全国高中物理竞赛难题
全国物理高中竞赛决赛试题及答案
全国中学生物理竞赛决赛试题一、(15分)在竖直面内将一半圆形光滑导轨固定在A 、B 两点,导轨直径AB =2R ,AB 与竖直方向间的夹角为60°,在导轨上套一质量为m 的光滑小圆环,一劲度系数为k 的轻而细的光滑弹性绳穿过圆环,其两端系与A 、B 两点,如图28决—1所示。
当圆环位于A 点正下方C 点时,弹性绳刚好为原长。
现将圆环从C 点无初速度释放,圆环在时刻t 运动到C'点,C'O 与半径OB 的夹角为θ,重力加速度为g .试求分别对下述两种情形,求导轨对圆环的作用力的大小:(1)θ=90°(2)θ=30°二、(15分)如图28决—2所示,在水平地面上有一质量为M 、长度为L 的小车,车内两端靠近底部处分别固定两个弹簧,两弹簧位于同一直线上,其原长分别为l 1和l 2,劲度系数分别为k 1和k 2;两弹簧的另一端分别放着一质量为m 1、m 2的小球,弹簧与小球都不相连。
开始时,小球1压缩弹簧1并保持整个系统处于静止状态,小球2被锁定在车底板上,小球2与小车右端的距离等于弹簧2的原长。
现无初速释放小球1,当弹簧1的长度等于其原长时,立即解除对小球2的锁定;小球1与小球2碰撞后合为一体,碰撞时间极短。
已知所有解除都是光滑的;从释放小球1到弹簧2达到最大压缩量时,小车移动力距离l 3.试求开始时弹簧1的长度l 和后来弹簧2所达到的最大压缩量Δl 2.三、(20分)某空间站A 绕地球作圆周运动,轨道半径为r A =6.73×106m.一人造地球卫星B 在同一轨道平面内作圆周运动,轨道半径为r B =3r A /2,A 和B 均沿逆时针方向运行。
现从空间站上发射一飞船(对空间站无反冲)前去回收该卫星,为了节省燃料,除了短暂的加速或减速变轨过程外,飞船在往返过程中均采用同样形状的逆时针椭圆转移轨道,作无动力飞行。
往返两过程的椭圆轨道均位于空间站和卫星的圆轨道平面内,且近地点和远地点都分别位于空间站和卫星的轨道上,如图28决—3所示。
高中物理难题(包含物理竞赛)
平和正兴学校高二年物理竞赛练习(电磁)
2019.3.24 一、(2016年第33届全国中学生物理竞赛预赛第1题)
【一答案】D
二、(2016年第33届全国中学生物理竞赛预赛第4题)
【二答案】AC
三、(2016年第33届全国中学生物理竞赛预赛第8题)
【三答案】L1+L2+2M ; L1+L2-2M
四、(2016年第33届全国中学生物理竞赛预赛第13题)
【四答案】
五、(2016年第33届全国中学生物理竞赛预赛第13题)
【五答案】
【六答案】
八、(2016年第32届全国中学生物理竞赛复赛第六题)
九、(2017年第34届全国中学生物理竞赛复赛第四题)
如俯视图,在水平面内有两个分别以O点与O1点为圆心的导电半圆弧内切于M点,半圆O的半径为2a,半圆O1的半径为a;两个半圆弧和圆O的半径ON围成的区域内充满垂直于水平面向下的匀强磁场(未画出),磁感应强度大小为B;其余区域没有磁场。
半径OP为一均匀细金属棒,以恒定的角速度绕O点顺时针旋转,旋转过程中金属棒OP 与两个半圆弧均接触良好。
已知金属棒OP电阻为R,两个半圆弧的电阻可忽略。
开始时P 点与M点重合。
在t()时刻,半径OP与半圆O1交于Q点。
求(1)沿回路QPMQ 的感应电动势;
(2)金属棒OP 所受到的原磁场B的作用力的大小。
高中物理竞赛(力学)试题解
高中物理竞赛(力学)试题解————————————————————————————————作者:————————————————————————————————日期:1、(本题20分)如图6所示,宇宙飞船在距火星表面H高度处作匀速圆周运动,火星半径为R 。
当飞船运行到P点时,在极短时间内向外侧点喷气,使飞船获得一径向速度,其大小为原来速度的α倍。
因α很小,所以飞船新轨道不会与火星表面交会。
飞船喷气质量可以不计。
(1)试求飞船新轨道的近火星点A的高度h近和远火星点B的高度h远;(2)设飞船原来的运动速度为v0 ,试计算新轨道的运行周期T 。
2,(20分)有一个摆长为l的摆(摆球可视为质点,摆线的质量不计),在过悬挂点的竖直线上距悬挂点O 的距离为x处(x<l)的C点有一固定的钉子,如图所示,当摆摆动时,摆线会受到钉子的阻挡.当l一定而x取不同值时,阻挡后摆球的运动情况将不同.现将摆拉到位于竖直线的左方(摆球的高度不超过O点),然后放手,令其自由摆动,如果摆线被钉子阻挡后,摆球恰巧能够击中钉子,试求x的最小值.3,(20分)如图所示,一根长为L的细刚性轻杆的两端分别连结小球a和b,它们的质量分别为ma和m b. 杆可绕距a球为L/4处的水平定轴O在竖直平面内转动.初始时杆处于竖直位置.小球b几乎接触桌面.在杆的右边水平桌面上,紧挨着细杆放着一个质量为m的立方体匀质物块,图中ABCD为过立方体中心且与细杆共面的截面.现用一水平恒力F作用于a球上,使之绕O轴逆时针转动,求当a转过 角时小球b速度的大小.设在此过程中立方体物块没有发生转动,且小球b与立方体物块始终接触没有分离.不计一切摩擦.4、把上端A封闭、下端B开口的玻璃管插入水中,放掉部分空气后放手,玻璃管可以竖直地浮在水中(如下图).设玻璃管的质量m=40克,横截面积S=2厘米2,水面以上部分的长度b=1厘米,大气压强P0=105帕斯卡.玻璃管壁厚度不计,管内空气质量不计.(1)求玻璃管内外水面的高度差h.(2)用手拿住玻璃管并缓慢地把它压入水中,当管的A端在水面下超过某一深度时,放手后玻璃管不浮起.求这个深度.(3)上一小问中,放手后玻璃管的位置是否变化?如何变化?(计算时可认为管内空气的温度不变)5、一个光滑的圆锥体固定在水平的桌面上,其轴线沿竖直方向,母线与轴线之间的夹角θ=30°(如右图).一条长度为l的绳(质量不计),一端的位置固定在圆锥体的顶点O处,另一端拴着一个质量为m的小物体(物体可看作质点,绳长小于圆锥体的母线).物体以速率v绕圆锥体的轴线做水平匀速圆周运动(物体和绳在上图中都没画出).aOb AB CDF6、(13分) 一辆车通过一根跨过定滑轮的绳PQ 提升井中质量为m 的物体,如图所示.绳的P 端拴在车后的挂钩上,Q 端拴在物体上.设绳的总长不变,绳的质量、定滑轮的质量和尺寸、滑轮上的摩擦都忽略不计.开始时,车在A 点,左右两侧绳都已绷紧并且是竖直的,左侧绳长为H.提升时,车加速向左运动,沿水平方向从A 经过B 驶向C.设A 到B 的距离也为H,车过B 点时的速度为v B .求在车由A 移到B 的过程中,绳Q 端的拉力对物体做的功.7.在两端封闭、内径均匀的直玻璃管内,有一段水银柱将两种理想气体a 和b 隔开.将管竖立着,达到平衡时,若温度为T,气柱a 和b 的长度分别为l a 和l b ;若温度为T ',长度分别为l 抋和l 抌.然后将管平放在水平桌面上,在平衡时,两段气柱长度分别为l 攁和l 攂.已知T 、T 挕8.如图所示,质量为Kg M9=的小车放在光滑的水平面上,其中AB 部分为半径R=0.5m的光滑41圆弧,BC 部分水平且不光滑,长为L=2m ,一小物块质量m=6Kg ,由A 点静止释放,刚好滑到C 点静止(取g=102s m ),求:①物块与BC 间的动摩擦因数②物块从A 滑到C 过程中,小车获得的最大速度9..如图所示,在光滑水平面上放一质量为M 、边长为l 的正方体木块,木块上搁有一长为L 的轻质光滑棒,棒的一端用光滑铰链连接于地面上O 点,棒可绕O 点在竖直平面内自由转动,另一端固定一质量为m 的均质金属小球.开始时,棒与木块均静止,棒与水平面夹角为α角.当棒绕O 点向垂直于木块接触边方向转动到棒与水平面间夹角变为β的瞬时,求木块速度的大小.10 如图所示,一半径为R 的金属光滑圆环可绕其竖直直径转动.在环上套有一珠子.今逐渐增大圆环的转动角速度ω,试求在不同转动速度下珠子能静止在环上的位置.以珠子所停处的半径与竖直直径的夹角θ表示.11如图所示,一木块从斜面AC 的顶端A 点自静止起滑下,经过水平面CD 后,又滑上另一个斜面DF ,到达顶端F 点时速度减为零。
物理竞赛难题及答案
物理竞赛辅导---电学(二)★电学解题的方法:(1)等效法(3)电荷守恒和节点电位(势)法(2)极值法 例题:1、正方形薄片电阻片所示接在电路中,电路中电流为I ;若在该电阻片正中挖去一小正方形,挖去的正方形边长为原电阻片边长的三分之一,然后将带有正方形小孔的电阻片接在同一电源上,保持电阻片两端电压不变,电路中的电流I′变为6/7I.由于薄片两边嵌金属片,将正方形薄片的电阻可等效为图3所示.设每小块的电阻为R ,则薄片总电阻是3个3R 电阻的并联值,其值也是R .现从中挖出一块,此时薄片等效电阻如图4所示.显然其阻值是(7R/6),故I′=U/(7R/6)=(6/7)I.图3 图42、某一网络电路中的部分电路如图所示,已知I =3A ,I 1=2A ,R 1=10Ω,R 2=5Ω,R 3=30Ω,则下列结论正确的是( B )A .通过R 3的电流为0.5A ,方向从a →bB .通过R 3的电流为0.5A ,方向从b →aC .通过电流表的电流为0.5A ,电流表“+”接线柱在右边D .通过电流表的电流为1.5A ,电流表“+”接线柱在左边3、如图所示电路,电源电压恒定,R 1=10Ω, R 2=8Ω,R 3不知道为多少。
当开关k 扳到位置1时,电压表V 读数为2.0V ,当开关扳到位置2时,电压表读数可能是( BC )A 、2.2VB 、1.9VC 、1.7VD 、1.4V 学以致用1、图所示电路是由十二个不同的电阻组成的,已知R 1=12欧,其余电阻阻值未知,测得A 、B 间总电阻为6欧。
今将R 1换成6欧的电阻,则A 、B 间的总电阻为( B ) (A)6欧。
(B)4欧。
(C)3欧。
a R 1 AR 2 R 3b II 1(D)2欧。
2、把一根电阻为R的均匀电阻丝弯折成一个等边三角形abc(如图所示),d为底边ab的中点,如cd间的电阻R1为9欧,则ab间的电阻R2的阻值应该是( C )A.36欧B.12欧C.8欧D.4欧3、如图所示电路中,电源电压保持不变。
高中物理竞赛题(难)
高中物理竞赛注意:本卷g均取10。
一、单项选择题(本题共6小题,每小题3分,共计18分,每小题只有一个....选项符合题意。
)1.以下是力学中的三个实验装置,由图可知这三个实验共同的物理思想方法是()A.极限的思想方法B.控制变量的方法C.放大的思想方法D.猜想的思想方法2.在学习物理过程中,物理学史也成为一个重要的资源,通过学习大师们进行科学研究的方法有助于提高同学们的科学素养。
本题所列举的科学家都是为物理学发展做出突出贡献的人物。
下面列举的事例中正确的是()A.居里夫妇用α粒子轰击铝箔时发现电子B.卢瑟福的原子核式结构学说成功地解释了氢原子的发光现象C.麦克斯韦从理论上预言了电磁波的存在,赫兹用实验方法给予了证实D.爱因斯坦发现了光电效应现象,普朗克为了解释光电效应的规律,提出了光子说3.如图甲所示,放在光滑水平面上的木块受到两个水平力F1与F2的作用,静止不动,现保持力F1不变,使力F2逐渐减小到零,再逐渐恢复到原来的大小,在这个过程中,能正确描述木块运动情况的图像是图乙中的()4.在第29届北京奥运会的开幕式上,我们从电视上看到夜晚北京燃放起美丽的焰火。
按照设计,某种型号的装有焰火的礼花弹从专用炮筒中射出后,在4s末到达离地面100m的最高点时炸开,构成各种美丽的图案。
假设礼花弹从炮筒中竖直向上射出时的初速度是v0,上升过程中所受的阻力大小始终是自身重力的k倍,g=10m/s2,那么v0和k分别等于()A.25m/s,1.25 B.25m/s,0.25 C.50m/s,1.25 D.50m/s,0.255.2009年4月15日零时16分,我国第二颗北斗导航卫星在西昌卫星发射中心发射成功,这颗卫星是中国“北斗二号”卫星导航系统建设计划中的第二颗组网卫星,是地球同步静止轨道卫星。
我国还将在今年和明年两年发射10颗左右的导航卫星,预计在2015年建成由30多颗卫星组成的、覆盖全球的“北斗二号”卫星导航定位系统。
2023年全国高中生物理奥赛高难题目
2023年全国高中生物理奥赛高难题目一、题目背景高中生物理奥赛是全国性的竞赛,旨在考察学生在物理知识、实验技能、科学研究能力等方面的综合素养。
2023年,该竞赛的高难题目将继续挑战学生的智力和创造力,以下是本届高难题目的内容介绍。
二、题目内容题目:长长的电流导线上有一根磁铁,当将磁铁从距离导线a处拉远至距离导线b的位置时,确认下列说法的正确与否:说法一:当磁铁靠近导线时,导线上会产生感应电流。
说法二:当磁铁远离导线时,导线上会产生感应电流。
说法三:当磁铁靠近导线时,导线上的磁感应强度会增大。
说法四:当磁铁远离导线时,导线上的磁感应强度会减小。
三、解析与论证针对以上题目,我们将对每个说法进行解析与论证,来判断其正确性。
说法一:当磁铁靠近导线时,导线上会产生感应电流。
对于这个说法,我们可以引用法拉第电磁感应定律来解释。
根据法拉第电磁感应定律,导线在磁场变化时会感应产生电动势和感应电流。
当磁铁靠近导线时,磁场的变化会导致导线中出现感应电流,因此说法一是正确的。
说法二:当磁铁远离导线时,导线上会产生感应电流。
同样地,根据法拉第电磁感应定律,当磁铁远离导线时,导线中的磁场变化也会引起感应电流。
因此,说法二也是正确的。
说法三:当磁铁靠近导线时,导线上的磁感应强度会增大。
为了判断这个说法的正确性,我们需要了解导线中磁感应强度的变化情况。
根据安培环路定理,当磁场的变化导致感应电流产生时,会在导线周围产生磁感应强度。
根据右手定则,可以得出,磁铁靠近导线时,磁感应强度的方向与磁铁相同,但是并没有明确的表明磁感应强度的增大或减小。
因此,说法三需要进一步论证。
说法四:当磁铁远离导线时,导线上的磁感应强度会减小。
同样地,安培环路定理可以帮助我们解释说法四。
当磁铁远离导线时,导线中的感应电流减小,因此周围的磁感应强度也会减小。
所以,可以得出说法四是正确的。
四、结论综上所述,根据解析与论证,我们可以得出以下结论:说法一:当磁铁靠近导线时,导线上会产生感应电流。
全国高中物理竞赛题目
1、关于万有引力定律,下列说法正确的是:A. 万有引力定律只适用于天体之间B. 两个物体之间的万有引力与它们质量的乘积成正比C. 两个物体之间的万有引力与它们距离的平方成反比D. 万有引力定律是牛顿在伽利略和开普勒研究基础上提出的2、关于电磁感应现象,下列说法错误的是:A. 闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中会产生感应电流B. 感应电流的方向总是与磁场方向相同C. 感应电流的方向与导体切割磁感线的方向有关D. 感应电动势的大小与磁通量的变化率成正比3、关于牛顿第二定律,下列说法正确的是:A. 物体的加速度与它所受合外力成正比,与它的质量成反比B. 物体的加速度方向总是与它所受合外力的方向相同C. 牛顿第二定律只适用于宏观低速物体,不适用于微观高速粒子D. 物体所受合外力为零时,加速度一定为零,但速度不一定为零4、关于光的干涉现象,下列说法正确的是:A. 干涉现象是光波叠加的结果B. 任何两束光都能发生干涉现象C. 干涉条纹的间距与光的波长成正比D. 干涉现象说明光具有波动性5、在双缝干涉实验中,若将其中一缝挡住,则屏幕上:A. 出现一条亮纹B. 出现等间距的明暗相间的条纹C. 出现不等间距的明暗相间的条纹D. 出现一片黑暗6、关于热力学第二定律,下列说法正确的是:A. 热量不能自发地从低温物体传向高温物体B. 在一定条件下,热量可以从低温物体传向高温物体C. 热量不能从低温物体传向高温物体,但内能可以D. 第二定律的微观意义是“一切自然过程总是沿着分子热运动无序性增大的方向进行”7、关于光的折射现象,下列说法错误的是:A. 光从一种介质进入另一种介质时,传播方向一定会发生改变B. 折射光线、入射光线和法线都在同一平面内C. 折射角的大小与入射角的大小和两种介质的性质都有关D. 在折射现象中,光路是可逆的8、关于电磁波谱,下列说法错误的是:A. 电磁波谱按照波长从长到短排列包括无线电波、红外线、可见光、紫外线、X射线和γ射线B. 紫外线的波长比可见光的波长短,所以它的热效应显著C. X射线具有较强的穿透能力,医学上常用它进行人体透视D. γ射线是原子核内部发生衰变时放出的射线,它的电离本领很强9、关于动量守恒定律,下列说法正确的是:A. 系统不受外力作用时,系统动量一定守恒B. 系统所受合外力为零时,系统动量一定守恒C. 系统所受合外力不为零,但内力远大于外力时,系统动量近似守恒D. 动量守恒定律是自然界最普遍的定律之一,它适用于低速、宏观物体,也适用于高速、微观粒子10、关于原子物理,下列说法正确的是:A. 氢原子从高能级向低能级跃迁时,会放出光子,且原子电势能减小B. 汤姆生发现了电子,并提出了原子的核式结构模型C. 原子核发生衰变时,会同时放出三种射线:α射线、β射线和γ射线,其中α射线穿透能力最强D. 根据玻尔理论,氢原子从高能级向低能级跃迁时,会放出光子,且电子的轨道半径减小。
全国物理竞赛试题及答案高中
全国物理竞赛试题及答案高中一、选择题(每题5分,共20分)1. 一个质量为m的物体从静止开始下落,忽略空气阻力,经过时间t 后,物体的速度大小为:A. gtB. gt^2C. √(gt)D. √(gt^2)2. 根据牛顿第三定律,以下哪对力是作用力和反作用力:A. 人推墙的力和墙对人的力B. 地球对月球的引力和月球对地球的引力C. 运动员投掷铅球时,铅球的重力和运动员的支持力D. 运动员跳高时,运动员对地面的压力和地面对人的支持力3. 一个弹簧振子做简谐运动,振幅为A,周期为T,那么振子在一周期内通过的总路程为:A. 4AB. 2AC. 8AD. 6A4. 一个物体在水平面上以初速度v0开始做匀减速直线运动,直到停止。
已知物体与水平面之间的动摩擦因数为μ,求物体滑行的距离:A. v0^2 / (2μg)B. v0^2 / (μg)C. 2v0^2 / (μg)D. μg * v0二、填空题(每空3分,共15分)1. 根据欧姆定律,电阻R两端的电压U和通过电阻的电流I的关系是:U = _______。
2. 一个物体从高度h自由下落,其下落过程中重力势能的减少量等于_______。
3. 电磁波的波速在真空中为_______,是光速。
4. 根据能量守恒定律,一个完全非弹性碰撞中,碰撞前后动能的_______。
5. 根据麦克斯韦方程组,变化的磁场会产生_______。
三、计算题(每题10分,共30分)1. 一个质量为2kg的物体被放在水平面上,受到一个水平方向的力F=10N。
求物体在5秒内移动的距离。
2. 一个单摆的摆长为1m,摆角为5°,求单摆完成一次全摆动所需的时间。
3. 一个电路由一个电源电压为12V,一个电阻R=6Ω,一个电容C=10μF组成。
求在充电5分钟后,电容两端的电压。
四、论述题(共35分)1. 论述牛顿运动定律在日常生活中的应用,并给出两个具体的例子。
(15分)2. 描述并解释电磁感应现象,并给出一个电磁感应在现代科技中的应用实例。
全国高中物理竞赛题目附答案-全国高中物理竞赛
全国高中物理竞赛题目附答案-全国高中物理竞赛第一题问题:在一个实验室中,研究人员用一根长30厘米的细绳拧成了一个均匀的扁圆环,并使绳中没有节点。
现用一个透明的粗绳绑在扁圆环的一部分上,被实验者拉紧,如图所示。
当实验者放手,绳可以自由滑动,且没有外部摩擦阻力。
实验者拉绳的作用力为10牛,拉绳的方向竖直向上。
已知绳的线密度为ρ,绳的横截面积为A。
试分析并计算此时扁圆环上存在的应力分布情况。
答案:设扁圆环上任意一点的切线方向为x轴方向,半径方向为y轴方向。
由牛顿第一定律可知,扁圆环上各点的切线方向的合力为零。
此时,切线方向上的应力等于拉绳的作用力,即:σ = F/A,其中,σ为应力,F为拉绳的作用力,A为绳的横截面积。
第二题问题:一个弹簧的伸长量跟受力的大小有关。
现有一个弹簧,质量忽略不计,劲度系数为k。
已知一个物体以速度v撞击弹簧,撞击后弹簧发生最大压缩,此时物体速度为零。
试分析并计算弹簧的最大压缩量。
答案:由动量守恒定律可知,物体撞击弹簧后,合外力为零,故动量守恒。
物体的初动量为mv,撞击后为0。
弹簧的质心相对物体的速度为v,则根据动量守恒定律:mv + Mv = 0,其中,m为物体的质量,v为物体的速度,M为弹簧的质量,V为弹簧质心相对物体的速度。
由此可得:v = -(mv) / M,将此结果代入动能定理可得:kx² / 2 = (1/2)mv²,其中,x为弹簧的最大压缩量。
将上式中的v代入,整理得:kx² = Mv²,x = √(Mv² / k)。
第三题问题:一根长度为L的均质细棒,质量为M,直角弯曲成一个半径为R的圆环,如图所示。
试分析并计算细棒上各点受到的压力分布情况。
答案:设细棒上任意一点的切线方向为x轴方向,圆环上的圆周方向为y轴方向。
由牛顿第一定律可知,细棒上各点的切线方向的合力为零。
此时,切线方向上的压力等于使细棒弯曲的力,即由压力造成的。
全国高中物理竞赛试题
全国高中物理竞赛试题一、选择题1. 关于牛顿第二定律,下列说法正确的是:A. 物体加速度与作用力成正比,与物体质量成反比。
B. 物体所受合力等于物体质量与加速度的乘积。
C. 物体在任何情况下都受到一个恒定的重力。
D. 牛顿第二定律只适用于宏观低速物体。
2. 一个质量为0.5kg的物体,受到一个水平向右的力F=10N,若摩擦力为2N,求物体的加速度。
A. 4 m/s²B. 6 m/s²C. 8 m/s²D. 10 m/s²3. 一个弹簧振子的周期为2秒,振幅为0.1m,求弹簧振子的频率和振幅。
A. 频率:1Hz,振幅:0.1mB. 频率:0.5Hz,振幅:0.1mC. 频率:1Hz,振幅:0.2mD. 频率:0.5Hz,振幅:0.2m4. 关于光的折射定律,下列说法正确的是:A. 入射光线、折射光线和法线都在同一平面上。
B. 入射角和折射角随光的波长变化而变化。
C. 折射率与光的频率成反比。
D. 折射定律只适用于单色光。
5. 一个电路由一个电阻R=10Ω和一个电感L=0.1H串联,通过一个频率为50Hz的交流电源,电源电压为220V。
若电感的感抗XL=2Ω,求电路的总阻抗。
A. 12ΩB. 10ΩC. 8ΩD. 6Ω二、填空题6. 一个质量为2kg的物体,受到一个力F=20N,求物体的加速度________ m/s²。
7. 一个电路中,电阻R1=5Ω,电阻R2=10Ω,并联后接在一个电压为12V的电源上,求通过R1的电流________ A,通过R2的电流________ A。
8. 一束光从空气进入水中,入射角为30°,水的折射率为1.33,求折射角________°。
9. 一个简单的单摆,摆长L=1m,摆幅θ=5°,重力加速度g=9.8m/s²,求单摆的周期________ s。
三、计算题10. 一个质量为0.3kg的物体,以初速度10m/s沿水平面运动,受到一个与其运动方向相反的阻力,阻力大小为物体速度的两倍,求物体在水平面上运动4秒后的速度。
第39届全国中学生物理竞赛决赛理论考试试题(含解答)
一、(40分)如图1a ,一段抛物线形状的刚性金属丝固定在竖直平面内,抛物线方程为y = ax 2(y 轴竖直向上,a 为待定常量);一长度为2l 的匀质刚性细杆的两端A 、B 各有一个小圆孔,两圆孔都套在金属丝上。
圆孔和金属丝之间非常光滑,摩擦力非常小,在问题(1)、(2)和(3)中可忽略。
若给细杆一个冲量,使其运动;经过足够长的时间,细杆静止于平衡位置,此时细杆和水平方向之间的夹角=︒θ30。
已知重力加速度大小为g 。
(1)求待定常量a ;(2)若杆在上述平衡位置附近小幅振动,求振动的频率;(3)细杆静止在上述平衡位置。
现有一只小白鼠,从静止开始由杆底端沿杆往上爬。
在爬杆的过程中,细杆始终保持静止;假设小白鼠可视为质点,且小白鼠在杆端不接触金属丝。
求小白鼠在时刻t (以小白鼠开始爬杆的时刻为时刻零点)沿细杆的位移s t (),小白鼠是否可以爬到细杆顶端?如果可以,小白鼠爬到细杆顶端,最少用时多少?解答:(1)设细杆的质心的坐标为(x c ,y c ),细杆的长度为2l ,则杆的A 和B 端的坐标为:① 2分代入抛物线方程得:② ③联立②③式得:④ 1分⑤ 1分细杆重力势能为:⑥ 2分平衡点为势能极值点:⑦ 2分解为:I 、 sin θ =0,即θ =0,不符题意,舍去。
⑧ II 、⑨得:⑩已知θ=30°,所以:⑪图1a B 第39届全国中学生物理竞赛决赛理论考试试题⑫ 2分(2)细杆在平衡位置附近小幅振动,由机械能守恒得:⑬ 4分即:⑭ 2分令:θ=θ0+∆θ(|∆θ|≪θ0),θ0=30°为平衡位置,于是⑭式在θ0附近做小量∆θ展开,并且质心动能、相对质心转动动能和势能三部分都保留至(不是常量的)最大一项,得到近似式:⑮ 6分两边对时间求导得:⑯ 2分或小幅振动可以近似为简谐运动,角频率为:⑰振动频率:⑱ 2分(3)设白鼠的质量为m s,沿细杆的位移为s,B点s=0,加速度为d2s/dt2,则白鼠对细杆的作用力:,竖直向下;2 22sd sF mdt=,沿细杆。
全国高中物理力学竞赛试题卷(部分)百度文库整理
全国高中物理力学竞赛试题卷(部分)考生须知:时间150分钟,g取10m/s2(, 题号带△的题普通中学做)一. 单选题(每题5分)△1.如图所示,一物体以一定的初速度沿水平面由A 点滑到B 点,摩擦力做功为W 1;若该物体从M 点沿两斜面滑到N ,摩擦力做的总功为W 2。
已知物体与各接触面的动摩擦因数均相同,则:A .W 1=W 2B .W 1<W 2C .W 1>W 2D .无法确定△2.下面是一位科学家的墓志铭: 爵士安葬在这里。
他以超乎常人的智力第一个证明了行星的运动与形状、彗星的轨道和海洋的潮汐。
他孜孜不倦地研究光线的各种不同的折射角,颜色所产生的种种性质。
对于自然、历史和圣经,他是一个勤勉、敏锐的诠释者。
让人类欢呼,曾经存在过这样一位伟大的人类之光。
这位科学家是:A .开普勒B .牛顿C .伽利略D .卡文迪许3.2002年3月25日,北京时间22时15分,我国在酒泉卫星发射中心成功发射了一艘正样无人飞船,除航天员没有上之外,飞船技术状态与载人状态完全一致。
它标志着我国载人航天工程取得了新的重要进展,为不久的将来把中国航天员送上太空打下了坚实的基础。
这飞船是A .北斗导航卫星B .海洋一号C .风云一号D 星 D .神舟三号4.如图所示,有一箱装得很满的土豆,以一定的初速度在动摩擦因数为μ的水平地面上做匀减速运动,不计其它外力及空气阻力,则中间一质量为m的土豆A 受到其它土豆对它的总作用力大小应是:A .μmgB .mg 21μ+C .mg 21μ-D .mg 12-μB 、C 、D 、E 、F 五个球并排放置在光滑的水平面上,B 、C 、D 、E 四个球质量相同,均为m=2kg ,A 球质量等于F 球质量,均为m=1kg ,现在A 球以速度v 0向B 球运动,所发生的碰撞均为弹性碰撞,则碰撞之后:A .五个球静止,一个球运动 B. 四个球静止,二个球运动 C .三个球静止,三个球运动 D .六个球都运动6.一物体原来静置于光滑的水平面上。
【精品】高中物理竞赛选拔综合经典习题(Word版含详细答案)
高中物理竞赛复赛经典练习题1. (本题6分)一长度为l 的轻质细杆,两端各固结一个小球A 、B (见图),它们平放在光滑水平面上。
另有一小球D ,以垂直于杆身的初速度v 0与杆端的Α球作弹性碰撞.设三球质量同为m ,求:碰后(球Α和Β)以及D 球的运动情况.2. (本题6分)质量m =10 kg 、长l =40 cm 的链条,放在光滑的水平桌面上,其一端系一细绳,通过滑轮悬挂着质量为m 1 =10 kg 的物体,如图所示.t = 0时,系统从静止开始运动, 这时l 1 = l 2 =20 cm< l 3.设绳不伸长,轮、绳的质量和轮轴及桌沿的摩擦不计,求当链条刚刚全部滑到桌面上时,物体m 1速度和加速度的大小.3. (本题6分) 长为l 的匀质细杆,可绕过杆的一端O 点的水平光滑固定轴转动,开始时静止于竖直位置.紧挨O 点悬一单摆,轻质摆线的长度也是l ,摆球质量为m .若单摆从水平位置由静止开始自由摆下,且摆球与细杆作完全弹性碰撞,碰撞后摆球正好静止.求: (1) 细杆的质量.(2) 细杆摆起的最大角度θ.4. (本题6分)质量和材料都相同的两个固态物体,其热容量为C .开始时两物体的温度分别为T 1和T 2(T 1 > T 2).今有一热机以这两个物体为高温和低温热源,经若干次循环后,两个物体达到相同的温度,求热机能输出的最大功A max .5. (本题6分)如图所示,123415641 为某种一定量的理想气体进行的一个循环过程,它是由一个卡诺正循环12341 和一个卡诺逆循环15641 组成.已知等温线温度比T 1 / T 2 = 4,卡诺正逆循环曲线所包围面积大小之比为S 1 / S 2 = 2.求循环123415641的效率η.6. (本题6分)将热机与热泵组合在一起的暖气设备称为动力暖气设备,其中带动热泵的动力由热机燃烧燃料对外界做功来提供.热泵从天然蓄水池或从地下水取出热量,向温度较高的暖气系统的水供热.同时,暖气系统的水又作为热机的冷却水.若燃烧1kg 燃料,锅炉能获得的热量为H ,锅炉、地下水、暖气系统的水的温度分别为210℃,15℃,60℃.设热机及热泵均是可逆卡诺机.试问每燃烧1kg 燃料,暖气系统所获得热量的理想数值(不考虑各种实际损失)是多少?7. (本题5分) 如图所示,原点O 是波源,振动方向垂直于纸面,波长是λ .AB 为波的反射平面,反射时无相位突变π.O 点位于A 点的正上方,h AO =.Ox 轴平行于AB .求Ox 轴上干涉加强点的坐标(限于x ≥ 0).8. (本题6分)一弦线的左端系于音叉的一臂的A 点上,右端固定在B 点,并用T = 7.20 N 的水平拉力将弦线拉直,音叉在垂直于弦线长度的方向上作每秒50次的简谐振动(如图).这样,在弦线上产生了入射波和反射波,并形成了驻波.弦的线密度η = 2.0 g/m , 弦线上的质点离开其平衡位置的最大位移为4 cm .在t = 0时,O 点处的质点经过其平衡位置向下运动,O 、B 之间的距离为L = 2.1 m .试求:12T 1 6543 VpOT 2A(1) 入射波和反射波的表达式; (2) 驻波的表达式.9. (本题6分)用每毫米300条刻痕的衍射光栅来检验仅含有属于红和蓝的两种单色成分的光谱.已知红谱线波长λR 在 0.63─0.76μm 范围内,蓝谱线波长λB 在0.43─0.49 μm 范围内.当光垂直入射到光栅时,发现在衍射角为24.46°处,红蓝两谱线同时出现. (1) 在什么角度下红蓝两谱线还会同时出现?(2) 在什么角度下只有红谱线出现?10. (本题6分)如图所示,用波长为λ= 632.8 nm (1 nm = 10-9 m)的单色点光源S 照射厚度为e = 1.00×10-5 m 、折射率为n 2 = 1.50、半径为R = 10.0 cm 的圆形薄膜F ,点光源S 与薄膜F 的垂直距离为d = 10.0 cm ,薄膜放在空气(折射率n 1 = 1.00)中,观察透射光的等倾干涉条纹.问最多能看到几个亮纹?(注:亮斑和亮环都是亮纹).11. (本题6分)507⨯双筒望远镜的放大倍数为7,物镜直径为50mm .据瑞利判据,这种望远镜的角分辨率多大?设入射光波长为nm 550.已知眼睛瞳孔的最大直径为7.0mm .求出眼睛对上述入射光的分辨率.用得数除以7,和望远镜的角分辨率对比,然后判断用这种望远镜观察时实际起分辨作用的是眼睛还是望远镜.12. (本题6分)一种利用电容器控制绝缘油液面的装置示意如图. 平行板电容器的极板插入油中,极板与电源以及测量用电子仪器相连,当液面高度变化时,电容器的电容值发生改变,使电容器产生充放电,从而控制电路工作. 已知极板的高度为a ,油的相对电容率为εr ,试求此电容器等效相对电容率与液面高度h 的关系.13. (本题6分)在平面螺旋线中,流过一强度为I 的电流,求在螺旋线中点的磁感强度的大小.螺旋线被限制在半径为R 1和R 2的两圆之间,共n 圈.[提示:螺旋线的极坐标方程为b a r +=θ,其中a ,b 为待定系数]14. (本题6分)一边长为a 的正方形线圈,在t = 0 时正好从如图所示的均匀磁场的区域上方由静止开始下落,设磁场的磁感强度为B ϖ(如图),线圈的自感为L ,质量为m ,电阻可忽略.求线圈的上边进入磁场前,线圈的速度与时间的关系.15. (本题6分)如图所示,有一圆形平行板空气电容器,板间距为b ,极板间放一与板绝缘的矩形线圈.线圈高为h ,长为l ,线圈平面与极板垂直,一边与极板中心轴重合,另一边沿极板半径放置.若电容器极板电压为U 12 = U m cos ω t ,求线圈电压U 的大小.Bϖ16. (本题6分)在实验室中测得电子的速度是0.8c ,c 为真空中的光速.假设一观察者相对实验室以0.6c 的速率运动,其方向与电子运动方向相同,试求该观察者测出的电子的动能和动量是多少?(电子的静止质量m e =9.11×10-31kg )17. (本题6分)已知垂直射到地球表面每单位面积的日光功率(称太阳常数)等于1.37×103 W/m 2.(1) 求太阳辐射的总功率. (2) 把太阳看作黑体,试计算太阳表面的温度.(地球与太阳的平均距离为1.5×108 km ,太阳的半径为6.76×105 km ,σ = 5.67×10-8 W/(m 2·K 4))18. (本题6分))已知氢原子的核外电子在1s 态时其定态波函数为 a r a /3100e π1-=ψ,式中 220em h a e π=ε .试求沿径向找到电子的概率为最大时的位置坐标值.( ε0 = 8.85×10-12 C 2·N -1·m -2 ,h = 6.626×10-34 J ·s , m e = 9.11×10-31 kg , e = 1.6 ×10-19 C )参考答案1. (本题6分)解:设碰后刚体质心的速度为v C ,刚体绕通过质心的轴的转动的角速度为ω,球D 碰后的速度为v ',设它们的方向如图所示.因水平无外力,系统动量守恒:C m m m v v v )2(0+'= 得:(1)20C v v v ='- 1分 弹性碰撞,没有能量损耗,系统动能不变;222220])2(2[21)2(212121ωl m m m m C ++'=v v v ,得 (2)22222220l C ω+='-v v v 2分 系统对任一定点的角动量守恒,选择与A 球位置重合的定点计算.A 和D 碰撞前后角动量均为零,B 球只有碰后有角动量,有])2([0C B l ml ml v v -==ω,得(3)2lC ω=v 2分(1)、(2)、(3)各式联立解出 lC 00;2;0vv v v ==='ω。
全国高中物理奥林匹克竞赛试卷及答案
高中物理竞赛试卷.一、选择题.本题共5小题,每小题6分.在每小题给出的4 个项中,有的小题只有一项符合题意,有的小题有多项符合题意.把符合题意的选项前面的英文字母写在每小题后面的方括号内.全部选对的得6分,选对但不全的得3分,有选错或不答的得0分.1.(6分)一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于A.αB.α1/3C.α3D.3α2.(6分)按如下原理制作一杆可直接测量液体密度的秤,称为密度秤,其外形和普通的杆秤差不多,装秤钩的地方吊着一体积为1 cm3的较重的合金块,杆上有表示液体密度数值的刻度,当秤砣放在Q点处时秤杆恰好平衡,如图所示.当合金块完全浸没在待测密度的液体中时,移动秤砣的悬挂点,直至秤杆恰好重新平衡,便可直接在杆秤上读出液体的密度,下列说法中错误的是A.密度秤的零点刻度在Q点B.秤杆上密度读数较大的刻度在较小的刻度的左边C.密度秤的刻度都在Q点的右侧D.密度秤的刻度都在Q点的左侧3.(6分)一列简谐横波在均匀的介质中沿x轴正向传播,两质点P1和p2的平衡位置在x轴上,它们相距60cm,当P1质点在平衡位置处向上运动时,P2质点处在波谷位置,若波的传播速度为24m/s,则该波的频率可能为A.50HzB.60HzC.400HzD.410Hz4.(6分)电磁驱动是与炮弹发射、航空母舰上飞机弹射起飞有关的一种新型驱动方式.电磁驱动的原理如图所示,当直流电流突然加到一固定线圈上,可以将置于线圈上的环弹射出去.现在同一个固定线圈上,先后置有分别用铜、铝和硅制成的形状、大小和横截面积均相同的三种环,当电流突然接通时,它们所受到的推力分别为F1、F2和F3。
若环的重力可忽略,下列说法正确的是A. F1> F2> F3B. F2> F3> F1C. F3> F2> F1D. F1 = F2 = F35.(6分)质量为m A的A球,以某一速度沿光滑水平面向静止的B球运动,并与B球发生弹性正碰,假设B球的质量m B可选取为不同的值,则A.当m B=m A时,碰后B球的速度最大B.当m B=m A时,碰后B球的动能最大C.在保持m B>m A的条件下,m B越小,碰后B球的速度越大D.在保持m B<m A的条件下,m B越大,碰后B球的动量越大二、填空题.把答案填在题中的横线上.只要给出结果,不需写出求得结果的过程.6.(10分)用国家标准一级螺旋测微器(直标度尺最小分度为0. 5mm,丝杆螺距为0.5mm,套管上分为50格刻度)测量小球直径.测微器的初读数如图(a)历示,其值为______mm,测量时如图(b)所示,其值为_______mm,测得小球直径d=____________________mm.7.(10分)为了缓解城市交通拥堵问题,杭州交通部门在禁止行人步行的十字路口增设“直行待行区”(行人可从天桥或地下过道过马路),如图所示,当其他车道的车辆右拐时,直行道上的车辆可以提前进入“直行待行区”;当直行绿灯亮起时,可从“直行待行区”直行通过十字路口.假设某十字路口限速50km/h,“直行待行区”的长度为12m,从提示进入“直行待行区”到直行绿灯亮起的时间为4s.如果某汽车司机看到上述提示时立即从停车线由静止开始匀加速直线运动,运动到“直行待行区”的前端虚线处正好直行绿灯亮起,汽车总质量为1. 5t,汽车运动中受到的阻力恒为车重的0.1倍,则该汽车的行驶加速度为________;在这4s内汽车发动机所做的功为___________。
全国中学生(高中)物理竞赛初赛试题(含答案)
全国中学生(高中)物理竞赛初赛试题(含答案)一、选择题1. 下列哪个物理量在单位时间内保持不变?A. 加速度B. 速度C. 力D. 动能答案:B解析:速度是物体在单位时间内移动的距离,因此在单位时间内保持不变。
2. 一个物体在水平面上做匀速直线运动,下列哪个力是物体所受的合力?A. 重力B. 支持力C. 摩擦力D. 合力为零答案:D解析:物体做匀速直线运动时,所受的合力为零,即所有力的矢量和为零。
3. 下列哪个物理现象是光的折射?A. 镜子成像B. 光在水中的传播速度变慢C. 彩虹D. 光在空气中的传播速度变快答案:C解析:彩虹是光的折射现象,光在通过水滴时发生折射,形成七彩的光谱。
4. 下列哪个物理量是描述物体旋转状态的?A. 速度B. 加速度C. 角速度D. 力答案:C解析:角速度是描述物体旋转状态的物理量,表示物体在单位时间内旋转的角度。
5. 下列哪个物理现象是光的干涉?A. 镜子成像B. 光在空气中的传播速度变慢C. 彩虹D. 双缝干涉答案:D解析:双缝干涉是光的干涉现象,光通过两个狭缝后发生干涉,形成明暗相间的条纹。
二、填空题1. 物体在匀速直线运动时,所受的合力为零,即所有力的矢量和为零。
这个原理称为__________。
答案:牛顿第一定律解析:牛顿第一定律指出,物体在不受外力作用时,将保持静止或匀速直线运动状态。
2. 光在真空中的传播速度为__________m/s。
答案:3×10^8解析:光在真空中的传播速度是一个常数,为3×10^8m/s。
3. 下列哪个物理现象是光的衍射?A. 镜子成像B. 光在水中的传播速度变慢C. 彩虹D. 光通过狭缝后发生弯曲答案:D解析:光通过狭缝后发生弯曲的现象称为光的衍射,是光波与障碍物相互作用的结果。
4. 物体在匀速圆周运动时,所受的向心力大小为__________。
答案:mv^2/r解析:物体在匀速圆周运动时,所受的向心力大小为mv^2/r,其中m为物体质量,v为物体速度,r为圆周半径。
全国高中物理奥林匹克竞赛试卷及答案
高中物理竞赛试卷.一、选择题.本题共5小题,每小题6分.在每小题给出的4 个项中,有的小题只有一项符合题意,有的小题有多项符合题意.把符合题意的选项前面的英文字母写在每小题后面的方括号内.全部选对的得6分,选对但不全的得3分,有选错或不答的得0分.1.6分一线膨胀系数为α的正立方体物块,当膨胀量较小时,其体膨胀系数等于A.αB.α1/3C.α3D.3α2.6分按如下原理制作一杆可直接测量液体密度的秤,称为密度秤,其外形和普通的杆秤差不多,装秤钩的地方吊着一体积为1 cm3的较重的合金块,杆上有表示液体密度数值的刻度,当秤砣放在Q点处时秤杆恰好平衡,如图所示.当合金块完全浸没在待测密度的液体中时,移动秤砣的悬挂点,直至秤杆恰好重新平衡,便可直接在杆秤上读出液体的密度,下列说法中错误的是A.密度秤的零点刻度在Q点B.秤杆上密度读数较大的刻度在较小的刻度的左边C.密度秤的刻度都在Q点的右侧D.密度秤的刻度都在Q点的左侧3.6分一列简谐横波在均匀的介质中沿x轴正向传播,两质点P1和p2的平衡位置在x轴上,它们相距60cm,当P1质点在平衡位置处向上运动时,P2质点处在波谷位置,若波的传播速度为24m/s,则该波的频率可能为A.50HzB.60HzC.400HzD.410Hz4.6分电磁驱动是与炮弹发射、航空母舰上飞机弹射起飞有关的一种新型驱动方式.电磁驱动的原理如图所示,当直流电流突然加到一固定线圈上,可以将置于线圈上的环弹射出去.现在同一个固定线圈上,先后置有分别用铜、铝和硅制成的形状、大小和横截面积均相同的三种环,当电流突然接通时,它们所受到的推力分别为F1、F2和F3;若环的重力可忽略,下列说法正确的是A. F1> F2> F3B. F2> F3> F1C. F3> F2> F1D. F1 = F2 = F35.6分质量为m A的A球,以某一速度沿光滑水平面向静止的B球运动,并与B球发生弹性正碰,假设B球的质量m B可选取为不同的值,则A.当m B=m A时,碰后B球的速度最大B.当m B=m A时,碰后B球的动能最大C.在保持m B>m A的条件下,m B越小,碰后B球的速度越大D.在保持m B<m A的条件下,m B越大,碰后B球的动量越大二、填空题.把答案填在题中的横线上.只要给出结果,不需写出求得结果的过程.6.10分用国家标准一级螺旋测微器直标度尺最小分度为0. 5mm,丝杆螺距为0.5mm,套管上分为50格刻度测量小球直径.测微器的初读数如图a历示,其值为______mm,测量时如图b所示,其值为_______mm,测得小球直径d=____________________mm.7.10分为了缓解城市交通拥堵问题,杭州交通部门在禁止行人步行的十字路口增设“直行待行区”行人可从天桥或地下过道过马路,如图所示,当其他车道的车辆右拐时,直行道上的车辆可以提前进入“直行待行区”;当直行绿灯亮起时,可从“直行待行区”直行通过十字路口.假设某十字路口限速50km/h,“直行待行区”的长度为12m,从提示进入“直行待行区”到直行绿灯亮起的时间为4s.如果某汽车司机看到上述提示时立即从停车线由静止开始匀加速直线运动,运动到“直行待行区”的前端虚线处正好直行绿灯亮起,汽车总质量为1. 5t,汽车运动中受到的阻力恒为车重的0.1倍,则该汽车的行驶加速度为________;在这4s内汽车发动机所做的功为___________;重力加速度大小取10m/s28.10分如图所示,两个薄透镜L1和L2共轴放置.已知L1的焦距f1=f,L2的焦距f2=-f,两透镜间的距离也是f,小物体位于物面P上,物距u1=3f1小物体经过这两个透镜成的像在L2的__________边,到L2的距离为______________,是__________像填“实”或“虚”、____________像填“正”或“倒”,放大率为_ ____.2现把两个透镜位置调换,若还要使给定的原物体在原像处成像,两透镜作为整体应沿光轴向_____________边移动距离______________这个新的像是____________像填“实”或“虚”、____________像填“正”或“倒”,放大率为______________________9.10分图中所示的气缸壁是绝热的.缸内隔板A是导热的,它固定在缸壁上.活塞B是绝热的,它与缸壁的接触是光滑的,但不漏气.B的上方为大气.A与B之间以及A与缸底之间都盛有n mol的同种理想气体.系统在开始时处于平衡状态,现通过电炉丝E对气体缓慢加热.在加热过程中,A、B之间的气体经历_________过程,A以下气体经历________过程;气体温度每上升1K,A、B之间的气体吸收的热量与A以下气体净吸收的热量之差等于_____________.已知普适气体常量为R.10.10分宇宙空间某区域有一磁感应强度大小为B=1.0 x10-9T的均匀磁场,现有一电子绕磁力线做螺旋运动.该电子绕磁力线旋转一圈所需的时间间隔为______________s;若该电子沿磁场方向的运动速度为1.0×10-2cc 为真空中光速的大小,则它在沿磁场方向前进1.0×10-3光年的过程中,绕磁力线转了_________圈.已知电子电荷量为1. 60×10-19C.电子质量为9.11×10-31kg.三、计算题.计算题的解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后结果的不能得分.有数值计算的,答案中必须明确写出数值和单位.11.15分如图所示,一水平放置的厚度为t折射率为n的平行玻璃砖,下表面镀银成反射镜.一物点A位于玻璃砖的上方距玻璃砖的上表面为h处.观察者在A点附近看到了A点的像,A点的像到A点的距离等于多少不考虑光经玻璃砖上表面的反射.12.20分通常电容器两极板间有多层电介质,并有漏电现象.为了探究其规律性,采用如图所示的简单模型.电容器的两极板面积均为A,其间充有两层电介质1和2,第1层电介质的介电常数、电导率即电阻率的倒数和厚度分别为ε1σ1和d1,第2层电介质的则为ε2σ2和d2.现在两极板加一直流电压U,电容器处于稳定状态.1画出等效电路图;2计算两层电介质所损耗的功率;3计算两介质交界面处的净电荷量;提示:充满漏电电介质的电容器可视为一不漏电电介质的理想电容和一纯电阻的并联电路.13.20分如图所示,一绝缘容器内部为立方体空腔,其长和宽分别为a和b,厚度为d,其两侧等高处装有两根与大气相通的玻璃管可用来测量液体两侧的压强差.容器内装满密度为ρ的导电液体,容器上下两端装有铂电极A和C,这样就构成了一个液体电阻.该液体电阻置于一方向与容器的厚度方向平行的均匀恒定的磁感应强度为B的磁场中,并通过开关K接在一电动势为ε内阻为r的电池的两端.闭合开关.若稳定时两侧玻璃管中液面的高度差为h,求导电液体的电导率σ重力加速度大小为g.14.20分1 mol的理想气体经历一循环过程1 -2 -3 -1,如p-T图示所示,过程1-2是等压过程,过程3 -1是通过p-T 图原点的直线上的一段,描述过程2-3的方程为c1p2+ c2p = T式中c1和c2都是待定的常量,p和T分别是气体的压强和绝对温度.已知,气体在状态1的压强、绝对温度分别为P1和T1,气体在状态2的绝对温度以及在状态3的压强和绝对温度分别为T2以及p3和T3.气体常量R也是已知的.1求常量c1和c2的值;2将过程1-2 -3 -1在p-v图示上表示出来;3求该气体在一次循环过程中对外做的总功.15.20分一个ω介子飞行时衰变成静止质量均为m的三个π介子,这三个π介子的动量共面,已知:衰变前后介子运动的速度都远小于光在真空中的速度c;衰变后的三个π介子的动能分别为T1、T2和T3,且第一、二个π介子飞行方向之间的夹角为θ1,第二、三个π介子飞行方向之间的夹角为θ2如图所示;介子的动能等于介子的能量与其静止时的能量即其静止质量与c2的乘积之差,求ω介子在衰变前的瞬间的飞行方向用其飞行方向与衰变后的第二个介子的飞行方向的夹角即图中的φ角表示及其静止质量.16.25分一圆盘沿顺时针方向绕过圆盘中心O并与盘面垂直的固定水平转轴以匀角速度ω=4. 43rad/s转动.圆盘半径r=1.00m,圆盘正上方有一水平天花板.设圆盘边缘各处始终有水滴被甩出,现发现天花板上只有一点处有水.取重力加速度大小g=9. 80m/s2.求1天花板相对于圆盘中心轴O点的高度;2天花板上有水的那一点的位置坐标.。
全国物理中学生竞赛决赛试题及答案
全国中学生物理竞赛决 赛 试 题一、(15分)图决18-1中A 是一带有竖直立柱的木块,总质量为M ,位于水平地面上。
B 是一质量为m 的小球,通过一不可伸长的轻绳挂于立柱的顶端。
现拉动小球使绳伸直并处于水平位置。
然后让小球从静止状态下摆。
如在小球与立柱发生碰撞前,木块A 始终未发生移动,则木块与地面之间的静摩擦因数至少为多大?(设A 不会发生转动)二、(15分)圆形线圈C 轴线z 沿水平方向。
有一用钕铁硼材料制成的圆柱形强磁体M ,其圆形端面分别为N 极和S 极,将磁体M 与线圈C 共轴放置。
磁体的对称中心置于z 轴的原点O 。
Q 点是线圈C 对称截面的圆心,当Q 点位于z 轴不同位置时,用实验的方法测得穿过线圈C 的总磁通ψ。
由此测得的ψ值沿z 轴的分布函数图线如图决18-2(a )所示。
图中横轴上z 值是Q 点的坐标。
现令强磁体M 沿线圈的轴线方向穿过该线圈C ,将C 两端接一电阻,其阻值R=1000Ω,远大于线圈的电阻阻值。
将接在电阻R 两端的电压信号通过计算机实时处理[如图决18-2(b )所示],可在计算机屏幕上显示出线圈C 两端的电压信号如图决18-2(c )所示,信号轨迹近似看作三角波形。
1.试估算强磁体M 通过线圈时的速度。
(不计线圈中的感应电流对运动磁体的影响。
) 2.试求图(c )中,1t 至3t 期间流过电阻R 的电量。
三、(20分)有一薄透镜如图决18-3,S 面是旋转椭球面(椭圆图决18-1绕长轴旋转而成的曲面),其焦点为F 1和F 2;S 2面是球面,其球心C 与F 2重合。
已知此透镜放在空气中时能使从无穷远处位于椭球长轴的物点射来的全部入射光线(不限于傍轴光线)会聚于一个像点上,椭圆的偏心率为e 。
(1)求此透镜材料的折射率n (要论证);(2)如果将此透镜置于折射率为n '的介质中,并能达到上述的同样的要求,椭圆应满足什么条件?四、(20分)空间有半径为R 长度L 很短的圆柱形的磁场区域,圆柱的轴线为z 轴,磁场中任一点的磁感应强度的方向沿以z 轴为对称轴的圆的切线,大小与该点离z 轴的距离r 成正比,B=K r ,K 为常数,如图决18-4中“· ”与 “×”所示。
全国高中物理竞赛难题
四、(20分)某些非电磁量的测量是可以通过一些相应的装置转化为电磁量来测量的。
一平板电容器的两个极扳竖直放置在光滑的水平平台上,极板的面积为S ,极板间的距离为d 。
极板1固定不动,与周围绝缘;极板2接地,且可在水平平台上滑动并始终与极板1保持平行。
极板2的两个侧边与劲度系数为k 、自然长度为L 的两个完全相同的弹簧相连,两弹簧的另一端固定.图预17-4-1是这一装置的俯视图.先将电容器充电至电压U 后即与电源断开,再在极板p ;使两极板之间2的右侧的整个表面上施以均匀的向左的待测压强的距离发生微小的变化,如图预17-4-2所示。
测得此时电容器的电压改变量为U ∆。
设作用在电容器极板2上的静电作用力不致引起弹簧的可测量到的形变,试求待测压强p 。
五、(20分)如图预17-5-1所示,在正方形导线回路所围的区域1234A A A A 内分布有方向垂直于回路平面向里的匀强磁场,磁感应强度B 随1.0mA I =.已知时间以恒定的变化率增大,回路中的感应电流为12A A 、34A A 两边的电阻皆为零;41A A 边的电阻1 3.0k R =Ω,23A A 边的电阻27.0k R =Ω。
1.试求12A A 两点间的电压12U 、23A A 两点间的电压23U 、34A A 两点间的电压34U 、41A A 两点间的电压41U 。
2.若一内阻可视为无限大的电压表V 位于正方形导线回路所在的平面内,其正负端与连线位置分别如图预17-5-2、图预17-5-3和图预17-5-4所示,求三种情况下电压表的读数1U 、2U 、3U 。
六、(20分)绝热容器A 经一阀门与另一容积比A 的容积大得很多的绝热容器B 相连。
开始时阀门关闭,两容器中盛有同种理想气体,温度均为30℃,B 中气体的压强为A 中的2倍。
现将阀门缓慢打开,直至压强相等时关闭。
问此时容器A 中气体的温度为多少?假设在打开到关闭阀门的过程中处在A 中的气体与处在B 中的气体之间无热交换.已知每摩尔该气体的内能为52U RT =,式中R 为普适气体恒量,T 是热力学温度.七、(20分)当质量为m 的质点距离—个质量为M 、半径为R 的质量均匀分布的致密天体中心的距离为r (r ≥R ) 时,其引力势能为P /E GMm r =-,其中11226.6710N m kg G =⨯⋅⋅--为万有引力常量.设致密天体是中子星,其半径10km R =,质量 1.5M M =⊙(301 2.010kg M ⨯⊙=,为太阳的质量).1.1Kg 的物质从无限远处被吸引到中子星的表面时所释放的引力势能为多少?2.在氢核聚变反应中,若参加核反应的原料的质量为m ,则反应中的质量亏损为0.0072 m ,问1kg 的原料通过核聚变提供的能量与第1问中所释放的引力势能之比是多少?3.天文学家认为:脉冲星是旋转的中子星,中子星的电磁辐射是连续的,沿其磁轴方向最强,磁轴与中子星的自转轴方向有一夹角(如图预17-7所示),在地球上的接收器所接收到的一连串周期出现的脉冲是脉冲星的电磁辐射。
全国高中物理竞赛难题
四.(20分)某些非电磁量的测量是可以经由过程一些响应的装配转化为电磁量来测量的.一平板电容器的两个极扳竖直放置在滑腻的程度平台上,极板的面积为S,极板间的距离为d.极板1固定不动,与四周绝缘;极板2接地,且可在程度平台上滑动并始终与极板1保持平行.极板2的两个侧边与劲度系数为k.天然长度为L的两个完整雷同的弹簧相连,两弹簧的另一端固定.图预17-4-1是这一装配的俯视图.先将电容器充电至电压U后即与电源断开,再在极板2的右侧的全部概况上施以平均的向左的待测压强p;使南北极板之间的距离产生渺小的变更,如图预17-4-2所示.测得此时电容器的电压转变量为U .设感化在电容器极板2上的静电感化力不致引起弹簧的可测量到的形变,试求待测压强p.五.(20分)如图预17-5-1所示,在正方形导线回路所围的区域A A A A内散布有偏向垂直于1234回路平面向里的匀强磁场,磁感应强度B 随时光以恒定的变更率增大,回路中的感应电流为 1.0mA I =.已知12A A .34A A 双方的电阻皆为零;41A A 边的电阻1 3.0k R =Ω,23A A 边的电阻27.0k R =Ω.1.试求12A A 两点间的电压12U .23A A 两点间的电压23U .34A A 两点间的电压34U .41A A 两点间的电压41U .2.若一内阻可视为无穷大的电压表V 位于正方形导线回路地点的平面内,其正负端与连线地位分离如图预17-5-2.图预17-5-3和图预17-5-4所示,求三种情形下电压表的读数1U .2U .3U . 六.(20分)绝热容器A 经一阀门与另一容积比A 的容积大得许多的绝热容器B 相连.开端时阀门封闭,两容器中盛有同种幻想气体,温度均为30℃,B 中气体的压强为A 中的2倍.现将阀门迟缓打开,直至压强相等时封闭.问此时容器A 中气体的温度为若干?假设在打开到封闭阀门的进程中处在A 中的气体与处在B 中的气体之间无热交流.已知每摩尔该气体的内能为52U RT =,式中R 为普适气体恒量,T 是热力学温度.七.(20分)当质量为m 的质点距离—个质量为M .半径为R 的质量平均散布的致密天体中间的距离为r (r ≥R ) 时,其引力势能为P /E GMm r =-,个中11226.6710N m kg G =⨯⋅⋅--为万有引力常量.设致密天体是中子星,其半径10km R =,质量1.5M M =⊙(3012.010kg M ⨯⊙=,为太阳的质量).1.1Kg 的物资从无穷远处被吸引到中子星的概况时所释放的引力势能为若干?2.在氢核聚变反响中,若介入核反响的原料的质量为m,则反响中的质量吃亏为0.0072 m,问1kg的原料经由过程核聚变供给的能量与第1问中所释放的引力势能之比是若干?3.天文学家以为:脉冲星是扭转的中子星,中子星的电磁辐射是中断的,沿其磁轴偏向最强,磁轴与中子星的自转轴偏向有一夹角(如图预17-7所示),在地球上的吸收器所吸收到的连续串周期消失的脉冲是脉冲星的电磁辐射.试由上述意见估算地球上吸收到的两个脉冲之间的时光距离的下限.八.(20分)如图预17-8所示,在程度桌面上放有长木板C,C上右端是固定挡板P,在C上左端和中点处各放有小物块A和B,A.B的尺寸以及P的厚度皆可疏忽不计,A.B之间和B.P之间的距离皆为L.设木板C与桌面之间无摩擦,A.C之间和B.C之间的静摩擦因数及滑动摩擦因数均为;A.B.C(连同挡板P)的质量雷同.开端时,B和C静止,A以某一初速度向右活动.试问下列情形是否能产生?请求定量求出能产生这些情形时物块A的初速度v应知足的前提,或定量解释不克不及产生的来由.(1)物块A与B产生碰撞;(2)物块A与B产生碰撞(设为弹性碰撞)后,物块B与挡板P产生碰撞;(3)物块B 与挡板P 产生碰撞(设为弹性碰撞)后,物块B 与A 在木板C 上再产生碰撞;(4)物块A 从木板C 上失落下来; (5)物块B 从木板C 上失落下来.第十七届全国中学生物理比赛预赛题参考解答一.参考解答 四.参考解答因电容器充电后与电源断开,极板上的电量保持不变,故两板之间的电压U 应与其电容C 成反比;而平板电容器的电容C 又与极板间的距离d 成反比;故平板电容器的两板之间的电压与距离d 成正比,即U Ad =(1)式中A 为比例系数.极板2受压强感化而向左移动,并使弹簧变形.设达到均衡时,极板2 向左移动的距离为d ∆,电容器的电压削减了U ∆,则有()U U A d d -∆=-∆(2)由(1)与(2)式得U dU d∆∆=(3)极板2移动后,衔接极板2的弹簧偏离其本来地位θ角,弹簧伸长了L ∆,如图预解17-4所示,弹簧的弹力在垂直于极板的偏向上的分量与加在极板2上的压力均衡,即有2sin pS k L θ=∆(4)因为θ是小角,由几何干系知sin L d d Lθ∆∆=≈∆(5)解(3).(4).(5)式得3322kd U p U L S ∆⎛⎫= ⎪⎝⎭(6)五.参考解答1. 设回路中的总感应电动势为E ,依据楞次定律可知,电路中的电流沿逆时针偏向,按欧姆定律有12()10V I R R =+=E (1)由对称性可知,正方形回路每条边上的感应电动势相等,设为1E ,等效电路如图预解17-5-1所示.有1/4 2.5V ==E E (2)依据含源电路欧姆定律,并代入数值得121 2.5V U =-=-E (3)2321 4.5V U IR =-=E (4) 341 2.5V U =-=-E (5) 41110.5V U IR =-=E (6)2. 三种情形下的等效电路分离如图预解17-5-2.17-5-3.17-5-4.对图预解17-5-2中的1141AV A A 回路,因磁通量变更率为零,回路中的总电动势为零,这标明衔接41A A 、两头的电压表歧路亦为含源电路,电压表的读数等于由正端(+)到负端(一)流过电压表的电流V I 乘以电压表的内阻V R ,因V R 阻值为无穷大,V I 趋近于零(但V VI R为有限值),故得 解得11 3.0V U IR ==(7)同理,如图预解17-5-3所示,回路1241AV A A 的总电动势为E ,故有V V 112IR I R IR U +=+=E(8)解得21U IR =-E (9) 代入数据得27.0V U =(10)如图预解17-5-4所示,回路1341AV A A 的总电动势为零,而34A A 边中的电阻又为零,故有V V 30U I R ==(11)六.参考解答设气体的摩尔质量为μ,容器A 的体积为V ,阀门打开前,个中气体的质量为M .压强为p ,温度为T .由 得pVM RTμ=(1)因为容器B 很大,所以在题中所述的进程中,容器B 中气体的压强和温度皆可视为不变.依据题意,打开阀门又封闭后,A 中气体的压强变成2p ,若其温度为T ',质量为M ',则有2pV M RT μ'='(2)进入容器A 中的气体的质量为21pV M M M R T T μ⎛⎫'∆=-=- ⎪'⎝⎭(3) 设这些气体处在容器B 中时所占的体积为V ∆,则2MV RT pμ∆∆=(4)因为B 中气体的压强和温度皆可视为不变,为把这些气体压入容器A ,容器B 中其他气体对这些气体做的功为2W p V =∆(5)由(3).(4).(5)式得21T W pV T ⎛⎫=- ⎪'⎝⎭(6)容器A 中气体内能的变更为2.5()M U R T T μ''∆=⨯-(7)因为与外界没有热交流,依据热力学第必定律有W U=∆(8)由(2).(6).(7)和(8)式得212 2.51T T T T ⎛⎫⎛⎫-=⨯- ⎪ ⎪''⎝⎭⎝⎭(9) 成果为353.5K T '= 七.参考解答1. 依据能量守恒定律,质量为m 的物资从无穷远处被吸引到中子星的概况时所释放的引力势能1E ∆应等于对应始末地位的引力势能的转变,故有10GMm E GM R m m R⎛⎫-- ⎪∆⎝⎭==(1)代入有关数据得16112.010J kg E m∆≈⨯⋅-(2) 2. 在氢核聚变反响中,每千克质量的核反响原料供给的能量为220.0072E c m∆=(3) 所求能量比为21/1/31E m E m ∆≈∆(4)3.依据题意,可知吸收到的两个脉冲之间的时光距离即为中子星的自转周期,中子星做高速自转时,位于赤道处质量为M ∆的中子星质元所需的向心力不克不及超出对应的万有引力,不然将会因不克不及保持匀速圆周活动而使中子星决裂,是以有22RM mm R R ω∆∆≤(5) 式中2πωτ=(6)ω为中子星的自转角速度,τ为中子星的自转周期.由(5).(6)式得到2τ≥7)代入数据得44.410s τ≥⨯-(8)故时光距离的下限为44.410s ⨯- 八.参考解答1. 以m 暗示物块A .B 和木板C 的质量,当物块A 以初速0v 向右活动时,物块A 受到木板C 施加的大小为mg μ的滑动摩擦力而减速,木板C 则受到物块A 施加的大小为mg μ的滑动摩擦力和物块B 施加的大小为f 的摩擦力而做加快活动,物块则因受木板C 施加的摩擦力f 感化而加快,设A .B .C 三者的加快度分离为A a .B a 和C a ,则由牛顿第二定律,有事实上在此题中,B C a a =,即B .C 之间无相对活动,这是因为当B C a a =时,由上式可得12f mg μ=(1)它小于最大静摩擦力mg μ.可见静摩擦力使物块B .木板C 之间不产生相对活动.若物块A 刚好与物块B 不产生碰撞,则物块A 活动到物块B 地点处时,A 与B 的速度大小相等.因为物块B 与木板C 的速度相等,所以此时三者的速度均雷同,设为1v ,由动量守恒定律得013mv mv =(2)在此进程中,设木板C 活动的旅程为1s ,则物块A 活动的旅程为1s L +,如图预解17-8所示.由动能定理有2210111()22mv mv mg s L μ=-+-(3) 2111(2)2m v mgs μ=(4) 或者说,在此进程中全部体系动能的转变等于体系内部互相间的滑动摩擦力做功的代数和((3)与(4)式等号双方相加),即221011(3)22m v mv mgL μ=--(5) 式中L 就是物块A 相对木板C 活动的旅程.解(2).(5)式,得03v gL μ=(6)即物块A 的初速度0v =,A 刚好不与B 产生碰撞,若0v 则A 将与B 产生碰撞,故A 与B 产生碰撞的前提是0v 7)2. 当物块A 的初速度0v 知足(7)式时,A 与B 将产生碰撞,设碰撞的刹时,A .B .C 三者的速度分离为A v .B v 和C v ,则有B A v v >BC v v =(8)在物块A .B 产生碰撞的极短时光内,木板C 对它们的摩擦力的冲量异常小,可疏忽不计.故在碰撞进程中,A 与B 组成的体系的动量守恒,而木板C 的速度保持不变.因为物块A .B 间的碰撞是弹性的,体系的机械能守恒,又因为质量相等,由动量守恒和机械能守恒可以证实(证实从略),碰撞前后A .B 交流速度,若碰撞刚停止时,A .B .C 三者的速度分离为A v '.B v '和C v ',则有由(8).(9)式可知,物块A 与木板C 速度相等,保持相对静止,而B 相对于A .C向右活动,今后产生的进程相当于第1问中所进行的延续,由物块B 调换A 中断向右活动.若物块B 刚好与挡板P 不产生碰撞,则物块B 以速度B v '从板C 板的中点活动到挡板P 地点处时,B 与C 的速度相等.因A 与C 的速度大小是相等的,故A .B .C 三者的速度相等,设此时三者的速度为2v .依据动量守恒定律有023mv mv =(10)A 以初速度0v 开端活动,接着与B 产生完整弹性碰撞,碰撞后物块A 相对木板C 静止,B 到达P 地点处这一全部进程中,先是A 相对C 活动的旅程为L ,接着是B 相对C 活动的旅程为L ,全部体系动能的转变,相似于上面第1问解答中(5)式的说法.等于体系内部互相问的滑动摩擦力做功的代数和,即222011(3)222m v mv mg L μ-=-⋅(11) 解(10).(11)两式得0v 12)即物块A 的初速度0v 时,A 与B 碰撞,但B 与P 刚好不产生碰撞,若0v ,就能使B 与P 产生碰撞,故A 与B 碰撞后,物块B 与挡板P 产生碰撞的前提是0v 13)3. 若物块A 的初速度0v 知足前提(13)式,则在A .B 产生碰撞后,B 将与挡板P 产生碰撞,设在碰撞前刹时,A .B .C 三者的速度分离为A v ''.B v ''和C v '',则有B AC v v v ''''''>=(14)B 与P 碰撞后的刹时,A .B .C 三者的速度分离为A v '''.B v '''和C v ''',则仍相似于第2问解答中(9)的道理,有B C v v '''''=B C v v '''''=A A v v '''''=(15)由(14).(15)式可知B 与P 刚碰撞后,物块A 与B 的速度相等,都小于木板C 的速度,即B C A v v v '''''''''>=(16)在今后的活动进程中,木板C 以较大的加快度向右做减速活动,而物块A 和B 以雷同的较小的加快度向右做加快活动,加快度的大小分离为2C a g μ=B A a a g μ==(17)加快进程将中断到或者A 和B 与C 的速度雷同,三者以雷同速度013v 向右做匀速活动,或者木块A 从木板C 上失落了下来.是以物块B 与A 在木板C 上不成能再产生碰撞.4. 若A 正好没从木板C 上失落下来,即A 到达C 的左端时的速度变成与C 雷同,这时三者的速度皆雷同,以3v 暗示,由动量守恒有303mv mv =(18)从A 以初速度0v 在木板C 的左端开端活动,经由B 与P 相碰,直到A 刚没从木板C 的左端失落下来,这一全部进程中,体系内部先是A 相对C 的旅程为L ;接着B 相对C 活动的旅程也是L ;B 与P 碰后直到A 刚没从木板C 上失落下来,A 与B 相对C 活动的旅程也皆为L .全部体系动能的转变应等于内部互相间的滑动摩擦力做功的代数和,即 223011(3)224m v mv mg L μ-=-⋅(19) 由(18).(19)两式,得0v 20)即当物块A 的初速度0v 时,A 刚好不会从木板C 上失落下.若0v >则A 将从木板C上失落下,故A 从C 上失落下的前提是0v 21) 5. 若物块A 的初速度0v 知足前提(21)式,则A 将从木板C 上失落下来,设A 刚要从木板C 上失落下来时,A .B .C 三者的速度分离为A v ''''.B v ''''和C v '''',则有B AC v v v ''''''''''''=<(22)这时(18)式应改写为02A C mv mv mv ''''''''=+(23)(19)式应改写为2022111(2)2224B C m v mv mv mg L μ''''''''-+=-⋅(24) 当物块A 从木板C 上失落下来后,若物块B 刚好不会从木板C 上失落下,即当C 的左端赶上B 时,B 与C 的速度相等.设此速度为4v ,则对B .C 这一体系来说,由动量守恒定律,有42B C mv mv mv ''''''''+=(25)在此进程中,对这一体系来说,滑动摩擦力做功的代数和为mgL μ-,由动能定理可得2422111(2)222B C m v mv mv mgL μ⎛⎫''''''''+=- ⎪⎝⎭-(26) 由(23).(24).(25).(26)式可得0v =27) 即当0v =时,物块B 刚好不克不及从木板C 上失落下.若,则B 将从木板C 上失落下,故物块B 从木板C 上失落下来的前提是0v >28)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、(20分)某些非电磁量的测量是可以通过一些相应的装置转化为电磁量来测量的。
一平板电容器的两个极扳竖直放置在光滑的水平平台上,极板的面积为S ,极板间的距离为d 。
极板1固定不动,与周围绝缘;极板2接地,且可在水平平台上滑动并始终与极板1保持平行。
极板2的两个侧边与劲度系数为k 、自然长度为L 的两个完全相同的弹簧相连,两弹簧的另一端固定.图预17-4-1是这一装置的俯视图.先将电容器充电至电压U 后即与电源断开,再在极板2的右侧的整个表面上施以均匀的向左的待测压强p ;使两极板之间的距离发生微小的变化,如图预17-4-2所示。
测得此时电容器的电压改变量为U ∆。
设作用在电容器极板2上的静电作用力不致引起弹簧的可测量到的形变,试求待测压强p 。
五、(20分)如图预17-5-1所示,在正方形导线回路所围的区域1234A A A A 内分布有方向垂直于回路平面向里的匀强磁场,磁感应强度B 随时间以恒定的变化率增大,回路中的感应电流为1.0mA I =.已知12A A 、34A A 两边的电阻皆为零;41A A 边的电阻1 3.0k R =Ω,23A A 边的电阻27.0k R =Ω。
1.试求12A A 两点间的电压12U 、23A A 两点间的电压23U 、34A A 两点间的电压34U 、41A A 两点间的电压41U 。
2.若一内阻可视为无限大的电压表V 位于正方形导线回路所在的平面内,其正负端与连线位置分别如图预17-5-2、图预17-5-3和图预17-5-4所示,求三种情况下电压表的读数1U 、2U 、3U 。
六、(20分)绝热容器A 经一阀门与另一容积比A 的容积大得很多的绝热容器B 相连。
开始时阀门关闭,两容器中盛有同种理想气体,温度均为30℃,B 中气体的压强为A 中的2倍。
现将阀门缓慢打开,直至压强相等时关闭。
问此时容器A 中气体的温度为多少?假设在打开到关闭阀门的过程中处在A 中的气体与处在B 中的气体之间无热交换.已知每摩尔该气体的内能为52U RT =,式中R 为普适气体恒量,T 是热力学温度. 七、(20分)当质量为m 的质点距离—个质量为M 、半径为R 的质量均匀分布的致密天体中心的距离为r (r ≥R ) 时,其引力势能为P /E GMm r =-,其中11226.6710N m kg G =⨯⋅⋅--为万有引力常量.设致密天体是中子星,其半径10km R =,质量 1.5M M =⊙(301 2.010kg M ⨯⊙=,为太阳的质量).1.1Kg 的物质从无限远处被吸引到中子星的表面时所释放的引力势能为多少?2.在氢核聚变反应中,若参加核反应的原料的质量为m ,则反应中的质量亏损为 m ,问1kg 的原料通过核聚变提供的能量与第1问中所释放的引力势能之比是多少?3.天文学家认为:脉冲星是旋转的中子星,中子星的电磁辐射是连续的,沿其磁轴方向最强,磁轴与中子星的自转轴方向有一夹角(如图预17-7所示),在地球上的接收器所接收到的一连串周期出现的脉冲是脉冲星的电磁辐射。
试由上述看法估算地球上接收到的两个脉冲之间的时间间隔的下限.八、(20分)如图预17-8所示,在水平桌面上放有长木板C ,C 上右端是固定挡板P ,在C 上左端和中点处各放有小物块A 和B ,A 、B 的尺寸以及P 的厚度皆可忽略不计,A 、B 之间和B 、P之间的距离皆为L 。
设木板C 与桌面之间无摩擦,A 、C 之间和B 、C 之间的静摩擦因数及滑动摩擦因数均为μ;A 、B 、C (连同挡板P )的质量相同.开始时,B 和C 静止,A 以某一初速度向右运动.试问下列情况是否能发生?要求定量求出能发生这些情况时物块A 的初速度0v 应满足的条件,或定量说明不能发生的理由.(1)物块A 与B 发生碰撞;(2)物块A 与B 发生碰撞(设为弹性碰撞)后,物块B 与挡板P 发生碰撞;(3)物块B 与挡板P 发生碰撞(设为弹性碰撞)后,物块B 与A 在木板C 上再发生碰撞;(4)物块A 从木板C 上掉下来;(5)物块B 从木板C 上掉下来.第十七届全国中学生物理竞赛预赛题参考解答一、参考解答四、参考解答因电容器充电后与电源断开,极板上的电量保持不变,故两板之间的电压U 应与其电容C 成反比;而平板电容器的电容C 又与极板间的距离d成反比;故平板电容器的两板之间的电压与距离d 成正比,即U Ad = (1)式中A 为比例系数。
极板2受压强作用而向左移动,并使弹簧变形。
设达到平衡时,极板2 向左移动的距离为d ∆,电容器的电压减少了U ∆,则有()U U A d d -∆=-∆ (2)由(1)与(2)式得 U d U d ∆∆= (3) 极板2移动后,连接极板2的弹簧偏离其原来位置θ角,弹簧伸长了L ∆,如图预解17-4所示,弹簧的弹力在垂直于极板的方向上的分量与加在极板2上的压力平衡,即有2sin pS k L θ=∆ (4)因为θ是小角,由几何关系知sin L d d Lθ∆∆=≈∆ (5) 解(3)、(4)、(5)式得 3322kd U p U L S ∆⎛⎫= ⎪⎝⎭(6) 五、参考解答1. 设回路中的总感应电动势为E ,根据楞次定律可知,电路中的电流沿逆时针方向,按欧姆定律有12()10V I R R =+=E (1)由对称性可知,正方形回路每条边上的感应电动势相等,设为1E ,等效电路如图预解17-5-1所示。
有1/4 2.5V ==E E (2)根据含源电路欧姆定律,并代入数值得121 2.5V U =-=-E (3)2321 4.5V U IR =-=E (4)341 2.5V U =-=-E (5)41110.5V U IR =-=E (6)2. 三种情况下的等效电路分别如图预解17-5-2、17-5-3、17-5-4。
对图预解17-5-2中的1141AV A A 回路,因磁通量变化率为零,回路中的总电动势为零,这表明连接41A A 、两端的电压表支路亦为含源电路,电压表的读数等于由正端(+)到负端(一)流过电压表的电流V I 乘以电压表的内阻V R ,因V R 阻值为无限大,V I 趋近于零(但V V I R 为有限值),故得解得 11 3.0V U IR == (7)同理,如图预解17-5-3所示,回路1241AV A A 的总电动势为E ,故有V V 112IR I R IR U +=+=E (8)解得 21U IR =-E (9)代入数据得27.0V U = (10)如图预解17-5-4所示,回路1341AV A A 的总电动势为零,而34A A 边中的电阻又为零,故有 V V 30U I R == (11)六、参考解答设气体的摩尔质量为μ,容器A 的体积为V ,阀门打开前,其中气体的质量为M 。
压强为p ,温度为T 。
由得 pVM RT μ= (1)因为容器B 很大,所以在题中所述的过程中,容器B 中气体的压强和温度皆可视为不变。
根据题意,打开阀门又关闭后,A 中气体的压强变为2p ,若其温度为T ',质量为M ',则有 2pV M RTμ'=' (2) 进入容器A 中的气体的质量为 21pV M M M R T T μ⎛⎫'∆=-=-⎪'⎝⎭ (3) 设这些气体处在容器B 中时所占的体积为V ∆,则 2M V RT pμ∆∆= (4) 因为B 中气体的压强和温度皆可视为不变,为把这些气体压入容器A ,容器B 中其他气体对这些气体做的功为2W p V =∆ (5)由(3)、(4)、(5)式得 21T W pV T ⎛⎫=- ⎪'⎝⎭(6) 容器A 中气体内能的变化为 2.5()M U R T T μ''∆=⨯- (7)因为与外界没有热交换,根据热力学第一定律有W U =∆ (8)由(2)、(6)、(7)和(8)式得 212 2.51T T T T ⎛⎫⎛⎫-=⨯- ⎪ ⎪''⎝⎭⎝⎭(9) 结果为 353.5K T '=七、参考解答1. 根据能量守恒定律,质量为m 的物质从无限远处被吸引到中子星的表面时所释放的引力势能1E ∆应等于对应始末位置的引力势能的改变,故有 10GMm E GM R m m R⎛⎫-- ⎪∆⎝⎭== (1) 代入有关数据得 1611 2.010J kg E m∆≈⨯⋅- (2) 2. 在氢核聚变反应中,每千克质量的核反应原料提供的能量为 220.0072E c m∆= (3) 所求能量比为21/1/31E m E m ∆≈∆ (4) 3.根据题意,可知接收到的两个脉冲之间的时间间隔即为中子星的自转周期,中子星做高速自转时,位于赤道处质量为M ∆的中子星质元所需的向心力不能超过对应的万有引力,否则将会因不能保持匀速圆周运动而使中子星破裂,因此有 22RM m m R R ω∆∆≤(5) 式中 2πωτ= (6)ω为中子星的自转角速度,τ为中子星的自转周期.由(5)、(6)式得到2τ≥(7) 代入数据得44.410s τ≥⨯- (8)故时间间隔的下限为44.410s ⨯-八、参考解答 1. 以m 表示物块A 、B 和木板C 的质量,当物块A 以初速0v 向右运动时,物块A 受到木板C 施加的大小为mg μ的滑动摩擦力而减速,木板C 则受到物块A 施加的大小为mg μ的滑动摩擦力和物块B 施加的大小为f 的摩擦力而做加速运动,物块则因受木板C 施加的摩擦力f 作用而加速,设A 、B 、C 三者的加速度分别为A a 、B a 和C a ,则由牛顿第二定律,有 事实上在此题中,B C a a =,即B 、C 之间无相对运动,这是因为当B C a a =时,由上式可得 12f mg μ= (1) 它小于最大静摩擦力mg μ.可见静摩擦力使物块B 、木板C 之间不发生相对运动。
若物块A 刚好与物块B 不发生碰撞,则物块A 运动到物块B 所在处时,A 与B 的速度大小相等.因为物块B 与木板C 的速度相等,所以此时三者的速度均相同,设为1v ,由动量守恒定律得013mv mv = (2)在此过程中,设木板C 运动的路程为1s ,则物块A 运动的路程为1s L +,如图预解17-8所示.由动能定理有2210111()22mv mv mg s L μ=-+- (3) 2111(2)2m v mgs μ= (4) 或者说,在此过程中整个系统动能的改变等于系统内部相互间的滑动摩擦力做功的代数和((3)与(4)式等号两边相加),即221011(3)22m v mv mgL μ=-- (5) 式中L 就是物块A 相对木板C 运动的路程.解(2)、(5)式,得 03v gL μ= (6)即物块A 的初速度03v gL μ=时,A 刚好不与B 发生碰撞,若03v gL μ>,则A 将与B 发生碰撞,故A 与B 发生碰撞的条件是03v gL μ> (7)2. 当物块A 的初速度0v 满足(7)式时,A 与B 将发生碰撞,设碰撞的瞬间,A 、B 、C 三者的速度分别为A v 、B v 和C v ,则有B A v v > BC v v = (8)在物块A 、B 发生碰撞的极短时间内,木板C 对它们的摩擦力的冲量非常小,可忽略不计。