中国人民大学出版社第四版高等数学一第6章课后习题详解
大一高等数学教材课后答案
大一高等数学教材课后答案第一章求极限和连续1.1 极限的概念和性质1.2 极限的运算法则1.3 函数的连续性第二章导数与微分2.1 导数的概念和性质2.2 函数的求导法则2.3 高阶导数和隐函数求导第三章微分中值定理与导数的应用3.1 罗尔定理与拉格朗日中值定理3.2 微分中值定理的应用3.3 函数单调性与曲线图像第四章不定积分4.1 不定积分的概念和性质4.2 基本积分法4.3 第一换元法和第二换元法第五章定积分5.1 定积分的概念和性质5.2 牛顿-莱布尼茨公式5.3 定积分的几何应用第六章微分方程6.1 微分方程的基本概念6.2 可分离变量的微分方程6.3 一阶线性微分方程第七章多元函数微分学7.1 多元函数的概念和性质7.2 偏导数与全微分7.3 隐函数及其导数第八章多元函数的积分学8.1 二重积分的概念和性质8.2 三重积分的概念和性质8.3 曲线与曲面的面积与曲线积分第九章曲线积分与曲面积分9.1 标量场与矢量场的线积分9.2 标量场的曲面积分9.3 矢量场的曲面积分第十章空间解析几何10.1 空间直线与平面10.2 空间曲线与曲面10.3 空间几何问题的解析法第十一章空间曲线与曲面积分11.1 曲线积分的计算11.2 曲面积分的计算11.3 广义曲线积分与曲面积分第十二章傅里叶级数与傅里叶变换12.1 傅里叶级数的定义和性质12.2 傅里叶级数的收敛性12.3 傅里叶变换的定义和性质第十三章偏微分方程13.1 偏微分方程的基本概念13.2 热传导方程与波动方程13.3 拉普拉斯方程与边值问题以上是大一高等数学教材的课后答案目录,每一章节都覆盖了相应知识点的题目答案,供同学们进行课后练习和检查。
这些答案对于加深对高等数学知识的理解和掌握具有积极的作用。
希望同学们能够认真学习,勤做练习,提高自己的数学水平。
最新中国人民大学出版社(第四版)高等数学一第5章课后习题详解
高等数学一第5章课后习题详解课后习题全解习题5-1★★1.利用定积分的定义计算由抛物线21y x =+,直线x a =,x b =()b a >及横轴所围成的图形的面积知识点:定积分的定义及几何意义 思路:根据求定积分的三步骤做 解:将[],a b 分成n 等分,取(1,2,)i i n ξ=为第i 个小区间1[(),()]i ia b a a b a n n-+-+-的右端点,则,i b a x n λ-=∆=,i b aa i nξ-=+ 显然, 0,n λ→⇔→∞于是根据定积分的几何意义,该图形面积lim ()nbi i ai A ydx y x λξ→===∆∑⎰ 21lim [()1]nn i b a b aa in n→∞=--=++∑ 22221()lim [12]n n i b a b a b a a ai i n n n→∞=---=+++∑222211()lim [(1)2]nnn i i b a b a b a n a a i in n n →∞==---=+++∑∑22232()(1)()1lim{()[1(1)(21)]}26n a b a n n b a b a a n n n n n →∞-+-=-+++++221()11()lim[1()(1)(1)(2)]6n b a b a a a b a n n n→∞-=-++-++++ 222()()[1]3b a b a a ab a -=-++-+33().3b a b a -=+- ★★2.利用定积分的定义计算下列积分:知识点:定积分的定义 思路:根据求定积分的三步骤做(1)baxdx ⎰()a b <.解:易见函数[](),f x x C a b =∈,从而可积,将[],a b 分成n 等分,则,i b ax nλ-=∆=于是0,n λ→⇔→∞;取(1,2,)i i n ξ=为第i 个小区间的右端点,则,0,1,2,,1,ib aa ii n nξ-=+=-所以110lim ()lim ()n n bi i an i i b a b axdx f x a in nλξ--→→∞==--=∆=+∑∑⎰1()lim{[(0121)]}n b ab a na n n n→∞-=-+++++-2(1)()lim[]2n b a n n b a a n →∞--=-+1()lim[(1)]2n b a b a a n→∞-=-+-221()()().22b a b a a b a -=-+=-(2)1ln exdx ⎰解:用分点(0,1,,)i ni x e i n ==划分区间[]1,e :11,1,2,,i i nni i i x x x e e i n --∆=-=-=, 取i ξ是区间右端点,则 ,()ln()ln ,i i nnii i i i x e f e nξξξ=====作和,并取极限得:111ln lim ()lim ()i i nnenn i i n n i i i xdx f x e e nξ-→∞→∞===∆=-∑∑⎰111111lim{[()]}i i i nn n n nn i i i i e e e n n n --→∞==-=-+∑∑11111(1)lim lim (1)i nn n n i n e e e e n n e -→∞→∞=-=-=--∑111(1)lim ()1n n e e n e →∞=--- 记()1xx g x e =-,则当0x →时,()g x 是0型的,由洛必达法则, 有 001lim lim 11x xx x x e e →→==---从而,当n →+∞时,有111lim 11n nne →+∞=--,故1ln (1) 1.exdx e e =+-=⎰★3.利用定积分的几何意义,说明下列等式:(1)121xdx =⎰.知识点:定积分的几何意义思路:定积分的几何意义为被积函数与边界所形成曲边梯形的面积解:等式左边为直线2y x =与x 轴和1x =三条直线所围成的面积,该面积等于11212==等式右边. (2)sin 0xdx ππ-=⎰解: 等式左边为正弦曲线sin y x =与x 轴在x π=及x π=-之间所围成的面积,其左右两边面积互为相反数. 则sin ()0xdx A A ππ-=-+==⎰等式右边★★4.用定积分的几何意义求a⎰(0)b >的值.知识点:定积分的几何意义思路:定积分的几何意义为被积函数与边界所形成曲边梯形的面积 解:=是以2a b +为圆心,2b a-为半径的上半圆,其面积为:2221()()2228b a b a S r πππ--===由定积分的几何意义知:2().8ab a π-=⎰★★★5.试将和式的极限112lim p p pp n n n +→∞+++(0)p >表示成定积分.知识点:定积分的定义思路:根据定积分的定义推导过程可知,求和的极限公式可表示为定积分解: 112112limlim [()()()]p p p p pp p n n n n n n n nn +→∞→∞+++=+++11lim ()n pn i i n n→∞==∑设()p f x x =,则用定义求解1()f x dx ⎰为:①、等分[0,1]为n 个小区间:11[,], 1,2,, i i ii n x n nn-=∆=②、求和:取区间1[,]i i n n -上的右端点为i ξ,即i in ξ=,作和:111()n ni i i i i f x nn ξ==∆=⨯∑∑③、求极限:011111lim()lim ()lim ()nnn p pi i n n i i i i i f x nn n n λξ→→∞→∞===∆=⨯=∑∑∑∴1101121lim lim ()p p p n pp p n n i n i x dx n n n+→∞→∞=+++==∑⎰ ★★★6.有一河,宽为200米,从一岸到正对岸每隔20米测量一次水深,测得数据如下:试用梯形公式求此河横截面面积的近似值.知识点:定积分的几何意义思路:由定积分定义知:求定积分(曲边梯形面积)的第二步:用小矩形面积近似代替小曲边梯形面积,即1()()ii x i i x f x f x dx ξ-∆≈⎰,若用小梯形面积近似代替小曲边梯形面积则为:111[()()]()2i i x i i i x f x f x x f x dx --+∆≈⎰。
中国人民大学出版社第四版高等数学一第9章课后习题详解
中国人民大学出版社(第四版)高等数学一第9章课后习题详解第9章课后习题详解 重积分内容概要名称 主要内容二重积分定义 =⎰⎰Dd y x f σ),(∑=→∆ni ii i f 1),(lim σηξλ性质①=⎰⎰Dd y x kf σ),(⎰⎰Dd y x f k σ),(②[]=±⎰⎰Dd y x g y x f σ),(),(⎰⎰⎰⎰±DDd y x g d y x f σσ),(),(③=⎰⎰Dd y x f σ),(+⎰⎰1),(D d y x f σ⎰⎰2),(D d y x f σ21D D D +=④σσ=⎰⎰Dd ⑤⇒≤),(),(y x g y x f ⎰⎰⎰⎰≤DDd y x g d y x f σσ),(),(⑥⎰⎰⎰⎰≤DDd y x f d y x f σσ),(),(⑦σσσM d y x f m D≤≤⎰⎰),( ⑧σηξσ),(),(f d y x f D=⎰⎰ D ∈),(ηξ计算法利用直角坐标计算把D 写成X 型区域⎰⎰⎰⎰=)()(21),(),(x x baDdyy x f dx d y x f ϕϕσ把D 写成Y 型区域⎰⎰⎰⎰=)()(21),(),(x x d cDdxy x f dy d y x f ψψσ利用极坐标计算⎰⎰⎰⎰=)()(21)sin ,cos (),(θθβαθθθσr r Drdrr r f d d y x f三重积分利用直角坐标计算投影法(针刺法、先一后二法)⎰⎰⎰⎰⎰⎰Ω==),(),(21),,(),,(y x z y x z D dz z y x f d dv z y x f σ截面法(切片法、先二后一法)⎰⎰⎰⎰⎰⎰Ω==zD dcd z y x f dz dv z y x f σ),,(),,(利用柱面坐标计算 ⎰⎰⎰⎰⎰⎰ΩΩ=dzrdrd z r r f dv z y x f θθθ),sin ,cos (),,(利用球面坐标计算 ⎰⎰⎰⎰⎰⎰ΩΩ=θϕϕϕθϕθϕd drd rr r r f dv z y x f sin )cos ,sin sin ,cos sin (),,(2应用 求立体的体积、求曲面的面积、求质量、重心、转动惯量等课后习题全解习题9-1★1.设有一平面薄板(不计其厚度),占有xOy 面上的闭区域D ,薄板上分布着面密度为),(y x μμ=的电荷,且),(y x μ在D 上连续,试用二重积分表达该板上的全部电荷Q .解:将D 任意分割成n 个小区域{}iσ∆,在第i 个小区域上任取一点),(iiηξ,由于),(y x μ在D上连续和i σ∆很小,所以用),(i i ηξμ作为i σ∆上各点函数值的近似值,则i σ∆上的电荷i i i i Q σηξμ∆≈∆),(从而该板上的全部电荷⎰⎰∑=∆==→Dni i i i d y x Q σμσηξμλ),(),(lim 1其中λ是各i σ∆中的最大直径。
中国人民大学出版社(第四版)高等数学一第1章课后习题详解
中国人民大学出版社(第四版)高等数学一第1章课后习题详解第一章函数、极限与连续内容概要名称主要内容(1.1、1.2)函数邻域(){}δδ<-=axxaU,(即(){},U a x a x aδδδ=-<<+)(){}0,0U a x x aδδ=<-<((){}0,,0U a x a x a xδδδ=-<<+≠)函数两个要素:对应法则f以及函数的定义域D由此,两函数相等⇔两要素相同;(与自变量用何字母表示无关)解析表示法的函数类型:显函数,隐函数,分段函数;特性局部有界性对集合DX⊂,若存在正数M,使对所有Xx∈,恒有()Mxf<,称函数()xf在X上有界,或()xf是X上的有界函数;反之无界,即任意正数M(无论M多大),总存在(能找到)Xx∈,使得()Mxf>局部单调性区间DI⊂,对区间上任意两点21xx,当21xx<时,恒有:()()21xfxf<,称函数在区间I上是单调增加函数;反之,若()()21xfxf>,则称函数在区间I上是单调减小函数;奇偶性设函数()xf的定义域D关于原点对称;若Dx∈∀,恒有()()xfxf=-,则称()xf是偶函数;若Dx∈∀,恒有()()xfxf-=-,则称()x f是奇函数;周期性若存在非零常数T,使得对Dx∈∀,有()DTx∈±,且()()x fTxf=+,则称()x f是周期函数;初等函数几类基本初等函数:幂函数;指数函数;对数函数;三角函数;反三角函数;反函数求法和性质;复合函数性质;初等函数课后习题全解习题1-1★1.求下列函数的定义域:知识点:自然定义域指实数范围内使函数表达式有意义的自变量x 的取值的集合; 思路:常见的表达式有 ① alog□,( □0>) ② /N □, ( □0≠) ③ (0)≥④ arcsin([]1,1-∈)等解:(1)[)(]1,00,11100101122⋃-∈⇒⎩⎨⎧≤≤-≠⇒⎩⎨⎧≥-≠⇒--=x x x x x x x y ; (2)31121121arcsin ≤≤-⇒≤-≤-⇒-=x x x y ;(3)()()3,00,030031arctan 3⋃∞-∈⇒⎩⎨⎧≠≤⇒⎩⎨⎧≠≥-⇒+-=x x x x x x x y ;(4)()()3,11,1,,1310301lg 3⋃-∞-∈⇒⎩⎨⎧-<<<⇒⎩⎨⎧-<-<⇒-=-x x or x x x x x y x;(5)()()4,22,11601110)16(log 221⋃∈⇒⎪⎩⎪⎨⎧-<-≠-<⇒-=-x x x x x y x ; ★2.下列各题中,函数是否相同?为什么?(1)2lg )(x x f =与x x g lg 2)(=;(2)12+=x y 与12+=y x知识点:函数相等的条件;思路:函数的两个要素是f (作用法则)及定义域D (作用范围),当两个函数作用法则f 相同(化简后代数表达式相同)且定义域相同时,两函数相同;解:(1)2lg )(x x f =的定义域D={}R x x x ∈≠,0,xx g lg )(=的定义域{},0R x x x D ∈>=,虽然作用法则相同x x lg 2lg 2=,但显然两者定义域不同,故不是同一函数;(2)12+=x y ,以x 为自变量,显然定义域为实数R ;12+=y x ,以x 为自变量,显然定义域也为实数R ;两者作用法则相同“2□1+”与自变量用何记号表示无关,故两者为同一函数;★3.设⎪⎪⎩⎪⎪⎨⎧≥<=3,03,sin )(ππϕx x x x ,求)2()4()4()6(--ϕπϕπϕπϕ,,,,并做出函数)(x y ϕ=的图形知识点:分段函数; 思路:注意自变量的不同范围;解:216sin )6(==ππϕ,224sin 4==⎪⎭⎫⎝⎛ππϕ,224sin 4=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππϕ()02=-ϕ;如图:★4.试证下列各函数在指定区间内的单调性 :(1)()1,1∞--=xxy (2)x x y ln 2+=,()+∞,0 知识点:单调性定义。
高数AII第6章答案
(二)曲面与曲线
1.空间曲面方程 a.一般方程: F ( x, y, z ) 0 ;b.显式方程: z f ( x, y ) ;
x x (u , v ) c.参数方程 y y (u , v ) ,其中 (u , v) D , D 为 uv 平面上某一区域. z z (u , v )
3
直线的方向向量. 直线的上述 3 种方程可互相转化. 2.点、直线、平面之间的关系 (1)两条直线之间的关系: x x1 y y1 z z1 x x2 y y 2 z z 2 设直线 l1 : , l2 : ,且其方向向量分别为 m1 n1 p1 m2 n2 p2 s1 (m1 , n1 , p1 ) 和 s2 (m2 , n2 , p2 ) ,两直线的夹角是指两直线的方向向量 s1 、 s2 之间的夹 角(取锐角)记为 .则 |s s | | m1 m2 n1 n2 p1 p2 | π (0≤ ≤ ) . cos 1 2 2 2 2 2 2 2 | s1 | | s2 | 2 m1 n1 p1 m2 n2 p2 由此可知: a.两直线平行(含重合) : l1 // l2
第六章
向量代数与空间解析几何 一、内容提要
(一)向量
1.方向角与方向余弦 若 a = ( x, y, z ) , 则有 cos 2.向量的线性运算及其性质 (1)加减法运算: 向量加法运算遵循平行四边形法则或三角形法则. 设 a ( x1 , y1 , z1 ) , b ( x2 , y2 , z2 ) ,则 a b ( x1 x2 , y1 y2 , z1 z2 ) . (2)数乘运算: 向量 a 与实数 的乘积,记为 a .设 a ( x, y, z ) ,则 a ( x, y, z ) ,
高等代数习题北大第四版答案一到四章
从 而 ( f ( x), g( x))h( x) 是 f (x)h(x) 与 g( x)h( x) 的 一 个 最 大 公 因 式 , 又 因 为
( f (x), g( x)) h( x) 的首项系数为1,所以 ( f (x)h(x), g(x)h(x)) = ( f ( x), g( x))h( x) 。
u1(x) f (x) + v1(x)g (x) = 1
(1)
u2 (x) f (x) + v2 (x)h(x) = 1
将(1)(2)两式相乘,得
(2)
[u1(x)u2(x) f (x) + v1(x)u2(x)g (x) + u1(x)v2(x)h(x)] f ( x) , +[v1(x)v2 (x)]g( x)h( x) = 1 所以 ( f ( x), g( x) h( x)) =1 。
即[u(x) − v(x)] f ( x) + v( x)[ f ( x) + g( x)] = 1 ,
所以 ( f (x), f ( x) + g( x)) =1。
同理 ( g( x), f ( x) + g( x)) =1 。
再由 12 题结论,即证 ( f ( x) g( x), f ( x) + g( x)) =1。
2) f (x) = x3 − x2 − x, g( x) = x −1 + 2i 。
q(x) = 2x4 − 6x3 +13x2 − 39x +109
解 1)
;
r (x) = −327
2) q(x) = x2 − 2ix − (5 + 2i ) 。 r (x) = −9 + 8i
高等代数第6章习题参考答案
(N
L),故(M
N)
(M
L) M
(N
L),
于是M
(N
L) (M
N)
(M
L)。
若x M
U(N
I L),则x M
,x
N I L。
在前一情形Xx
M UN,
且X
M
UL,因而x
(M
U N)I(MU L)。
在后一情形,
故
即证。
3、检验以下集合对于所指的线性运算是否构成实数域上的线性空间:
1)次数等于n(n1)的实系数多项式的全体,对于多项式的加法和数量乘法;
1
系数多项式组成的空间,其中A=0
0
解1)Pn n的基是Eij}(i, j 1,2,..., n),且dim( Pn n) n2。
... ... ... 1 ...
2) i)
F11,..
令Fij
1
.., Fnn
., 即aijaji1,其 余 元 素 均 为 零,则
.,F1n,F22,..
., F2n,.
n(n 1)维的。
2
3)任一不等于1的正实数都是线性无关的向量,例如取2,且对于任一正实数a,可经2线性
表出,即
.a (log2a)
2,所以此线性空间是
一维的,
且
2是它的一组基。
4)因为
1 3i
31,所以n
1,n ,n
3q
3q
1,
2
2
,n
3q
2
1
1
E,n
3q
当A,B为反对称矩阵,k为任意一实数时,有
(A+B)=A+B=-A-B=-(A+B),A+B仍是反对称矩阵。(KA)KA K(A) (KA),所以kA是反对称矩阵。 故反对称矩阵的全体构成线性空间。
大学第四版高等数学教材答案
大学第四版高等数学教材答案【前言】在大学学习的过程中,高等数学是一门非常重要的课程。
为了更好地帮助同学们进行学习,提供一个参考,下面是大学第四版高等数学教材的答案。
【第一章微分学】1.1 导数与微分练习题答案:1. 求函数f(x) = 3x^2 - 2x的导数。
答:f'(x) = 6x - 2.2. 计算函数f(x) = x^3 - 2x^2 + 4x - 1在x = 2处的导数。
答:f'(2) = 6.1.2 函数的凹凸性和拐点练习题答案:1. 求函数f(x) = x^3 - 3x^2 + 2x的凹凸性和拐点。
答:f''(x) = 6x - 6,令f''(x) = 0,解得x = 1。
当x小于1时,f''(x)小于0,函数凹;当x大于1时,f''(x)大于0,函数凸。
所以在x = 1处有拐点。
2. 设函数f(x) = x^4 - 8x^2 + 12x,求其在[-2, 4]上的最大值和最小值。
答:首先求f'(x) = 4x^3 - 16x + 12,求解得到导数的零点x = -2, 1, 2。
然后求解f''(x) = 12x^2 - 16,代入得到f''(-2) = 20, f''(1) = -4, f''(2) = 20。
通过计算得知,在x = -2处为极小值,x = 1处为极大值。
所以最小值为f(-2) = 20,最大值为f(1) = 5。
【第二章积分学】2.1 不定积分练习题答案:1. 求函数f(x) = 3x^2 - 2x + 1的不定积分。
答:∫(3x^2 - 2x + 1)dx = x^3 - x^2 + x + C,其中C为常数。
2. 计算不定积分∫(4x^3 - 6x^2 + 2x + 5)dx。
答:∫(4x^3 - 6x^2 + 2x + 5)dx = x^4 - 2x^3 + x^2 + 5x + C,其中C为常数。
高等数学中国人民大学答案
高等数学中国人民大学答案出版社高数(第四版)习题1-3答案观察一般项xn如下的数列?xn?的变化趋势,写出它们的极限:;(2)xnn(1)xn(5)xn?13n???1?n1n;(3)xn?2?1n3;(4)xn?n?2; n?2???1?n知识点:数列定义。
思路:写出前几项,观察规律。
解:(1),131,9127,1???0; 811111,?,,?,??0; 23451111,2?,2?,???2;(3)2?1,2?,2?8276412544441?1?,1?,1?,?1?,??1(4)xn?1?n?2345100(2)?1,(5)?1,;2?3,4,??? 。
★★2.利用数列极限定义证明:(1) lim11?3n3n?2k?0lim?limsinn?0。
(为正常数);(2);(3)2n??nkn??4n?1n??4n?2知识点:极限定义。
思路:按定义即可。
证明:(1) lim11?0:对任意给定的正数,要使*?0???kn??nkn,即??1???n,只要取 ???1?0n??nk1k1??k11??n?????,则对任意给定的??0,当n?n时,就有k?0?? ?????n??,即lim1??k1??(注,只要保证n的取值能够让n以后的所有项的值满足*式即可,因此n可取大于或等于???????????的整数);(2)lim1?3n33n?137?:对任意给定的正数?,要使*????,只要n??4n?144n?144(4n?1),∴取nn?7?4?16?3n?13?7?4??,则对任意给定的??0,当n?n时,就有??????4n?14?16??,∴lim1?3n3?n??4n?14n?2sinn?0 (3) lim2n??n?2证明:由于n?2n?21sinn?0??n2?2n2?2n?2,因此对任意给定的正数?,要使(计算时为方便不妨设n取nn?2sinn?0??2n?2,只要11??,即n??2?n?2?2,因为前面的有限项对极限无影响),n?2?1????2?,则对任意给定的??0,当n?n时,就有2sinn?0???n?2??n?2sinn?0n??n2?2∴ lim★ 3.设数列1n?cos。
高等数学教材答案中国人民大学
高等数学教材答案中国人民大学高等数学是大学阶段必修的一门学科,对于中国人民大学的学生而言,高等数学的学习是非常重要和必要的。
然而,学习过程中难免遇到一些问题和难题,往往需要参考教材答案来进行自我检查和巩固知识。
下面是针对中国人民大学高等数学教材的一些答案,旨在帮助学生更好地掌握数学知识和解题方法。
第一章函数与极限1.1 函数的概念及其基本性质答案略1.2 极限与连续答案略1.3 无穷小量与无穷大量答案略第二章导数与微分2.1 导数的基本概念答案略2.2 导数的基本运算法则答案略2.3 高阶导数与隐函数求导答案略第三章微分中值定理与导数的应用3.1 微分中值定理答案略3.2 函数的单调性与曲线的凹凸性答案略3.3 函数的极值与最值答案略第四章不定积分4.1 原函数与不定积分答案略4.2 不定积分的性质与基本积分公式答案略4.3 分部积分法与换元积分法答案略第五章定积分与反常积分5.1 定积分的概念与性质答案略5.2 牛顿—莱布尼兹定理与定积分的计算答案略5.3 反常积分答案略通过以上几章的答案解析,希望能够对中国人民大学的高等数学学生们有所帮助。
注意,在使用答案时应遵循正确的学习方法,不能过分依赖答案而忽略自己的思考和理解。
答案只是参考,学生们仍需通过大量的练习和思考,才能真正掌握高等数学的知识与技巧。
总之,高等数学教材答案是中国人民大学学生学习高等数学的重要辅助资料。
希望通过这些答案的提供,能够帮助同学们更好地理解和掌握数学知识,提高解题能力,为今后的学习和工作打下坚实的数学基础。
祝愿大家学业进步,取得优异的成绩!。
高等代数习题(北大第四版)答案一到四章.docx
高等代数答案第一章多项式1 •用 g{x)除 /(.r),求商 </(.r)与余式 r(.r):1) /*(.r) = .r 3 - 3.r 2 - x-1,= 3.r 2 - 2.r +1: 2) f(x} = x 4 — 2.r+ 5,烈A ) = H -才+ 2 •解1)由带余除法,可得彳(才)=丄x--,/(.r) = - —.r--; 3 9 99 2 )同理可得久工)=X 2 + X- 1,心=-5.V+ 1 .2. m 、p 、q 适介什么条件时,冇1) x 1 + w.r-11 .t 3 + px+ q 、2) .r 2 + 7//.V+ 11 x 4 + + q o解I)由假设,所得余式为0,即(P+1 +〃小才+(0-刃) = 0,所以当+ 1 + - ° 时有才2 + my-11 x 3 + px*q° q- m- 02)类似可得(劝(2 — Q -刃?=0, j :是当加=o 时,代入(2)可得〃=夕+ 1:而当 [乡+ 1-p- ftl・=02-p-nr =0 时,代入(2〉可得0 = 1。
了 时,皆有 f + 〃/・丫+11 x 4 + pf + q o p + 〃厂=23. 求g(.x)除/(X )的商0⑴与余式:1) /*(.r) = Zr 5 - 5-r 3 - 8.i ,g(.r) = .r+ 3 :2) f(x) = 一 , 一 不 g(.v)=才一 l + 2/ o0(・丫) = 2r 4 - +13” 一 39才 +109解1);心)=-327°).(.丫) = '-2灯-(5+2/)。
/// = 0综上所诉,当 □攵.;p=q+\ -心)=-9 + 8/4. 把/(才)表示成才一兀的方幕和,即表成C Q +q(・Y-旺)+Q(才一・®)2 + ... + C…(X -X Q y+ …的形式:1) /(才)",兀 T;2) /*(.r) = .r4 - 2.x2 + 3,x0 = -2;3) /(r) = x + 2/x一(l + /).r2一3x+ 7 + /,兀=-/«解1)由综合除法,可得/(x) = 1+ 5(x-1) + 10(r -1)2 +10(x-l)3^5(x -l)4+(r-l)5;2) 由综合除法,可得x4 -21^ + 3 = 11 - 24(.r+ 2) + 22(.r+ 2)2 -8(.r+ 2)3 + (.r+ 2)4:3) 由综介除法,可得.r4 + 2/:? - (1 + /).? -3x + (7 + z)= (7+5/)-5(x+/)4- (- 1一/比+/予-2«+/)+ (r+ // o5. 求/(貯与肌工)的最大公因式:1) /(才)=.r4 + .r5 -3, - 4才- 1£(才)=,+ , -.丫-1 ;2) /(.r) = .r4 -4.? + l,^(.r) =.? -3,r +1 :3) f .r) - .r4 - lO.r2 + l,g(") - .r4 -心力 + 6A2 + 4/2r+ 1。
高等数学课后答案-第六章-习题详细解答
习 题 6—11、在平行四边形ABCD 中, 设−→−AB =a , −→−AD =b . 试用a 和b 表示向量−→−MA 、−→−MB 、−→−MC 、−→−MD , 其中M 是平行四边形对角线的交点.解: 由于平行四边形的对角线互相平分, 所以a +b −→−−→−==AM AC 2, 即 -(a +b )−→−=MA 2, 于是 21-=−→−MA (a +b ).因为−→−−→−-=MA MC , 所以21=−→−MC (a +b ). 又因-a +b −→−−→−==MD BD 2, 所以21=−→−MD (b -a ). 由于−→−−→−-=MD MB , 所以21=−→−MB (a -b ).2、若四边形的对角线互相平分,用向量方法证明它是平行四边形.证: =,BM =,∴=+=+BM =与 平行且相等,结论得证.3、 求起点为)1,2,1(A ,终点为)1,18,19(--B 的向量→AB 与12AB −−→-的坐标表达式.解:→AB =j i k j i 2020)11()218()119(--=-+--+--={20,20,0}--, 12AB −−→-={10,10,0}4、 求平行于a ={1,1,1}的单位向量.解:与a 平行的单位向量为{}1,1,131±=±a a .5、在空间直角坐标系中,指出下列各点在哪个卦限?(1,1,1),A - (1,1,1),B -(1,1,1),C -- (1,1,1).D -- 解: A:Ⅳ; B:Ⅴ; C:Ⅷ; D:Ⅲ.6、 求点),,(z y x M 与x 轴,xOy 平面及原点的对称点坐标.解:),,(z y x M 关于x 轴的对称点为),,(1z y x M --,关于xOy 平面的对称点为),,(2z y x M -,关于原点的对称点为),,(3z y x M ---.7、已知点A(a, b, c), 求它在各坐标平面上及各坐标轴上的垂足的坐标(即投影点的坐标). 解:分别为),0,0(),0,,0(),0,0,(),,0,(),,,0(),0,,(c b a c a c b b a .8、过点(,,)P a b c 分别作平行于z 轴的直线和平行于xOy 面的平面,问它们上面的点的坐标各有什么特点?解:平行于z 轴的直线上面的点的坐标:x a,y b,z R ==∈;平行于xOy 面的平面上的点的坐标为 z c,x,y R =∈.9、求点P (2,-5,4)到原点、各坐标轴和各坐标面的距离.解:到原点的距离为x y 轴的距离为到z10、 求证以)1,3,4(1M 、)2,1,7(2M 、)3,2,5(3M 三点为顶点的三角形是一个等腰三角形. 解:222212(74)(13)(21)14M M =-+-+-=,222223(57)(21)(32)6M M =-+-+-= 222213(45)(32)(13)6M M =-+-+-=,即1323M M M M =,因此结论成立.11、 在yoz 坐标面上,求与三个点A(3, 1, 2), B(4, -2, -2), C(0, 5, 1)等距离的点的坐标. 解:设yoz 坐标面所求点为),,0(z y M ,依题意有||||||MC MB MA ==,从而222)2()1()30(-+-+-z y 222)2()2()40(++++-=z y222)2()1()30(-+-+-z y联立解得2,1-==z y ,故所求点的坐标为)2,1,0(-.12、 z 轴上,求与点A(-4, 1, 7), 点B(3, 5,-2)等距离的点. 解:设所求z 轴上的点为),0,0(z ,依题意:222)7()10()40(-+-++z 222)2()50()30(++-+-=z ,两边平方得914=z ,故所求点为)914,0,0(.13、 求λ使向量}5,1,{λ=a 与向量}50,10,2{=b 平行. 解:由b a //得5051012==λ得51=λ.14、 求与y 轴反向,模为10的向量a 的坐标表达式. 解:a =j j 10)(10-=-⋅={0,10,0}-.15、求与向量a ={1,5,6}平行,模为10的向量b 的坐标表达式. 解:}6,5,1{6210==a a a ,故 {}6,5,16210100±=±=a b .16、 已知向量6410=-+a i j k ,349=+-b i j k ,试求: (1)2+a b ; (2)32-a b .解:(1) 264102(349)1248i a b i j k i j k j k +=-+++-=+-; (2)323(6410)2(349)=122048a b =i j k i j k i j k --+-+--+.17、已知两点A 和(3,0,4)B ,求向量AB 的模、方向余弦和方向角.解: 因为(1,1)AB =-, 所以2AB =,11cos ,cos 22αβγ===-,从而π3α=,3π4β=,2π3γ=.18、设向量的方向角为α、β、γ.若已知其中的两个角为π3α=,2π3β=.求第三个角γ. 解: π3α=,2π3β=,由222cos cos cos 1αβγ++=得21cos 2γ=.故π4γ=或3π4.19、 已知三点(1,0,0)=A ,(3,1,1)B ,(2,0,1)C ,求:(1)BC 与CA 及其模;(2)BC 的方向余弦、方向角;(3)与BC 同向的单位向量.解:(1)由题意知{}{}23,01,111,1,0,BC =---=--{}{}12,00,011,0,1,CA =---=-- 故 2,2==BC CA .(2)因为{}1,1,0,=--BC 所以,由向量的方向余弦的坐标表示式得:cos 0αβγ===,方向角为:3,42ππαβγ===.(3)与BC 同向的单位向量为:oa =⎧⎫=⎨⎬⎩⎭BCBC .20、 设23,23,34,m i j k n i j k p i j k =++=+-=-+和23a m n p =+-求向量在x 轴上的投影和在y 轴上的分向量.解:2(23)3(23)(34)5114a i j k i j k i j k i j k =++++---+=+-.故向量a 在x 轴上的投影5=x a ,在y 轴上的投影分量为11y a j =.21、一向量的终点为点B(-2,1,-4),它在x 轴,y 轴和z 轴上的投影依次为3,-3和8,求这向量起点A 的坐标.解:设点A 为(x, y, z ),依题意有:84,31,32=---=-=--z y x , 故12,4,5-==-=z y x ,即所求的点A (-5, 4,-12).22、 已知向量a 的两个方向余弦为cos α=72 ,cos β=73, 且a 与z 轴的方向角是钝角.求cos γ. 解:因222cos cos cos 1,αβγ++=22223366cos 1cos 77497γγ=-==±故()—(),,又γ是钝角,所以76cos -=γ.23、设三力1232234F ,F ,F i j i j k j k =-=-+=+作用于同一质点,求合力的大小和方向角.解: 合力123(2)(234)()F F F F i k i j k j k =++=-+-+++323i j k =-+,因此,合力的大小为|F |=合力的方向余弦为,222cos ,cos 223cos -===βγα因此παγβ===-习 题 6—21、 {}0,0,1=a ,{}0,1,0=b ,)1,0,0(=c ,求⋅a b ,c a ⋅,c b ⋅,及a a ⨯,b a ⨯,c a ⨯,c b ⨯. 解:依题意,i a =,j b =,k c =,故0=⋅=⋅j i b a ,0=⋅=⋅k i c a ,0=⋅=⋅k j c b .0=⨯=⨯i i a a ,k j i b a =⨯=⨯,j k i c a -=⨯=⨯,i k j c b =⨯=⨯.2、 }}{{1,2,2,21,1==b a ,,求b a ⋅及b a ⨯ .a 与b的夹角余弦. 解:(1)121221⋅=⨯+⨯+⨯=a b 6, 112221⨯==i j ka b }{3,3,0-.(2)cos a b a b a b θ++==3、 已知 π5,2,,3∧⎛⎫=== ⎪⎝⎭a b a b ,求23a b -解:()()2232323-=-⋅-a b a b a b 22412976=-⋅+=a a b b ,∴ 23-=ab4、 证明下列问题:1)证明向量}{1,0,1=a 与向量}{1,1,1-=b 垂直. 2) 证明向量c 与向量()()a c b b c a ⋅-⋅垂直. 证:1)01110)1(1=⨯+⨯+-⨯=⋅b a ,^π(,)2a b ∴=,即a 与b 垂直. 2) [()()]⋅-⋅⋅a c b b c a c [()()]=⋅⋅-⋅⋅a c b c b c a c ()[]=⋅⋅-⋅c b a c a c 0=[()()]∴⋅-⋅⊥a c b b c a c .5、 求点)1,2,1(M 的向径OM 与坐标轴之间的夹角.解:设OM 与x 、y 、z 轴之间的夹角分别为γβα,,,则211)2(11cos 22=++==α,22cos ==β, 21cos ==γ. 3π=∴α, 4π=β, 3π=γ.6、 求与k j i a ++=平行且满足1=⋅x a 的向量x .解:因x a //, 故可设{}λλλλ,,==a x ,再由1=⋅x a 得1=++λλλ,即31=λ,从而⎭⎬⎫⎩⎨⎧=31,31,31x .7、求与向量324=-+a i j k ,2=+-b i j k 都垂直的单位向量.解:=⨯=xy z x y zij kc a b a a a b b b 324112=--i j k =105+j k,||10==c 0||∴=c c c=.⎫±+⎪⎭j8、 在顶点为)2,1,1(-A 、)2,6,5(-B 和)1,3,1(-C 的三角形中,求三角形ABC 的面积以及AC 边上的高BD .解:{0,4,3},{4,5,0}AC AB =-=-,三角形ABC 的面积为,22516121521||21222=++=⨯=AB C A S ||||21,5)3(4||22BD S ==-+= ||521225BD ⋅⋅= .5||=∴BD9、 已知向量≠0a ,≠0b ,证明2222||||||()⨯=-⋅a b a b a b .解 2222||||||sin ()∧⨯=⋅a b a b ab 222||||[1cos ()]∧=⋅-a b ab 22||||=⋅a b 222||||cos ()∧-⋅a b ab 22||||=⋅a b 2().-⋅a b10、 证明:如果++=0a b c ,那么⨯=⨯=⨯b c c a a b ,并说明它的几何意义.证: 由++=0a b c , 有()++⨯=⨯=00a b c c c , 但⨯=0c c ,于是⨯+⨯=0a c b c ,所以⨯=-⨯=⨯b c a c c a . 同理 由()++⨯=0a b c a , 有 ⨯=⨯c a a b ,从而 ⨯=⨯=⨯b c c a a b .其几何意义是以三角形的任二边为邻边构成的平行四边形的面积相等.11、 已知向量23,3=-+=-+a i j k b i j k 和2=-c i j ,计算下列各式:(1)()()⋅-⋅a b c a c b (2)()()+⨯+a b b c (3)()⨯⋅a b c (4)⨯⨯a b c 解: (1)()()8(2)8(3)⋅-⋅=---+=a b c a c b i j i j k 824--j k .(2) 344,233+=-++=-+a b i j k b c i j k ,故()()+⨯+a b b c 344233=-=-i jk--j k . (3)231()231(2)(85)(2)11311312-⨯⋅=-⋅-=--+⋅-=-=--i jk a b c i j i j k i j 2. (4)由(3)知85,()851120⨯=--+⨯⨯=--=-i jka b i j k a b c 221++i j k .习 题 6—31、已知)3,2,1(A ,)4,1,2(-B ,求线段AB 的垂直平分面的方程. 解:设),,(z y x M 是所求平面上任一点,据题意有|,|||MB MA =()()()222321-+-+-z y x ()()(),412222-+++-=z y x化简得所求方程26270x y z -+-=.这就是所求平面上的点的坐标所满足的方程, 而不在此平面上的点的坐标都不满足这个方程,所以这个方程就是所求平面的方程.2、 一动点移动时,与)0,0,4(A 及xOy 平面等距离,求该动点的轨迹方程.解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则(,,)M x y z C MA z ∈⇔= 亦即z z y x =++-222)4( 0)4(22=+-∴y x 从而所求的轨迹方程为0)4(22=+-y x .3、 求下列各球面的方程:(1)圆心)3,1,2(-,半径为6=R ; (2)圆心在原点,且经过点)3,2,6(-;(3)一条直径的两端点是)3,1,4()5,32(--与;(4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)所求的球面方程为:36)3()1()2(222=-+++-z y x (2)由已知,半径73)2(6222=+-+=R ,所以球面方程为49222=++z y x(3)由已知,球面的球心坐标1235,1213,3242=-=-=+-==+=c b a , 球的半径21)35()31()24(21222=++++-=R ,所以球面方程为: 21)1()1()3(222=-+++-z y x(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以⎪⎪⎩⎪⎪⎨⎧=-=++=+=08160621008160k h g g l 解之得⎪⎪⎩⎪⎪⎨⎧=-=-==2210k g h l∴所求的球面方程为0424222=+--++z y x z y x .4、将yOz 坐标面上的抛物线22y z =绕z 旋转一周,求所生成的旋转曲面的方程. 解:222x y z +=(旋转抛物面) .5、将zOx 坐标面上的双曲线12222=-c z a x 分别绕x 轴和z 轴旋转一周,求所生成的旋转曲面的方程.解: 绕x 轴旋转得122222=+-c z y a x 绕z 轴旋转得122222=-+cz a y x .6、指出下列曲面的名称,并作图:(1)22149x z +=;(2)22y z =;(3)221x z += ;(4)22220x y z x ++-=; (5)222y x z +=;(6)22441x y z -+=;(7)221916x y z ++=;(8)222149x y z -+=-;(9)1334222=++z y x ;(10)2223122z y x +=+.解: (1)椭圆柱面;(2) 抛物柱面;(3) 圆柱面;(4)球面;(5)圆锥面;(6)双曲抛物面;(7)椭圆抛物面;(8)双叶双曲面;(9)为旋转椭球面;(10)单叶双曲面.7、指出下列方程在平面解析几何和空间解析几何中分别表示什么图形? (1)1+=x y ;(2)422=+yx ;(3)122=-y x ;(4)22x y =.解:(1)1+=x y 在平面解析几何中表示直线,在空间解析几何中表示平面; (2)422=+y x 在平面解析几何中表示圆周,在空间解析几何中表示圆柱面; (3)122=-y x 在平面解析几何中表示双曲线,在空间解析几何中表示双曲柱面;(4)y x22=在平面解析几何中表示抛物线,在空间解析几何中表示抛物柱面.8、 说明下列旋转曲面是怎样形成的?(1)1994222=++z y x ;(2)14222=+-z y x (3)1222=--z y x ;(4)222)(y x a z +=- 解:(1)xOy 平面上椭圆19422=+y x 绕x 轴旋转而成;或者 xOz 平面上椭圆22149+=x z 绕x 轴旋转而成(2)xOy 平面上的双曲线1422=-y x 绕y 轴旋转而成;或者 yOz 平面上的双曲线2214-=y z 绕y 轴旋转而成(3)xOy 平面上的双曲线122=-y x 绕x 轴旋转而成;或者 xOz 平面上的双曲线221x z -=绕x 轴旋转而成 (4)yOz 平面上的直线a y z +=绕z 轴旋转而成或者 xOz 平面上的直线z x a =+绕z 轴旋转而成.9、 画出下列各曲面所围立体的图形:(1)012243=-++z y x 与三个坐标平面所围成;(2)42,42=+-=y x x z 及三坐标平面所围成; (3)22=0,(0)=1z z =a a >,y =x,x +y 及0x =在第一卦限所围成;(4)2222,8z x y z x y =+=--所围. 解:(1)平面012243=-++z y x 与三个坐标平面围成一个在第一卦限的四面体; (2)抛物柱面24z x =-与平面24x y +=及三坐标平面所围成;(3)坐标面=0z 、0x =及平面(0)z =a a >、y=x 和圆柱面22=1x +y 在第一卦限所围成; (4)开口向上的旋转抛物面22z x y =+与开口向下的抛物面228z x y =--所围.作图略.习 题 6—41、画出下列曲线在第一卦限内的图形(1)⎩⎨⎧==21y x ;(2)⎪⎩⎪⎨⎧=---=0422y x y x z ;(3)⎪⎩⎪⎨⎧=+=+222222a z x ay x解:(1)是平面1x =与2y =相交所得的一条直线; (2)上半球面z 与平面0x y -=的交线为14圆弧; (3)圆柱面222x y a +=与222x z a +=的交线.图形略.2、分别求母线平行于x 轴及y 轴而且通过曲线⎪⎩⎪⎨⎧=-+=++0162222222y z x z y x 的柱面方程.解:消去x 坐标得16322=-z y ,为母线平行于x 轴的柱面;消去y 坐标得:162322=+z x ,为母线平行于y 轴的柱面.3、求在yOz 平面内以坐标原点为圆心的单位圆的方程(任写出三种不同形式的方程).解:⎩⎨⎧==+0122x z y ;⎩⎨⎧==++01222x z y x ; ⎪⎩⎪⎨⎧=+=++1122222z y z y x .4、试求平面20x -=与椭球面222116124x y z ++=相交所得椭圆的半轴与顶点.解:将椭圆方程22211612420x y z x ⎧++=⎪⎨⎪-=⎩化简为:221932y z x ⎧+=⎪⎨⎪=⎩,可知其为平面2=x 上的椭圆,半轴分别为3,3,顶点分别为)3,0,2(),3,0,2(),0,3,2(),0,3,2(--.5 、将下面曲线的一般方程化为参数方程(1)2229x y z y x ⎧++=⎨=⎩; (2)⎩⎨⎧==+++-04)1()1(22z z y x解:(1)原曲线方程即:⎪⎩⎪⎨⎧=+=199222z x xy ,化为⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤≤==tz t t y t x sin 3)20(cos 23cos 23π;(2))20(0sin 3cos 31πθθθ≤≤⎪⎪⎩⎪⎪⎨⎧==+=z y x .6、求螺旋线⎪⎩⎪⎨⎧===θθθb z a y a x sin cos 在三个坐标面上的投影曲线的直角坐标方程.解:⎩⎨⎧==+0222z a y x ;⎪⎩⎪⎨⎧==0sin x b z a y ;⎪⎩⎪⎨⎧==0cosy b z a x .7、指出下列方程所表示的曲线(1)222253⎧++=⎨=⎩x y z x (2)⎩⎨⎧==++13094222z z y x ;(3)⎩⎨⎧-==+-3254222x z y x ; (4)⎩⎨⎧==+-+408422y x z y ; (5)⎪⎩⎪⎨⎧=-=-0214922x z y . 解:(1)圆; (2)椭圆; (3)双曲线; (4)抛物线; (5)双曲线.8、 求曲线⎩⎨⎧==-+30222z x z y 在xOy 面上的投影曲线方程,并指出原曲线是何种曲线.解:原曲线即:⎩⎨⎧=-=3922z x y ,是位于平面3=z 上的抛物线,在xOy 面上的投影曲线为⎩⎨⎧=-=0922z x y9、 求曲线 ⎪⎩⎪⎨⎧==++211222z z y x 在坐标面上的投影. 解:(1)消去变量z 后得,4322=+y x 在xOy 面上的投影为,04322⎪⎩⎪⎨⎧==+z y x 它是中心在原点,半径为23的圆周.(2)因为曲线在平面21=z 上,所以在xOz 面上的投影为线段.;23||,021≤⎪⎩⎪⎨⎧==x y z (3)同理在yOz 面上的投影也为线段..23||,21≤⎪⎩⎪⎨⎧==y x z10、 求抛物面x z y =+22与平面 02=-+z y x 的交线在三个坐标面上的投影曲线方程.解: 交线方程为⎩⎨⎧=-+=+0222z y x x z y ,(1)消去z 得投影,004522⎩⎨⎧==-++z x xy y x(2)消去y 得投影2252400x z xz x y ⎧+--=⎨=⎩,(3)消去x 得投影22200y z y z x ⎧++-=⎨=⎩.习 题 6—51、写出过点()3,2,10M 且以{}1,2,2=n 为法向量的平面方程. 解:平面的点法式方程为()()()032212=-+-+-z y x .2、求过三点()()()01,0,0,1,0,0,0,1C B A 的平面方程.解:设所求平面方程为0=+++d cz by ax ,将C B A ,,的坐标代入方程,可得d c b a -===,故所求平面方程为1=++z y x .3、求过点()1,0,0且与平面1243=++z y x 平行的平面方程. 解:依题意可取所求平面的法向量为}2,4,3{=n ,从而其方程为()()()0120403=-+-+-z y x 即 2243=++z y x .4、求通过x 轴和点(4, -3, -1)的平面的方程.解:平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明它必通过原点, 即D =0. 因此可设这平面的方程为By +Cz =0.又因为这平面通过点(4, -3, -1), 所以有-3B -C =0, 或C =-3B . 将其代入所设方程并除以B (B 0), 便得所求的平面方程为y -3z =0.5、求过点)1,1,1(,且垂直于平面7=+-z y x 和051223=+-+z y x 的平面方程.解:},1,1,1{1-=n }12,2,3{2-=n 取法向量},5,15,10{21=⨯=n n n所求平面方程为化简得:.0632=-++z y x6、设平面过原点及点)1,1,1(,且与平面8x y z -+=垂直,求此平面方程.解: 设所求平面为,0=+++D Cz By Ax 由平面过点)1,1,1(知平0,A B C D +++=由平面过原点知0D =,{1,1,1},n ⊥- 0A B C ∴-+=,0A C B ⇒=-=,所求平面方程为0.x z -=7、写出下列平面方程:(1)xOy 平面;(2)过z 轴的平面;(3)平行于zOx 的平面;(4)在x ,y ,z 轴上的截距相等的平面.解:(1)0=z ,(2)0=+by ax (b a ,为不等于零的常数), (3)c y = (c 为常数), (4) a z y x =++ (0)a ≠.8、 求平行于0566=+++z y x 而与三个坐标面所围成的四面体体积为1的平面方程.解: 设平面为,1=++c z b y a x ,1=V 111,32abc ∴⋅=由所求平面与已知平面平行得,611161c b a ==化简得,61161c b a ==令tc t b t a t c b a 61,1,6161161===⇒===代入体积式 11111666t t t ∴=⋅⋅⋅ 1,6t ⇒=±,1,6,1===∴c b a 或1,6,1,a b c =-=-=-所求平面方程为666x y z ++=或666x y z ++=-.9、分别在下列条件下确定n m l ,,的值:(1)使08)3()1()3(=+-+++-z n y m x l 和016)3()9()3(=--+-++z l y n x m 表示同一平面; (2)使0532=-++z my x 与0266=+--z y lx 表示二平行平面; (3)使013=+-+z y lx 与027=-+z y x 表示二互相垂直的平面.解:(1)欲使所给的二方程表示同一平面,则:168339133-=--=-+=+-l n n m m l 即: ⎪⎩⎪⎨⎧=-+=-+=-+092072032n l m n l m ,解之得 97=l ,913=m ,937=n . (2)欲使所给的二方程表示二平行平面,则:6362-=-=m l ,所以4-=l ,3=m . (3)欲使所给的二方程表示二垂直平面,则:7230l ++=所以: 57l=-.10、求平面011=-+y x 与083=+x 的夹角; 解:设011=-+y x 与083=+x 的夹角为θ,则cos θ ∴ 4πθ=.11、 求点(2,1,1)到平面2240x y z +-+=的距离. 解:利用点到平面的距离公式可得933d ===.习 题 6—61、求下列各直线的方程:(1)通过点)1,0,3(-A 和点)1,5,2(-B 的直线; (2) 过点()1,1,1且与直线433221-=-=-z y x 平行的直线. (3)通过点)3,51(-M 且与z y x ,,三轴分别成︒︒︒120,45,60的直线; (4)一直线过点(2,3,4)-A ,且和y 轴垂直相交,求其方程. (5)通过点)2,0,1(-M 且与两直线11111-+==-z y x 和01111+=--=z y x 垂直的直线; (6)通过点)5,3,2(--M 且与平面02536=+--z y x 垂直的直线.解:(1)所求的直线方程为:015323-=-=++z y x 即:01553-=-=+z y x ,亦即01113-=-=+z y x . (2)依题意,可取L 的方向向量为{}4,3,2=s ,则直线L 的方程为413121-=-=-z y x . (3)所求直线的方向向量为:{}⎭⎬⎫⎩⎨⎧-=︒︒︒21,22,21120cos ,45cos ,60cos ,故直线方程为: 132511--=+=-z y x . (4)因为直线和y 轴垂直相交,所以交点为),0,3,0(-B 取{2,0,4},BA s −−→==所求直线方程.440322-=+=-z y x (5)所求直线的方向向量为:{}{}{}2,1,10,1,11,1,1---=-⨯-,所以,直线方程为:22111+==-z y x . (6)所求直线的方向向量为:{}5,3,6--,所以直线方程为: 235635x y z -++==--.2、求直线1,234x y z x y z ++=-⎧⎨-+=-⎩的点向式方程与参数方程.解 在直线上任取一点),,(000z y x ,取10=x ,063020000⎩⎨⎧=--=++⇒z y z y 解2,000-==z y .所求点的坐标为)2,0,1(-,取直线的方向向量{}{}3,1,21,1,1-⨯=s k j i kji34312111--=-=,所以直线的点向式方程为:,321041-+=--=-z y x 令102,413x y z t --+===--则所求参数方程: .3241⎪⎩⎪⎨⎧--=-=+=tz ty tx3、判别下列各对直线的相互位置,如果是相交的或平行的直线求出它们所在的平面,如果相交时请求出夹角的余弦.(1)⎩⎨⎧=-+=+-0623022y x z y x 与⎩⎨⎧=-+=--+01420112z x z y x ;(2)⎪⎩⎪⎨⎧--=+==212t z t y tx 与142475x y z --+==-. 解:(1)将所给的直线方程化为标准式为:4343223z y x =-=--43227-=--=-z y x 234234-==-- ∴二直线平行.又点)0,43,23(与点(7,2,0)在二直线上,∴向量⎭⎬⎫⎩⎨⎧=⎭⎬⎫⎩⎨⎧--0,45,2110,432,237平行于二直线所确定的平面,该平面的法向量为:{}{}19,22,50,45,2114,3,2--=⎭⎬⎫⎩⎨⎧⨯-,从而平面方程为:0)0(19)2(22)7(5=-+---z y x ,即0919225=++-z y x .(2)因为121475-≠≠-,所以两直线不平行,又因为0574121031=--=∆,所以两直线相交,二直线所决定的平面的法向量为{}{}{}1,1,35,7,412,1--=-⨯-,∴二直线所决定的平面的方程为:330x y z -++=.设两直线的夹角为ϕ,则cos ϕ==4、判别下列直线与平面的相关位置: (1)37423z y x =-+=--与3224=--z y x ;(2)723zy x =-=与8723=+-z y x ; (3)⎩⎨⎧=---=-+-01205235z y x z y x 与07734=-+-z y x ;(4)⎪⎩⎪⎨⎧-=+-==4992t z t y t x 与010743=-+-z y x .解(1) 0)2(3)2()7(4)2(=-⨯+-⨯-+⨯-,而017302)4(234≠=-⨯--⨯-⨯,所以,直线与平面平行.(2) 0717)2(233≠⨯+-⨯-⨯,所以,直线与平面相交,且因为772233=--=,∴直线与平面垂直. (3)直线的方向向量为:{}{}{}1,9,51,1,22,3,5=--⨯-, 0179354=⨯+⨯-⨯,所以直线与平面平行或者直线在平面上;取直线上的点)0,5,2(--M ,显然点在)0,5,2(--M 也在平面上(因为4(2)3(5)70⨯--⨯--=),所以,直线在平面上.(4)直线的方向向量为{}9,2,1-, 097)2(413≠⨯+-⨯-⨯∴直线与平面相交但不垂直.5、验证直线l :21111-=-=-z y x 与平面π:032=--+z y x 相交,并求出它的交点和交角. 解: 032111)1(2≠-=⨯-⨯+-⨯∴直线与平面相交.又直线的参数方程为:⎪⎩⎪⎨⎧+=+=-=t z t y tx 211设交点处对应的参数为0t ,∴03)21()1()(2000=-+-++-⨯t t t ∴10-=t ,从而交点为(1,0,-1). 又设直线l 与平面π的交角为θ,则:21662111)1(2sin =⨯⨯-⨯+-⨯=θ,∴6πθ=.6、确定m l ,的值,使: (1)直线13241zy x =+=-与平面0153=+-+z y lx 平行; (2)直线⎪⎩⎪⎨⎧-=--=+=135422t z t y t x 与平面076=-++z my lx 垂直.解:(1)欲使所给直线与平面平行,则须:015334=⨯-⨯+l 即1l =-. (2)欲使所给直线与平面垂直,则须:3642=-=m l ,所以:8,4-==m l .7、求下列各平面的方程: (1)通过点)1,0,2(-p ,且又通过直线32121-=-=+z y x 的平面; (2)通过直线115312-+=-+=-z y x 且与直线⎩⎨⎧=--+=---052032z y x z y x 平行的平面; (3)通过直线223221-=-+=-z y x 且与平面0523=--+z y x 垂直的平面;(4). 求过点(2,1,0)M 与直线2335x t y t z t =-⎧⎪=+⎨⎪=⎩垂直的平面方程.解:(1)因为所求的平面过点)1,0,2(-p 和)2,0,1(-'p ,且它平行于向量{}3,1,2-,所以要求的平面方程为:03331212=--+-z y x , 即015=-++z y x .(2)已知直线的方向向量为{}{}{}2,1,11,2,13,1,5--⨯-=,∴平面方程为:2311510315x y z -++--=,即3250x y z +--= (3)所求平面的法向量为{}{}{}13,8,11,2,32,3,2-=-⨯-,∴平面的方程为:0)2(13)2(8)1(=--+--z y x ,即09138=+--z y x .(4).所求平面的法向量为{}2,3,1,则平面的方程为:2(2)3(1)(0)0x y z -+-+-=, 即 2370x y z ++-=.8、求点(4,1,2)M 在平面1x y z ++=上的投影.解: 过点(4,1,2)M 作已知平面的垂线,垂线的方向向量就是已知平面的法向量(1,1,1),所以垂线方程为412111x y z ---==,此垂线与已知平面的交点即为所求投影.为了求投影,将垂线方程化为参数方程412x t y t z t =+⎧⎪=+⎨⎪=+⎩,代入平面方程求得2t =-,故投影为(2,1,0)-. 9、求点)1,3,2(-p 到直线⎩⎨⎧=++-=++-0172230322z y x z y x 的距离.解:直线的标准方程为:2251211-+==-z y x 所以p 到直线的距离 1534532025)2(1212392292421243222222===-++-+--+-=d .10、设0M 是直线L 外一点,M 是直线L 上一点,且直线的方向向量为s ,试证:点0M 到直线L 的距离为d =.证:设0M M 与L 的夹角为θ,一方面由于0sin d M M θ=;另一方面,00sin M M s M M s θ⨯=,所以d =.11、求通过平面0134=-+-z y x 和025=+-+z y x 的交线且满足下列条件之一的平面: (1)通过原点; (2)与y 轴平行;(3)与平面0352=-+-z y x 垂直. 解: (1)设所求的平面为:0)25()134(=+-++-+-z y x z y x λ 欲使平面通过原点,则须:021=+-λ,即21=λ,故所求的平面方程为 0)25()134(2=+-++-+-z y x z y x 即:0539=++z y x .(2)同(1)中所设,可求出51=λ.故所求的平面方程为 0)25()134(5=+-++-+-z y x z y x 即:031421=-+z x .(3)如(1)所设,欲使所求平面与平面0352=-+-z y x 垂直,则须:0)3(5)51()4(2=-++--+λλλ从而3=λ,所以所求平面方程为05147=++y x .12、求直线⎩⎨⎧=++-=--+0101z y x z y x 在平面0=++z y x 上的投影直线的方程.解:应用平面束的方法.设过直线⎩⎨⎧=++-=--+0101z y x z y x 的平面束方程为0)1()1(=++-+--+z y x z y x λ即01)1()1()1(=-++-+-++λλλλz y x这平面与已知平面0=++z y x 垂直的条件是01)1(1)1(1)1(=⋅+-+⋅-+⋅+λλλ,解之得1-=λ代入平面束方程中得投影平面方程为10y z --=,所以投影直线为⎩⎨⎧=++=--001z y x z y .13、请用异于本章第五节例7的方法来推导点到平面的距离公式.证:设),,(0000z y x P 是平面π:0+++=Ax By Cz D 外的一点,下面我们来求点0P 到平面π的距离. 过0P 作平面π的垂线L :000x x y y z z A B C---==,设L 与平面π的交点为(,,)P x y z ,则P 与0P 之间的距离即为所求.因为点(,,)P x y z 在L 上,所以000x x Aty y Bt z z Ct-=-=-=⎧⎪⎨⎪⎩,而(,,)P x y z 在平面π上,则000()()()0A x At B y Bt C z Ct D ++++++=000222Ax By Cz A B t DC ⇒=-+++++,故000222Ax By Cz Dd t A B C+++===++=.习 题 6—7飞机的速度:假设空气以每小时32公里的速度沿平行y 轴正向的方向流动,一架飞机在xoy 平面沿与x 轴正向成π6的方向飞行,若飞机相对于空气的速度是每小时840公里,问飞机相对于地面的速度是多少?解:如下图所示,设OA 为飞机相对于空气的速度,AB 为空气的流动速度,那么OB 就是飞机相对于地面的速度.840cos 840sin 4203420,3266OA i j i j AB j ππ=⋅+⋅=+=所以, 24203452,(420856.45OB i j OB =+=≈千米/小时.复习题A一 、判断正误:1、 若c b b a ⋅=⋅且≠0b ,则c a =; ( ⨯ )解析 c b b a ⋅-⋅=)(c a b -⋅=0时,不能判定=b 0或c a =.例如i a =,j b =,k c =,有⋅=⋅=0a b b c ,但c a ≠.2、 若c b b a ⨯=⨯且≠0b ,则c a =; ( ⨯ )解析 此结论不一定成立.例如i a =,j b =,)(j i c +-=,则k j i b a =⨯=⨯,k j i j c b =+-⨯=⨯)]([,c b b a ⨯=⨯,但c a ≠.3 、若0=⋅c a ,则=0a 或=0c ; ( ⨯ ) 解析 两个相互垂直的非零向量点积也为零.4、 a b b a ⨯-=⨯. ( √ ) 解析 这是叉积运算规律中的反交换律.二、选择题:1 、 当a 与b 满足( D )时,有b a b a +=+;(A)⊥a b ; (B)λ=a b (λ为常数); (C)a ∥b ; (D)⋅=a b a b .解析 只有当a 与b 方向相同时,才有a +b =a +b .(A)中a ,b 夹角不为0,(B),(C)中a ,b 方向可以相同,也可以相反.2、下列平面方程中,方程( C )过y 轴;图6-1 空所流动与飞机飞行速度的关系(A) 1=++z y x ; (B) 0=++z y x ; (C) 0=+z x ; (D) 1=+z x . 解析 平面方程0=+++D Cz By Ax 若过y 轴,则0==D B ,故选C .3 、在空间直角坐标系中,方程2221y x z --=所表示的曲面是( B );(A) 椭球面; (B) 椭圆抛物面; (C) 椭圆柱面; (D) 单叶双曲面.解析 对于曲面2221y x z --=,垂直于z 轴的平面截曲面是椭圆,垂直于x 轴或y 轴的平面截曲面是开口向下的抛物线,根据曲面的截痕法,可以判断曲面是椭圆抛物面.4、空间曲线⎩⎨⎧=-+=5,222z y x z 在xOy 面上的投影方程为( C );(A)722=+y x ; (B)⎩⎨⎧==+5722z y x ; (C) ⎩⎨⎧==+0722z y x ;(D)⎩⎨⎧=-+=0222z y x z解析 曲线⎩⎨⎧==+5722z y x 与xOy 平面平行,在xOy 面上的投影方程为⎩⎨⎧==+0722z y x .5 、直线11121-+==-z y x 与平面1=+-z y x 的位置关系是( B ). (A) 垂直; (B) 平行; (C) 夹角为π4; (D) 夹角为π4-.解析 直线的方向向量s ={2,1,-1},平面的法向量n ={1,-1,1},n s ⋅=2-1-1=0,所以,s ⊥n ,直线与平面平行.三、填空题:1、若2=b a ,π()2=a,b ,则=⨯b a 2 ,=⋅b a 0 ; 解 =⨯b a b a sin()a,b π22=2,=⋅b a b a cos()a,b π22=0.2、与平面062=-+-z y x 垂直的单位向量为 }2,1,1{66-±; 解 平面的法向量 n ={1,-1,2}与平面垂直,其单位向量为0n =411++=6,所以,与平面垂直的单位向量为}2,1,1{66-±.3、过点)2,1,3(--和)5,0,3(且平行于x 轴的平面方程为 057=-+z y ;解 已知平面平行于x 轴,则平面方程可设为 0=++D Cz By ,将点 (-3,1,-2)和(3,0,5)代入方程,有{20,50,B C D C D -+=+= ⇒ 7,51,5B D C D ⎧=-⎪⎨⎪=-⎩得 05157=+--D Dz Dy ,即 057=-+z y .4、过原点且垂直于平面022=+-z y 的直线为z yx -==20; 解 直线与平面垂直,则与平面的法向量 n ={0,2,-1}平行,取直线方向向量s =n ={0,2,-1},由于直线过原点,所以直线方程为z yx -==20 .5、曲线⎩⎨⎧=+=1,222z y x z 在xOy 平面上的投影曲线方程为 ⎩⎨⎧==+.0,1222z y x解: 投影柱面为 1222=+y x ,故 ⎩⎨⎧==+0,1222z y x 为空间曲线在xOy 平面上的投影曲线方程.四、解答题:1、 已知}1,2,1{-=a ,}2,1,1{=b ,计算(a) b a ⨯; (b) ()()-⋅+2a b a b ; (c) 2b a -;解: (a) b a ⨯=211121-kj i 1,3}5,{--=. (b) {2,4,2}{1,1,2}{1,5,0}2a b -=--=-,1,3}{2,{1,1,2}2,1}{1,-=+-=+b a , 所以()()-⋅+2a b a b 7}3,1,2{}0,5,1{=-⋅-=.(c) 1}3,{0,{1,1,2}2,1}{1,--=--=-b a ,所以2b a -10)19(2=+=.2、已知向量21P P 的始点为)5,2,2(1-P ,终点为)7,4,1(2-P ,试求:(1)向量21P P 的坐标表示; (2)向量21P P 的模;(3)向量21P P 的方向余弦; (4)与向量21P P 方向一致的单位向量.解: (1) }2,6,3{}57),2(4,21{21-=-----=P P ;74926)3(222==++-=;(3) 21P P 在z y x ,,三个坐标轴上的方向余弦分别为362cos ,cos ,cos 777αβγ=-==;(4)k j i k j i 7276737263)(21++-=++-==P P.3、设向量{}1,1,1=-a ,{}1,1,1=-b ,求与a 和b 都垂直的单位向量.解: 令{}1110,2,2111=⨯=-=-i j kc a b,01⎧==⎨⎩c c c ,故与a 、b都垂直的单位向量为0⎧±=±⎨⎩c .4、向量d垂直于向量]1,3,2[-=a和]3,2,1[-=b ,且与]1,1,2[-=c的数量积为6-,求向量d解: d垂直于a与b ,故d平行于b a⨯,存在数λ使()b a d⨯=λ⨯-=]1,3,2[λ]3,2,1[-]7,7,7[λλλ--=因6-=⋅c d,故6)7(1)7()1(72-=-⨯+-⨯-+⨯λλλ, 73-=λ]3,3,3[-=∴d.5、求满足下列条件的平面方程:(1)过三点)2,1,0(1P ,)1,2,1(2P 和)4,0,3(3P;(2)过x 轴且与平面025=++z y x 的夹角为π3. 解 (1)解1: 用三点式.所求平面的方程为0241003211201210=---------z y x ,即01345=+--z y x . 解2:}1,1,1{-=}2,1,3{-=,由题设知,所求平面的法向量为k j i kj in 452131113121--=--=⨯=P P P P , 又因为平面过点)2,1,0(1P ,所以所求平面方程为0)2(4)1(5)0(=-----z y x ,即01345=+--z y x .解3: 用下面的方法求出所求平面的法向量},,{C B A =n ,再根据点法式公式写出平面方程也可. 因为3121,P P P P ⊥⊥n n ,所以{0,320,A B C A B C +-=-+=解得A C A B 4,5-=-=,于是所求平面方程为0)2(4)1(5)0(=-----z A y A x A ,即 01345=+--z y x .(2)因所求平面过x 轴,故该平面的法向量},,{C B A =n 垂直于x 轴,n 在x 轴上的投影0=A ,又平面过原点,所以可设它的方程为0=+Cz By ,由题设可知0≠B (因为0=B 时,所求平面方程为0=Cz 又0≠C ,即0=z .这样它与已知平面025=++z y x 所夹锐角的余弦为π1cos 32=≠=,所以0≠B ),令C B C'=,则有0='+z C y ,由题设得 22222212)5(10121503cos ++'++⨯'+⨯+⨯=πC C , 解得3='C 或13C '=-,于是所求平面方程为03=+z y 或03=-z y .6、 一平面过直线⎩⎨⎧=+-=++04,05z x z y x 且与平面01284=+--z y x 垂直,求该平面方程;解法1: 直线⎩⎨⎧=+-=++04,05z x z y x 在平面上,令x =0,得 54-=y ,z =4,则(0,-54,4)为平面上的点.设所求平面的法向量为n =},,{C B A ,相交得到直线的两平面方程的法向量分别为 1n ={1,5,1},2n ={1,0,-1},则直线的方向向量s =1n ⨯2n =101151-kj i ={-5,2,-5},由于所求平面经过直线,故平面的法向量与直线的方向向量垂直,即⋅n s ={-5,2,-5}•},,{C B A =C B A 525-+-=0,因为所求平面与平面01284=+--z y x 垂直,则}8,4,1{},,{--⋅C B A =C B A 84--=0,解方程组{5250,480,A B C A B C -+=--= ⇒ 2,5,2A CBC =-⎧⎪⎨=-⎪⎩ 所求平面方程为 0)4()54(25)0(2=-++---z C y C x C ,即012254=+-+z y x .解法2: 用平面束(略)7、求既与两平面1:43x z π-=和2:251x y z π--=的交线平行,又过点(3,2,5)-的直线方程.解法1:{}11,0,4=-n ,{}22,1,5=--n ,{}124,3,1s =⨯=---n n ,从而根据点向式方程,所求直线方程为325431x y z +--==---,即325431x y z +--==. 解法2:设{},,s m n p =,因为1⊥s n ,所以40m p -=;又2⊥s n ,则250m n p --=,可解4,3m p n p ==,从而0p ≠.根据点向式方程,所求直线方程为32543x y z p p p +--==,即325431x y z +--==. 解法3:设平面3π过点(3,2,5)-,且平行于平面1π,则{}311,0,4==-n n 为3π的法向量,从而3π的方程为1(3)0(2)4(5)0x y z ⋅++⋅--⋅-=,即4230x z -+=.同理,过已知点且平行于平面2π的平面4π的方程为25330x y z --+=.故所求直线的方程为423025330x z x y z -+=⎧⎨--+=⎩.8、 一直线通过点)1,2,1(A ,且垂直于直线11231:+==-z y x L ,又和直线z y x ==相交,求该直线方程;解: 设所求直线的方向向量为{,,}m n p =s ,因垂直于L ,所以320m n p ++=;又因为直线过点)1,2,1(A ,则所求直线方程为 p z n y m x 121-=-=-,联立121,①,②320,③x y z m n p x y z m n p ---⎧==⎪⎨==⎪++=⎩由①,令λ=-=-=-p z n y m x 121,则有⎪⎩⎪⎨⎧+=+=+=,1,2,1p z n y m x λλλ代入方程②有{12,11,m n m p λλλλ+=++=+ 可得p m =,代入③解得p n 2-=, 因此,所求直线方程为112211-=--=-z y x .9、 指出下列方程表示的图形名称:(a) 14222=++z y x ;(b) z y x 222=+;(c) 22y x z +=;(d) 022=-y x ;(e) 122=-y x ; (f) ⎩⎨⎧=+=222z y x z .解: (a) 绕y 轴旋转的旋转椭球面.(b) 绕z 轴旋转的旋转抛物面. (c) 绕z 轴旋转的锥面. (d) 母线平行于z 轴的两垂直平面:y x =,y x -=. (e) 母线平行于z 轴的双曲柱面. (f) 旋转抛物面被平行于XOY 面的平面所截得到的圆,半径为2,圆心在(0,0,2)处.10、求曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影并作其图形.解: 将所给曲面方程联立消去z ,就得到两曲面交线C 的投影柱面的方程122=+y x ,所以柱面与xOy 平面的交线⎩⎨⎧==+'01:22z y x C 所围成的区域221+≤x y 即为曲面22z x y =+与222()z x y =-+所围立体在xOy 平面上的投影(图略).复习题B1、设4=a ,3=b ,()6π=a,b ,求以2+a b 和3-a b 为邻边的平行四边形的面积.解:(2)(3)326A =+⨯-=⨯-⨯+⨯-⨯a b a b a a a b b a b b325=-⨯-⨯=-⨯a b a b a b 15sin()543302=⋅=⨯⨯⨯=a b a,b .2、设(3)(75)+⊥-a b a b ,(4)(72)-⊥-a b a b ,求()a,b . 解: 由已知可得:(3)(75)0+⋅-=a b a b ,(4)(72)0-⋅-=a b a b 即 22715160-+⋅=a b a b ,2278300+-⋅=a b a b .这可看成是含三个变量a 、b 及⋅a b 的方程组,可将a 、b 都用⋅a b 表示,即==a b 1cos()22⋅⋅===⋅a b a b a,b a b a b ,()3π=a,b .3、求与}3,2,1{-=a 共线,且28=⋅b a 的向量b .解 由于b 与a 共线,所以可设}3,2,{λλλλ-==a b ,由28=⋅b a ,得28}3,2,{}3,2,1{=-⋅-λλλ, 即2894=++λλλ,所以2=λ,从而}6,4,2{-=b .4、 已知}0,1,1{},2,0,1{=-=b a ,求c ,使b c a c ⊥⊥,且6=c .解法1: 待定系数法.设},,{z y x =c ,则由题设知0,0=⋅=⋅b c a c 及6=c ,所以有①20②③6x z ⎧-=⎪=由①得2xz = ④,由②得x y -= ⑤,将④和⑤代入③得62)(222=⎪⎭⎫⎝⎛+-+x x x ,解得2,4,4±==±=z y x ,于是 }2,4,4{-=c 或}2,4,4{--=c .解法2: 利用向量的垂直平行条件,因为b c a c ⊥⊥,,所以c ∥b a ⨯.设λ是不为零的常数,则k j i k j i b a c λλλλλ+-=-=⨯=22011201)(,因为6=c ,所以6]1)2(2[2222=+-+λ,解得2±=λ,所以}2,4,4{-=c 或{4,4,2}=--c .解法3: 先求出与向量b a ⨯方向一致的单位向量,然后乘以6±.k j i kji b a +-=-=⨯22011201,31)2(2222=+-+=⨯b a ,故与b a ⨯方向一致的单位向量为}1,2,2{31-.于是}1,2,2{36-±=c ,即}2,4,4{-=c 或}2,4,4{--=c .5、求曲线222x y R x y z ⎧+=⎨++=⎩的参数式方程.解: 曲线参数式方程是把曲线上任一点(,,)P x y z 的坐标,,x y z 都用同一变量即参数表示出来,故可令cos ,sin x R t y R t ==,则(cos sin )z R t t =-+.6、求曲线22:2z L x y x⎧⎪=⎨+=⎪⎩xOy 面上及在zOx 面上的投影曲线的方程.解: 求L 在xOy 面上的投影的方程,即由L 的两个方程将z 消去,即得L 关于xOy 面的投影柱面的方程222x y x +=则L 在xOy 面上的投影曲线的方程为2220x y xz ⎧+=⎨=⎩. 同理求L 在zOx 面上的投影的方程,即由L 的两个方程消去y ,得L 关于zOx 面的投影柱面的方程z =L 在zOx面上的投影曲线方程为0z y ⎧=⎪⎨=⎪⎩.7、已知平面π过点0(1,0,1)M -和直线1211:201x y z L ---==,求平面π的方程. 解法1: 设平面π的法向量为n ,直线1L 的方向向量1(2,0,1)=s ,由题意可知1⊥n s ,(2,1,1)M 是直线1L 上的一点,则0(1,1,2)M M =在π上,所以0MM ⊥n ,故可取10MM =⨯n s (1,3,2)=--.则所求平面的点法式方程为1(1)3(0)2(1)0x y z ⋅-+⋅--⋅+=,即3230x y z +--=为所求平面方程.解法2: 设平面π的一般方程为0Ax By Cz D +++=,由题意可知,π过点0(1,0,1)M -,故有0A C D -+=, (1)在直线1L 上任取两点12(2,1,1),(4,1,2)M M ,将其代入平面方程,得20A B C D +++=, (2)420A B C D +++=, (3)由式(1)、(2)、(3)解得3,2,3B A C A D A ==-=-,故平面π的方程为3230x y z +--=.解法3: 设(),,M x y z 为π上任一点.由题意知向量0M M 、01M M 和1s 共面,其中()12,1,1M 为直线1L 上的点,1(2,0,1)=s 为直线1L 的方向向量.因此0011()0M M M M ⨯⋅=s ,故平面π的方程为1012110110201x y z --+--+=,即3230x y z +--=为所求平面方程.8、求一过原点的平面π,使它与平面0:π4830x y z -+-=成4π角,且垂直于平面1:π730x z ++=. 解: 由题意可设π的方程为0Ax By Cz ++=,其法向量为(,,)A B C =n ,平面0π的法向量为0(1,4,8)=-n ,平面1π的法向量为1(7,0,1)=n ,由题意得00||cos 4||||π⋅=⋅n n n n ,即=(1) 由10⋅=n n ,得70A C +=,将7C A =-代入(12=,解得20,B A =或10049B A =-,则所求平面π的方程为2070x y z +-= 或 491003430x y z --=.9、求过直线1L :0230x y z x y z ++=⎧⎨-+=⎩且平行于直线2L :23x y z ==的平面π的方程.解法1: 直线1L 的方向向量为1=s 111(4,1,3)213==---i j k,直线2L 的对称式方程为632x y z==,方向向量为2(6,3,2)=s ,依题意所求平面π的法向量1⊥n s 且2⊥n s ,故可取12=⨯n s s ,则413(7,26,18)632=--=-i j kn ,又因为1L 过原点,且1L 在平面π上,从而π也过原点,故所求平面π的方程为726180x y z -+=.解法2: 设所求平面π为 (23)0x y z x y z λ+++-+=,即(12)(1)(13)0x y z λλλ++-++=, 其法向量为(12,1,13)λλλ=+-+n ,由题意知2⊥n s ,故26(12)3(1)2(13)0λλλ⋅=++-++=n s ,得1115λ=-,则所求平面π的方程为726180x y z -+=.另外,容易验证230x y z -+=不是所求的平面方程.10、求过直线L :⎩⎨⎧=+-+=+-+0185017228z y x z y x 且与球面1222=++z y x 相切的平面方程解: 设所求平面为 ()018517228=+-+++-+z y x z y x λ,即 (15)(288)(2)170x y z λλλλ+++-+++=,由题意:球心)0,0,0(到它的距离为1,即1)2()828()51(17222=--+++++λλλλ解得:89250-=λ 或 2-=λ 所求平面为:42124164387=--z y x 或 543=-y x11、求直线L :11111--==-z y x 在平面π:012=-+-z y x 上投影直线0L 的方程,并求直线0L 绕y 轴旋转一周而成的曲面方程.解: 将直线L :11111--==-z y x 化为一般方程 ⎩⎨⎧=-+=--0101y z y x ,设过直线L 且与平面π垂直的平面方程为()011=-++--y z y x λ,则有02)1(1=+--λλ,即2λ=-,平面方程为0123=+--z y x ,这样直线0L 的方程⎩⎨⎧=-+-=+--0120123z y x z y x 把此方程化为:⎩⎨⎧--==)1(221y z yx ,因此直线0L 绕y 轴旋转一周而成的曲面方程为:22221(2)(1)2x z y y ⎛⎫+=+-- ⎪⎝⎭即 0124174222=-++-y z y x .12、求过点)1,0,3(-A 且平行于平面1π:3450x y z --+=,又与直线1:2x L =1111y z -+=-相交的直线L 的方程.解法1: 用点向式方程.因为直线L 平行于平面1π,故直线L 的方向向量},,{p n m =s 垂直于平面1π的法向量}1,4,3{--=n ,从而得043=--p n m ①,又直线1L 的方向向量为}1,1,2{-=s ,)1,1,0(-B 是直线1L 上一点,)1,0,3(-A 是直线L 上一点,根据题设:直线L 与直线1L 相交,所以1s,s 及AB 共面,因此1()2110312m n pAB ⨯⋅=-=-s s ,即0=-+-p n m ②,将①和②联立解得p n p m 4,5-=-=,由此得145p n m =-=-,于是所求直线方程为11453-=-=-+z y x .。
中国人民大学出版社(第四版)高等数学一第5章课后习题详解
高等数学一第5章课后习题详解课后习题全解习题5-1★★1.利用定积分的定义计算由抛物线21y x =+,直线x a =,x b =()b a >及横轴所围成的图形的面积知识点:定积分的定义及几何意义 思路:根据求定积分的三步骤做 解:将[],a b 分成n 等分,取(1,2,)i i n ξ=为第i 个小区间1[(),()]i ia b a a b a n n-+-+-的右端点,则,i b a x n λ-=∆=,i b aa i nξ-=+ 显然, 0,n λ→⇔→∞于是根据定积分的几何意义,该图形面积lim ()nbi i ai A ydx y x λξ→===∆∑⎰ 21lim [()1]nn i b a b aa in n→∞=--=++∑ 22221()lim [12]n n i b a b a b a a ai i n n n→∞=---=+++∑222211()lim [(1)2]nnn i i b a b a b a n a a i in n n →∞==---=+++∑∑22232()(1)()1lim{()[1(1)(21)]}26n a b a n n b a b a a n n n n n →∞-+-=-+++++221()11()lim[1()(1)(1)(2)]6n b a b a a a b a n n n→∞-=-++-++++ 222()()[1]3b a b a a ab a -=-++-+33().3b a b a -=+- ★★2.利用定积分的定义计算下列积分:知识点:定积分的定义 思路:根据求定积分的三步骤做(1)baxdx ⎰()a b <.解:易见函数[](),f x x C a b =∈,从而可积,将[],a b 分成n 等分,则,i b ax nλ-=∆=于是0,n λ→⇔→∞;取(1,2,)i i n ξ=为第i 个小区间的右端点,则,0,1,2,,1,ib aa ii n nξ-=+=-所以110lim ()lim ()n n bi i an i i b a b axdx f x a in nλξ--→→∞==--=∆=+∑∑⎰1()lim{[(0121)]}n b ab a na n n n→∞-=-+++++-2(1)()lim[]2n b a n n b a a n →∞--=-+1()lim[(1)]2n b a b a a n→∞-=-+-221()()().22b a b a a b a -=-+=-(2)1ln exdx ⎰解:用分点(0,1,,)i ni x e i n ==划分区间[]1,e :11,1,2,,i i nni i i x x x e e i n --∆=-=-=, 取i ξ是区间右端点,则 ,()ln()ln ,i i nnii i i i x e f e nξξξ=====作和,并取极限得:111ln lim ()lim ()i i nnenn i i n n i i i xdx f x e e nξ-→∞→∞===∆=-∑∑⎰111111lim{[()]}i i i nn n n nn i i i i e e e n n n --→∞==-=-+∑∑11111(1)lim lim (1)i nn n n i n e e e e n n e -→∞→∞=-=-=--∑111(1)lim ()1n n e e n e →∞=--- 记()1xx g x e =-,则当0x →时,()g x 是0型的,由洛必达法则, 有 001lim lim 11x xx x x e e →→==---从而,当n →+∞时,有111lim 11n nne →+∞=--,故1ln (1) 1.exdx e e =+-=⎰★3.利用定积分的几何意义,说明下列等式:(1)121xdx =⎰.知识点:定积分的几何意义思路:定积分的几何意义为被积函数与边界所形成曲边梯形的面积解:等式左边为直线2y x =与x 轴和1x =三条直线所围成的面积,该面积等于11212==等式右边. (2)sin 0xdx ππ-=⎰解: 等式左边为正弦曲线sin y x =与x 轴在x π=及x π=-之间所围成的面积,其左右两边面积互为相反数. 则sin ()0xdx A A ππ-=-+==⎰等式右边★★4.用定积分的几何意义求a⎰(0)b >的值.知识点:定积分的几何意义思路:定积分的几何意义为被积函数与边界所形成曲边梯形的面积 解:=是以2a b +为圆心,2b a-为半径的上半圆,其面积为:2221()()2228b a b a S r πππ--===由定积分的几何意义知:2().8ab a π-=⎰★★★5.试将和式的极限112lim p p pp n n n +→∞+++(0)p >表示成定积分.知识点:定积分的定义思路:根据定积分的定义推导过程可知,求和的极限公式可表示为定积分解: 112112limlim [()()()]p p p p pp p n n n n n n n nn +→∞→∞+++=+++11lim ()n pn i i n n→∞==∑设()p f x x =,则用定义求解1()f x dx ⎰为:①、等分[0,1]为n 个小区间:11[,], 1,2,, i i ii n x n nn-=∆=②、求和:取区间1[,]i i n n -上的右端点为i ξ,即i in ξ=,作和:111()n ni i i i i f x nn ξ==∆=⨯∑∑③、求极限:011111lim()lim ()lim ()nnn p pi i n n i i i i i f x nn n n λξ→→∞→∞===∆=⨯=∑∑∑∴1101121lim lim ()p p p n pp p n n i n i x dx n n n+→∞→∞=+++==∑⎰ ★★★6.有一河,宽为200米,从一岸到正对岸每隔20米测量一次水深,测得数据如下:试用梯形公式求此河横截面面积的近似值.知识点:定积分的几何意义思路:由定积分定义知:求定积分(曲边梯形面积)的第二步:用小矩形面积近似代替小曲边梯形面积,即1()()ii x i i x f x f x dx ξ-∆≈⎰,若用小梯形面积近似代替小曲边梯形面积则为:111[()()]()2i i x i i i x f x f x x f x dx --+∆≈⎰。
高等数学教材第四版答案
高等数学教材第四版答案第一章:导数与微分1. 函数与极限1.1 极限的概念与性质1.2 极限的运算法则1.3 无穷小与无穷大1.4 两个重要极限2. 导数与微分的概念2.1 导数的定义2.2 导数的几何意义与物理意义2.3 导数的性质2.4 微分的概念及其计算3. 导数的应用3.1 高阶导数3.2 隐函数求导3.3 参数方程求导3.4 反函数求导3.5 极值与最值问题第二章:微分学与中值定理1. 中值定理1.1 罗尔中值定理1.2 拉格朗日中值定理1.3 柯西中值定理2. 函数的单调性与曲线的凹凸性2.1 函数的单调性2.2 曲线的凹凸性2.3 用导数证明函数的单调性和曲线的凹凸性3. 导数的应用3.1 泰勒公式3.2 麦克劳林公式3.3 曲线的渐近线3.4 曲率与曲率半径第三章:不定积分1. 原函数与不定积分1.1 原函数的概念与性质1.2 不定积分的概念1.3 不定积分的运算法则2. 基本积分表2.1 一般函数的基本积分2.2 有理函数的基本积分3. 不定积分的计算方法3.1 分部积分法3.2 代换积分法3.3 有理函数的积分3.4 三角函数的积分3.5 反三角函数的积分第四章:定积分1. 定积分的概念与性质1.1 定积分的几何意义与物理意义 1.2 定积分的性质1.3 定积分的计算方法2. 牛顿—莱布尼兹公式2.1 原函数与定积分的关系 2.2 牛顿—莱布尼兹公式2.3 定积分的应用3. 定积分的计算方法3.1 分割求和法3.2 牢记的基本公式3.3 换元法与分部积分法3.4 定积分的应用3.5 特殊积分的计算第五章:多元函数微积分学1. 二元函数的极限与连续1.1 二元函数的极限1.2 二元函数的连续性1.3 混合偏导数与高阶偏导数2. 二重积分2.1 二重积分的概念与性质2.2 二重积分的计算方法2.3二重积分的应用3. 三重积分与曲线曲面积分3.1 三重积分的概念与性质3.2 三重积分的计算方法3.3 曲线曲面积分的概念与性质 3.4 曲线曲面积分的计算方法 3.5 曲线曲面积分的应用第六章:无穷级数1. 数项级数的概念与性质1.1 数项级数的概念1.2 数项级数的收敛性1.3 数项级数的性质2. 正项级数2.1 正项级数的审敛法2.2 相关级数2.3 函数项级数2.4 幂级数与泰勒级数3. 交错级数与绝对收敛的级数3.1 交错级数的判别法3.2 绝对收敛的概念与性质3.3 绝对收敛级数的判别法3.4 结果的应用以上是高等数学教材第四版的答案目录,希望能够对学习者提供一定的参考和解答。
高等代数第6章习题解
第六章习题解答习题6.11、设2V R =,判断下面V 到V 的映射哪些是V 的线性变换,哪些不是? (1),()x x y V f y y αα+⎛⎫⎛⎫=∈=⎪ ⎪⎝⎭⎝⎭;(2),()x x y V f y y αα-⎛⎫⎛⎫=∈= ⎪ ⎪⎝⎭⎝⎭;(3)2,()x y V f y x y αα+⎛⎫⎛⎫=∈=⎪ ⎪+⎝⎭⎝⎭; (4)0,()x V f y αααα⎛⎫=∈=+⎪⎝⎭,0V α∈是一个固定的非零向量。
(5)0,()x V f y ααα⎛⎫=∈= ⎪⎝⎭,0V α∈是一个固定的非零向量。
解:(1)是。
因为1122(,),(,),x y x y k F αβ''∀==∀∈,有1212121122121212()()()x x x x y y x y x y f f f f y y y y y y αβαβ++++++⎛⎫⎛⎫⎛⎫⎛⎫+===+=+ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭11111111()()kx kx ky x y f k f k kf ky ky y αα++⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)是。
因为1122(,),(,),x y x y k F αβ''∀==∀∈,有1212121122121212()()()()x x x x y y x y x y f f f f y y y y y y αβαβ++-+--⎛⎫⎛⎫⎛⎫⎛⎫+===+=+ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭11111111()()kx kx ky x y f k f k kf ky ky y αα--⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(3)不是。
因为12121212122()x x y y f f y y x x y y αβ+++⎛⎫⎛⎫+== ⎪ ⎪++++⎝⎭⎝⎭而 121211*********()()y y y y f f x y x y x x y y αβ++++⎛⎫⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪+++++⎝⎭⎝⎭⎝⎭所以()()()f f f αβαβ+≠+(4)不是。
赵树嫄微积分第四版第六章 定积分
f ( x ) dx S
曲边梯形的面积
b a
f ( x ) dx S 曲边梯形面积的相反数
y
y f ( x)
a
o
y f ( x)
b
x
a o
b
x
11
y
f ( x)
A1
A3
A2
A5
a
b a
A4
b
x
f ( x ) dx A1 A2 A3 A4 A5
若要求阴影部分的面积, 则为
m(b a ) f ( x ) dx M (b a ) ,
a
b 1 m f ( x ) dx M , ba a 由闭区间上连续函数的介值定理知, b 1 [a , b] , 使 f ( ) f ( x ) dx , ba a b 即 f ( x) dx f ( )(b a) .
不恒为零,则有
b a
f ( x ) dx 0 .
证略
17
推论1 若 f ( x ) g ( x ), x [a , b] ,
则
b a
f ( x )dx g( x )dx .
a b
b
进一步,若 f ( x ) g( x ) ,且 f ( x) 和 g( x) 不恒等,则有
于是 f ( x) 单调增加, f ( x ) f (0) 0 ,
x ln( 1 x) , x 0 .
于是
1 0
x dx ln( 1 x ) dx .
0
23
1
2 2 x 1 dx . 例2 证明下列不等式: 2 1 x 1 5 2 x , 证 设 f ( x) 2 x 1
中国人民大学出版社(第四版)高等数学一第5章课后习题详解
高等数学一第5章课后习题详解课后习题全解习题5-1★★1.利用定积分的定义计算由抛物线21y x =+,直线x a =,x b =()b a >及横轴所围成的图形的面积知识点:定积分的定义及几何意义 思路:根据求定积分的三步骤做 解:将[],a b 分成n 等分,取(1,2,)i i n ξ=为第i 个小区间1[(),()]i ia b a a b a n n-+-+-的右端点,则,i b a x n λ-=∆=,i b aa i nξ-=+ 显然, 0,n λ→⇔→∞于是根据定积分的几何意义,该图形面积lim ()nbi i ai A ydx y x λξ→===∆∑⎰ 21lim [()1]nn i b a b aa in n→∞=--=++∑ 22221()lim [12]n n i b a b a b a a ai i n n n →∞=---=+++∑222211()lim [(1)2]nn n i i b a b a b a n a a i i n n n →∞==---=+++∑∑ 22232()(1)()1lim{()[1(1)(21)]}26n a b a n n b a b a a n n n n n →∞-+-=-+++++ 221()11()lim[1()(1)(1)(2)]6n b a b a a a b a n n n→∞-=-++-++++222()()[1]3b a b a a ab a -=-++-+33().3b a b a -=+- ★★2.利用定积分的定义计算下列积分:知识点:定积分的定义思路:根据求定积分的三步骤做(1)baxdx ⎰()a b <.解:易见函数[](),f x x C a b =∈,从而可积,将[],a b 分成n 等分,则,i b ax nλ-=∆=于是0,n λ→⇔→∞;取(1,2,)i i n ξ=为第i 个小区间的右端点,则,0,1,2,,1,ib aa ii n nξ-=+=-所以110lim ()lim ()n n bi i an i i b a b axdx f x a in nλξ--→→∞==--=∆=+∑∑⎰1()lim{[(0121)]}n b ab a na n n n→∞-=-+++++-2(1)()lim[]2n b a n n b a a n →∞--=-+1()lim[(1)]2n b a b a a n→∞-=-+-221()()().22b a b a a b a -=-+=- (2)1ln exdx ⎰解:用分点(0,1,,)i ni x e i n ==划分区间[]1,e :11,1,2,,i i nni i i x x x e e i n --∆=-=-=, 取i ξ是区间右端点,则 ,()ln()ln ,i i nnii i i ix e f e nξξξ=====作和,并取极限得: 1101ln lim ()lim ()i i nnenn i i n n i i i xdx f x e e n ξ-→∞→∞===∆=-∑∑⎰111111lim{[()]}i i i nnn n n n i i i i e e e n n n --→∞==-=-+∑∑11111(1)lim lim (1)i nn n n i n e e e e n n e -→∞→∞=-=-=--∑111(1)lim ()1n n e e n e →∞=--- 记()1x x g x e =-,则当0x →时,()g x 是0型的,由洛必达法则,有 001limlim 11x xx x x e e →→==---从而,当n →+∞时,有111lim11n nn e→+∞=--,故1ln (1) 1.exdx e e =+-=⎰★3.利用定积分的几何意义,说明下列等式:(1)121xdx =⎰.知识点:定积分的几何意义思路:定积分的几何意义为被积函数与边界所形成曲边梯形的面积解:等式左边为直线2y x =与x 轴和1x =三条直线所围成的面积,该面积等于11212==等式右边. (2)sin 0xdx ππ-=⎰解: 等式左边为正弦曲线sin y x =与x 轴在x π=及x π=-之间所围成的面积,其左右两边面积互为相反数. 则sin ()0xdx A A ππ-=-+==⎰等式右边★★4.用定积分的几何意义求a⎰(0)b >的值.知识点:定积分的几何意义思路:定积分的几何意义为被积函数与边界所形成曲边梯形的面积 解:=是以2a b +为圆心,2b a -为半径的上半圆,其面积为:2221()()2228b a b a S r πππ--===由定积分的几何意义知:2().8ab a π-=⎰★★★5.试将和式的极限112limp p pp n n n +→∞+++(0)p >表示成定积分. 知识点:定积分的定义思路:根据定积分的定义推导过程可知,求和的极限公式可表示为定积分解: 112112limlim [()()()]p p p p pp p n n n n n n n nn +→∞→∞+++=+++11lim ()n pn i i n n→∞==∑设()pf x x=,则用定义求解1()f x dx ⎰为:①、等分[0,1]为n 个小区间:11[,], 1,2,, i i ii n x n nn-=∆=②、求和:取区间1[,]i i n n -上的右端点为i ξ,即i i n ξ=,作和:111()n ni i i i i f x nn ξ==∆=⨯∑∑ ③、求极限:011111lim ()lim ()lim ()n nn p pi i n n i i i i i f x nn n n λξ→→∞→∞===∆=⨯=∑∑∑∴1101121lim lim ()p p p n p pp n n i n i x dx n n n+→∞→∞=+++==∑⎰ ★★★6.有一河,宽为200米,从一岸到正对岸每隔20米测量一次水深,测得数据如下:试用梯形公式求此河横截面面积的近似值.知识点:定积分的几何意义思路:由定积分定义知:求定积分(曲边梯形面积)的第二步:用小矩形面积近似代替小曲边梯形面积,即1()()ii x i i x f x f x dx ξ-∆≈⎰,若用小梯形面积近似代替小曲边梯形面积则为:111[()()]()2i i x i i i x f x f x x f x dx --+∆≈⎰。
高等数学第四版教材答案
高等数学第四版教材答案第一章导数与微分1.1 函数与极限在这一章中,我们将学习函数的性质以及如何计算函数的极限。
了解函数的极限是理解微积分的基础。
1.2 导数的定义与性质导数是描述函数变化率的概念。
我们将研究导数的定义、性质以及常见函数的导数。
1.3 高阶导数与隐函数求导高阶导数是导数的导数。
我们将学习如何计算高阶导数,并介绍隐函数求导的方法。
1.4 微分微分是导数的应用之一,它可以帮助我们更好地理解函数的变化。
我们将研究微分的概念和性质,并解决一些应用问题。
第二章微分学的应用2.1 极值与最值极值是函数取得的最大值或最小值。
我们将研究如何找到函数的极值,并解决一些极值应用问题。
2.2 中值定理中值定理是微分学中重要的定理之一,它描述了函数在某个区间内的平均变化率与瞬时变化率相等的关系。
我们将学习中值定理的几种形式以及其应用。
2.3 函数的单调性与曲线的凹凸性函数的单调性描述了函数的增减趋势,曲线的凹凸性则描述了函数曲线的弯曲程度。
我们将学习如何确定函数的单调区间和凹凸区间,并解决相关的应用问题。
第三章定积分3.1 定积分的概念与性质定积分是微积分中的一个重要概念,它描述了曲线下面积的大小。
我们将学习定积分的定义、性质以及计算方法。
3.2 定积分的几何应用定积分的几何应用包括计算曲线下面积、计算旋转体的体积等。
我们将解决一些相关的几何应用问题。
3.3 定积分的物理应用定积分在物理学中也有广泛的应用,如计算质点的质量、计算功、计算质心等。
我们将学习如何应用定积分解决物理问题。
第四章微分方程4.1 微分方程的基本概念微分方程是描述函数与其导数之间关系的方程。
我们将学习微分方程的基本概念,并分析一些简单的微分方程。
4.2 一阶线性微分方程一阶线性微分方程是一类特殊的微分方程,其解可以通过积分得到。
我们将学习一阶线性微分方程的解法以及应用。
4.3 高阶线性微分方程高阶线性微分方程是多个导数的函数关系。
我们将学习高阶线性微分方程的解法,并解决一些实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高等数学一第6章课后习题详解课后习题全解习题6-2★ 1.求由曲线xy =与直线x y =所围图形的面积。
知识点:平面图形的面积思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解: 见图6-2-1∵所围区域D 表达为X-型:⎩⎨⎧<<<<x y x x 10, (或D 表达为Y-型:⎩⎨⎧<<<<yx y y 210)∴⎰-=10)(dx x x S D61)2132(1223=-=x x (⎰=-=1261)(dy y y S D) ★ 2.求在区间[0,π/2]上,曲线x y sin =与直线0=x 、1=y 所围图形的面积知识点:平面图形面积思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解:见图6-2-2∵所围区域D 表达为X-型:⎪⎩⎪⎨⎧<<<<1sin 20y x x π, (或D 表达为Y-型:⎩⎨⎧<<<<y x y arcsin 010) ∴12)cos ()sin 1(2020-=+=-=⎰πππx x dx x S D( 12arcsin 1-==⎰πydy S D)★★3.求由曲线x y =2与42+-=x y 所围图形的面积知识点:平面图形面积思路:由于所围图形表达为Y-型时解法较简单,所以用Y-型做 解:见图6-2-3∵两条曲线的交点:⎩⎨⎧±==⇒⎩⎨⎧+-==22422y x x y x y ,∴所围区域D 表达为Y-型:⎩⎨⎧-<<<<-22422yx y y ,∴2316)324()4(2232222=-=--=--⎰y y dy y y S D(由于图形关于X 轴对称,所以也可以解为:2316)324(2)4(223222=-=--=⎰y y dy y y S D )★★4.求由曲线2x y =、24x y =、及直线1=y 所围图形的面积知识点:平面图形面积思路:所围图形关于Y 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-4∵第一象限所围区域1D 表达为Y-型:⎩⎨⎧<<<<y x y y 210,∴34322)2(22102311=⨯=-==⎰y dy y y S S D D(若用X-型做,则第一象限内所围区域=1D b a D D Y ,其中a D :⎪⎩⎪⎨⎧<<<<22410x y x x ,b D :⎪⎩⎪⎨⎧<<<<14212y x x ;∴12212201422[()(1)]443D D x x S S x dx dx ==-+-=⎰⎰)★★5.求由曲线xy 1=与直线x y =及2=x 所围图形的面积 知识点:平面图形面积思路:由于所围图形表达为X-型,解法较简单,所以用X-型做 解:见图6-2-5∵两条曲线xy =和x y =的交点为(1,1)、(-1,-1),又这两条线和2=x 分别交于 )21,2(、2) ,2( ∴所围区域D 表达为X-型:⎪⎩⎪⎨⎧<<<<x y xx 121,∴22211113((ln )ln 222DS x dx x x x =-=-=-⎰★★★6.抛物线x y 22=分圆822=+y x 的面积为两部分,求这两部分的面积知识点:平面图形面积思路:所围图形关于X 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-6,设阴影部分的面积为1D S ,剩余面积为2D S∵两条曲线x y 22=、822=+y x 的交于(2,2)±(舍去4-=x 的解),∴所围区域1D 表达为Y-型:⎪⎩⎪⎨⎧-<<<<-228222y x y y ;又图形关于x 轴对称,∴342)342(2)68(2)28(220320220221+=-+=--=--=⎰⎰ππy y dy y y S D(其中222cos 18cos 22cos 22844sin 2222+=+=⨯=-⎰⎰⎰=πππdt ttdt t dyy ty ) ∴34634282-=--=πππDS ★★★7.求由曲线x e y =、x e y -=与直线1=x 所围图形的面积知识点:平面图形面积思路:由于所围图形表达为X-型时,解法较简单,所以用X-型做 解:见图6-2-7∵两条曲线x e y =和x e y -=的交点为(0,1),又这两条线和1=x 分别交于) ,1(e 和) ,1(1-e∴所围区域D 表达为X-型:⎩⎨⎧<<<<-x x ey e x 10,∴2)()(1110-+=+=-=---⎰e e e e dx e e S x x x x D★★★8.求由曲线x y ln =与直线a y ln =及b y ln =所围图形的面积)0(>>a b知识点:平面图形面积思路:由于所围图形表达为Y-型时,解法较简单,所以用Y-型做 解:见图6-2-8∵在x ln的定义域范围内所围区域D :⎩⎨⎧<<<<yex by a 0ln ln , ∴a b e dy e S b ayba y D-===⎰ln ln ln ln★★★★9.求通过(0,0),(1,2)的抛物线,要求它具有以下性质:(1)它的对称轴平行于y 轴,且向下弯;(2)它与x 轴所围图形面积最小知识点:平面图形面积和求最值思路:首先根据给出的条件建立含参变量的抛物线方程,再求最值时的参变量解:由于抛物线的对称轴平行于y 轴,又过(0,0),所以可设抛物线方程为bx ax y +=2,(由于下弯,所以0<a),将(1,2)代入bx ax y +=2,得到2=+b a ,因此x a ax y )2(2-+=该抛物线和X 轴的交点为0=x 和aa x 2-=, ∴所围区域D :2200(2)a x ay ax a x-⎧<<⎪⎨⎪<<+-⎩∴232232026)2()223(])2([a a x a x a dx x a ax S aa a a D-=-+=-+=--⎰)4()2(61)]2()2()2(3[61)(233322+-=-⨯-+-⨯='---a a a a a a a a S D得到唯一极值点:4-=a ,∴所求抛物线为:x x y 642+-=★★★★10.求位于曲线x e y =下方,该曲线过原点的切线的左方以及x 轴上方之间的图形的面积知识点:切线方程和平面图形面积思路:先求切线方程,再作出所求区域图形,然后根据图形特点,选择积分区域表达类型解:x e y =⇒xe y =',∴在任一点0x x =处的切线方程为)(000x x e e y x x -=-而过(0,0)的切线方程就为:)1(-=-x e e y ,即ex y =所求图形区域为21D D D Y =,见图6-2-10X-型下的1D :⎩⎨⎧<<<<∞-x e y x 00,2D :⎩⎨⎧<<<<xe y ex x 1∴222)(1211e e e x eedx ex e dx e S x x x D=-=-=-+=∞-∞-⎰⎰ ★★★11.求由曲线θcos 2a r =所围图形的面积知识点:平面图形面积思路:作图可知该曲线是半径为a 、圆心(0 ,a )的圆在极坐标系下的表达式,可直接求得面积为2a π,也可选择极坐标求面积的方法做。
解:∵作图6-1-11ra图6-1-11 a2图6-2-12θ3sin a r =r6/π1D)cos 2(2θ+=a ra 6a 4a 3知所求图形区域D :⎪⎩⎪⎨⎧<<<<-θπθπcos 2022a r∴2222222)2sin 2121(2)cos 2(21a a d a S D πθθθθππππ=+==--⎰★★★12.求三叶玫瑰线θ3sin a r =的面积S知识点:平面图形面积思路: 三叶玫瑰由三瓣面积相等的叶片组成图6-2-12中所画是三叶玫瑰中的一叶, 而一叶图形又关于6πθ=对称,因此选择其中一叶的一半区域1D 求其面积解:∵1D :⎪⎩⎪⎨⎧<<<<θπθ3cos 060a r∴26026241)6sin 6121(3)3cos (21661a a d a S S D Dπθθθθππ=+===⎰ ★★★13.求由曲线)cos 2(2θ+=a r 所围图形的面积知识点:平面图形面积思路:作图可知该曲线围成的图形关于极轴对称,因此选择其中一半区域1D 求其面积解:∵1D :⎩⎨⎧+<<<<)cos 2(200θπθa r∴12220141122[2(2cos3)]4[4(sin 3sin 6)1823212D D S S a d a a ππθθπθθθπ==+=+++=⎰★★★14.求对数螺线θρae =)(πθπ≤≤-及射线πθ=所围图形的面积知识点:平面图形面积思路:作图可知该曲线围成的图形是由θρae =,θ从π-到π一段曲线及射线πθ=所围,由此可确定θ、ρ的范围解:∵所围区域D :⎩⎨⎧<<<<-θρπθπae∴)(4212)(21222222ππππθππθθ----=⨯==⎰e e a e a d ae S D★★★★15.求由曲线θcos 3=r 及θcos 1+=r 所围图形的面积知识点:平面图形面积思路:作图可知两条闭围线围成的图形由三部分组成,其中一部分为两图形重叠部分D ,而D 又关于极轴对称,设θ在(0,2π)内的曲线和极轴围成的半个D 为1D 区域解:两条曲线θcos 3=r 、θcos 1+=r 交于3πθ±=处,因此分割区域b a D D D +=1,其中a D :⎪⎩⎪⎨⎧+<<<<θπθcos 1030r ,b D :⎪⎩⎪⎨⎧<<<<θπθπcos 3023r122320332031122[(1cos )(3cos )]223191152[(2sin sin 2)(sin 2)]23422644D D S S d d ππππππθθθθππθθθπ==++=⨯+++⨯+=⎰⎰★★★16.求由曲线θsin 2=r及θ2cos 2=r 所围图形的面积知识点:平面图形面积思路:作图可知两条闭围线围成的图形由三部分组成,其中一部分为两图形重叠部分D ,而D 又关于射线2πθ=对称,设两条曲线在(0,2π)围成的半个D 为1D 区域解:两条曲线θsin 2=r 、θ2cos 2=r 交于6πθ=及65πθ=因此分割区域b a D D D +=1,其中a D :⎪⎩⎪⎨⎧<<<<θπθsin 2060r ,b D :⎪⎩⎪⎨⎧<<<<θπθπ2cos 026r236)2sin 412sin 41621(2]2cos 21)sin 2(21[22266026621-=+-⨯=+==⎰⎰πθθπθθθθππππππd d S S D D(和书后答案不同)★★★17.求由摆线)sin (t t a x -=,)cos 1(t a y -=)20(π≤≤t 及x 轴所围图形的面积知识点:平面图形面积思路:在直角坐标系下作图可知所围图形的x 、y 变化范围,先求出直角坐标系下积分表达式,再将积分变量代换成t解:∵所围区域D :⎩⎨⎧<<<<)(020x y y ax π,()(x y y =为摆线)∴20()aDS y x dx π=⎰,作代换)sin (t t a x -=,则222022203223)cos 1(])sin ([)cos 1(a a dt t a t t a d t a S Dππππ=⨯=-=--=⎰⎰ 习题6-31. 求下列平面图形分别绕x 轴、y 轴旋转产生的立体体积:★(1).曲线x y =与直线1=x 、4=x 、0=y 所围成的图形;知识点:旋转体体积思路:作出平面图形(或求出该平面区域的x 、y 范围),代入相应的公式。