数学建模—传染病模型
数学建模传染病模型
传生病模型医学科学的发展已经可以有效地预防和控制好多传生病,但是依旧有一些传生病暴发或流行,危害人们的健康和生命。
社会、经济、文化、风俗习惯等因素都会影响传生病的流传,而最直接的因素是:传染者的数量及其在人群中的分布、被传染者的数量、流传形式、流传能力、免疫能力等。
一般把传生病流行范围内的人群分成三类: S 类,易感者 (Susceptible) ,指未患病者,但缺乏免疫能力,与感染者接触后简单碰到感染; I 类,感病者 (Infective) ,指染上传生病的人,它可以流传给 S 类成员; R 类,移出者 (Removal) ,指被隔断或因病愈而拥有免疫力的人。
问题提出请建立传生病模型,并解析被传染的人数与哪些因素有关?如何预告传生病高潮的到来?为什么同一地区一种传生病每次流行时,被传染的人数大体不变?要点字 : 传生病模型、建模、流行病大纲:随着卫生设施的改进、医疗水平的提高以及人类文明的不断发展,诸如霍乱、天花等从前残酷全球的传染性疾病已经获取有效的控制。
但是一些新的、不断变异着的传生病毒却静静向人类袭来。
20 世纪 80 年代十分险恶的爱滋病毒开始残酷全球,到此刻带来极大的危害。
还有近来的 SARS病毒和禽流感病毒,都对人类的生产生活造成了重要的损失。
长远以来,建立制止传生病延长的手段等,素来是各国有关专家和官员关注的课题。
不同样种类传生病的流传过程有其各自不同样的特点,弄清这些特点需要相当多的病理知识,这里不可以能从医学的角度一一解析各种传生病的流传,而可是依照一般的流传模型机理建立几种模型。
模型 1在这个最简单的模型中,设时辰 t 的病人人数 x(t) 是连续、可微函数,方程( 1)的解为结果表示,随着t 的增加,病人人数x(t) 无量增加,这显然是不吻合实质的。
建模失败的原因在于:在病人有效接触的人群中,有健康人也有病人,而其中只有健康人才可以被传染为病人,因此在改进的模型中必定差异健康人和病人这两种人。
数学建模传染病模型例题
数学建模传染病模型例题(最新版)目录一、引言二、数学建模传染病模型的基本概念1.SEIR 模型2.SIS 模型3.SIR 模型三、数学建模传染病模型的例题1.模型假设2.模型建立3.模型求解四、结论正文一、引言随着全球化的发展,传染病的传播越来越引起人们的关注。
为了更好地预测和控制传染病的传播,数学建模传染病模型被广泛应用。
本文将以数学建模传染病模型为例,介绍相关的模型概念和例题。
二、数学建模传染病模型的基本概念(1)SEIR 模型SEIR 模型是传染病数学模型中最基本的模型之一,它将人群分为四类:易感者 (Susceptibles)、暴露者 (Exposed)、感染者 (Infectives) 和抵抗者 (Resistances)。
该模型假设人群数量不变,感染者会以一定的速率传染给易感者,同时易感者会以一定的速率转变为暴露者,暴露者在一定时间后转为感染者,感染者又会在一定时间后转为抵抗者。
(2)SIS 模型SIS 模型是 SEIR 模型的一种特殊形式,它将人群分为易感者(Susceptibles)、感染者 (Infectives) 和恢复者 (Recovered) 三类。
该模型假设易感者与感染者的接触会导致疾病传播,感染者会在一定时间后恢复为易感者,恢复者则具有免疫力。
(3)SIR 模型SIR 模型是另一种常见的传染病数学模型,它将人群分为易感者(Susceptibles)、感染者 (Infectives) 和恢复者 (Recovered) 三类。
与 SIS 模型不同的是,SIR 模型假设感染者会以一定的速率恢复为易感者,而恢复者则具有免疫力。
SIR 模型适用于短期传染病,例如流感。
三、数学建模传染病模型的例题假设某个地区有 10000 人,其中易感者占 80%,感染率为 0.01,恢复率为 0.9。
我们需要建立一个数学模型来预测疾病传播的过程。
(1)模型假设我们假设疾病传播满足 SEIR 模型,人群分为易感者、暴露者、感染者和恢复者四类。
传染病数学建模
传染病数学建模(总9页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第30题传染病传播的数学模型由于人体的疾病难以控制和变化莫测,医学中的数学模型也是较为复杂的。
在研究传染病传播问题时,人们发现传染病传播所涉及的因素很多,例如,传染病人的多少,易受感染者的多少,免疫者(或感染后痊愈者)的多少等。
在将某一地区,某种传染病的统计数据进行处理和分析后,人们发现了以下的规律性:设Sk表示在开始观察传染病之后第k天易受感染者的人数,Hk 表示在开始观察后第k天传染病人的人数,Ik表示在开始观察后第k天免疫者(或感染后痊愈者)的人数,那么Sk+1=(1)Hk+1=+(2)I k +1=Ik+(3)其中(1)式表示从第k天到第k+1天有1%的易受感染者得病而离开了易受感染者的人群;(2)式表示在第k+1天的传染病人的人数是第k天的传染病人的人数减去痊愈的人数(假设该病的患病期为5(3)式表示在第k+1天免疫者的人数是第k天免疫者的人数加上第k天后病人痊愈的人数。
将(1),(2)和(3)式化简得2如果已知S0,H,I的值,利用上式可以求得S1,H 1,I1的值,将这组值再代入上式,又可求得S2,H2,I2的值,这样做下去,我们可以逐个地,递推地求出各组S k ,Hk,Ik的值。
因此,我们把Sk+1,Hk+1,Ik+1和Sk,H k ,Ik之间的关系式叫做递推关系式。
现在假设开始观察时易受感染者,传染病人和免疫者的人数分别为将上述数据(5)代入(4)式右边得利用递推关系式(4)反复计算得表30-1。
在建立上述数学模型的过程中,如果还要考虑该地区人员的迁入和迁出,人口的出生和死亡所引起的总人数的变化等因素,那么传染病传播的数学模型变得非常复杂。
所以必须舍去次要因素,抓住主要因素,把问题简化,建立相应的数学模型。
如果将由该数学模型计算的结果与实际比较后,与传染病传播的情况大致吻合,那么我们就可以利用该模型对得病人数进行预测和估计。
数学建模传染病模型例题
数学建模传染病模型例题一、传染病模型简介传染病模型是数学建模的一个重要分支,主要用于描述传染病在人群中的传播规律。
通过构建合适的数学模型,可以研究传染病的传播动力学、预测疫情发展趋势以及评估防控措施的效果。
本文将重点介绍几种常见的传染病模型及其应用。
二、传染病模型的类型及应用1.SIR模型SIR模型是一种基于微分方程的传染病模型,其中S、I、R分别代表易感者(Susceptible)、感染者(Infected)和康复者(Recovered)。
该模型通过描述易感者感染、感染者康复以及康复者不再易感的动态过程,揭示了传染病在人群中的传播规律。
SIR模型在分析疫情爆发、研究防控措施等方面具有广泛应用。
2.SEIR模型SEIR模型是在SIR模型基础上发展的一种传染病模型,其中E代表潜伏者(Exposed)。
与SIR模型相比,SEIR模型增加了潜伏期这一概念,使得模型更加符合实际情况。
该模型可以用于研究传染病的传播速度、预测疫情发展趋势以及评估疫苗的效果。
3.SI模型SI模型是一种简化的传染病模型,仅包含易感者和感染者两个群体。
该模型适用于分析短期传染病,如流感等。
通过研究易感者与感染者的动态关系,可以预测疫情爆发的时间和规模。
三、传染病模型的参数估计与预测传染病模型的参数估计是数学建模的关键环节,通常采用最大似然估计、贝叶斯估计等方法。
此外,基于传染病模型的预测技术在疫情防控中也具有重要意义。
通过构建时间序列模型,如ARIMA、SVM等,可以预测未来一段时间内疫情的发展趋势。
四、数学建模在传染病防控中的实际应用数学建模在传染病防控中具有广泛应用,如疫情监测、防控措施评估、疫苗研究等。
通过对传染病模型的深入研究,可以为政府部门提供科学依据,协助制定针对性的防控策略。
五、案例分析本文将结合具体案例,如我国2003年非典疫情、2020年新冠肺炎疫情等,详细阐述传染病模型在实际应用中的重要作用。
通过分析案例,可以加深对传染病模型的理解,为今后疫情防控提供借鉴。
数学建模传染病模型例题
以下是一个简单的数学建模传染病模型的例题:
问题:假设有一个小岛上住着100个人,其中有1个是传染病源。
初始时,这个人不知道自己已经患病,所以没有采取隔离措施。
其他人也不知道有传染病源在岛上。
假设每天,每个健康的人都有可能接触并感染患病的人,感染的概率是p。
另外,健康的人每天也有1个单位的时间用于自我保护,减少被感染的风险。
假设在t天后,岛上有x个人被感染。
我们需要找出p和时间t的关系,以及如何通过调整p来控制传染病的传播。
假设:
1. 每个人每天只能接触一次患病的人。
2. 每个人每天有1个单位的时间用于自我保护。
3. 每个人接触患病的人后,有p的概率被感染。
4. 初始时,只有1个人是患病者。
5. 没有新的外来感染者进入岛上。
模型建立:
根据上述假设,我们可以建立如下的微分方程模型:
dx/dt = p * (100 - x) * (1/100) - x/100
其中,x表示被感染的人数,p表示感染概率,t表示时间。
求解模型:
通过求解这个微分方程模型,我们可以得到x与t的关系。
由于这个方程较为简单,我们可以直接求解它,找出x的解。
然后我们可以根据解的情况,讨论p对x的影响,从而找到控制传染病传播的方法。
通过上述模型和求解过程,我们可以了解传染病的传播情况以及如何通过调整感染概率p来控制其传播。
这个例题可以帮助我们理解数学建模在传染病控制中的应用,并为实际的传染病控制提供理论支持。
数学建模——传染病模型
传染病模型摘要当今社会,人们开始意识到通过定量地研究传染病的传播规律,建立传染病的传播模型,可以为预测和控制传染病提供可靠、足够的信息。
本文利用微分方程稳定性理论对传统传染病动力学建模方式进行综述,且针对甲流,SARS等新生传染病模型进行建模和分析。
不同类型的传染病的传播过程有其各自不同的特点,我们不是从医学的角度一一分析各种传染病的传播,而是从一般的传播机理分析建立各种模型,如简单模型,SI模型,SIS模型,SIR模型等。
本文中,我们应用传染病动力学模型来描述疾病发展变化的过程和传播规律,运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法。
然后,通过借助Matlab程序拟合出与实际较为符合的曲线并进行了疫情预测,评估各种控制措施的效果,从而不断完善文中的模型。
本文由简到难、全面地评价了该模型的合理性与实用性,而后对模型和数据也做了较为扼要的分析,进一步改进了模型的不妥之处。
同时,在对问题进行较为全面评价的基础上又引入更为全面合理的假设,运用双线性函数模型对卫生部的措施进行了评价并给出建议,做好模型的完善与优化工作。
关键词:传染病模型,简单模型,SI,SIS,SIR,微分方程,Matlab。
一、问题重述有一种传染病(如SARS、甲型H1N1)正在流行,现在希望建立适当的数学模型,利用已经掌握的一些数据资料对该传染病进行有效地研究,以期对其传播蔓延进行必要的控制,减少人民生命财产的损失。
考虑如下的几个问题,建立适当的数学模型,并进行一定的比较分析和评价展望。
1、不考虑环境的限制,设单位时间内感染人数的增长率是常数,建立模型求t 时刻的感染人数。
2、假设单位时间内感染人数的增长率是感染人数的线性函数,最大感染时的增长率为零。
建立模型求t时刻的感染人数。
3、假设总人口可分为传染病患者和易感染者,易感染者因与患病者接触而得病,而患病者会因治愈而减少且对该传染病具有很强的免疫功能,建立模型分析t 时刻患病者与易感染者的关系,并对传染情况(如流行趋势,是否最终消灭)进行预测。
数学建模——传染病模型_2022年学习资料
数学模型-模型2-di-dt-=2i1-iLogistic模型-i0=。-it=-1/2-io-tm-t= ,m,dildt最大-人n--tm~传染病高潮到来时刻-t>00→i>1?-2日接触率↓→tm↑-病人可以 愈!-0①
数学模型-模型3-传染病无免疫性一病人治愈成-为健康人,健康人可再次被感染-SIS模型-增加假设-3病人每 治愈的比例为4-4~日治愈率-建模W[it+△t-it]=Wstit△t-uWit△t-di-=2i1-i-入~日接触率-dt-i0=i。-1/μ ~感染期-6-、一个感染期内每个病人的-有效接触人数,称为接触数
数学模型-模型4-传染病有免疫性—病人治愈-SIR模型-后即移出感染系统,称移出者-假设-1总人数N不变, 人、健康人和移-出者的比例分别为it,t,rt-2病人的日接触率2,日治愈率山-接触数σ =入/4-建模-s +it+rt=1-需建立it,St,rt的两个方程-00①
数学模型-模型4-SIR模型-W[it+△t-it]=2Wstit△t-uWit△t-W[st+△t-st =-2Nstit△t-di-E见si-i-=-si-dr-人Z-i0=io,s0=So,i0=0-00①
数学模型-传染病模型-问题-·描述传染病的传播过程-·分析受感染人数的变化规律-·预报传染病高潮到来的时刻 ·预防传染病蔓延的手段-·按照传播过程的一般规律,-用机理分析方法建立模型-00①
数学模型-模型1-已感染人数(病人)t-假设-每个病人每天有效接触-足以使人致病人数为入-建模-it+△t it=入it△t-di-:i-dt-it=ie"-i0-io-0t→00→i→00?-若有效接触的是病人, 必须区分已感染者(病-则不能使病人数增加-人和未感染者(健康人)
数学建模——传染病模型
数学建模——传染病模型数学建模——传染病模型关键词:数学建模,传染病模型,预测,疫情,发展一、引言传染病模型是数学建模中的一个重要领域,旨在通过数学方法描述和预测传染病的发展趋势。
通过建立传染病模型,我们可以了解疾病传播的机制,评估各种干预措施的效果,并为制定有效的防控策略提供决策支持。
二、传染病模型概述传染病模型是基于生物学、流行病学和数学理论建立的,主要考虑个体之间的接触方式和疾病传播的动态过程。
基本的传染病模型通常假设人群由易感者(Susceptible)、感染者(Infectious)和康复者(Recovered)三类组成。
通过分析这三类人群的数量变化,可以揭示疾病传播的规律。
常见的传染病模型包括 SIR 模型、SEIR 模型等。
SIR 模型假设人群分为易感者(S)、感染者(I)和康复者(R),其中感染者与易感者接触后将传染疾病,感染后将进入康复阶段。
SEIR 模型则在 SIR 模型的基础上增加了潜伏期(E),即感染者并非立即变为易感者,而是进入潜伏期,一段时间后才具有传染性。
三、建模方法与步骤1、建立数学模型:根据传染病的基本假设,列出描述疾病传播的微分方程,确定变量及其含义。
2、参数估计:根据历史数据或实验结果,估计模型中的参数值。
这些参数包括感染率、恢复率、潜伏期等。
3、模型求解:通过求解微分方程,得到易感者、感染者和康复者的数量变化情况。
4、模型检验:将模型的预测结果与实际数据进行比较,检验模型的准确性和可靠性。
四、案例分析以某个地区的流感疫情为例,通过建立 SIR 模型预测疫情的发展趋势。
首先,根据历史数据估计模型的参数值,包括感染率和恢复率等。
然后,通过求解微分方程得到易感者、感染者和康复者的数量变化情况。
根据预测结果,可以评估各种干预措施的效果,如隔离、疫苗接种等。
通过比较预测结果与实际数据的差异,可以不断修正和完善模型,提高预测精度。
五、结论传染病模型是数学建模中的一个重要领域,通过建立数学模型描述和预测传染病的发展趋势。
数学建模传染病模型例题
数学建模传染病模型例题摘要:I.引言- 数学建模在传染病研究中的重要性- 常见传染病模型简介II.指数增长模型- 基本定义与假设- 传染病传播的数学表示- 指数增长模型的应用案例III.逻辑斯蒂增长模型- 基本定义与假设- 传染病传播的数学表示- 逻辑斯蒂增长模型的应用案例IV.传染病模型的优化与控制- 优化目标与方法- 控制策略与效果评估- 案例分析V.总结与展望- 数学建模在传染病控制中的贡献- 未来研究方向与挑战正文:I.引言数学建模是一种通过数学方法对实际问题进行抽象和描述的技术,能够帮助人们深入理解问题的本质,并为实现问题的解决提供有力支持。
在传染病研究领域,数学建模同样具有重要的价值。
通过建立合适的数学模型,可以揭示传染病的传播规律,预测疾病发展趋势,为制定公共卫生政策提供科学依据。
本文将介绍两种常见的传染病模型:指数增长模型和逻辑斯蒂增长模型,并探讨如何利用这些模型进行传染病控制。
II.指数增长模型指数增长模型是一种简单的传染病模型,它假设感染者数量随时间呈指数增长。
模型基于以下三个基本假设:1.感染者一旦感染,就会立即传播给其他人;2.每个感染者在感染期间接触的其他人数量相同;3.感染者传播给其他人的概率与感染者数量成正比。
根据这些假设,我们可以得到传染病传播的数学表示:dN/dt = kN,其中N 表示感染者数量,t 表示时间,k 是一个正比例常数。
指数增长模型在研究天花、麻疹等传染病的传播过程中得到了广泛应用。
然而,该模型过于简化,无法准确描述现实生活中传染病的复杂传播过程。
III.逻辑斯蒂增长模型逻辑斯蒂增长模型是在指数增长模型的基础上引入一个感染阈值λ的概念。
感染者数量达到阈值后,感染者传播给其他人的速度会减慢。
模型基于以下假设:1.感染者一旦感染,就会立即传播给其他人;2.每个感染者在感染期间接触的其他人数量相同;3.感染者传播给其他人的概率与感染者数量成正比,但当感染者数量超过阈值λ时,传播概率会逐渐降低。
数学建模传染病模型
传染病的传播摘要:本文先根据材料提供的数据建立了指数模型,并且全面地评价了该模型的合理性与实用性。
而后对模型与数据做了较为扼要地分析了指数模型的不妥之处。
并在对问题进行较为全面评价的基础上引入更为全面合理的假设和建立系统分析模型。
运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法结合MATLAB 编程(程序在附件二)拟合出与实际较为符合的曲线并进行了疫情预测。
同时运用双线性函数模型对卫生部的措施进行了评价并给出建议以及指出建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难本文的最后,通过本次建模过程中的切身体会,说明建立如SARS 预测模型之类的传染病预测模型的重要意义。
关键词:微分方程 SARS 数学模型 感染率1问题的重述SARS (Severe Acute Respiratory Syndrome ,严重急性呼吸道综合症, 俗称:非典型肺炎)是21世纪第一个在世界范围内传播的传染病。
SARS 的爆发和蔓延给我国的经济发展和人民生活带来了很大影响,我们从中得到了许多重要的经验和教训,认识到定量地研究传染病的传播规律、为预测和控制传染病蔓延创造条件的重要性。
请你们对SARS 的传播建立数学模型,具体要求如下:1)建立传染病传播的指数模型,评价其合理性和实用性。
2)建立你们自己的模型,说明为什么优于指数模型;特别要说明怎样才能建立一个真正能够预测以及能为预防和控制提供可靠、足够的信息的模型,这样做的困难在哪里?对于卫生部门所采取的措施做出评论,如:提前或延后5天采取严格的隔离措施,对疫情传播所造成的影响做出估计。
附件1提供的数据供参考。
3)说明建立传染病数学模型的重要性。
2 定义与符号说明N …………………………………表示为SARS 病人的总数;K (感染率)……………………表示为平均每天每人的传染他人的人数;L …………………………………表示为每个病人可能传染他人的天数;dt dN(t)………………………… 表示为每天(单位时间)发病人数;N(t)-N(t-L)………………………表示可传染他人的病人的总数减去失去传染能力的病人数;t …………………………………表示时间;R 2………………………………表示拟合的均方差; 3 建立传染病传播的指数模型3.1模型假设1) 该疫情有很强的传播性,病人(带菌者)通过接触(空气,食物,……)将病菌传播给健康者。
传染病的数学模型
For personal use only in study and research; not for commercial use传染病模型详解2.2.2 /,SI SIS SIR 经典模型经典的传播模型大致将人群分为传播态S ,易感染态I 和免疫态R 。
S 态表示该个体带有病毒或谣言的传播能力,一旦接触到易感染个体就会以一定概率导致对方成为传播态。
I 表示该个体没有接触过病毒或谣言,容易被传播态个体感染。
R 表示当经过一个或多个感染周期后,该个体永远不再被感染。
SI 模型考虑了最简单的情况,即一个个体被感染,就永远成为感染态,向周围邻居不断传 播病毒或谣言等。
假设个体接触感染的概率为β,总人数为 N ,在各状态均匀混合网络中建立传播模型如下:dS SI dt N I SId tN ββ⎧=-⎪⎪⎨⎪=⎪⎩ 从而得到(1)di i i dtβ=- 对此方程进行求解可得:0000(),01tti e i t i i i i e ββ==-+() 可见,起初绝大部分的个体为I 态,任何一个S 态个体都会遇到I 态个体并且传染给对方,网络中的S 态个数随时间成指数增长。
与此同时,随着I 态个体的减少,网络中S 态个 数达到饱和,逐渐网络中个体全部成为S 态。
然而在现实世界中,个体不可能一直都处于传播态。
有些节点会因为传播的能力和意愿 的下降,从而自动转变为永不传播的R 态。
而有些节点可能会从S 态转变I 态,因此简单的SI 模型就不能满足节点具有自愈能力的现实需求,因而出现SIS 模型和SIR 模型。
SIR 是研究复杂网络谣言传播的经典的模型。
采用与病毒传播相似的过程中的S ,I ,R 态 代表传播过程中的三种状态。
Zanetee ,Moreno 先后研究了小世界传播过程中的谣言传播。
Moreno 等人将人群分为S (传播谣言)、I (没有听到谣言),R (对谣言不再相信也不传播)。
假设没有听到谣言I 个体与S 个体接触,以概率()k λ变为S 个体,S 个体遇到S 个体 或R 个体以概率()k α变为R ,如图 2.9 所示。
数学建模实验(传染病模型)
实验二:传染病模型1、SI 模型的建立基于以下三个假设,求出平衡点,给出参数,图示模型曲线。
(1)不考虑人口的出生、死亡、流动等种群动力因素。
人口始终保持一个常数,即()K t N ≡。
(2)一个病人一旦与易感者接触就必然具有一定的传染力。
假设t 时刻单位时间内,一个病人能传染的易感者数目与此环境内易感者总数()t S 成正比,比例系数为β,从而在t 时刻单位时间内被所有病人传染的人数为()()t I t S β。
2、SIS 模型的建立基于以下三个假设,求出平衡点,给出参数,图示模型曲线。
(1)不考虑人口的出生、死亡、流动等种群动力因素。
人口始终保持一个常数。
即()K t N ≡。
(2)一个病人一旦与易感者接触就必然具有一定的传染力。
假设t 时刻单位时间内,一个病人能传染的易感者数目与此环境内易感者总数()t S 成正比,比例系数为β,从而在t 时刻单位时间内被所有病人传染的人数为()()t I t S β。
(3)t 时刻,单位时间内从染病者中治愈的人与病人数量成正比,比例系数为γ,单位时间内治愈的人不具有免疫,将再成为易感者。
3、SIR 模型的建立基于以下三个假设,求出平衡点、给出参数、图示模型曲线。
(1)不考虑人口的出生、死亡、流动等种群动力因素。
人口始终保持一个常数,即()K t N ≡。
(2)一个病人一旦与易感者接触就必然具有一定的传染力。
假设t 时刻单位时间内,一个病人能传染的易感者数目与此环境内易感者总数()t S 成正比,比例系数为β,从而在t 时刻单位时间内被所有病人传染的人数为()()t I t S β。
(3)t 时刻,单位时间内从传染者中移出的人数与病人数量成正比,比例系数为γ,单位时间内移出者的数量为γ)(t I 。
求解过程1、SI 模型:由题目条件假设可以得到微分方程:K()()dIK S t I t dtβ=,又因为()()1S t I t +=, 令初始时刻病人的比例为0I ,则有:0()(1()),(0)dII t I t I I dtβ=-= %求平衡点,r 为有效传染率,x 病人比例 syms r xsolve('r*x*(1-x)','x') ans = 0 1 %方程求解syms i r t dsolve('Di=r*i*(1-i)','i(0)=i0','t')ans =1/(1-exp(-r*t)*(-1+i0)/i0) %绘制图形r=0.5,i0=0.01 fplot('1/(1-exp(-r*t)*(-1+i0)/i0)',[0,40]) fplot('1/(1-exp(-0.5*t)*(-1+0.01)/0.01)',[0,40]) function di=isf(t,i)di=0.5*i*(1-i); [t,i]=ode45(@isf,[0 40],[0.01]);plot(t,i)t ♓i♎♓ ♎♦图示4 SI 模型的i~t 曲线 图示5 SI 模型的di/dt~i 曲线2、SIS 模型 根据SI 模型及增加的假设条件,可得:)()()(t KI t I t KS dtdiKγβ-=,即: 0)0(),())(1)((I I t I t I t I dtdi=--=γβ 记 γβσ=, 则方程改写为 )]1([σβ---=i i i dt di%求解方程syms r b i t % b 为有效传染率,r 为治愈率dsolve('Di=b*i*(1-i)-r*i','i(0)=i0','t')ans =(b-r)/(b-exp(-(b-r)*t)*(-b+r+i0*b)/i0/(b-r)*b+exp(-(b-r)*t)*(-b+r +i0*b)/i0/(b-r)*r)%求平衡点syms x %(b=0.5,r=0.2)solve('0.5*x*(1-x)-0.2*x; ')ans =0..60000000000000000000000000000000%绘制图形function di=sisf(t,i)di=0.5*i*(1-i)-0.2*i;[t,i]=ode45(@sisf,[0 40],[0.01]);plot(t,i)t♓t ♓图示6 SIS 模型的i~t 曲线(σ>1) 图示7 SIS 模型的i~t 曲线(σ≤1)fplot('-0.5*x*[x-(1-1/20)]',[0,1]) fplot('-0.5*x*[x-(1-2)]',[ 0,1])i♎♓ ♎♦i♎♓ ♎♦图示8SIS 模型的di/dt~i 曲线(σ>1) 图示9SIS 模型的di/dt~i 曲线(σ≤1) 3、 SIR 模型模型的方程为{00()()(),(0)()(),(0)dIS t I t I t I I dtdSS t I t S S dtβγβ=-==-=function dx=sirf(t,x)dx=zeros(2,1);dx(1)=0.5*x(1)*x(2)-0.2*x(1); %x(1)表示i,x(2)表示s dx(2)=-0.5*x(1)*x(2);[t,x]=ode45(@sirf,[0 50],[0.01 0.99]);plot(t,x(:,1),t,x(:,2)),grid,pauseplot(x(:,2),x(:,1)),grid00.20.40.60.81s图示10 SIR模型的图形)(),(tStI图示11 SIR模型的相轨线备注:由于Matlab与Word连接不好,所绘制的图形上标的字符在Word中看不清楚。
(6数学建模)传染病模型
3.传染者的恢复数正比于传染者的数量NI,比例系 数ν称为恢复率,则平均传染周期为1/ν。若考虑 死亡,则平均传染周期为1/(μ+ν)。 σ=λ/(μ+ν)为一个传染者在其传染周期
内与其他成员的接触总数,称为接触数。
二、SIS模型
SIS模型是最简单的传染模型,人群只分成两类, S类和I类。人员的流动形式:S→I→S,如图
简化可得SIRS模型 S I (t ) SI S
I SI I I R I R I (t ) S I R 1 S 0 0, I 0 0, R0 0
下图显示模型的理论曲线与实际数据
(四)接触数σ的估计
已经看到,在SIS及SIR模型中,传染病是否流行与接 触数σ直接有关,因而有必要估计这个参数。 一般地,初始传染者数量很小,可近似取 I 0 , 0 故1 R0 S 0 ,则可得
ln( S 0 S ) ( S0 S )
传 染 病 模 型
朱建青 (苏州科技学院信息与计算科学系)
传染病模型
一、记号与假设 二、SIS模型 三、不考虑出生和死亡的SIR模型 四、考虑出生和死亡的SIR模型 五、SEIR模型 六、SIRS模型
一、记号与假设
首先把人群分成以下三类。 S类:易感类(Susceptible) 指未得病,但缺乏免疫,与患病者接触后易受感染。 I类:传染类(Infective) 指已染上传染病,且可能传给S类成员。 R类:排除类(Removal) 指从I类中被隔离或具有免疫力。 S(t)、I(t)、R(t)分别表示t时刻S类、I类、 R类成员占人口总数的比例,故 S(t)+I(t)+R(t)=1。
称为潜伏期,记为
把处于潜伏期内的成员的全体记为E类,用E(t)
数学建模传染病模型
常直数至,从此而疾可病以解在释该医地生们s区(t发)消现s失的oe现。1 象r (t )。
k
鉴于在本模型中的r作(t)用 n,1被 i(t) s(t)
infective
医为生揭们示称产为生此上疾述病现在象该的地原区因(3.18)中
的 较第大其的么的(的中阀此所常1值疾有)数。 病 人式通。没。改常kl的有写是引波成一入及:个解到与dd释ti该疾了地k病为i(区种s什类 )有关的
令:
d 2i dt 2
0
得:
t1
ln co k(n 1)
模型3
将人群划分为三类(见右图):易感染者、已感染 者和已恢复者(recovered)。分别记t时刻的三类人数为 s(t)、i(t)和r(t),则可建立下面的三房室模型:
di
dt
ksi
li
l
称为传染病恢(1)复系数
dr
dt
li
(2)
(3.18)
模型1 设某地区共有n+1人,最初时刻共有i人得病,t时刻已
感染(infective)的病人数为i(t),假定每一已感染者在单位 时间内将疾病传播给k个人(k称为该疾病的传染强度),且 设此疾病既不导致死亡也不会康复
则可导出:
di
dt
ki
i(o) io
故可得: i(t) ioekt
(3.15)
解得: 其中:
i(t)
co
n
co (n 1)ek(n1)t
1 io
coek
(n1)t
1 io
(3.17)
统计结果显示,(3.17)预报结果比(3.15)更
接近实际情况。医学上称曲线 为t ~传d此i 染值与病传曲染病的实际高峰期非常
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传染病模型摘要当今社会,人们开始意识到通过定量地研究传染病的传播规律,建立传染病的传播模型,可以为预测和控制传染病提供可靠、足够的信息。
本文利用微分方程稳定性理论对传统传染病动力学建模方式进行综述,且针对甲流,SARS等新生传染病模型进行建模和分析。
不同类型的传染病的传播过程有其各自不同的特点,我们不是从医学的角度一一分析各种传染病的传播,而是从一般的传播机理分析建立各种模型,如简单模型,SI模型,SIS模型,SIR模型等。
本文中,我们应用传染病动力学模型来描述疾病发展变化的过程和传播规律,运用联立微分方程组体现疫情发展过程中各类人的内在因果联系,并在此基础上建立方程求解算法。
然后,通过借助Matlab程序拟合出与实际较为符合的曲线并进行了疫情预测,评估各种控制措施的效果,从而不断完善文中的模型。
本文由简到难、全面地评价了该模型的合理性与实用性,而后对模型和数据也做了较为扼要的分析,进一步改进了模型的不妥之处。
同时,在对问题进行较为全面评价的基础上又引入更为全面合理的假设,运用双线性函数模型对卫生部的措施进行了评价并给出建议,做好模型的完善与优化工作。
关键词:传染病模型,简单模型,SI,SIS,SIR,微分方程,Matlab。
一、问题重述有一种传染病(如SARS、甲型H1N1)正在流行,现在希望建立适当的数学模型,利用已经掌握的一些数据资料对该传染病进行有效地研究,以期对其传播蔓延进行必要的控制,减少人民生命财产的损失。
考虑如下的几个问题,建立适当的数学模型,并进行一定的比较分析和评价展望。
1、不考虑环境的限制,设单位时间内感染人数的增长率是常数,建立模型求t 时刻的感染人数。
2、假设单位时间内感染人数的增长率是感染人数的线性函数,最大感染时的增长率为零。
建立模型求t时刻的感染人数。
3、假设总人口可分为传染病患者和易感染者,易感染者因与患病者接触而得病,而患病者会因治愈而减少且对该传染病具有很强的免疫功能,建立模型分析t 时刻患病者与易感染者的关系,并对传染情况(如流行趋势,是否最终消灭)进行预测。
二、问题分析1、这是一个涉及传染病传播情况的实际问题,其中涉及传染病感染人数随时间的变化情况及一些初始资料,可通过建立相应的微分方程模型加以解决。
2、问题表述中已给出了各子问题的一些相应的假设。
3、在实际中,感染人数是离散变量,不具有连续可微性,不利于建立微分方程模型。
但由于短时间内改变的是少数人口,这种变化与整体人口相比是微小的。
因此,为了利用数学工具建立微分方程模型,我们还需要一个基本假设:感染人数是时间的连续可微函数。
三、模型假设模型二和模型三的假设条件:假设一:在疾病传播期内所考察地区的总人数N不变,即不考虑生死,也不考虑迁移。
人群分为易感染者(Susceptible)和已感染者(Infective)两类(取两个词的第一个字母,称之为SI模型),以下简称健康者和病人。
时刻t这两类人在总人数中所占比例分别记作s(t)和i(t)。
假设二:每个病人每天有效接触的平均人数是常数,称为日接触率。
当病人与健康者接触时,使健康者受感染变为病人。
假设三:模型三在假设一和假设二的基础上进行考虑,然后设病人每天治愈的比例为μ,称为日治愈率。
病人治愈后成为仍可被感染的健康者,显然1/μ是这种传染病的平均传染期。
模型四的假设条件:假设四:总人数N不变。
人群分为健康者、病人和病愈免疫的移出者(Removed)三类,称SIR模型。
三类人在总数N中占的比例分别记作s(t),i(t)和r(t)。
假设五:病人的日接触率为λ,日治愈率为μ(与SI模型相同),传染期接触为σ=λ/μ。
四、符号说明t ·······························某一具体时刻x(t)·····························病人人数λ·······························每天每个病人有效接触的人数N································总人数s(t)·····························健康者总人数i(t)·····························病人总人数······························初始时刻病人的比例i····························病人的最大值tm`μ····························日治愈率1/μ···························平均传染率σ·····························接触率r(t)···························移出者s·····························初始时刻健康者的比例五、模型的建立与求解模型1在这个最简单的模型中,设时刻t 的病人人数x(t)是连续、可微函数,并且每天每个病人有效接触(足以使人致病的接触)的人数为常数λ,考察t 到病人人数的增加,就有t t x t x t t x ∆=-∆+)()()(λ程有个病人,即得微分方时有再设00x t =)1()0(,d d 0x x x tx==λ方程(1)的解为)2()(0te x t x λ=结果表明,随着t 的增加,病人人数x(t)无限增长,这显然是不符合实际的。
建模失败的原因在于:在病人有效接触的人群中,有健康人也有病人,而其中只有健康人才可以被传染为病人,所以在改进的模型中必须区别这两种人。
模型2(SI 模型)的增加率,即就是病人数个健康者被感染,于是有,所以每天共为病人数为个健康者变为病人,因天可使根据假设,每个病人每Ni Nsi t i t Ns t Ni t s λλλ)()()()()3(d d Nsi tiNλ=又因为)4(1)()(=+t i t s,则病人的比例为再记初始时刻0)0(i t =)5()0(,)1(d d 0i i i i ti=-=λ方程(5)是Logistic 模型。
它的解为)6(11110t e i λ-⎪⎪⎭⎫ ⎝⎛-+所示。