管渠水力计算
在排水管网中,污水管道一般采用非满管流设计,雨水管网一般采用 满管流设计,如图3.1所示。在两者的运行过程中,大多数时间内,均 处于非满管流状态。
第3章 给水排水管网水力学基础
3.1 给水排水管网水流特征
3.1.1 管网中的流态分析
在水力学中,水在圆管中的流动有层流、紊流及过渡流三种流态,可以根据雷诺数 Re进行判别,其表达式如下:
Re
VD
式中,V-管内平均流速(m/s);D-管径(m);ν-水的运动粘性系数,当水温为 10oC时,ν=1.308 x 10-6m2/s,当水温为30oC时,ν=0.804 x 10-6m2/s,当水温为 50oC时,ν=0.556 x 10-6m2/s。 当Re小于2000时为层流,当Re大于4000时为紊流,当Re介于2000到4000之间时, 水流状态不稳定,属于过渡流态。
雨水排水系统的水力计算
![雨水排水系统的水力计算](https://img.taocdn.com/s3/m/b1bba84ccd1755270722192e453610661ed95adc.png)
前进
返回本章总目录
6.3 雨水排水系统的水力计算
返回本书总目录
5.径流系数
后退
前进
返回本章总目录
6.3 雨水排水系统的水力计算
6.3.2 系统计算原理与参数
返回本书总目录
1.雨水斗泄流量
重力流状态下,雨水斗的排水状况是自由堰流,通过雨水斗
的泄流量与雨水斗进水口直径和斗前水深有关,可按环形溢
流堰公式计算:
6.3 雨水排水系统的水力计算
6.3.3 设计计算步骤
返回本书总目录
2.天沟外排水 天沟布置 即确定天沟的分水线及每条天沟的汇水面积;按照屋面的
构造一般应在伸缩缝或沉降缝作为天沟分水线,单坡的排泄长 度不宜大于 50m。天沟较长时,坡度不能太大,但最小坡度不 得小于0.003。
确定天沟断面 天沟形状:矩形、梯形、半圆形、三角形等。 天沟尺寸:根据排水量、天沟汇水面积计算,根据每一条天沟
管径 I
0.02 0.03 0.04 0.05 0.06 0.07
75mm
3.07 3.77 4.35 4.86 5.33 5.75
100mm 150mm 200mm 250mm
6.63 8.12 9.38 10.49 11.49 12.41
19.55 23.94 27.65 30.91 33.86 36.57
211(110.85lgP) q
(t8)0.70
后退
前进
返回本章总目录
返回本书总目录
6.3 雨水排水系统的水力计算
6.3.1 屋面雨水设计流量计算
屋面雨水排水管道的设计降雨历时可按5min计算, 居住小区的雨水管道设计降雨历时应按下式计算:
t t1M2t
给水排水管道系统水力计算
![给水排水管道系统水力计算](https://img.taocdn.com/s3/m/bbc768e70975f46527d3e158.png)
第三章给水排水管道系统水力计算基础本章内容:1、水头损失计算2、无压圆管的水力计算3、水力等效简化本章难点:无压圆管的水力计算第一节基本概念一、管道内水流特征进行水力计算前首先要进行流态的判别。
判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。
对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。
二、有压流与无压流水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。
水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。
从水流断面形式看,在给水排水管道中采用圆管最多三、恒定流与非恒定流给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。
四、均匀流与非均匀流液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。
从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。
对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。
均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。
对于非满管流或明渠流,只要长距离截面不变,也没有转弯或交汇时,也可以近似为均匀流,按沿程水头损失公式进行水力计算,对于短距离或特殊情况下的非均匀流动则运用水力学理论按缓流或急流计算。
第三章_给水排水管道系统水力计算基础
![第三章_给水排水管道系统水力计算基础](https://img.taocdn.com/s3/m/835fb603b52acfc789ebc99e.png)
C e C=- .71lg 17 + 14.8R 3.53Re 2.51 e 或 = −2lg + λ 3.7D Re λ 1
11
4vR vD 式中 Re-雷诺数, = = ,其中ν是与水温有关的 Re
ν
ν
水动力粘度 系数 m2 / s; , e-管壁当量粗糙度,m,由实验确定。 但此式需迭 代计算,不便于应用,可以简化为 直接计算的形式 : 4.462 e C=- .71lg 17 + 0.875 14.8R Re 1 4.462 e 或 =- lg 2 + 0.875 λ 3.7D Re
0.013~0.014 ~
0.025~0.030 ~
21
2 2 1 1 1 1 v= R 3I 2 = R 3 (D h/D 2 , )I nM nM 2 1 2 1 1 1 AR 3 I 2 = A(D h/D R 3 (D h/D 2 q= , ) , )I nM nM
――非满流管渠水力计算基本公式 ――非满流管渠水力计算基本公式 v、q、D、h/D、I五个变量,已知三个,求另两 h/D、 五个变量,已知三个, 个。
15
3.2.3 局部水头损失计算
v hm = ξ 2g
式中 hm——局部水头损失,m; hm——局部水头损失 局部水头损失, ξ——局部阻力系数。 ——局部阻力系数 局部阻力系数。
2
给水排水管网中局部水头损失一般不超过沿 程水头损失的5% 常忽略局部水头损失的影响, 程水头损失的5%,常忽略局部水头损失的影响, 5%, 不会造成大的计算误差。 不会造成大的计算误差。
1 v = •R •I n
2 3
1 2
D h
雨水排水系统的水力计算资料
![雨水排水系统的水力计算资料](https://img.taocdn.com/s3/m/353d8aac5ff7ba0d4a7302768e9951e79b8969a0.png)
雨水排水系统的水力计算资料一、引言雨水排水系统是城市基础设施中的关键部分,对于城市的正常运行和居民的生活至关重要。
水力计算是设计雨水排水系统的基础工作,通过准确的水力计算可以确保系统运行的有效性和可靠性。
本文将介绍雨水排水系统水力计算所需的资料和要点。
二、雨量资料雨量资料是进行水力计算的前提,可以通过多种途径获取,主要包括以下几种方式:1. 监测站点资料:各地区的气象监测站会定期记录和发布降雨数据,包括降雨量、持续时间等信息。
2. 雨水监测器数据:在现代城市中,常常会设置雨水监测器,通过获取实时数据来进行水力计算。
3. 历史数据:根据当地气象部门或相关研究机构的记录,可以获取历史降雨数据,用于分析和预测。
三、地形资料地形资料对于水力计算具有重要影响,主要包括以下几类资料:1. 高程数据:通过高程图、数字高程模型等形式,确定地表的高程变化,以便进行水流模拟和水位计算。
2. 地图资料:包括土地利用、地貌等信息,用于确定地表的渗透性和径流情况。
3. 建筑物资料:收集建筑物的高度、面积等参数,以便计算雨水径流的量和速度。
四、管径和坡度资料在进行水力计算时,需要准确了解各种管道的尺寸和坡度,以确保系统的正常运行和排水能力。
相关资料包括:1. 管道直径:收集系统中各个管道的直径和材质,以便计算管道的流量和速度。
2. 管道长度:获取各个管道的长度信息,用于计算管道的摩阻损失和水流速度。
3. 管道坡度:了解系统中各个管道的坡度,确保水流的畅通和排水效果。
五、其他资料除了上述资料外,还有一些其他资料对于水力计算也具有一定的重要性,如:1. 堰涌现象:了解可能出现的堰涌现象,并设置相应的安全措施。
2. 泵站资料:如果系统中设计了泵站,需要收集泵站的相关参数,如流量、扬程等。
3. 地下管网资料:如果系统中存在地下管网,需要了解地下管线的布局和特性,以便进行水力计算和维护。
六、水力计算软件为了准确、高效地进行水力计算,可以使用一些专业的水力计算软件,例如SWMM(Storm Water Management Model)、EPANET等。
排水工程计算书
![排水工程计算书](https://img.taocdn.com/s3/m/e0ff7f8ddc3383c4bb4cf7ec4afe04a1b071b090.png)
排水工程计算书一、雨水管道水力计算(一)、计算依据1、《室外排水设计规范》(GB50014-2006);2、《城市道路设计规范》(CJJ37-90);3、《城市防洪工程设计规范》(GJJ50-92);4、《给水排水设计手册》;5、《曹溪东片区控制性详细规划》、《东山片区控制性详细规划-调整》及《龙岩市中心城区管线综合规划》进行汇水流域及雨水系统设计;6、雨水汇水流域计算图(附图一)。
(二)、本工程雨水管除收集道路二侧地块的雨水外,主要转输闽大路、莲庄路、莲东南路、东环路以及其它规划支路的雨水或山洪水。
2、防洪设计标准,山洪防洪标准重现期为153、暴雨强度:采用福建省建设厅发布的《城市及部分县城暴雨强度公式》DBJ13-52-2003中的龙岩市暴雨强度公式:q=2399.136(1+0.471LgP)/(t+8.162)0.756(L/s·ha)式中:q------设计暴雨强度(L/s·ha);P------设计重现期(a);t-------设计降雨历时(min)。
4、设计降雨历时,按下公式计算:t=t1+mt2 (min)式中:t------降雨历时(min);t1-----地面集水时间,一般采用5min;m-----折减系数,暗管折减系数m=2,明渠折减系数m=1.2;t2-----管渠内雨水流行时间(min)。
5、设计流量:Q=qψF(L/s)式中:Q------雨水设计流量(L/s);ψ------径流系数,区内综合径流系数取0.65,公园绿地综合径流系数取0.2,山体取0.15;F------汇水面积(ha)。
6、排山洪管道根据初步设计的批复按公路小流域公式进行计算,公式为给排水设计手册第二版第七册《城镇防洪》公路科学研究所的简化公式:Qp=Φ(h-z)3/2f4/5(m3/s)式中:Qp------雨水设计流量(m3/s);Φ------地貌系数,取0.15;h------径流深度(mm),取30mm;z------植物和坑洼滞流的拦蓄厚度(mm),取15mm;f------汇水面积(平方公里)。
给排水水力计算书
![给排水水力计算书](https://img.taocdn.com/s3/m/ac89605ab6360b4c2e3f5727a5e9856a56122693.png)
给排水水力计算书一、引言给排水系统是建筑物中不可或缺的基础设施之一,其设计合理与否直接关系到建筑物正常运行和使用的安全与舒适。
在给排水系统设计中,水力计算是十分重要的一部分,它能够确定管道的尺寸与坡度,以确保水流畅通,避免出现堵塞和漏水等问题。
本文档旨在介绍给排水水力计算的基本原理和方法。
二、计算基础1. 流量计算在给排水系统中,首先需要确定各个管道段的流量。
流量的计算可通过建筑物的需水量和排水量来确定。
需水量通常根据建筑物类型、使用功能、人口等因素来确定,而排水量则可根据水槽、洗手池、厨房等设备的设计要求来确定。
2. 管道尺寸计算根据流量确定后,下一步是确定管道的尺寸,以确保水流畅通。
管道尺寸的计算通常考虑以下几个因素:流速、水压损失和管道阻力。
流速一般根据水流稳定和管道自清洁的要求确定,水压损失则根据管道长度、运输高度和相关水力参数计算得出。
3. 坡度计算给排水系统中,管道的坡度是确保水能自由流动的关键。
坡度的计算依赖于管道的材料和直径、流速等因素。
一般情况下,管道的坡度应根据水流速度和自洁速度来确定。
流速过低会导致较大的污垢沉积,而流速过高则会增加水压损失和噪音。
三、水力计算方法1. 曼宁公式曼宁公式是给排水管道水力计算中常用的一种方法。
该公式根据流量、管径、坡度和摩擦系数等参数来计算流速。
曼宁公式如下:Q = (1.486/n) * A * R^0.667 * S^0.5其中,Q为流量;A为管道横截面积;R为流面与湿周的比值;S为摩擦坡度;n为摩擦系数。
2. 雨水系统计算。
雨水排水系统的水力计算
![雨水排水系统的水力计算](https://img.taocdn.com/s3/m/6f9f6e0ec950ad02de80d4d8d15abe23482f03d3.png)
雨水排水系统的水力计算雨水排水系统是指为了排除雨水而设计的管道系统。
在城市建设中,雨水排水系统是必不可少的基础设施之一。
水力计算是设计雨水排水系统时必需的一项重要工作,它能够帮助工程师确定各种参数,从而确保系统能够高效地排水。
本文将详细介绍雨水排水系统的水力计算方法和相关的计算公式。
在进行水力计算之前,我们首先需要了解几个重要的概念。
首先是雨水流量的计算。
通常,我们使用多个气象站的降雨数据来确定一个城市或地区的降雨强度。
根据历史数据和统计分析,可以得出一定时间内的设计雨量。
设计雨量越大,说明系统需要具备更高的排水能力。
其次是雨水径流系数的确定。
雨水径流系数是指降雨过程中径流的量与总降雨量的比值。
该系数取决于地表情况、土壤类型和降雨强度等因素。
通过现场勘测和实验研究,可以确定不同场地和不同条件下的雨水径流系数。
接下来是管道的水力特性。
雨水排水系统中使用的管道通常为圆管或方管。
在进行水力计算时,我们需要知道管道的内径或边长,并考虑流体的流速和压力损失等因素。
根据伯努利方程和一些基本的流体动力学原理,我们可以计算出管道中的水流速度和压力变化。
最后是雨水排放的规划和设计。
在城市建设中,我们需要根据雨洪情况和市政要求来规划雨水排放的方式和位置。
适当的排放方式可以减少洪水和滞水的发生,保护城市的基础设施和居民的生活环境。
具体的水力计算方法包括:汇水面积的计算、雨水流量的确定、雨水径流系数的选择、管道的水力计算、排放流量的确定等。
在实际工程中,我们可以根据具体情况选择适用的计算方法,并利用计算软件或手算等方式完成水力计算的工作。
综上所述,雨水排水系统的水力计算是设计合理的系统的关键步骤之一。
通过准确计算各项参数,我们能够确保雨水排水系统的性能和安全性。
在未来的城市建设中,我们应该不断提升水力计算的技术水平,为城市的可持续发展做出贡献。
雨水管道水力计算书
![雨水管道水力计算书](https://img.taocdn.com/s3/m/bbb9db660166f5335a8102d276a20029bd6463fb.png)
雨水管道水力计算书一、设计背景及目的随着城市化进程的不断发展,雨水排放和管理成为城市建设中的重要问题。
为了保障城市雨水的有效排放和管理,需要对雨水管道的水力进行合理计算,确保雨水能够顺利流动并避免管道过载或堵塞的情况发生。
本文旨在进行雨水管道的水力计算,以确保设计的合理性和安全性。
二、计算方法1. 雨水管道的参数确定在进行水力计算之前,我们首先需要确定雨水管道的相关参数。
包括管道的内径(d),长度(L),斜度(S),流量(Q)等。
根据实际情况和设计要求,确定这些参数的数值。
2. 流量计算雨水管道的水力计算主要是通过计算流量来决定管道的尺寸和流速。
根据经验公式和实测数据,我们可以采用以下公式进行流量的计算:Q = C × A × V其中,Q为流量,C为流量系数,A为管道的横截面积,V为流速。
3. 管道尺寸计算在确定了流量之后,我们需要根据管道的流量和流速来计算管道的尺寸。
根据流体力学的知识,可以通过以下公式计算管道的尺寸:d = √(4 × Q / (π × V))其中,d为管道的内径。
4. 水力坡度计算水力坡度是指管道在单位长度内的高度差,也称为水头损失。
水力坡度的大小直接影响雨水流动的速度和效果。
一般情况下,水力坡度的计算可以通过以下公式进行:S = J × L其中,S为水力坡度,J为水头损失系数,L为雨水管道的长度。
5. 管道材质选择根据实际情况和设计要求,我们需要选择合适的管道材质。
一般情况下,可以选择耐腐蚀性能好、抗压能力高的材质,如PVC管、铸铁管等。
三、计算实例为了更好地说明雨水管道水力计算的方法和步骤,我们以一个具体的实例进行计算。
假设雨水管道的内径为0.6米,长度为500米,流量为2立方米/秒,我们可以根据上述计算方法得出以下解算结果:- 管道尺寸计算:根据公式d = √(4 × Q / (π × V)),我们可以计算得出管道的尺寸为0.84米(保留两位小数)。
建筑小区雨水排水管道水力计算
![建筑小区雨水排水管道水力计算](https://img.taocdn.com/s3/m/4a1d5c5cc850ad02de8041d7.png)
L——设计管段上游各管段管长,m
υ——设计管段上游各管段的设计流速,m/s 当建筑小区的各种地面参数资料不不足时,径流系数可根据小区内建筑密度
按小区综合径流系数选取。小区综合径流系数见表1-3-4。
模块一 建筑小区生活污水排水系统设计
5)汇水面积F的求定
ψa=∑fi·ψi/∑fi
(1-3-6)
ψa——小区平均地面径流系数 fi——小区内各种地面面积,hm2
ψi——各种地面径流系数
各种地面径流系数见表1-3-3。
模块一 建筑小区生活污水排水系统设计
4)降雨历时t
降雨历时是很重要的设计参数,选择不当会使设计流量过大或过小。
t=t1+mt2 (1-3-7)
流速控制下的最小坡度要求。详见表1-3-5。 2)雨水管段的设计流量如果小于表1-3-5规定的最小管径在最小设计坡度时
的通过流量,则该管段称为非计算管段。非计算管段应采用最小管径并按最
小坡度进行设计。小区雨水管道最小管径、最小设计坡度见表1-3-6。 3)雨水管道水力计算的其他规定可参照污水管道的规定执行
4)雨水管道应按满流设计
模块一 建筑小区生活污水排水系统设计
模块一 建筑小区生活污水排水系统设计
模块一 建筑小区生活污水排水系统设计
模块一 建筑小区生活污水排水系统设计
模块一 建筑小区生活污水排水系统设计
模块一 建筑小区生活污水排水系统设计
R——水力半径,m,满流R=D/4
(3)计算方法
水力计算时,雨水管渠一般采用满流重力流设计计算,与污水管道计算方法 相同,采用流量和流速公式直接求解困难,需要试算和迭代。计算时一般采
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2. 天沟流量
屋面天沟为明渠排水,天沟水流流速可按明渠均匀流公式计算
v
1
21
R3I 2
n
Q vw
(6-5) (6-6)
2020/8/20
6.3 雨水排水系统的水力计算
6.3.2 系统计算原理与参数
式中
Q ——天沟排水流量( m3 /s); v——流速( m3 /s ); n——天沟粗糙度系数,与天沟材料及施工情况有关,见表6.3.2; I——天沟坡度, 不小于0.003; w——天沟过水断面积,(m2)
各种抹面天沟粗糙度系数
表6-2
2020/8/20
6.3 雨水排水系统的水力计算
6.3.2 系统计算原理与参数
3. 横管
横管包括悬吊管、管道层的汇合管、埋地横干管和出户管, 横管可以近似地按圆管均匀流计算:
Q=vω
(6-7)
v
1
2
R3
I
1 2
n
(6-8)
式中 Q ——排水流量( m3 /s); v——管内流速(m/s),不小于0.75m/s,埋地横干管出建筑外墙
第6章 建筑屋面雨水排水 系统
6.3 雨水排水系统的水力计算
2020/8/20
6.3 雨水排水系统的水力计算
6.3.1 雨水量计算
屋面雨水排水系统雨水量的大小是设计计算雨水排水系统的 依据,其值与该地暴雨强度q、汇水面积F以及径流系数ψ有关, 屋面径流系数一般取ψ=0.9。
1.设计暴雨强度 q
设计暴雨强度公式中有设计重现期P和屋面集水时间t两个参 数。设计重现期应根据建筑物的重要程度、气象特征确定,一般 性建筑物取2~5年,重要公共建筑物不小于10年。由于屋面面积 较小,屋面集水时间应较短,因为我国推导暴雨强度公式实测降 雨资料的最小时段为5min,所以屋面集水时间按5min计算。2020/8/20源自6.3 雨水排水系统的水力计算
6.3.2 系统计算原理与参数
△h——位置水头,(mH2O),悬吊管是指雨水斗顶面至悬吊管末端的
几何高差(m),埋地横干管是指其两端的几何高差(m);
L——横管的长度(m)。:
将各个参数代入6-7和6-8式,计算出不同管径、不同坡度 时非满流(h/D=0.8)横管(铸铁管、钢管、塑料管)和满流 横管(混凝土管)的流速和最大泄流量,见附录6-1、附录6-2、 附录6-3。
Qd2 2g(HP)
4
(6-4)
式中 Q ——雨水斗出水口泄流量, m3 /s; μ——雨水斗出水口的流量系数,取0.95; d——雨水斗出水口内径, m; H——雨水斗前水面至雨水出水口处的高度, m; P——雨水斗排水管中的负压, m。
2020/8/20
6.3 雨水排水系统的水力计算
6.3.2 系统计算原理与参数
25×10-5 m。
α ——充水率,塑料管取0.3,铸铁管取0.35。 d——管道计算内径(m)
重力流立管最大允许流量见附录6-4 重力半有压流系流状态下雨水排水立管按水塞流计算,
2020/8/20
6.3 雨水排水系统的水力计算
6.3.2 系统计算原理与参数
铸铁管充水率α=0.57~0.35,小管径取大值,大管径取小值。
2020/8/20
6.3 雨水排水系统的水力计算
6.3.1 雨水量计算
2.汇水面积 F
屋面雨水汇水面积较小,一般按m2计。对于有一定坡度的屋面, 汇水面积不按实际面积而是按水平投影面积计算。
考虑到大风作用下雨水倾斜降落的影响,高出屋面的侧墙,应 附加其最大受雨面正投影的一半作为有效汇水面积计算。窗井、贴 近高层建筑外墙的地下汽车库出入口坡道应附加其高出部分侧墙面 积的二分之一。
各种类型雨水斗的最大泄流量可按表6-1选取。 雨水斗最大泄流量(L/s)
表6-1
2020/8/20
6.3 雨水排水系统的水力计算
6.3.2 系统计算原理与参数
87式多斗排水系统中,一根悬吊管连接的87式雨水斗最多 不超过4个,离立管最远端雨水斗的设计流量不得超过表中数值, 其他各斗的设计流量依次比上游斗递增10%。
进入室外雨水检查井时,为避免冲刷,流速应小于1.8m/s。
ω——管内过水断面积(m2);
2020/8/20
6.3 雨水排水系统的水力计算
6.3.2 系统计算原理与参数
n——粗糙系数;塑料管取0.010,铸铁管取0.014,混凝土管取0.013; R——水力半径(m),悬吊管按充满度h/D=0.8计算,横干管按满流计算; I——水力坡度;重力流的水力坡度按管道敷设坡度计算,
重力半有压流系统除了重力作用外,还有负压抽吸作用,所 以,重力半有压流系统立管的排水能力大于重力流,其中,单斗 流系统立管的管径与雨水斗口径、悬吊管管径相同,多斗系统立 管管径根据立管设计排水量按表6-3确定。
同一汇水区内高出的侧墙多于一面时,按有效受水侧墙面积的 1/2折算汇水面积。
2020/8/20
6.3 雨水排水系统的水力计算
6.3.2 系统计算原理与参数
1. 雨水斗泄流量
雨水斗的泄流量与流动状态有关,重力流状态下,雨水斗的 排水状况是自由堰流,通过雨水斗的泄流量与雨水斗进水口直径 和斗前水深有关,可按环形溢流堰公式计算
横管的管径根据各雨水斗流量之和确定,并宜保持管径不 变。
2020/8/20
6.3 雨水排水系统的水力计算
6.3.2 系统计算原理与参数
4. 立管
重力流状态下雨水排水立管按水膜流计算
Q789K 0p1653d83
(6-10)
式中 Q——立管排水流量,(L/s); Kp——粗糙高度,(m),塑料管取15×10-6 m,铸铁管取
QDh2gh
(6-3)
式中
Q ——通过雨水斗的泄流量, m3 /s; μ——雨水斗进水口的流量系数,取0.45; D——雨水斗进水口直径, m; h——雨水斗进水口前水深, m。
2020/8/20
6.3 雨水排水系统的水力计算
6.3.2 系统计算原理与参数
在半有压流和压力流状态下,排水管道内产生负压抽吸,所以 通过雨水斗的泄流量与雨水斗出水口直径、雨水斗前水面至雨水斗 出水口处的高度及雨水斗排水管中的负压有关:
金属管不小于0.01,塑料管不小于0.005;重力半有压流的水力坡 度与横管两端管内的压力差有关,按下式计算:
I(hh)/L
(6-9)
式中
I——水力坡度; h——横管两端管内的压力差,(mH2O),悬吊管按其末端(立管与
悬吊管连接处)的最大负压值计算,取0.5m,埋地横干管按其起端(立 管与埋地横干管连接处)的最大正压值计算,取1.0m;