新课标必修一示范教案(1.1.3 集合的基本运算第2课时)

合集下载

高中数学 1.1.3(集合的基本运算)教案 新人教A版必修1 教案

高中数学 1.1.3(集合的基本运算)教案 新人教A版必修1 教案

§ 集合的基本运算一. 教学目标:1. 知识与技能(1)理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用.2. 过程与方法学生通过观察和类比,借助Venn 图理解集合的基本运算.3.情感.态度与价值观(1)进一步树立数形结合的思想.(2)进一步体会类比的作用.(3)感受集合作为一种语言,在表示数学内容时的简洁和准确.重点:交集与并集,全集与补集的概念.难点:理解交集与并集的概念.符号之间的区别与联系.1.学法:学生借助Venn 图,通过观察.类比.思考.交流和讨论等,理解集合的基本运算.2.教学用具:投影仪.四. 教学思路(一)创设情景,揭示课题问题1:我们知道,实数有加法运算。

类比实数的加法运算,集合是否也可以“相加”呢? 请同学们考察下列各个集合,你能说出集合C 与集合A .B 之间的关系吗?(1){1,3,5},{2,4,6},{1,2,3,4,5,6};A B C ===(2){|},{|},{|}A x x B x x C x x ===是理数是无理数是实数引导学生通过观察,类比.思考和交流,得出结论。

教师强调集合也有运算,这就是我们本节课所要学习的内容。

(二)研探新知—般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集. 记作:A ∪B.读作:A 并B.其含义用符号表示为:{|,}A B x x A x B =∈∈或用Venn 图表示如下:请同学们用并集运算符号表示问题1中A ,B ,C 三者之间的关系.练习.检查和反馈(1)设A={4,5,6,8),B={3,5,7,8),求A ∪B.(2)设集合A {|12},{|13},.A x x B x x AB =-<<=<<集合求让学生独立完成后,教师通过检查,进行反馈,并强调:(1)在求两个集合的并集时,它们的公共元素在并集中只能出现一次.(2)对于表示不等式解集的集合的运算,可借助数轴解题.(1)思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?请同学们考察下面的问题,集合A .B 与集合C 之间有什么关系?①{2,4,6,8,10},{3,5,8,12},{8};A B C ===②{|20049}.A x x =是国兴中学年月入学的高一年级女同学B={x |x 是国兴中学2004年9月入学的高一年级同学},C={x |x 是国兴中学2004年9月入学的高一年级女同学}.教师组织学生思考.讨论和交流,得出结论,从而得出交集的定义;一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集. 记作:A ∩B.读作:A 交B其含义用符号表示为:{|,}.A B x x A x B =∈∈且接着教师要求学生用Venn 图表示交集运算.(2)练习.检查和反馈①设平面内直线1l 上点的集合为1L ,直线1l 上点的集合为2L ,试用集合的运算表示1l 的位置关系.②学校里开运动会,设A={x |x 是参加一百米跑的同学},B={x |x 是参加二百米跑的同学},C={x |x 是参加四百米跑的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释集合运算A ∩B 与A ∩C 的含义.学生独立练习,教师检查,作个别指导.并对学生中存在的问题进行反馈和纠正.(三)学生自主学习,阅读理解1.教师引导学生阅读教材第11~12页中有关补集的内容,并思考回答下例问题:(1)什么叫全集?(2)补集的含义是什么?用符号如何表示它的含义?用Venn 图又表示?(3)已知集合{|38},R A x x A =≤<求.(4)设S={x |x 是至少有一组对边平行的四边形},A={x |x 是平行四边形},B={x |x 是菱形},C={x |x 是矩形},求,,A S B C B A .在学生阅读.思考的过程中,教师作个别指导,待学生经过阅读和思考完后,请学生回答上述问题,并及时给予评价.(四)归纳整理,整体认识1.通过对集合的学习,同学对集合这种语言有什么感受?2.并集.交集和补集这三种集合运算有什么区别?(五)作业1.课外思考:对于集合的基本运算,你能得出哪些运算规律?2.请你举出现实生活中的一个实例,并说明其并集.交集和补集的现实含义.3.书面作业:教材第14页习题组第7题和B组第4题.。

1.1.3集合的基本运算教学设计-2023-2024学年高一上学期数学北师大版(2019)必修第一册

1.1.3集合的基本运算教学设计-2023-2024学年高一上学期数学北师大版(2019)必修第一册
(1)从集合A中选出所有年龄在30岁以下的员工,表示为集合A与集合{30, 31, 32, ...}的交集。
(2)从集合B中选出所有喜欢音乐的成员,表示为集合B与集合{“音乐”}的交集。
2. 请将以下集合的元素按照年龄从小到大的顺序排列,并写出每个集合的并集和交集:
(1)集合C = {5, 10, 15, 20},集合D = {12, 18, 22, 25}。
学生学习效果
教学反思与改进
回顾本学期的集合基本运算教学,我深感教学过程中存在的一些不足,需要在今后的教学中加以改进。
首先,在课前准备上,虽然我提前发放了预习材料,设计了预习问题,但学生在预习环节的反馈显示,他们对集合基本运算的概念理解不够深入。这让我意识到,仅仅依靠预习材料和问题是不够的,还需要在课堂上对学生进行更为细致的引导和讲解。
5. 请用集合的基本运算表示以下情景:
(1)从集合M中选出所有参加英语角的学生,表示为集合M与集合{“英语”}的交集。
(2)从集合N中选出所有未参加乒乓球比赛的学生,表示为集合N与集合{“乒乓球”}的补集的交集。
2. 数学建模:学生能够将集合的基本运算应用于实际问题中,通过建立数学模型来解决问题,培养学生的数学建模能力。
3. 直观想象:通过集合的基本运算的学习,学生能够培养直观想象能力,能够通过图形或直观的方式理解和表示集合的基本运算。
4. 数学运算:学生能够掌握集合的基本运算的方法和技巧,提高数学运算能力,能够准确、熟练地进行集合的基本运算。
提出问题或设置悬念,引发学生的好奇心和求知欲,引导学生进入集合的基本运算学习状态。
回顾旧知:
简要回顾上节课学习的集合的基本概念和运算规则,帮助学生建立知识之间的联系。
提出问题,检查学生对旧知的掌握情况,为集合的基本运算新课学习打下基础。

高中数学 第一章 集合与函数概念 1.1.3 集合的基本运算(第2课时)补集及综合应用学案 新人教A

高中数学 第一章 集合与函数概念 1.1.3 集合的基本运算(第2课时)补集及综合应用学案 新人教A

2018版高中数学第一章集合与函数概念1.1.3 集合的基本运算(第2课时)补集及综合应用学案新人教A版必修1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018版高中数学第一章集合与函数概念1.1.3 集合的基本运算(第2课时)补集及综合应用学案新人教A版必修1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018版高中数学第一章集合与函数概念1.1.3 集合的基本运算(第2课时)补集及综合应用学案新人教A版必修1的全部内容。

第2课时补集及综合应用1.了解全集的含义及其符号表示.(易混点)2.理解给定集合中一个子集的补集的含义,并会求给定子集的补集.(重点、难点)3.会用Venn图、数轴进行集合的运算.(重点)[基础·初探]教材整理补集阅读教材P10补集以下部分,完成下列问题.1.全集(1)定义:如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)记法:全集通常记作U。

2.补集文字语言对于一个集合A,由全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁U A符号语言∁U A={x|x∈U,且x∉A}图形语言3∁U U=∅,∁U∅=U,∁U(∁U A)=A.1.判断(正确的打“√”,错误的打“×”)(1)只有实数R才可以做为全集U.()(2)一个集合的补集一定含有元素.( )(3)集合∁Z N与集合∁Z N*相等.()【解析】(1)×.由全集的定义可知,所有的集合都可以做为全集.(2)×。

∵∁U U=∅,∴(2)错.(3)×.∵0∉∁Z N,而0∈∁Z N*,∴(3)错.【答案】(1)×(2)×(3)×2.已知全集U={x||x|<5,x∈Z},A={0,1,2},则∁U A=________。

高中数学 1.1.3 集合间的基本运算(第二课时)教案 新人教A版必修1

高中数学 1.1.3 集合间的基本运算(第二课时)教案 新人教A版必修1

1.1.3 集合的基本运算(第二课时)一. 教学目标:1. 知识与技能(1)理解全集和补集的定义,会求给定子集的补集(2)能使用Venn图、数轴表达集合的运算,体会直观图对理解抽象概念的作用.(3)通过实例分析和阅读教材,培养学生的自学能力、阅读能力和分析应用能力。

2. 过程与方法学生通过观察和类比,借助Venn图、数轴理解集合的基本运算.3.情感.态度与价值观(1)进一步强化数形结合的思想和体会类比思想在数学中的作用.(2)理解集合作为一种语言,在数学应用中的简洁和准确.二.教学重点.难点重点:全集与补集的概念.难点:理解全集与补集的概念,符号之间的区别与联系。

三.学法与教学用具1.学法:利用Venn图和数轴,掌握并理解集合的基本运算.2.教学用具:多媒体教学。

四. 教学过程:(一)自学指导:1、上节课我们已经学习了集合的两个基本运算:并集与交集。

(让学生复述并集与交集的含义及其符号表示)2、创设情境:(1)已知A={x|x+5>0},B={x|x≤-5},你能否在数轴上表示出A、B、R有何关系?(2)U={教室内所有同学}、A={教室内所有女生}、B={教室内所有男生},你能发现集合U、A、B有何关系?你能否利用Venn图标是吗?3、教师提出问题:通过PPT图片,引导学生完善并集与交集的知识点,并要求学生快速阅读教材,完成以下内容:4、教师巡查,鼓励学生分组探讨完成上面表格,组织学生充分讨论、交流,使学生明确集合中的元素,提示学生注意集合中元素的范围,并帮助学生修改、完善,并指出:这就是我们这一堂课所要学习的内容.(二)师生合作,研探新知关于补集与全集,教师引导学生阅读教材P10~P11页中有关补集的内容,并思考回答下例问题:1、什么叫全集?2、补集的含义是什么?用符号如何表示它的含义?用Venn图又表示?在这个过程中,教师要积极参与到小组讨论中,和学生一起交流,使其理解全集的定义,并强调全集常用矩形方框表示,而补集是相对与全集而言的。

人教A版高中数学必修1+1.1.3+集合的基本运算+教学设计(第二课时)(2)

人教A版高中数学必修1+1.1.3+集合的基本运算+教学设计(第二课时)(2)

本节课是集合这一章的核心内容,高考常考考点之一,所以一定要掌握并集,补集,交集的概念。

集合的基本运算是在学习集合定义以及集合的性质之后学到的,它对日后学习研究函数的定义域、值域、单调区间等内容起到知识储备作用。

1.教学重点:交集与并集,全集与补集的概念。

2.教学难点:理解交集与并集的概念,以及符号之间的区别与联系。

一、知识梳理1、集合的运算A∩B={x|x∈A且x∈B}.A∪B={x|x∈A或x∈B}.∁U A={x|x∈U,且x∉A}2、性质:A∪B=B∪A,A∪A=A,A∪∅=A,A∪B=A⇔B⊆A,A⊆(A∪B).A∩B=B∩A,A∩A=A,A∩∅=∅,A∩B=A⇔A⊆B,A∩B⊆A∪B,A∩B⊆A,A∩B⊆B.A∪(∁U A)=U,A∩(∁U A)=∅,∁U(∁U A)=A二、题型探究例1.已知A ={ (x,y) | 4 x+y = 6 },B ={ (x,y) | 3 x+2 y = 7 }.求A ∩ B.解:A∩B = {(x,y) | 4 x+y = 6 }∩{(x,y) | 3 x+2 y = 7 }== {(1,2)}.例2.已知x∈R,集合A={-3,x2,x+1},B={x-3,2x-1,x2+1},如果A∩B={-3},求A∪B。

例3.已知集合,且有4个子集,则实数的取值范围是()A.B.C.D.【答案】B.【解析】∵有4个子集,∴有2个元素,∴,∴且,即实数的取值范围是,故选B.例4.已知集合,且,求实数的取值范围.三、达标检测1、设集合Α={1,2,4},Β={x|x2-4x+m=0}.若Α∩Β={1},则Β=( ) A.{1,-3} B.{1,0} C.{1,3} D.{1,5}【答案】C2、设集合,,全集,若,则有( )A. B. C. D. 【解析】由,解得,又,如图则,满足条件.【答案】C 3、已知集合,集合,若,则实数的值为 . 【答案】1或-1或0. 【解析】∵,∵,,对集合B 。

【人教A版高中数学必修一教案】必修1第一章1.1.3集合的基本运算 教案

【人教A版高中数学必修一教案】必修1第一章1.1.3集合的基本运算  教案

《集合的基本运算》教案一、内容及其解析(一)内容:本节课要学的内容是集合的基本运算。

(二)解析:本节是从学生熟悉的集合出发,结合实例,通过类比实数加法运算引入集合间的运算。

在此之前,学生已学习了集合的概念和基本关系,这为过渡到本节的学习起着铺垫的作用,本节内容在近年的高考中主要考核集合的基本运算,在整个教材中存在着基础的地位,为今后学习函数及不等式的解集奠定了基础数形结合的思想方法,对学生今后的学习中有着铺垫的作用。

教学的重点是交集与并集、全集与补集的概念。

二、目标及其解析(一)目标理解两个集合的并集与交集、全集的含义,掌握求两个简单集合的交集与并集的方法,学会求给定子集的补集。

理解集合的基本运算。

(二)解析了解集合的并集与交集、全集的含义,掌握求两个简单集合的交集和并集的方法,会求给定子集的补集。

就是指结合实例,通过类比实数加法运算引入集合间的运算,同时,结合相关内容介绍交集与并集、全集与补集的概念。

学会两个简单集合的交集与并集,会求给定子集的补集。

三、问题诊断分析在本节课的教学中,学生可能遇到的问题是难以理解交集与并集的概念,以及符号之间的区别与联系,集合的相关运算等。

产生这一问题的原因是初次接触集合的运算,容易混淆概念。

要解决这些问题,就需要多加练习,学生熟悉之后就能掌握集合的基本运算。

四、教学支持条件在本节课的教学中,准备使用多练习的方法,让学生体会集合的交集与并集、全集与补集的含义,学会集合的基本运算,这样有利于学生快速掌握本节内容。

五、教学过程设计(一)教学基本流程新知探究新课讲授知识巩固运用课堂小结配餐作业(二)教学情景1.导入新课提出问题问题1:我们知道,实数有加法运算,两个实数可以相加,例如5+3=8。

类比实数的加法运算,集合是否也可以“相加”呢?教师直接点出课题。

问题2:请同学们考察下列各个集合,你能说出集合C与集合A,B之间的关系吗?(1)A={1,3,5},B={2,4,6},C={1,2,3,4,5,6};(2)A={x|x是有理数},B={x|x是无理数},C={x|x是实数}。

1.3 集合的基本运算(含2课时)(课件)高一数学(人教A版2019必修第一册)

1.3 集合的基本运算(含2课时)(课件)高一数学(人教A版2019必修第一册)
A . | <

B .{| − ≤ < }
C . | ≤
D .{| − ≤ < }
【答案】C
【解析】因为 = {| − < } = {| < } ,又 = {| − ≤ ≤ } ,
所以 ∪ = �� | ≤ .
故选:C
有关的问题.
第一章 集合与常用逻辑用语
1.3 集合的基本运算(第1课时)
情景引入,温故知新
情景1:已知一个班有30人,其中5人有兄弟,5人有姐妹,你能判断这个班有
多少是独生子女吗?如果不能判断,你能说出需哪些条件才能对这一问题做出
判断吗?
事实上,如果注意到“有兄弟的人也可能有姐妹”,我们就知道,上面给出的
【例 2 】已知⋂ = , (∁ )⋂ = , , , ⋂(∁ ) = , ,
(∁ )⋃(∁ ) = | < , ∈ ∗ , ≠ ,则 ∁ ( ∪ ) =
.
【答案】 , ,
【解析】由题意 , (∁ )⋃(∁ ) = | < , ∈ ∗ , ≠ = {, , , , , , , } ,
【解析】(1)因为 ∪ = ,所以 ⊆ .
当 = ∅时,满足 ⊆ ,此时 + < 解得 > ;
≤ +

当 ≠ ∅时,要使 ⊆ ,则 ≥ − 解得− ≤ ≤ .

+≤


综上,的取值范围为 ≥ − .
(2)因为 ∪ = ,所以
则a的取值范围是__________.
第一章 集合与常用逻辑用语
1.3 集合的基本运算(第2课时)

《集合的基本运算》示范课教学设计(2)【人教B版必修第一册】

《集合的基本运算》示范课教学设计(2)【人教B版必修第一册】

第一章 集合与常用逻辑用语1.1.3集合的基本运算第2课时1.理解全集和补集的含义;2. 会求给定子集的补集 ;3.理解在给定集合中一个子集的补集的含义,能求给定子集的补集;能用维恩图表达集合的补集运算,体会图形对理解抽象概念的作用.教学重点:补集的运算.教学难点:全集概念的理解和补集的运算.【新课导入】如果学校里所有同学组成的集合记为S ,所有男同学组成的集合记为M ,所有女同学组成的集合记为F ,那么:(1)这三个集合之间有什么联系?(2)如果x ∈S 且x ∉M ,你能得到什么结论? 预设的答案:(1)SF M =,S M F =;(2)若x ∈S 且x ∉M ,则x ∈F . 【探究新知】知识点1 补集师生活动:学生回答,集合M 和集合F 都是集合S 的子集,而且如果x ∈S 且x ∉M ,则一定有x ∈F .教师总结:在研究集合与集合之间的关系时,如果所要研究的集合都是某一给定集合的子集,那么称这个给定的集合为全集,全集通常用U 表示.如果集合A 是全集U 的一个子集,则由U 中不属于A 的所有元素组成的集合,称为A 在U 中的补集,记作UA ,读作“A 在U 中的补集”.由全集U 及其子集A 得到UA ,通常称为补集运算.集合的补集也可用维恩图形象地表示,其中全集通常用矩形区域代表, 如图所示.因此,上述情境与问题中的集合满足SF M =,S M F =.【练一练】(1 ){1,2,3,4,5,6},A {1,3,5},U ==则UA =(2)(5,2],A =-则RA =师生活动:学生回答,学生纠错,教师点评. 预设的答案:(1){2,4,6}(2)(,5](2,)-∞-+∞设计意图:通过练习,加深对补集的概念的理解.【想一想】在补集的定义中一共涉及几个集合?可以从哪些角度去研究这些集合?如何证明你的结论? (1)(A)U A= (2)()U A A = (3)(A)UU =师生活动:学生回答,学生纠错,教师点评. 教师点评:补集的运算性质:给定全集U 及其任意一个子集A ,补集运算具有如下性质:(A)U A =U ;()U A A =∅;(A)UU = A .注意:此时UA 仍是U 的一个子集,因此()UU A 也是有意义的.说明:补集的运算性质可以借助维恩图来直观理解:【拓展】补集的运算性质都可以证明的,如:性质UA A U =的证明如下:证明:对于集合UAA U =中的任意一个元素m , 必有m A 或者U m A ∈. 根据全集的定义,无论哪种情形都有m U , 所以UA A U ⊆.反之,对于全集U 中的任意一个元素x , 若x A , 则Ux A A ∈; 若x A ∉, 则U x A ∈,同样得到Ux AA ∈, 所以UU AA ⊆.综上可知,UAA U =.设计意图:利用维恩图,加深对补集的运算性质的理解. 【做一做】(1) 已知U = {1, 2, 3} , A = {1} , 求UA ;(2) 已知U = {1, 2, 3} , UA = {1} , 求A ;(3) 已知A = {1} ,UA = {2, 3} , 求U .师生活动:学生完成.预设的答案: (1)U A = {2, 3} ; (2)A ={2,3};(3)U {1,2,3).设计意图:深入理解全集、补集等概念.同时需要让学生理解全集的相对性,不同的研究对象对应不同的全集.知识点2 交、并、补集之间的关系【想一想】我们学习了交集、并集以及补集运算,那它们之间有什么关系呢? 如()()UU A B ,)(UA B ,)(UA B ,())(U U A B 这几个集合之间有关系吗?师生活动:引导学生画维恩图,学生讨论后回答,教师总结. 教师总结:集合运算的德摩根恒等式(())()UU U A B A B = ,)(()()UU U A B A B =.设计意图:进一点加深对交集、并集、补集运算的理解,加深对用维恩图可快捷处理集合问题的理解,对于基础较好的学生还可以引导他们采用描述集合相等的方法进行严格证明.【巩固练习】例1已知U ={x ∈N|x ≤7},A ={x ∈U |x ²≤7},B ={x ∈U |0<2x ≤7},求UA ,UB ,())(U U A B ,)(UA B .师生活动:学生回答,教师给出规范解题过程.解: 不难看出U ={0,1,2,3,4,5,6,7},A ={0,1,2},B =(1,2,3}. 因此U A ={3,4,5,6,7}, UB ={0,4,5,6,7}, ())(U U A B ={0,3,4,5,6,7},)(UA B ={0,3,4,5,6,7}.强调:注意U 中的元素都是自然数,而且A ,B 都是U 的子集. 设计意图:进一步理解补集的运算以及如何求补集. 例2 已知(1,)A =-+∞,(,2]B =-∞,求RA ,RB .师生活动:学生回答,教师给出规范解题过程. 解: 在数轴上表示出A 和B ,如图所示.由图可知(,1]RA =-∞-,(2,)RB =+∞.设计意图:进一步理解补集的运算以及如何求补集.对于区间形式给出的集合的补集求解,可以借助数轴快捷求解.例3已知全集U ={1,3,x 3+3x 2+2x },A ={1,|2x -1|},若UA ={0},求x 的值.师生活动:学生回答,教师纠错. 解:∵UA ={0},∴0∈U ,但0∉A .∴x 3+3x 2+2x =0,x (x +1)(x +2)=0, ∴x =0或-1或-2.当x =0时,|2x -1|=1,A 中已有元素1,不符合元素的互异性; 当x =-1时,|2x -1|=3,3∈U ; 当x =-2时,|2x -1|=5,但5∉U . 综上,x =-1.设计意图:进一步理解补集的运算和集合的特性. 练习:教科书第19页练习A 4,5题. 师生活动:学生回答,教师点评.设计意图:通过让学生思考并回答,巩固新知,查缺补漏.【课堂小结】1.板书设计: 1.3集合的基本运算 补集补集的运算性质:例1 例2 例3练习:教科书第19页练习A 4,5题.作业:教科书第19页练习B 3,4题.第20页习题1-1A 10题 ;习题1-1 B 2题 2.总结概括:回顾本节课,你有什么收获?师生活动:学生可以从以下两点分别回答:1.补集及其运算性质;2.交集、并集与补集之间的关系.设计意图:从知识内容和研究方法两个方面对本节课进行小结.对于补集的运算,要化抽象为形象,再回归到教案上的习题来,让数学变得有趣活泼. 布置作业:教科书第19页练习B 3,4题.第20页习题1-1A 10题 ;习题1-1 B 2题【课后拓展】1.设U 为全集,对集合X , Y , 定义运算“⊕”, 满足 X ⊕Y =()UX Y, 则对于任意集合X ,Y ,Z , 则X ⊕(Y ⊕Z) =( ) A .(X ∪Y )∪()U ZB .(X ∩Y )∪()U ZC . [()()]UU X Y ZD . ()[()]]UU X Y Z参考答案: 根据运算“⊕”的定义可得,X ⊕(Y ⊕Z) = ()[()]]UU X Y Z .故选D .设计意图:这是新情境、新思维题,有利用提升学生的抽象思维能力. 2.已知全集U =R ,集合A ={x |-2≤x ≤5},B ={x |a +1≤x ≤2a -1}且A ⊆UB ,求实数a 的取值范围.参考答案:若B =∅,则a +1>2a -1,∴a <2.此时∁U B =R ,∴A ⊆∁U B ;若B ≠∅,则a +1≤2a -1,即a ≥2, 此时∁U B ={x |x <a +1,或x >2a -1}, 由于A ⊆∁U B ,如图,则a +1>5,∴a >4,∴实数a的取值范围为a<2或a>4.易错点评:解决此类问题应注意以下几点:(1)空集作为特殊情况,不能忽略;(2)数形结合方法更加直观易懂,尽量使用;(3)端点值能否取到,应注意分析.。

北师大版高中数学必修一1.3集合的基本运算教学设计

北师大版高中数学必修一1.3集合的基本运算教学设计

1.1.3集合的基本运算课时教学三维目标一、知识与技能1.理解并集、交集的概念和意义.2.掌握有关集合并集、交集的术语和符号,并会用它们正确地表示一些简单的集合,能用图示法表示集合之间的关系.3.掌握两个较简单集合的并集、交集的求法.二、过程与方法1.自主学习,了解并集、交集来源于生活、服务于生活,又高于生活.2.通过对并集、交集概念的讲解,培养学生观察、比较、分析、概括等能力,使学生认识由具体到抽象的思维过程.3.探究数学符号化表示问题的简洁美.三、情感态度与价值观认识共性存在于个性之间,“并”能够产生特殊的集体,有包容现象,小集体可合成大集体.教学教学重点并集、交集的概念.教学难点并集、交集的概念、符号之间的区别与联系.教具准备投影仪、打印好的材料.教学流程一、创设情景,引入新课师:同学们,今天我们来做一些统计,符合条件的同学请举手.第一项统计:“我班45名同学中爱好数学的同学请举手”(喜欢数学的同学举起了手).师:我们可以用集合A来表示我班45名同学中爱好数学的同学.第二项统计:请爱好物理的同学举手”(喜欢物理的同学举起了手).师:我们可以用集合B来表示我班45名同学中爱好物理的同学.师:第三项统计:请我班同学中爱好数学或爱好物理的同学举手(喜欢数学或喜欢物理的同学举起了手).师:同样,我们可以用集合C来表示我班45名同学中喜欢数学或喜欢物理的同学.上面的描述我们可以用图来表示,我们看下图(用投影仪打出).我班喜欢数学的同学我班喜欢物理的同学A B师:图中的阴影部分表示什么?生:我班喜欢数学或喜欢物理的同学,即刚才所说的集合C.二、讲解新课1.并集(问题1)师:大家说得很对,就是集合C,试问这个新集合中的元素与集合A、B的元素有何关系?生:它的元素属于集合A 或属于集合B .师:对!我们把所有属于集合A 或属于集合B 的元素构成的集合,称为A 与B 的并集.由此引入并集的概念.(问题2)那么你能用适当的方法将A U B 表示出来吗?生:描述法:A ∪B ={x |x ∈A 或x ∈B }图示法师:并集定义的数学表达式中“或”字的意义应引起注意,用它连接的并列成分之间不一定是互相排斥的。

高中数学第一章集合与函数概念1.1.3集合的基本运算第二课时补集及综合应用课件新人教A版必修1

高中数学第一章集合与函数概念1.1.3集合的基本运算第二课时补集及综合应用课件新人教A版必修1

知识探究
1.全集 一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这 个集合为全集.通常记作 U .
2.补集
自然语言 符号语言
不属于集合A
对于一个集合A,由全集U中
的所有
元∁素UA 组{x成|.x的∈集U,合且称x∉为A}集合A相对于全集U的补集,记作
∁UA=
.
图形语言
探究:若集合A是全集U的子集,x∈U,则x与集合A的关系有几种? 答案:若x∈U,则x∈A或x∈∁UA,二者必居其一. 【拓展延伸】 德·摩根定律 设集合U为全集,集合A,B是集合U的子集. (1)如图(1),∁U(A∩B)=(∁UA)∪(∁UB);
误区警示 (1)利用数轴求集合的交、并、补集运算时需注意点的虚实情况 的变化. (2)通过改变原不等式的不等号方向取补集时,要防止漏解.如 A={x| 1 <0},
x
∁RA≠{x| 1 ≥0}={x|x>0}.应先求出 A={x|x<0},再求∁RA={x|x≥0}. x
即时训练2-1:(1)设全集U={1,2,3,4,5},若A∩B={2},(∁U A)∩B={4},(∁U A)

B={2}时,
a 5
1 a
2, 2,
解得 a=3,综上所述,所求 a 的取值范围为{a|a≥3}.
题型四 易错辨析——概念认识不到位致误
【例4】 设全集U={2,3,a2+2a-3},A={|2a-1|,2},∁UA={5},求实数a的值.
错解:因为∁UA={5}, 所以5∈U,且5∉A, 所以a2+2a-3=5,且|2a-1|≠5, 解得a=2或a=-4. 故实数a的值为2或-4. 纠错:以上求解过程忽略了验证“A⊆U”这一隐含条件.

高中数学必修一《集合的基本运算》优秀教学设计

高中数学必修一《集合的基本运算》优秀教学设计

集合的基本运算并集一.教材分析我校选用的是人教A版的《普通高中课程标准实验教科书数学1》,课程为第一章《集合与函数的定义》中1.1.3节《集合的基本运算》中并集的内容,一个课时。

并集是在学习集合定义以及集合的性质之后学到的,它对日后学习研究函数的定义域、值域、单调区间等内容起到知识储备作用。

教材内容的分析:1.在教材内容上,教材通过“思考”小栏目设置的问题,引出并集的定义,通过图形即Venn图和数轴对定义进行了直观的描述。

2.在内容的编排上,教材把并集、交集、全集和补集归入集合的基本运算中。

3.在习题的安排顺序上,教材是在学完知识点后才安排习题。

4.在重难点上,人教版教材主要着重于理解两个集合的并集的含义,会求两个简单集合的并集,能使用Venn图表达集合的关系及运算,对集合的并集运算提出了更具体的要求,强调了Venn图的应用,教材中注重三种语言即文字语言、符号语言、图形语言的相互转化。

优点:1.提出一道类比实数加法的思考题,通过学生思考,把抽象的问题具体化,更能体现学生的主体作用。

2.从整体上看,新教材内容显得清晰明确,有条理,体现了并集其实就是集合的一种基本运算的思想。

3.教学内容、知识量少且简单,减轻学生的学习负担,同时留给学生更大的自主学习空间,但对老师引导学生思考的要求更高。

缺点:1.例题和习题的安排不够合理。

教材这样安排不能立即加强学生对知识的巩固,不能及时的反馈学生对知识的了解情况。

2.不能够以一般到特殊的方法,体现出并集的几个比较重要的性质(A B B A =;A A A = ;A A =∅ ;B A B B A A ⊆⊆,;如果A B ⊆,那么A B A = )。

二.学情分析:1.思维特征和生理特征:高一学生好动,注意力易分散,抽象思维能力较弱,爱发表见解,希望得到老师的表扬等。

2.知识掌握上:学生在之前已经学习了集合的定义,对集合间的基本关系已经有了初步的认识,这为顺利完成本节课的教学任务打下了基础,但在理解集合间的基本运算上,学生可能会遇到一定的困难,所以教学过程中应予以直观明了,深入浅出的分析。

高中数学人教版(新教材)必修1教学设计2:1.3 集合的基本运算

高中数学人教版(新教材)必修1教学设计2:1.3 集合的基本运算

1.3 集合的基本运算教材分析集合的基本运算是人教版普通高中课程标准实验教科书,数学必修1第一章第三节的内容. 在此之前,学生已学习了集合的含义以及集合与集合之间的基本关系,这为学习本节内容打下了基础. 本节内容是函数、方程、不等式的基础,在教材中起着承上启下的作用. 本节内容是高中数学的主要内容,也是高考的对象,在实践中应用广泛,是高中学生必须掌握的重点.教学目标与核心素养课程目标1. 理解两个集合的并集与交集的含义,能求两个集合的并集与交集;2. 理解全集和补集的含义,能求给定集合的补集;3. 能使用Venn图表达集合的基本关系与基本运算.数学学科素养1.数学抽象:并集、交集、全集、补集含义的理解;2.逻辑推理:并集、交集及补集的性质的推导;3.数学运算:求两个集合的并集、交集及补集,已知并集、交集及补集的性质求参数(参数的范围);4.数据分析:通过并集、交集及补集的性质列不等式组,此过程中重点关注端点是否含“=”及∅问题;5.数学建模:用集合思想对实际生活中的对象进行判断与归类.教学重难点重点:1.交集、并集定义的三种语言的表达方式及交集、并集的区别与联系;2全集与补集的定义.难点:利用交集并集补集含义和Venn图解决一些与集合的运算有关的问题.课前准备教学方法:以学生为主体,采用诱思探究式教学,精讲多练.教学工具:多媒体.教学过程一、问题导入:实数有加、减、乘、除等运算.集合是否也有类似的运算.要求:让学生自由发言,教师不做判断.而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本,思考并完成以下问题1. 两个集合的并集与交集的含义是什么?它们具有哪些性质?2.怎样用Venn图表示集合的并集和交集?3.全集与补集的含义是什么?如何用Venn图表示给定集合的补集?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题.三、新知探究(一)知识整理1.并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集,记作:A∪B(读作:“A并B”)即:A∪B={x|x∈A,或x∈B}.Venn图表示:2.交集一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集,记作:A∩B(读作:“A交B”)即:A∩B={x|∈A,且x∈B}.Venn图表示:3.全集一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U.4.补集对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,简称为集合A的补集,记作:C U A,即:C U A={x|x∈U,且x∉A}.补集的Venn图表示(二)知识扩展根据集合的基本关系和集合的基本运算,你能得到哪些结论?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题,教师巡视指导,解答学生在自主学习中遇到的困惑过程.结论:1.A∩B⊆A,A∩B⊆B,A∩A=A,A∩∅=∅,A∩B=B∩A.2.A⊆A∪B,B⊆A∪B,A∪A=A,A∪∅=A,A∪B=B∪A.3.(C U A)∪A=U,(CUA)∩A=∅.4.若A∩B=A,则A⊆B,反之也成立.5.若A∪B=B,则A⊆B,反之也成立.四、典例分析、举一反三题型一集合的交集运算、并集运算与补集运算例1 (单一运算)1.求下列两个集合的并集和交集:(1) A={1,2,3,4,5},B={-1,0,1,2,3};(2) A={x|x+1>0},B={x|-2<x<2};2.设集合U={1,2,3,4,5,6},M={1,2,4},则∁UM=()A.U B.{1,3,5} C.{3,5,6} D.{2,4,6}【答案】见解析【解析】1.(1)如图所示,A∪B={-1,0,1,2,3,4,5},A∩B={1,2,3}.(2)由题意知A={x|x>-1},用数轴表示集合A和B,如图所示,则数轴上方所有“线”下面的实数组成了A∪B,故A∪B={x|x>-2},数轴上方“双线”(即公共部分)下面的实数组成了A∩B,故A∩B={x|-1<x<2}.2.因为U={1,2,3,4,5,6},M={1,2,4},由补集的定义,可知∁U M={3,5,6}.故选C.解题技巧:(求两个集合的并集、交集及补集的常用方法)1.定义法:对于用列举法给出的集合,则依据并集、交集的含义,可直接观察或借助于Venn图写出结果.2.数形结合法:对于用描述法给出的集合,首先明确集合中的元素,其次将两个集合化为最简形式;对于连续的数集常借助于数轴写出结果,此时要注意数轴上方所有“线”下面的实数组成了并集,数轴上方“双线”(即公共部分)下面的实数组成了交集,此时要注意当端点不在集合中时,应用空心点表示.跟踪训练一1. 若集合A={x|1≤x≤3,x∈N},B={x|x≤2,x∈N},则A∩B=()A. {3}B. {x|x≥1}C. {2,3}D. {1,2}2.若集合A={x|x>1},B={x|-2<x<2},则A∪B等于()A.{x|x>-2} B.{x|x>-1}C.{x|-2<x<-1} D.{x|-1<x<2}3.设全集U=R,集合A={x|2<x≤5},则∁U A=________.【答案】1. D 2.A 3.{x|x≤2或x>5}例2(混合运算)(1)设集合A={1,2,6},B={2,4},C={x∈R|-1≤x≤5},则(A∪B)∩C=()A.{2}B.{1,2,4}C.{1,2,4,6} D.{x∈R|-1≤x≤5}(2)设全集为R,A={x|3≤x<7},B={x|2<x<10},则∁R(A∪B)=________,(∁R A)∩B=________. 【答案】(1)B(2){x|x≤2,或x≥10}{x|2<x<3,或7≤x<10}【解析】(1)A∪B={1,2,4,6},又C={x∈R|-1≤x≤5},则(A∪B)∩C={1,2,4}.(2)把全集R和集合A、B在数轴上表示如下:由图知,A∪B={x|2<x<10},∴∁R(A∪B)={x|x≤2,或x≥10}.∵∁R A={x|x<3,或x≥7},∴(∁R A)∩B={x|2<x<3,或7≤x<10}.跟踪训练二1.已知集合A、B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁U B 等于()A.{3} B.{4} C.{3,4} D.Ø2.设集合S={x|x>-2},T={x|-4≤x≤1},则(∁R S)∪T等于()A.{x|-2<x≤1}B.{x|x≤-4}C.{x|x≤1}D.{x|x≥1}【答案】1. A 2. C题型二已知集合的交集、并集求参数例3(由并集、交集求参数的值)已知M={1,2,a2−3a−1},N={-1,a,3},M∩N={3},求实数a的值.解:∵M∩N={3},∴3∈M;∴a2−3a−1=3,即a2−3a−4=0,,解得a=-1或4.当a=-1时,与集合中元素的互异性矛盾,舍去;当a=4时,M={1,2,3},N={-1,3,4},符合题意.∴a=4.例4(由并集、交集的定义求参数的范围)设集合A={x|-1<x<a},B={x|1<x<3}且A∪B={x|-1<x<3},求a的取值范围.解:如图所示,由A∪B={x|-1<x<3}知,1<a≤3.例5(由交集、并集的性质求参数的范围)已知集合A={x|-3<x≤4},集合B={x|k+1≤x≤2k-1},且A∪B=A,试求k的取值范围.解:∵A∪B=A,∴B⊆A,①当B=Ø时,k+1>2k-1,∴k<2.②当B ≠Ø,则根据题意如图所示:根据数轴可得⎩⎪⎨⎪⎧k +1≤2k -1,-3<k +1,2k -1≤4,解得2≤k ≤52.综合①②可得k 的取值范围为⎩⎨⎧⎭⎬⎫k ⎪⎪k ≤52. 变式. [变条件]把例5题中的条件“A ∪B =A ”换为“A ∩B =A ”,求k 的取值范围. 解:∵A ∩B =A ,∴A ⊆B .又A ={x |-3<x ≤4},B ={x |k +1≤x ≤2k -1}, 可知B ≠Ø.由数轴可知⎩⎪⎨⎪⎧k +1≤-3,2k -1≥4,解得k ∈Ø,即当A ∩B =A 时,k 不存在.解题技巧:(由集合交集、并集的性质解题的方法)当利用交集和并集的性质解题时,常借助于交集、并集的定义将其转化为集合间的关系去求解,如A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A 等.当题设中隐含有空集参与的集合关系时,其特殊性很容易被忽视,从而引发解题失误 跟踪训练三1.已知集合A ={x |0≤x ≤4},集合B ={x |m +1≤x ≤1-m },且A ∪B =A ,求实数m 的取值范围. 解:∵A ∪B =A ,∴B ⊆A . ∵A ={x |0≤x ≤4}≠⌀,∴B =⌀或B ≠⌀. 当B =⌀时,有m +1>1-m ,解得m >0.当B ≠⌀时,用数轴表示集合A 和B ,如图所示,∵B ⊆A ,∴{m +1≤1-m ,0≤m +1,1-m ≤4,解得-1≤m ≤0.检验知m =-1,m =0符合题意.综上所得,实数m 的取值范围是m >0或-1≤m ≤0,即m ≥-1. 变式:[变条件]将本例中“A ∪B =A ”改为“A ∩B =A ”,其他条件不变,求实数m 的取值范围. 解:∵A ∩B =A ,∴A ⊆B .如图,∴{m +1≤1-m ,m +1≤0,1-m ≥4,解得m ≤-3.检验知m =-3符合题意.故实数m 的取值范围是m ≤-3. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计七、作业 课本习题1.3. 教学反思在本节利用集合关系求参的过程,依然可以让理解能力比较弱的同学可让其采取“里实外空,‘==’取不到”的方法做题.。

高中数学 1.1.3 集合的基本运算(第2课时)课件 新人教A版必修1

高中数学 1.1.3 集合的基本运算(第2课时)课件 新人教A版必修1
第三十九页,共41页。
③把集合S和A表示在数轴上,如图所示. 由图知∁SA={x|-4≤x<-1或x=1}.
第四十页,共41页。
点评 (1)用不等式表示的集合的交、并、补运算,往往用 数轴直观显示.
(2)用数轴解题时,要特别注意端点的值是否符合题意.
第四十一页,共41页。
【解析】 U={1,2,3,4,5,6,7,8,9},在图中将1,2,3,4,5,6,7,8,9 分别填入到相应位置中去,
则由A∩B={2}, ∁U(A∪B)=(∁UA)∩(∁UB)={1,9}, ∁UA∩B={4,6,8},∴A∩(∁UB)={3,5,7}. 这样A={2,3,5,7},B={2,4,6,8}.
第十四页,共41页。
【讲评】 补集是在全集的范围内来求的,若题中未指出 全集,则本题不能求其补集.
探究1 求补集时,首先要正确理解全集及子集中所含的元 素,找出其联系与差异,然后准确写出补集.
第十五页,共41页。
思考题1 设全集U={1,2,3,4,5,6,7},集合A={1,3,5,7},B
={3,5},则正确的是( )
第二十八页,共41页。
探究4 本题借助韦恩图更加形象直观,只需根据题中所给 条件,把集合中的元素填入相应的图中,可得集合A,B.
思考题4 已知集合I={a,b,c,d,e,f,g,h},(∁IA)∪ (∁IB)={a,b,c,e,f,h},(∁IA)∩(∁IB)={a,e},(∁IA)∩B= {c,f}.求集合A.
答案 3
第三十七页,共41页。
6.若集合A=[-1,1),当S分别取下列集合时,求∁SA. ①S=R;②S=(-∞,2];③S=[-4,1].
第三十八页,共41页。
解析 ①把集合S和A表示在数轴上如图所示.

人教版高中数学必修1第1章1.1.3 集合的基本运算(2)教案

人教版高中数学必修1第1章1.1.3  集合的基本运算(2)教案

1.1.3 集合的基本运算(二)教学目标分析:知识目标:1、理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。

2、理解在给定集合中一个子集的补集的含义,会求给定子集的补集。

3、能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

过程与方法:通过类比实数的运算,得到集合间的运算:并、交、补,在正确理解并集、交集、补集概念的基础上学会求集合的并集、交集、补集的方法,并体会数形结合思想的应用。

情感目标:在学习集合运算的过程中,培养类比的思想及由特殊到一般的认知规律,同时在利用数轴和Venn 图解题的过程中,学会用数形结合思想解决数学问题。

重难点分析:重点:并集、交集、补集的概念及集合的运算。

难点:补集的意义及集合的应用,符号之间的区别与联系。

互动探究:一、课堂探究:1、复习巩固:(1)交集、并集的概念;(2)交集、并集的性质。

2、情境引入:在研究问题时,我们经常需要确定研究对象的范围。

例如,从小学到初中,数的研究范围逐步第由自然数到实数,在高中阶段,数的范围将进一步扩充。

3、全集的概念:一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,记作U 。

如Q 、R (把给定的集合叫做全集)4、补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合,称为集合A 相对于全集U 的补集,记作U C A ,即{|,}U C A x x U x A =∈∉且}(图示如右)3、区别并集、交集、全集、补集的概念例1、设U = {x | x 是小于9的正整数},A = {1,2,3},B = {3,4,5,6},求,U U C A C B 。

变式1:设{1,2,3,4,5,6,7,8,9},(){3,7},(){2,8},U U U C A B C B A ===()(){1,5,6}U U C A C B =,则集合___________,___________.A B ==答案:{2,4,8,9},{3,4,7,9}A B ==变式2:设全集2{1,2,2},{1,}U x A x =-=,求U C A 。

1.1.3集合的基本运算(第二课时)教学设计

1.1.3集合的基本运算(第二课时)教学设计

1.1.3 集合的基本运算(第二课时)教学设计一、教学任务分析1.学情分析:本节课的授课对象是高一学生学生,针对初入高中的学生数学基础较差,数学水平参差不齐,依赖性强,接受能力一般的。

因此本节课采用低起点,由浅到深,由易到难逐步推进,螺旋上升的方式进行。

高一学生的认知水平从形象向抽象的能力较差,因而借助韦恩图、数轴等手段可以让学生过渡的自然一些,当然学生也有自主意识强等特点,都能为学生的学习提供一定的有利导向。

2.教材分析:本节课是人教A版《必修1》第一章第1.1.3节《集合的运算》第二课时的内容,在学生已经学习了集合运算中的并集和交集的前提下,全集和补集在以上知识的基础上建立起来的。

集合的全集和补集运算是许多知识的切入点或重要借助工具,特别是补集所带来对于一些比较复杂、比较抽象,条件和结论之间关系不明朗,难于从正面入手的数学问题,在解题时,调整思路,从问题的反面入手,探求已知和未知的关系,化难为易,化隐为显,从而将问题解决。

这就是“正难则反”的解题策略,也是处理问题的间接化原则的体现。

补集作为一种思想方法,给我们研究问题开辟了新思路,今后要有意识地去体会并运用,在顺向思维受阻时,改用逆向思维,可能“柳暗花明”,从这个意义上讲,补集思想具有转换研究对象的功能,这是转化思想的又一体现。

3.教学目标:知识与技能:1)通过实例概括全集的含义,理解全集的含义;2)通过实例概括补集的含义,理解给定的集合中子集的补集的含义,会求给定子集的补集;3)能够使用Venn图和数轴表达两个集合的运算,体会直观图像对抽象概念理解的作用。

过程与方法:1)通过教学,渗透类比思想及数形结合思想,着重培养学生观察、类比、概括、归纳、演绎等方面的思维能力。

2)通过运用Venn图和数轴解决两个集合的相关运算,进一步树立数形结合的思想。

情感态度与价值观:1)集合作为一种数学语言,让学生体会数学符号化表示问题的简洁美。

2)在传授知识培养能力的同时,培养学生勇于探求,敢于创新的精神,同时帮助学生树立克服困难的信心,培养学生良好的学习习惯意志品质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.3 集合的基本运算第2课时导入新课问题:①分别在整数范围和实数范围内解方程(x-3)(x 3-)=0,其结果会相同吗?②若集合A={x|0<x<2,x ∈Z },B={x|0<x<2,x ∈R },则集合A 、B 相等吗?学生回答后,教师指明:在不同的范围内集合中的元素会有所不同,这个“范围”问题就是本节学习的内容,引出课题. 推进新课 新知探究 提出问题①用列举法表示下列集合:A={x ∈Z |(x-2)(x+31)(x 2-)=0}; B={x ∈Q|(x-2)(x+31)(x 2-)=0};C={x ∈R|(x-2)(x+31)(x 2-)=0}.②问题①中三个集合相等吗?为什么? ③由此看,解方程时要注意什么?④问题①,集合Z,Q,R 分别含有所解方程时所涉及的全部元素,这样的集合称为全集,请给出全集的定义.⑤已知全集U={1,2,3},A={1},写出全集中不属于集合A 的所有元素组成的集合B. ⑥请给出补集的定义.⑦用V enn 图表示A.活动:组织学生充分讨论、交流,使学生明确集合中的元素,提示学生注意集合中元素的范围. 讨论结果: ①A={2},B={2,31-},C={2,31-,2}. ②不相等,因为三个集合中的元素不相同.③解方程时,要注意方程的根在什么范围内,同一个方程,在不同的范围其解会有所不同.④一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记为U. ⑤B={2,3}.⑥对于一个集合A,全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集.集合A 相对于全集U 的补集记为A,即A={x|x ∈U,且xA}.⑦如图1-1-3-9所示,阴影表示补集.图1-1-3-9应用示例思路11.设U={x|x是小于9的正整数},A={1,2,3},B={3,4,5,6},求A, B.活动:让学生明确全集U中的元素,回顾补集的定义,用列举法表示全集U,依据补集的定义写出A, B.解:根据题意,可知U={1,2,3,4,5,6,7,8},所以A={4,5,6,7,8};B={1,2,7,8}.点评:本题主要考查补集的概念和求法.用列举法表示的集合,依据补集的含义,直接观察写出集合运算的结果.常见结论:(A∩B)=(A)∪(B);(A∪B)=(A)∩(B).变式训练1.2007吉林高三期末统考,文1已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(A)∩(B)等于( )A.{1,6}B.{4,5}C.{2,3,4,5,7}D.{1,2,3,6,7}分析:思路一:观察得(A)∩(B)={1,3,6}∩{1,2,6,7}={1,6}.思路二:A∪B={2,3,4,5,7},则(A)∩(B)=(A∪B)={1,6}.答案:A2.2007北京东城高三期末教学目标抽测一,文1设集合U={1,2,3,4,5},A={1,2,4},B={2},则A∩(B)等于( )A.{1,2,3,4,5}B.{1,4}C.{1,2,4}D.{3,5}答案:B3.2005浙江高考,理1设全集U={1,2,3,4,5,6,7},P={1,2,3,4,5},Q={3,4,5,6,7},则P∩(Q)等于( )A.{1,2}B.{3,4,5}C.{1,2,6,7}D.{1,2,3,4,5}答案:A2.设全集U={x|x是三角形},A={x|x是锐角三角形},B={x|x是钝角三角形}.求A∩B,(A∪B).活动:学生思考三角形的分类和集合的交集、并集和补集的含义.结合交集、并集和补集的含义写出结果.A∩B是由集合A,B中公共元素组成的集合,(A∪B)是全集中除去集合A∪B中剩下的元素组成的集合.解:根据三角形的分类可知A∩B= ,A∪B={x|x是锐角三角形或钝角三角形},(A∪B)={x|x是直角三角形}.变式训练1.已知集合A={x|3≤x<8},求 A. 解:A={x|x<3或x≥8}.2.设S={x|x 是至少有一组对边平行的四边形},A={x|x 是平行四边形},B={x|x 是菱形},C={x|x是矩形},求B∩C,B,A.解:B∩C={x|正方形},B={x|x 是邻边不相等的平行四边形},A={x|x 是梯形}.3.已知全集I=R ,集合A={x|x 2+ax+12b=0},B={x|x 2-ax+b=0},满足(A)∩B={2},(B)∩A={4},求实数a 、b 的值. 答案:a=78,b=712 . 4.设全集U=R ,A={x|x≤2+3},B={3,4,5,6},则(A)∩B 等于…( )A.{4}B.{4,5,6}C.{2,3,4}D.{1,2,3,4} 分析:∵U=R ,A={x|x≤2+3},∴A={x|x>2+3}.而4,5,6都大于2+3,∴(A)∩B={4,5,6}.答案:B思路21.已知全集U=R,A={x|-2≤x≤4},B={x|-3≤x≤3},求:(1)A,B;(2)(A)∪(B),(A∩B),由此你发现了什么结论?(3)(A)∩(B),(A ∪B),由此你发现了什么结论?活动:学生回想补集的含义,教师指导学生利用数轴来解决.依据补集的含义,借助于数轴求得.在数轴上表示集合A,B. 解:如图1-1-3-10所示,图1-1-3-10(1)由图得A={x|x<-2或x>4},B={x|x<-3或x>3}.(2)由图得(A)∪(B)={x|x<-2或x>4}∪{x|x<-3或x>3}={x|x<-2或x>3};∵A∩B={x|-2≤x≤4}∩{x|-3≤x≤3}={x|-2≤x≤3},∴(A∩B)={x|-2≤x≤3}={x|x<-2或x>3}.∴得出结论(A∩B)=(A)∪(B).(3)由图得(A)∩(B)={x|x<-2或x>4}∩{x|x<-3或x>3}={x|x<-3或x>4};∵A∪B={x|-2≤x≤4}∪{x|-3≤x≤3}={x|-3≤x≤4},∴(A∪B)={x|-3≤x≤4}={x|x<-3或x>4}.∴得出结论(A∪B)=(A)∩(B).变式训练1.2006重庆高考,理1已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(A)∪(B)等于( )A.{1,6}B.{4,5}C.{1,2,3,4,5,7}D.{1,2,3,6,7}答案:D2.2005江西高考,理1设集合I={x||x|<3,x∈Z},A={1,2},B={-2,-1,2},则A∪(B)等于( )A.{1}B.{1,2}C.{2}D.{0,1,2}答案:D2.设全集U={x|x≤20,x∈N,x是质数},A∩(B)={3,5},(A)∩B={7,19},(A)∩(B)={2,17},求集合A、B.活动:学生回顾集合的运算的含义,明确全集中的元素.利用列举法表示全集U,根据题中所给的条件,把集合中的元素填入相应的V enn图中即可.求集合A、B的关键是确定它们的元素,由于全集是U,则集合A、B中的元素均属于全集U,由于本题中的集合均是有限集并且元素的个数不多,可借助于V enn图来解决.解:U={2,3,5,7,11,13,17,19},由题意借助于V enn图,如图1-1-3-11所示,图1-1-3-11∴A={3,5,11,13},B={7,11,13,19}.点评:本题主要考查集合的运算、V enn图以及推理能力.借助于V enn图分析集合的运算问题,使问题简捷地获得解决,将本来抽象的集合问题直观形象地表现出来,这正体现了数形结合思想的优越性.变式训练1.2007临沂高三期末统考,文1图1-1-3-12设I为全集,M、N、P都是它的子集,则图1-1-3-12中阴影部分表示的集合是( )A.M∩[(N)∩P]B.M∩(N∪P)C.[(M)∩(N)]∩PD.M∩N∪(N∩P)分析:思路一:阴影部分在集合M内部,排除C;阴影部分不在集合N内,排除B、D.思路二:阴影部分在集合M内部,即是M的子集,又阴影部分在P内不在集合N内即在(N)∩P内,所以阴影部分表示的集合是M∩[(N)∩P].答案:A2.设U={1,2,3,4,5,6,7,8,9},(A)∩B={3,7},(B)∩A={2,8},(A)∩(B)={1,5,6},则集合A=________,B=________.分析:借助V enn,如图1-1-3-13,把相关运算的结果表示出来,自然地就得出集合A、B了.图1-1-3-13答案:{2,4,8,9} {3,4,7,9}知能训练课本P11练习4.【补充练习】1.设全集U=R,A={x|2x+1>0},试用文字语言表述A的意义.解:A={x|2x+1>0}即不等式2x+1>0的解集,A中元素均不能使2x+1>0成立,即A中元素应当满足2x+1≤0.∴A即不等式2x+1≤0的解集.2.如图1-1-3-14所示,U是全集,M,P,S是U的三个子集,则阴影部分表示的集合是_______.图1-1-3-14分析:观察图可以看出,阴影部分满足两个条件:一是不在集合S内;二是在集合M,P的公共部分内,因此阴影部分表示的集合是集合S的补集与集合M,P的交集的交集,即(S)∩(M∩P).答案:(S)∩(M∩P)3.2007安徽淮南一模,理1设集合A、B都是U={1,2,3,4}的子集,已知(A)∩(B)={2},(A)∩B={1},则A等于( )A.{1,2}B.{2,3}C.{3,4}D.{1,4}分析:如图1-1-3-15所示.图1-1-3-15由于(A)∩(B)={2},(A)∩B={1},则有A={1,2}.∴A={3,4}.答案:C4.2006安徽高考,文1设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则(S∪T)等于( )A. B.{2,4,7,8} C.{1,3,5,6} D.{2,4,6,8}分析:直接观察(或画出V enn图),得S∪T={1,3,5,6},则(S∪T)={2,4,7,8}.答案:B5.2007河北石家庄一模,文1已知集合I={1,2,3,4},A={1},B={2,4},则A∪(B)等于( )A.{1}B.{1,3}C.{3}D.{1,2,3}分析:∵B={1,3},∴A∪(B)={1}∪{1,3}={1,3}.答案:B拓展提升问题:某班有学生50人,解甲、乙两道数学题,已知解对甲题者有34人,解对乙题者有28人,两题均解对者有20人,问:(1)至少解对其中一题者有多少人?(2)两题均未解对者有多少人?分析:先利用集合表示解对甲、乙两道数学题各种类型,然后根据题意写出它们的运算,问题便得到解决.解:设全集为U,A={只解对甲题的学生},B={只解对乙题的学生},C={甲、乙两题都解对的学生},则A∪C={解对甲题的学生},B∪C={解对乙题的学生},A∪B∪C={至少解对一题的学生},(A∪B∪C)={两题均未解对的学生}.由已知,A∪C有34个人,C有20个人,从而知A有14个人;B∪C有28个人,C有20个人,所以B有8个人.因此A∪B∪C有N1=14+8+20=42(人),(A∪B∪C)有N2=50-42=8(人).∴至少解对其中一题者有42个人,两题均未解对者有8个人.课堂小结本节课学习了:①全集和补集的概念和求法. ②常借助于数轴或V enn 图进行集合的补集运算. 作业课本P 12习题1.1A 组9、10,B 组4.设计感想本节教学设计注重渗透数形结合的思想方法,因此在教学过程中要重点指导学生借助于数轴或V enn 图进行集合的补集运算.由于高考中集合常与以后学习的不等式等知识紧密结合,本节也对此也予以体现,可以利用课余时间学习有关解不等式的知识.习题详解(课本P 5练习)1.(1)中国∈A,美国∉A,印度∈A,英国∉A. (2)∵A={x|x 2=x}={0,1},∴-1∉A.(3)∵B={x|x 2+x-6=0}={-3,2},∴3∉A.(4)∵C={x ∈N|1≤x≤10}={1,2,3,4,5,6,7,8,9,10}, ∴8∈C,9.1∉C.2.(1){x|x 2=9}或{-3,3}; (2){2,3,5,7};(3){(x,y)|⎩⎨⎧+=+=6-2x y 3x y }或{(1,4)};(4){x ∈R |4x-5<3}或{x|x<2}.(课本P 7练习)1.∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}.2.(1)a ∈{a,b,c}.(2)∵x 2=0,∴x=0.∴{x|x 2=0}={0}. ∴0∈{0}.(3)∵x 2+1=0,∴x 2=-1.又∵x ∈R ,∴方程x 2=-1无解.∴{x ∈R |x 2+1=0}=∅.∴∅=∅. (4).(5)∵x 2=x,∴x=0或x=1. ∴{x|x 2=x}={0,1}. ∴{0}{0,1}.(6)∵x 2-3x+2=0,∴x=1或x=2. ∴{x|x 2-3x+2=0}={1,2}. ∴{2,1}={1,2}.3.(1)由于1是任何正整数的公约数,任何正整数都是自身的公约数,所以8的公约数是1,2,4,8,即B={1,2,4,8}.∴A B.(2)显然B ⊆A,又∵3∈A,且3∉B,∴B A.(3)4与10的最小公倍数是20,4与10的公倍数应是20的倍数,显然A=B. (课本P 11练习)1.A∩B={5,8},A ∪B={3,5,6,7,8}.2.∵x 2-4x-5=0,∴x=-1或x=5.∵A={x|x 2-4x-5=0}={-1,5}, 同理,B={-1,1}.∴A ∪B={-1,5}∪{-1,1}={-1,1,5}, A∩B={-1,5}∩{-1,1}={-1}.3.A∩B={x|x 是等腰直角三角形}, A ∪B={x|x 是等腰三角形或直角三角形}.4.∵B={2,4,6},A={1,3,6,7},∴A∩(B)={2,4,5}∩{2,4,6}={2,4},(A)∩(B)={1,3,6,7}∩{2,4,6}={6}. (课本P 11习题1.1)A 组1.(1)∈ (2)∈ (3)∉ (4)∈ (5)∈ (6)∈2.(1)∈ (2)∉ (3)∈3.(1){2,3,4,5};(2){-2,1};(3){0,1,2}.(3)∵-3<2x-1≤3,∴-2<2x≤4. ∴-1<x≤2.又∵x ∈Z ,∴x=0,1,2.∴B={x ∈Z |-3<2x-1≤3}={0,1,2}. 4.(1){y|y≥-4}; (2){x|x≠0}; (3){x|x≥54}. 5.(1)∵A={x|2x-3<3x}={x|x>-3},B={x|x≥2},∴-4∉B,-3∉A,{2}B,B A. (2)∵A={x|x 2-1=0}={-1,1},∴1∈A,{-1}A,∅A,{1,-1}=A.(3);.6.∵B={x|3x-7≥8-2x}={x|x≥3},∴A ∪B={x|2≤x<4}∪{x|x≥3}={x|x≥2}, A∩B={x|2≤x<4}∩{x|x≥3}={x|3≤x<4}. 7.依题意,可知A={1,2,3,4,5,6,7,8},所以A∩B={1,2,3,4,5,6,7,8}∩{1,2,3}={1,2,3}=B, A∩C={1,2,3,4,5,6,7,8}∩{3,4,5,6}={3,4,5,6}=C. 又∵B ∪C={1,2,3}∪{3,4,5,6}={1,2,3,4,5,6}.∴A∩(B ∪C)={1,2,3,4,5,6,7,8}∩{1,2,3,4,5,6}={1,2,3,4,5,6}. 又∵B∩C={1,2,3}∩{3,4,5,6}={3},∴A ∪(B∩C)={1,2,3,4,5,6,7,8}∪{3}={1,2,3,4,5,6,7,8}=A.8.(1)A ∪B={x|x 是参加一百米跑的同学或参加二百米跑的同学}. (2)A∩C={x|x 是既参加一百米跑又参加四百米跑的同学}.9.B∩C={x|x 是正方形},B={x|x 是邻边不相等的平行四边形},A={x|x 是梯形}.10.∵A ∪B={x|3≤x<7}∪{x|2<x<10}={x|2<x<10}, ∴(A ∪B)={x|x≤2或x≥10}.又∵A∩B={x|3≤x<7}∩{x|2<x<10}={x|3≤x<7}, ∴(A∩B)={x|x<3或x≥7}.(A)∩B={x|x<3或x ≥7}∩{x|2<x<10}={x|2<x<3或7≤x<10},A ∪(B)={x|3≤x<7}∪{x|x≤2或x≥10}={x|x≤2或3≤x<7或x≥10}.B 组1.∵A={1,2},A ∪B={1,2}, ∴B ⊆A.∴B=∅,{1},{2},{1,2}.2.集合D={(x,y)|2x-y=1}∩{(x,y)|x+4y=5}表示直线2x-y=1与直线x+4y=5的交点坐标;由于D={(x,y)|⎩⎨⎧=+=54y x 1y -2x }={(1,1)},所以点(1,1)在直线y=x 上, 即D C.3.B={1,4},当a=3时,A={3},则A ∪B={1,3,4},A∩B=∅; 当a≠3时,A={3,a},若a=1,则A ∪B={1,3,4},A∩B={1}; 若a=4,则A ∪B={1,3,4},A∩B={4}; 若a≠1且a≠4,则A ∪B={1,a,3,4},A∩B=∅. 综上所得,当a=3时,A ∪B={1,3,4},A∩B=∅; 当a=1,则A ∪B={1,3,4},A∩B={1}; 当a=4,则A ∪B={1,3,4},A∩B={4};当a≠3且a≠1且a≠4时,A ∪B={1,a,3,4},A∩B=∅. 4.作出韦恩图,如图1-1-3-16所示,图1-1-3-16由U=A∪B={x∈N|0≤x≤10},A∩(B)={1,3,5,7},可知B={0,2,4,6,8,9,10}.。

相关文档
最新文档