典型二阶系统的时域响应与性能分析

合集下载

二阶系统的时域分析

二阶系统的时域分析

n
n
112 2 (阻尼 (阻振 尼荡 振)频 荡率 )频率
n
n
d
d
则 s1 、 2j d 此时
C (s) 1 s (s s )2 2 (s )2 2
d
d
精选课件
14
所 其1中以 cco1(setβ)所 t=12ζ1即以 seβci=1t(neac tr)cotdtc21sodsts ζsei n (iβt nc称c dodo t为 s se阻dtt 尼sc 角io ns d)dts ei n t si ns i dn t( )
2
C n ;C n ;C 1
1 (s s)s 2 (s s)s 3
1 21
1 22
而s1,s2是ζ和ωn的函数,显然c(t)只与ζ ,ωn有关,即ζ ,ωn决
定着c(t)的形式。分别讨论如下:
精选课件
11
① ζ >1时,(过阻尼) s1 ,s2 为一对不等的负实数根。
j
j
s1、s2
0
0
t
9
二阶系统的闭环极点分布
特征根: s1,2 nn 21
j
j
j
n 1 2
n 1 2
n
0
n 12
0
0
n 1 2
n
0 1
1
1 0
j
s1 s2
n
0
1
j
n
0
n
精选课件0
j
0
1 10
2 二阶系统的单位阶跃响应
当r(t) = 1 时 或R(s)=1/s 时, 有:
C (s) (s)R (s)s2 2 n 2s 21 s
第三章 时域分析法

二阶系统的时域分析二阶系统的数学模型

二阶系统的时域分析二阶系统的数学模型

二阶系统的时域分析二阶系统的数学模型二阶系统指的是系统的动态特性可以由一个二阶微分方程描述的系统。

在控制工程中,二阶系统的时域分析主要包括对系统阶跃响应、脉冲响应、频率响应等进行分析。

下面将详细介绍二阶系统的数学模型以及各种时域分析方法。

二阶系统可以由一个二阶微分方程进行描述。

一般而言,二阶系统的数学模型可以写成如下形式:\[a_2\frac{{d^2y(t)}}{{dt^2}} + a_1\frac{{dy(t)}}{{dt}} +a_0y(t) = b_2\frac{{d^2u(t)}}{{dt^2}} + b_1\frac{{du(t)}}{{dt}}+ b_0u(t)\]其中,y(t)为系统的输出,u(t)为系统的输入,a_0、a_1、a_2以及b_0、b_1、b_2分别为系统的系数。

这个方程也可以写成常用的形式:\[\frac{{d^2y(t)}}{{dt^2}} + 2ζω_n\frac{{dy(t)}}{{dt}} +ω_n^2y(t) = K_p\frac{{d^2u(t)}}{{dt^2}} +T_i\frac{{du(t)}}{{dt}} + K_cu(t)\]其中,ζ为阻尼比,ω_n为自然频率,K_p为比例增益,T_i为积分时间常数,K_c为控制器增益。

2.二阶系统的阶跃响应阶跃响应是指系统在接受一个单位阶跃信号作为输入时的响应。

通过对二阶系统的数学模型应用拉普拉斯变换,可以得到系统的传递函数。

对于一个传递函数为G(s)的系统,其阶跃响应可以通过下面的公式得到:\[y(t) = A(1 - e^{-ζω_nt}\cos(ω_d t + ϕ))\]其中,A为阶跃响应的幅度,ω_d为阻尼振荡角频率,ϕ为相位角。

3.二阶系统的脉冲响应脉冲响应是指系统在接受一个单位脉冲信号作为输入时的响应。

与阶跃响应类似,通过对二阶系统的数学模型进行拉普拉斯变换,可以得到系统的传递函数。

对于一个传递函数为G(s)的系统,其脉冲响应可以通过下面的公式得到:\[y(t) = \frac{{A(1 - e^{-ζω_nt}\cos(ω_d t + ϕ))}}{{\sqrt{1-ζ^2}}}\]其中,A为单位脉冲信号的幅度。

自动控制原理实验一 典型系统的时域响应和稳定性分析

自动控制原理实验一 典型系统的时域响应和稳定性分析

实验一典型系统的时域响应和稳定性分析一、实验目的1.研究二阶系统的特征参量(ξ、ωn) 对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉Routh判据,用Routh判据对三阶系统进行稳定性分析。

二、实验设备PC机一台,TD-ACC+教学实验系统一套。

三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图1-1所示。

图1-1(2)图1-2(3) 理论分析系统开环传递函数为:G(s)=K1T0⁄s(T1s+1)开环增益:K= K1T0⁄先算出临界阻尼、欠阻尼、过阻尼时电阻R的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中由图1-2,可以确地1-1中的参数。

T0= 1s , T1= 0.1s ,K1= 200R , K= 200R系统闭环传递函数为:W(s)=5Ks2+5s+5K其中自然振荡角频率:?n ω= 10√10R;阻尼比:?ζ= √10R402.典型的三阶系统稳定性分析(1) 结构框图:如图1-3所示。

图1-3(2) 模拟电路图:如图1-4所示。

图1-4(3) 理论分析系统的开环传函为: G(s)H(s)=20K s 3+12s 2+20s系统的特征方程为:1()()0G s H s += : s 3+12s 2+20s+20K=0 (4) 实验内容实验前由Routh 判断得Routh 行列式为:S 3 1 20 S 2 12 20K S 1 20-5/3*K 0 S 0 20K为了保证系统稳定,第一列各值应为正数,因此可以确定系统稳定 K 值的范围 : 0<K <12 R >41.7k系统临界稳定K: K=12 R =41.7k 系统不稳定K 值的范围: K >12 R <41.7k四、实验步骤1)将信号源单元的“ST ”端插针与“S ”端插针用“短路块”短接。

第3讲 二阶系统的时域分析

第3讲 二阶系统的时域分析

18
三、典型二阶系统的动态过程分析
(一)衰减振荡瞬态过程 (0 1):欠阻尼
s 1, 2 ζω n jωn 1 ζ
2
ζω n jωd
c (t ) 1 Fra biblioteke ζωn t 1 ζ 2
sin(ωd t β ) ,
t 0
⒈ 上升时间 t r :根据定义,当 t t r时,c(tr ) 1 。
3
s1, 2 n n 1
2
⒊ 当 1 时,特征方程有一对相等的实根,两个极点位于S平 面负实轴上,系统时间响应无振荡,称为临界阻尼系统,系统 的阶跃响应为非振荡过程。 ⒋ 当 1 时,特征方程有一对不等的实根,两个极点位于S 平面负实轴上,系统时间响应无振荡,称为过阻尼系统,系统 的阶跃响应为非振荡过程。 以上 1 属于非振荡情况
于是有:
tr d
ωd ωn 1 ζ 2

n
n

j n 1 2 j d
n

称为阻尼角
j n 1 2
cos
可见,当阻尼比一定时,系统的响应速度与自然频率成正比; 而当阻尼振荡频率一定时,阻尼比越小,上升时间越短。
2 n 1 C ( s) ( s) R( s) 2 2 s 2 n s n s
2 其中, 由特征方程 s 2 2 n s n 0
可求得两个特征根(即闭环极点)
s1, 2 n n 2 1
6
[分析]:
s1, 2 n n 1
s n n 1 2 2 2 2 s s 2 n s n s 2 n s n

自动控制理论时域分析2--二阶系统

自动控制理论时域分析2--二阶系统
c ( tP) c ( ) M 100 % P c ( )
4.调整时间 t s(又称过渡过程时间) :响应曲线达到并 保持与稳态值之差在预定的差值△内(又叫误差带 )所 需要的时间。一般△取±2%或±5%。
二、二阶系统的动态响应性能指标 (1)峰值时间 t P
因为
c (t ) 1 e nt 1
2
sin( d t )
t n p d
dc ( t ) dt
d p
0
ttp
e sin( t ) e cos( t ) 0
t n p n d p
整理得:
tg ( ) dtp
12

p t p 0, ,2 ,3
n

0 Re
s1
s2
0
Re
s2
s1
0
Re
0
Re
s2
(a) 0 1 (b) 1 (c) 1 (d) 0
特征根为:共扼复数 特征根为:
相等实数
不等实数
共扼虚数
1.欠阻尼情况 :
( 0 1 )
2
s n 1 1 , 2 n
s j 1 , 2 n d
c ( t) 1 cos t n
c (t )
( 0)
(t 0)
2
1
0
t
这是一条等幅振荡曲线。
( 0)
c (t )
1
c (t ) r (t )
2
1
1
c (t )
0
t
0
t
( 0 1 )
1
r (t )

自动控制理论时域分析2-二阶系统

自动控制理论时域分析2-二阶系统

案例二:二阶系统稳定性分析与改善
稳定性分析方法
介绍时域分析法中的劳斯判据、赫尔维茨判据等方法,用于判断二 阶系统的稳定性。
改善稳定性措施
探讨通过改变系统参数、引入附加环节等措施来改善二阶系统的稳 定性。
仿真验证
利用MATLAB/Simulink等仿真工具对改善前后的二阶系统进行建模 和仿真,验证改善措施的有效性。
CHAPTER
二阶线性常微分方程
二阶线性常微分方程的一般形式: $Tfrac{d^2y}{dt^2} + frac{dy}{dt} + Ky = F(t)$
方程的解由输入信号 $F(t)$ 和系统初 始条件共同决定
其中,$T$ 为时间常数,$K$ 为放大 系数,$F(t)$ 为输入信号
二阶系统的传递函数
二阶系统稳定性的判定方法
二阶系统的稳定性可以通 过判断其阻尼比和自然频 率来确定。
当阻尼比大于1时,系统是 过阻尼的,输出会缓慢地趋 近于零,系统是稳定的。
当阻尼比等于1时,系统是临 界阻尼的,输出会以最快的速 度趋近于零,系统也是稳定的 。
当阻尼比等于0时,系统是无 阻尼的,输出会呈现等幅振荡 的形式,系统是不稳定的。
谢谢
THANKS
二阶系统的基本概念
01
二阶系统是指具有两个独立状态变量的线性定常系统,其数学 模型可用二阶常微分方程描述。
02
二阶系统具有广泛的代表性,许多实际系统可简化为二阶系统
进行分析。
二阶系统的性能指标包括阻尼比、自然频率、峰值时间、超调
03
量等,这些指标对于评价系统性能具有重要意义。
02 二阶系统的数学模型
当阻尼比小于1时,系统是欠 阻尼的,输出会呈现振荡衰减 的趋势,系统仍然是稳定的。

(整理)自动控制原理实验-二阶系统阶跃响应及性能分析

(整理)自动控制原理实验-二阶系统阶跃响应及性能分析
bbb{1}='\fontsize{12}\uparrow';
bbb{2}='\fontsize{16}\fontname{宋体}超调量';
bbb{3}='\fontsize{6} ';
bbb{4}='\fontsize{14}\it\sigma_\rho%=16.3%';
text(1.15,0.90,bbb,'color','b','HorizontalAlignment','Center')
与阻尼系数、自然频率的关系,再由对系统的阶跃响应的瞬态性能
指标要求,求出参数K1、a,再用step()画出即可。
代码:a=63.2;b=[1,3.5p=roots(b);
s=0:0.01:5;
step(sys,s);grid
xlabel('s')
ylabel('y(s)')
实验中心201311月10机电年级专姓名学号实验课程名称自动控制原理成绩实验项目名称二阶系统阶跃响应及性能分析指导教师一实验目的二实验内容三使用仪器材料四实验过程原始记录程序数据图表计算等五实验结果及总结一实验目的掌握控制系统时域响应曲线的绘制方法
广州大学学生实验报告
开课学院及实验室:实验中心2013年11月10日
格式1:step (sys) [Y,X,T]=step(sys)
格式2:step (sys,t) [Y,X]=step(sys,t)
格式3:step (sys,iu) [Y,X,T]=step(sys,iu)
格式4:step (sys,iu,t) [Y,X]=step(sys,iu,t)

自动控制原理实验典型系统地时域响应和稳定性分析报告

自动控制原理实验典型系统地时域响应和稳定性分析报告

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:典型系统的时域响应和稳定性分析实验时间:学生成绩:教师签名:批改时间:一、目的要求1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。

2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。

二、实验设备PC机一台,TD—ACC教学实验系统一套三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图 1.2-1 所示。

图1.2-2(2) 对应的模拟电路图:如图 1.2-2 所示。

图1.2-2系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:(3) 理论分析系统开环传递函数为:;开环增益:(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中(图 1.2-2),系统闭环传递函数为:其中自然振荡角频率:2.典型的三阶系统稳定性分析(1) 结构框图:如图 1.2-3 所示。

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:图 1.2-3(2)模拟电路图:如图 1.2-4 所示。

图 1.2-4(3)理论分析:系统的特征方程为:(4)实验内容:实验前由 Routh 判断得 Routh 行列式为:系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:为了保证系统稳定,第一列各值应为正数,所以有五、实验步骤1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。

由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。

实验二。典型二阶系统时-频域分析

实验二。典型二阶系统时-频域分析

实 验 报 告
学号: 姓名: 成绩:
一、 实验名称:典型环节的时域分析和频域分析
二、 实验目的:
(1) 了解、掌握matlab 模拟典型环节的基本方法,包括:比例环节、积分环节、一阶微分环节、惯性环节和振荡环节等。

(2) 熟悉各种典型环节的阶跃响应曲线和频域响应曲线 (3) 了解参数变化对动态特性的影响
三、 实验要求:
(1) 一人一机,独立完成实验内容 。

(2) 根据实验结果完成实验报告,并用A4纸打印后上交。

四、 时间: 五、 地点:
实验报告:
一、比例环节的时域分析和频域分析 比例环节的传递函数:()G s k
二、积分环节的时域分析和频域分析
积分环节的传递函数:1()G s s =
(1) 当k=1:3:10时,绘制系统()k
G s =的阶跃响应曲线,分析曲线特点。

三、一阶微分环节的时域分析和频域分析
一阶微分环节的传递函数:G(s)=TS+1-
四、惯性环节的时域分析和频域分析
惯性环节的传递函数:G(s)=
1
s 1
T ( T>0 )
五、典型二阶系统的时域分析和频域分析
典型二阶系统的传递函数:G(s)=
2
2
2s ()
2n
n
n
Y R s s w s w w
ξ=++()
关键参数:阻尼比ζ ,和自然频率ωn。

第三章二阶系统响应与时域性能指标解析

第三章二阶系统响应与时域性能指标解析

第三章二阶系统响应与时域性能指标解析在控制系统中,二阶系统是指具有二阶传递函数的系统。

二阶系统在工程实践中非常常见,例如机械系统、电子电路系统等。

了解二阶系统的响应和时域性能指标对于设计和分析控制系统非常重要。

二阶系统的传递函数可以表示为$G(s)=\frac{\omega_n^2}{{s^2+2\zeta\omega_ns+\omega_n^2}}$,其中$\omega_n$是系统的自然频率,$\zeta$是系统的阻尼比。

首先我们从系统的阶跃响应来分析二阶系统的时域性能指标。

阶跃响应是系统对阶跃信号输入的响应。

通过对传递函数分母进行因式分解,我们可以将传递函数改写为$G(s)=\frac{\omega_n^2}{(s+s_1)(s+s_2)}$,其中$s_1 = (-\zeta+\sqrt{\zeta^2-1})\omega_n$,$s_2 = (-\zeta-\sqrt{\zeta^2-1})\omega_n$。

1. 峰值超调量(Percent Overshoot):峰值超调量是指系统过渡过程中输出信号的最大超调量与步变幅度之比。

通过阶跃响应曲线可以直观地看出系统的峰值超调量。

2. 调节时间(Settling Time):调节时间是指系统从初始状态到稳定状态所需的时间。

在阶跃响应曲线中,调节时间可以定义为系统的输出信号在峰值超调之后首次进入指定误差范围内所需的时间。

一般来说,稳定误差范围可以选择输出信号与目标信号之差小于目标值的一些百分比,例如5%。

3. 峰值时间(Peak Time):峰值时间是指系统输出信号首次达到峰值超调量的时间。

在阶跃响应曲线中,峰值时间可以直接读取。

4. 上升时间(Rise Time):上升时间是指系统输出信号从初始状态到达峰值的时间。

在阶跃响应曲线中,上升时间可以定义为系统输出信号从0.1倍峰值超调量到0.9倍峰值超调量之间所需的时间。

二阶系统的阶跃响应曲线具有不同的形态,取决于系统的阻尼比$\zeta$。

典型二阶系统的时域响应与性能分析

典型二阶系统的时域响应与性能分析

典型二阶系统的时域响应与性能分析对于一个典型的二阶系统,其数学模型可以表示为以下形式:m*d^2y/dt^2 + c*dy/dt + ky = u(t)其中,m是系统的质量,c是系统的阻尼系数,k是系统的刚度,y(t)是系统的输出,u(t)是系统的输入。

二阶系统的时域响应描述了在给定输入条件下系统的输出变化情况。

常用的描述二阶系统时域性能的指标包括过渡过程、超调量、峰值时间、稳态误差等。

首先是过渡过程。

过渡过程是指系统输出从初始值到达稳定状态所经历的时间。

过渡过程可以通过系统的阻尼比和固有频率来确定。

阻尼比(Damping Ratio)是指系统的阻尼系数与临界阻尼时的阻尼系数之比,表示系统对阻尼变化的敏感程度。

固有频率(Natural Frequency)是指在没有任何阻尼的情况下,系统的振荡频率。

其次是超调量。

超调量是指系统输出达到峰值时的最大偏离幅度与稳态幅值之间的差值。

超调量可以通过系统的阻尼比来衡量,当阻尼比越小时,超调量越大。

峰值时间是指系统输出达到峰值的时间点,通常用稳定时刻的时间点减去起始时间点来衡量。

峰值时间可以通过系统的阻尼比和固有频率来计算,当阻尼比越小时,峰值时间越长。

稳态误差是指系统输出稳定之后与期望输出之间的差值。

稳态误差可以通过系统的阻尼比来衡量,当阻尼比越小时,稳态误差越大。

在实际应用中,我们经常需要对二阶系统的性能进行分析与优化。

一种常见的方法是通过改变系统的阻尼比、固有频率等参数来获得所需的效果。

例如,如果需要减小超调量,可以通过增加阻尼比的方式来实现;如果需要减小过渡时间,可以通过增加固有频率的方式来实现。

此外,对于二阶系统的分析可以采用频域方法,如Bode图和Nyquist图等。

这些图形可以提供系统的频率响应信息,帮助我们更全面地理解和优化系统性能。

总之,典型二阶系统的时域响应与性能分析是控制系统工程中很重要的一部分。

充分理解和分析二阶系统的时域响应特征和性能指标,可以帮助我们更好地设计和控制系统,提高系统的稳定性和性能。

二阶系统的时域分析

二阶系统的时域分析

二阶系统的时域分析二阶系统是指系统的传递函数为二次多项式的系统。

在控制工程中,常常会遇到这样一类系统,例如惯性系统、机械系统等。

对于这些二阶系统,我们不仅可以通过频域分析来研究其特性,还可以通过时域分析来了解其动态特性。

在进行二阶系统的时域分析时,可分为稳态分析和暂态分析两个方面。

稳态分析主要关注系统的稳定性、稳定偏差以及稳态响应等问题。

稳定性是指系统在输入信号恒定时是否能够收敛到一些有限的值。

对于二阶系统来说,稳定性分为两种情况:一是欠阻尼情况下的稳定性,二是过阻尼情况下的稳定性。

在欠阻尼情况下,系统的特征根是共轭复根,且位于单位圆内。

此时,系统的稳定性与初始条件无关,即系统总是能够收敛到稳态。

而且系统的稳态响应的振幅会发生一定的振荡,并随着时间逐渐减小。

该振荡的周期与系统的倍率有关,即与特征根的幅值有关。

在过阻尼情况下,系统的特征根是两个实根,分别对应着减震时间常数的倒数,且位于负实轴上。

此时,系统的稳态响应不会有振荡的情况发生,而是指数衰减的趋势。

稳态响应的衰减速率与特征根的位置有关,即与特征根的实部大小有关。

对于稳态偏差问题,我们可以通过查表法或直接计算法来求解。

稳态偏差是指系统在输入信号恒定时的输出值与预期值之间的差距。

通过分析系统的传递函数,我们可以得到系统的静态增益,从而计算出稳态偏差。

在暂态分析中,我们主要关注系统的动态响应,即系统在输入信号改变时的响应情况。

对于二阶系统来说,主要有两种典型的暂态响应情况:一是阻尼振荡响应,二是临界阻尼响应。

阻尼振荡响应是指系统在欠阻尼情况下的响应。

在这种情况下,系统会产生一定幅值的振荡,振荡的周期与系统的阻尼比有关,即与特征根的实部大小有关。

临界阻尼响应是指系统在特征根位于负实轴上时的响应。

此时,系统的响应既没有振荡也没有超调现象,而是以较快的速度趋近于稳态响应。

在实际工程中,我们可以通过使用MATLAB等软件工具来进行二阶系统的时域分析。

通过绘制系统的单位阶跃响应曲线、脉冲响应曲线以及动态响应曲线,并结合特征根分析法,可以对系统的动态特性进行深入研究。

二阶系统的时域分析

二阶系统的时域分析

二阶系统的时域分析二阶系统是指具有两个自由度的线性时不变系统,可以用二阶常微分方程来描述。

在时域分析中,我们可以通过研究系统的时间响应来了解系统的动态性能。

$$\frac{{d^2y(t)}}{{dt^2}}+2\zeta\omega_n\frac{{dy(t)}}{{dt}}+\omega_n^2y(t) = f(t)$$其中,$y(t)$是系统的输出,$f(t)$是系统的输入,$\zeta$是系统的阻尼比,$\omega_n$是系统的自然频率。

为了进行时域分析,我们通常关注以下几个方面的内容:零状态响应、零输入响应、阶跃响应和冲激响应。

首先,零状态响应是指当系统在其中一初始状态下,没有外部输入时的响应。

在二阶系统中,零状态响应可以表示为:$$\frac{{d^2y(t)}}{{dt^2}}+2\zeta\omega_n\frac{{dy(t)}}{{dt}}+\omega_n^2y(t) = 0$$通过求解这个方程可以得到系统的零状态响应。

其次,零输入响应是指当系统没有外部输入时的响应,也就是当$f(t)=0$时的响应。

在二阶系统中,可以通过设定初始条件(对应于零状态)来求解零输入响应。

接下来,阶跃响应是指当系统输入为单位阶跃信号时的响应。

单位阶跃信号可以用$\delta(t)$来表示,其傅里叶变换为$U(j\omega)=\frac{1}{{j\omega}}+\pi\delta(\omega)$。

阶跃响应可以通过将单位阶跃信号的傅里叶变换代入系统的传递函数来求解。

最后,冲激响应是指当系统输入为单位冲激信号时的响应。

单位冲激信号可以用$\delta(t)$表示,其傅里叶变换为$U(j\omega)=1$。

冲激响应可以通过将单位冲激信号的傅里叶变换代入系统的传递函数来求解。

在进行二阶系统的时域分析时,我们还可以研究系统的阻尼比对系统响应的影响。

当阻尼比$\zeta=1$时,系统处于临界阻尼状态,此时系统响应最快且无振荡;当阻尼比$\zeta<1$时,系统过阻尼,响应较慢且无振荡;当阻尼比$\zeta>1$时,系统欠阻尼,响应较快且有振荡。

自动控制原理--二阶系统的时域响应

自动控制原理--二阶系统的时域响应

y(t ) L-1[Y (s)]
-n
1 - e-nt (cos d t
1 - 2 sin d t )
s2
1-
e - nt (
1- 2
1 - 2 cos d t sin d t )
j jd
0
1-
e - nt 1 - 2 sin(n
1 - 2 t tg-1
1- 2 )
y(t)
单位阶跃响应( 0<<1 )
esst
2
a K
K
0.25
a 0.187
比例微分控制与输出微分反馈的比较
1、增加阻尼的来源不同:两者都增大了系 统阻尼,但来源不同;
2、对于噪声和元件的敏感程度不同; 3、对开环增益和自然振荡角频率的影响不
同; 4、对动态响应的影响不同。
(1)增加阻尼的来源
• 比例微分的阻尼来自误差信号的速度;
1)
阶跃响应:y(t) 1
1
-1t
e T1
1
-1t
e T2
T2 T1 -1
T1 T2 -1
yt
j
1
0
0
t
单位阶跃响应(>1)
无振荡、无超调
2、临界阻尼 =1
j 0
两个相同的负实根
闭环系统的极点为 s1,2 -n
闭环传递函数为
GB
Y (s) R(s)
(s
n2 n )2
阶跃响应: y(t) 1- e-nt (1 nt)
阻尼振荡频率
衰减振荡
d 1- 2n
4、零阻尼 0
阶跃响应y(t)=1-cos nt
n --无阻尼振荡角频率
j 0
一对纯虚根

实验三——二阶系统的时域响应及性能分析

实验三——二阶系统的时域响应及性能分析

实验三——二阶系统的时域响应及性能分析实验三主要研究了二阶系统的时域响应及其性能分析,通过实验得到不同二阶系统的单位阶跃响应和单位脉冲响应,并对其进行分析和性能评估。

首先,实验中使用的二阶系统是由两个一阶系统串联而成,可以通过两个一阶系统的参数来确定二阶系统的性能。

实验中设置了不同的参数组合来得到不同的二阶系统,并测量了这些系统的单位阶跃响应和单位脉冲响应。

实验中,单位阶跃响应是通过给系统输入一个单位阶跃信号,观察系统的输出得到的。

单位脉冲响应是通过给系统输入一个单位脉冲信号,观察系统的输出得到的。

通过测量这两个响应,可以了解二阶系统在时域的性能。

对于单位阶跃响应,实验中测量了系统的超调量、调整时间和稳态误差。

超调量是指单位阶跃响应中最高峰值与稳态值之差与稳态值的比值,可用来评估系统的动态性能。

调整时间是指从单位阶跃信号开始输入到响应达到其稳态值所需要的时间,反映了系统调整过程的快慢。

稳态误差是指系统最终的输出值与期望值之差,用来评估系统的稳态准确性。

对于单位脉冲响应,实验中测量了系统的峰值和时间常数,用来评估系统的动态特性。

峰值是指单位脉冲响应中的最高值,与系统的阻尼比有关。

时间常数是指单位脉冲响应中曲线从0到达其最大值所需要的时间,与系统的阻尼比和自然频率有关。

通过实验数据的测量和分析,可以得到不同参数组合下的二阶系统的性能指标,进而对系统进行评估。

如果超调量小、调整时间短、稳态误差小,表示系统的动态特性优秀,能够快速、准确地响应输入信号;如果峰值小、时间常数短,表示系统的动态特性好,有较快的响应速度和较小的振荡现象。

综上所述,实验三通过对二阶系统的时域响应进行测量和分析,并对性能指标进行评估,可以得到不同二阶系统的动态特性和稳态准确性信息。

这些信息对于系统设计和参数调整具有重要的参考价值。

通过实验的学习,可以更深入地理解掌握二阶系统的性能分析方法,为系统控制和优化提供理论和实践基础。

典型二阶系统的时域响应与性能分析

典型二阶系统的时域响应与性能分析

实验二 典型二阶系统的时域响应与性能分析一、实验目的1、研究二阶系统的特征参量(ζ, ωn )对过渡过程的影响。

2、研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

二、实验设备PC 机一台,TD-ACS 教学实验系统一套。

三、实验原理典型二阶系统开环传递函数为:)1()1()(101101+=+=s T s T K s T s T K s G ;其中,开环放大系数01T K K = 。

系统方块图与模拟电路如图2-1与图2-2所示。

图2-1典型二阶系统方块图图2-2模拟电路图先算出临界阻尼、欠阻尼、过阻尼时电电阻R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性。

设R T K K s T T s T 200,2.0,10110=====,系统闭环传递函数为:2222221)()(n n n s s TK s T s T KK s Ts K s R s C ωζωω++=++=++= 其中,自然振荡频率:RT K n 1010==ω 阻尼比:4102521RTKTn===ωζ 典型二阶系统的瞬态性能指标:超调量:21%ζζπδ--=e峰值时间:21ζωπ-=n p t峰值时间的输出值:211)(ζζπ-=+=e t C p调节时间:1)欠阻尼10<<ζ,⎪⎪⎩⎪⎪⎨⎧=∆=∆≈5324,,t n n s ζωζω2)临界阻尼1=ζ,⎪⎪⎩⎪⎪⎨⎧=∆=∆≈575.4284.5,,t nns ωω3)过阻尼1>ζ,⎩⎨⎧=∆=∆≈532411,p ,p t s ,1p -与2p -为二阶系统两个互异的负实根122,1-±-=-ζωζωnn p ,21p p ->>-,过阻尼系统可由距离虚轴较近的极点1p -的一阶系统来近似表示。

四、实验内容与要求1、实验前预先计算出典型二阶系统性能指标的理论值并填入实验对照表2-1中。

2、按模拟电路图接线,将信号源单元的“ST”端插针与“S”端插针用“短路块”短接,使每个运放单元均设置锁零场效应管,此时运放具有锁零功能。

二阶系统的时间响应及动态性能介绍

二阶系统的时间响应及动态性能介绍

表 3-3 二阶系统(按阻尼比ξ )分类表
分类
特征根
ξ >1
过阻尼
ξ =1
临界阻尼
λ1,2 = −ξω n ± ω n ξ 2 − 1 λ1,2 = −ω n
特征根分布
模态
e λ1t e λ2t
e −ωnt te −ωnt
0 < ξ < 1 λ1,2 = −ξω n ± jω n 1 − ξ 2
欠阻尼
3.3 二阶系统的时间响应及动态性能
3.3.1 二阶系统传递函数标准形式及分类
常见二阶系统结构图如图 3-6(a)所示,其中 K ,T0
为环节参数。系统闭环传递函数为
Φ(s) =
K
T0s2 + s + K
为分析方便起见,常将二阶系统结构图表示成如图 3-6 (b)所示的标准形式。系统闭环传递函数标准形式为
1.欠阻尼二阶系统极点的两种表示方法
欠阻尼二阶系统的极点可以用如图 3-10 所示的两种形式表示。 z 直角坐标表示
λ1,2 = σ ± jω d = −ξω n ± j 1 − ξ 2ω n
z “极”坐标表示
(3-8)
⎧ ⎨ ⎩
λ ∠λ
= ωn =β
⎧ cos β = ξ ⎩⎨sin β = 1 − ξ 2
ξ = 1 + (T1 T2 ) = 1.25 > 1 2 T1 T2
查图 3-7 可得 ts T1 = 3.3 ,计算得 ts = 3.3T1 = 3.3 × 0.5 = 1.65s 。图 3-8 给出了系统单
位阶跃响应曲线。
当阻尼比 ξ = 1时,系统处于临界阻尼状态,此时闭环极点是一对相等的实根,即
性。

实验二二阶系统时域分析

实验二二阶系统时域分析

实验二 二阶系统时域分析一、 实验目的1. 学习瞬态性能指标的测试技能2. 了解参数变化对系统瞬态性能及稳定性的影响二、 实验要求观测不同参数下二阶系统的阶跃响应曲线并测出性能指标:超调量σ、峰值时间p t 、调节时间s t 。

三、 实验仪器1. GSMT2014型直流伺服系统控制平台;2. PC 、MA TLAB 平台。

四、 实验原理采用转速为输出的直流伺服电机为被控对象,设控制器为ss K s G c )1052.0()(+=,K 为开环增益,构成新的单位负反馈闭环系统。

已知被控对象的数学模型为:112.011052.01)()()(0+⨯+==s s s n s n s G u c 开环传递函数为:)112.0(112.011052.01)1052.0()()()(0+=+⨯+⨯+=⨯=s s Ks s s s K s G s G s G c 设典型二阶系统的结构图如图2.1所示。

图2.1 典型二阶系统结构图其中,当01T =、12.01=T 、21K =时,开环传递函数为:)112.0()1()(1021+=+=s s Ks T s T K K s G 其中,开环增益为1021K T K K K ==。

闭环传递函数为其中,1T K n =ω 11121T K =ξ (2.1) (1)当10<<ξ,即欠阻尼情况时,二阶系统的阶跃响应为衰减振荡,如图2.2中曲线1所示。

()1)(0)n T d C t t t ξωωθ=-+≥ (2.2)式中 21ξωω-=n d1tgθ-=峰值时间可由式(2.2)对时间求导,并令它为零,得:p d t πω== (2.3)超调量()()()p p C t C t C t σ∞∞-=,求得p eσ= (2.4)调节时间s t ,采用2%允许误差范围时,近似地等于系统时间常数1()n ξω⨯的四倍,即:n s t ξω4=(2.5)(2)当1=ξ,临界阻尼时,系统的阶跃响应为单调的指数曲线,如图2.2中曲线2所示)0()1(1)(≥+-=-t t e t C n t n ωω令输出为98.0可求得s t 。

二阶系统的时间响应及动态性能

二阶系统的时间响应及动态性能


2
ξω n

3.5 ξω n
( 0.3 < ξ < 0.8 )
(3-14)
式(3-12)~式(3-14)给出了典型欠阻
尼二阶系统动态性能指标的计算公式。
可见,典型欠阻尼二阶系统超调量 σ
0 0
只取决于阻尼比 ξ
,而调节时间 ts
则与阻尼比 ξ
和自
然频率ω n 均有关。按式(3-14)计算得出的调节时间 ts 偏于保守。ξω n 一定时,调节时间 ts
s2
+
2ξω
n
s
+
ω
2 n
=
(s
+1
T1 )(s
+1
T2 )
可解出ξ = 1 ຫໍສະໝຸດ (T1 T2 ) 2 T1 T2
(3-7)
当 T1 T2 (或ξ )很大时,特征根
图 3-7 过阻尼二阶系统的调节时间特性
λ2 = −1 T2 比 λ1 = −1 T1 远离虚轴,模态 e−t T2
很快衰减为零,系统调节时间主要由 λ1 = −1 T1 对应的模态 e−t T1 决定。此时可将过阻尼二
5733二阶系统的时间响应及动态性能331二阶系统传递函数标准形式及分类常见二阶系统结构图如图36所示其中k分别称为系统的阻尼比和无阻尼自然频率是二阶系统重要的特征参数
3.3 二阶系统的时间响应及动态性能
3.3.1 二阶系统传递函数标准形式及分类
常见二阶系统结构图如图 3-6(a)所示,其中 K ,T0
ts
=
3.5 ξω n
=
3.5 0.5 × 10
= 0.7
相应的单位阶跃响应如图 3-18 所示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验二 典型二阶系统的时域响应与性能分析
一、实验目的
1、研究二阶系统的特征参量(ζ, ωn )对过渡过程的影响。

2、研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。

二、实验设备
PC 机一台,TD-ACS 教学实验系统一套。

三、实验原理
典型二阶系统开环传递函数为:)
1()1()(101101
+=
+=
s T s T K s T s T K s G ;其中,开环放大系数01K K = 。

系统方块图与模拟电路如图2-1与图2-2所示。

图2-1典型二阶系统方块图
图2-2模拟电路图
先算出临界阻尼、欠阻尼、过阻尼时电电阻R 的理论值,再将理论值应用于模拟电路
中,观察二阶系统的动态性能及稳定性。

设R T K K s T T s T 200,2.0,10
1
10==
===,
系统闭环传递函数为:
2
222
221)()(n n n s s T
K s T s T K
K s Ts K s R s C ωζωω++=+
+=++= 其中,自然振荡频率:R
T K n 10
10
==
ω 阻尼比:4
102521R
T
K
T
n
=
=
=
ωζ 典型二阶系统的瞬态性能指标:
超调量:2
1%ζζπ
δ--=e
峰值时间:2

ωπ-=
n p t
峰值时间的输出值:2
11)(ζζπ
-=+=e t C p
调节时间:
1)欠阻尼10<<ζ,⎪⎪⎩⎪⎪⎨⎧=∆=∆≈5324
,,t n n s ζωζω
2)临界阻尼1=ζ,⎪⎪⎩⎪⎪⎨⎧=∆=∆≈575.4284
.5,,t n
n s ωω
3)过阻尼1>ζ,⎩
⎨⎧=∆=∆≈532
411,p ,p t s ,1p -与2p -为二阶系统两个互异的
负实根12
2,1-±-=-ζ
ωζωn n p ,21p p ->>-,过阻尼系统可由距离虚轴较近的极点
1p -的一阶系统来近似表示。

四、实验内容与要求
1、实验前预先计算出典型二阶系统性能指标的理论值并填入实验对照表2-1中。

2、按模拟电路图接线,将信号源单元的“ST”端插针与“S”端插针用“短路块”短接,使每个运放单元均设置锁零场效应管,此时运放具有锁零功能。

将开关设在“方波”档,分别调节调幅和调频电位器,使得“OUT”端输出为幅值为1V、周期为10s左右的方波,将1V的方波信号接至输入端。

若10s周期的方波不能显示完整的波形变化,可适当调整周期。

表2-1实验对照表
3、分别取R=10K,50K,80K,100K,160K,200K改变系统开环增益,观察记录典型二阶系统在欠阻尼、临界阻尼、过阻尼系情况下的阶跃响应曲线C(t),测量记录超调量δ%、峰值时间t p和调节时间t s ,判断系统的稳定性。

将实验结果填入实验对照表2-1中,将测量值和计算出的理论值进行对比分析。

4、若令ζ=0,修改模拟电路,观察记录阶跃响应曲线。

五、思考题
1、分析二阶系统的特征参量(ζ, ωn)对系统动态性能的影响。

2、时间常数T改变,超调量δ%,调节时间t s如何变化?
实验三 线性系统的稳定性分析
一、实验目的
1、熟悉Routh 判据,用Routh 判据对三阶系统进行稳定性分析。

2、研究线性系统的开环比例系数K 对稳定性的影响。

二、实验设备
PC 机一台,TD-ACS 教学实验系统一套。

三、实验内容
典型三阶系统方块图如图3-1所示,
图3-1 典型三阶系统方块图
系统的开环传递函数为:)
15.0)(11.0(500)()(++=
S S S R
S H S G (其中R K 500=)
图3-2模拟电路图
利用Routh 判据,判别开环比例系数K 的选取对系统稳定性有何影响,并选取3组不同K 值观测分析三阶系统稳定性。

四、实验要求
1、利用Routh判据判别系统稳定性,分析开环比例系数K对系统稳定性有何影响。

2、按模拟电路图接线,将幅值为1V、周期为10s的方波信号接至输入端。

3、选取3组R分别为30K,41.7K,100K,观察记录响应曲线,并将实验结果填入实验记录表中,分析实验结果。

表3-1实验记录表
五、思考题
1、分析线性系统的时间常数T对稳定性的影响,三阶系统的各时间常数怎样组合时,系统的稳定性最好或最差?
2、总结开环比例系统K和时间常数T影响系统稳定性的规律。

相关文档
最新文档