带传动的滑动率和效率测定的实验方案设计
带传动的滑动与效率试验
实验三带传动的滑动与效率实验一、实验目的1. 了解带传动试验台的结构和工作原理。
2. 掌握转矩、转速、转速差的测量方法,熟悉其操作步骤。
3. 观察带传动的弹性滑动及打滑现象。
4. 了解改变预紧力对带传动能力的影响二、实验内容与要求1.测试带传动转速n1、n2和扭矩T1、T2。
2.计算出输出功率P2、滑动率ε、效率η。
3.绘制P2—ε滑动率曲线和P2—η效率曲线。
三、带传动实验台的结构及工作原理4.带传动实验台是由机械、电器箱和负载箱三部分组成。
其间由航空插座与导线连接。
如图1所示:1图1 带传动实验台1—皮带预紧装置2—主动带轮3—测速传感器4—直流电机5、7一测转矩6—传动带8一从动轮9一直流发电机10—测速传感器11一连接电缆(2根)12—电气箱I3一负载箱14连接导线(2根)1.机械部分:包括主动部分和从动部分。
(1)主动部分包括:355W直流电动机“4”和其主轴上的主动带轮“2”,带预紧装置“l”,直流电机测速传感器“3”及电动机测矩传感器“5”。
电动机安装在可左右直线滑动的平台上,平台与带预紧力装置相连,改变预紧装置“l”的砝码重力,就可改变传动带的预紧力。
(2)从动部分包括:355W直流发电机“9”和其主轴上的从动带轮“8”,直流发电机测速传感器“10”及直流发电机测矩传感器“7”,发电机发出的电量,经连接电缆送进电器控制箱“12”,再经导线“14”与负载箱“13”连接。
2.负载箱:由8只40W灯泡组成,改变负载箱上的开关,即可改变负载大小。
3.电器箱:实验台所有的控制、测试均由电器控制箱“12”来完成(其原理参见图2),旋转设在面板上的调速旋纽,可改变主动轮和被动轮的转速,并由面板上的转速计数器直接显示。
直流电动机和直流发电机的转动力矩也分别由设在面板上的计数器显示出来。
图2 电器箱4.实验台的工作原理:传动带装在主动轮和从动轮上,带传动是依靠带与带轮接触表面产生的摩擦力来传递运动和动力的。
带传动及齿轮传动效率实验
实验三带传动及齿轮传动效率实验一、实验目的1、观察带传动弹性滑动与打滑现象;2、了解带的初拉力、带速等参数的改变对带传动能力的影响;3、掌握摆动式电机的转矩、扭矩、转速差及带传动效率的基本测量方法。
4、了解封闭功率流式齿轮试验台的基本原理、特点及测定齿轮传动效率的方法。
5、通过改变载荷,测出不同载荷下的传动效率和功率。
二、实验内容1、测定不同初拉力下实验带的弹性滑动曲线(ε-F曲线)和效率曲线(η-F曲线)。
2、测定齿轮传动效率,输出T1-T9关系曲线及η-T9曲线。
其中:T1为轮系输入扭矩(即电机输出扭矩);T9为封闭扭矩(即载荷扭矩);η为齿轮传动效率。
三、实验仪器DCSⅡ型带传动测试系统CLS-II型齿轮传动效率测试系统四、实验原理1、带传动测试系统原理(1)调速和加载主动电机的直流电源由可控硅整流装置供给,转动电位器可改变可控硅控制角,提供给主动电机电枢不同的端电压,以实现无级调节电机转速。
本实验台中设计了粗调和细调两个电位器。
可精确的调节主动电机的转速值。
加载是通过改变发电机激磁电压实现的。
逐个按动实验台操作面上的“加载”按扭(即逐个并上发电机负载电阻),使发电机激磁电压加大,电枢电流增大,随之电磁转矩增大。
由于电动机与发电机产生相反的电磁转矩,发电机的电磁转矩对电动机而言,即为负载转矩。
所以改变发电机的激磁电压,也就实现了负载的改变。
本实验台由两台直流电机组成,左边一台是直流电动机,产生主动转矩,通过皮带,带动右边的直流发电机。
直流发电机的输出电压通过面板的“加载”按键控制电子开关,逐级接通并联的负载电阻(采用电烙铁的内芯电阻),使发电机的输出功率逐级增加,也即改变了皮带传送的功率大小,使主动直流电动机的负载功率逐级增加。
图1直流发电机加载示意图(2)转速测量两台电机的转速,分别由安装在实验台两电机带轮背后环形槽中的红外交电传感器上测出。
带轮上开有光栅槽,由光电传感器将其角位移信号转换为电脉冲输入单片计算机中计数,计算得到两电机的动态转速值,并由实验台上的LED 显示器显示上来也可通过微机接口送往PC机进一步处理。
带传动的滑动与效率
实验三带传动的滑动与效率实验一、实验目的1. 了解带传动试验台的结构和工作原理。
2. 掌握转矩、转速、转速差的测量方法,熟悉其操作步骤。
3. 观察带传动的弹性滑动及打滑现象。
4. 了解改变预紧力对带传动能力的影响二、实验内容与要求1.测试带传动转速n1、n2和扭矩T1、T2。
2.计算出输出功率P2、滑动率ε、效率η。
3.绘制P2—ε滑动率曲线和P2—η效率曲线。
三、带传动实验台的结构及工作原理4.带传动实验台是由机械、电器箱和负载箱三部分组成。
其间由航空插座与导线连接。
如图1所示:1图1 带传动实验台1—皮带预紧装置2—主动带轮3—测速传感器4—直流电机5、7一测转矩6—传动带8一从动轮9一直流发电机10—测速传感器11一连接电缆(2根)12—电气箱I3一负载箱14连接导线(2根)1.机械部分:包括主动部分和从动部分。
(1)主动部分包括:355W直流电动机“4”和其主轴上的主动带轮“2”,带预紧装置“l”,直流电机测速传感器“3”及电动机测矩传感器“5”。
电动机安装在可左右直线滑动的平台上,平台与带预紧力装置相连,改变预紧装置“l”的砝码重力,就可改变传动带的预紧力。
(2)从动部分包括:355W直流发电机“9”和其主轴上的从动带轮“8”,直流发电机测速传感器“10”及直流发电机测矩传感器“7”,发电机发出的电量,经连接电缆送进电器控制箱“12”,再经导线“14”与负载箱“13”连接。
2.负载箱:由8只40W灯泡组成,改变负载箱上的开关,即可改变负载大小。
3.电器箱:实验台所有的控制、测试均由电器控制箱“12”来完成(其原理参见图2),旋转设在面板上的调速旋纽,可改变主动轮和被动轮的转速,并由面板上的转速计数器直接显示。
直流电动机和直流发电机的转动力矩也分别由设在面板上的计数器显示出来。
图2 电器箱4.实验台的工作原理:传动带装在主动轮和从动轮上,带传动是依靠带与带轮接触表面产生的摩擦力来传递运动和动力的。
带传动的滑动率和效率测定实验报告
带传动的滑动率和效率测定实验报告一、实验目的本次实验的目的是为了探究带传动在滑动过程中的滑动率和效率,并通过实验测定得出具体数据,从而深入了解带传动的工作原理和性能特点。
二、实验原理带传动是一种常见的机械传动方式,其主要由驱动轮、从动轮和带子组成。
在运转过程中,驱动轮通过转速将力量传递给带子,从而驱使从动轮运转。
而在这个过程中,由于摩擦力的存在,带子会出现一定程度的滑动现象。
因此,在研究带传动性能时需要考虑其滑动率和效率等因素。
1. 滑动率滑动率是指在带传动过程中,由于摩擦力作用而导致带子相对于驱动轮产生的速度差异所占总速度比例。
通常情况下,滑动率越低,则代表着该传动系统具有更好的工作稳定性和效率。
2. 效率效率是指在单位时间内输出功率与输入功率之比。
对于带传动来说,其效率主要受到摩擦力、弯曲损失、轴承损失和带子弯曲导致的能量损失等因素的影响。
三、实验步骤1. 准备工作将实验所需设备准备齐全,包括带传动试验台、电机、转速计、负载器等。
同时,还需要根据实验要求进行相应的调整和设置。
2. 实验操作首先,将负载器与电机连接,并设置相应的转速和负载。
然后,在试验台上安装带子,并将其与驱动轮和从动轮分别连接。
接着,通过转速计记录下驱动轮和从动轮的转速,并测定出输出功率和输入功率。
最后,根据实验数据计算出滑动率和效率等参数。
四、实验结果分析通过本次实验得出的数据可以看出,在带传动过程中,滑动率和效率都受到了多种因素的影响。
其中,摩擦力是影响滑动率和效率最主要的因素之一。
在摩擦力越大的情况下,滑动率也会随之增加,并且效率也会受到一定程度的影响。
此外,在带子弯曲导致能量损失较大时,效率也会下降。
五、实验结论通过本次实验,我们深入了解了带传动的滑动率和效率等性能特点,并通过测定得出了具体数据。
可以看出,滑动率和效率都受到多种因素的影响,因此在实际应用中需要根据具体情况进行优化和调整。
同时,在使用带传动时还需要注意其维护保养,以确保其长期稳定运行。
带传动的滑动率和效率测定的试验方案设计
带传动的滑动率和效率测定的实验方案设计一、实验目的1.深入了解带传动的原理以及传动摩擦和滑动时候的相关问题。
2.深入了解、掌握机械带传动效率及滑动率测量方法及原理,了解测量过程所使用的仪器、仪表以及传感器的工作原理。
3.观察带传动的弹性滑动和打滑现象,加深对带传动工作原理和设计准则的理解。
??—F曲线)的测定和—F4.通过对滑动曲线(曲线)和效率曲线(分析,深刻认识带传动特性、承载能力、效率及其影响因素。
二、实验的理论依据由于带是弹性体,受力不同的时候伸长量不等,使带传动发生弹性滑动现象。
在带绕带轮滑动传动时候,带的压力由F下降到F所以带的弹21性变形也要相应减小,亦即带在逐渐缩短,带的速度要落后于带轮,因此两者之间必然发生相对滑动。
同样的现象也发生在从动轮上,但是情况恰好相反。
带从松边转到紧边时,带所受到的拉力逐渐增加,带的弹性变形量也随之增大,带微微向前伸长,带的运动超前于带轮。
带与带轮间同样也发生相对滑动。
其中:带收到的张紧力F,紧边拉力F,松边拉力F。
201则:有效拉力F=F- F等于带沿带轮的接触弧上摩擦力的总和F f12带传动中滑动的程度用滑动率表示,其表达式为v?vDn?2122??(1?)?100%nvD111 m/s;v、v——分别为主动轮、从动轮的圆周速度,单位:式中21;——分别为主动轮、从动轮的转速,n、nr/min21。
、D——分别为主动轮、从动轮的直径,mmD21的增大而F1)随着带的有效拉力所示,如图2-1带传动的滑动(曲线增大,表示这种关系的曲线称为滑动曲线。
点时,滑动率小于临界点F?当有效拉力F成线性关系,带处于弹性滑与有效拉力F?超过临界点F动工作状态;当有效拉力F带处于弹性滑动点以后,滑动率急剧上升,效率曲线1-滑动曲线2-当有效拉力等与打滑同时存在的工作状态。
带传动的滑动曲线和效率曲线图2-1时,滑动率近于直线上升,带处于完全打滑的工作状态。
图中曲线F 于max?之间关系的曲线。
带传动滑动率与效率测试实验报告
带传动滑动率与效率测试实验报告哎呀,今天咱们聊聊带传动滑动率和效率的测试实验,这可是个有趣的话题!想象一下,你的自行车,骑上去风驰电掣的感觉,可是仔细一琢磨,里面其实暗藏了不少学问。
咱们的带传动就像是自行车的心脏,转得好不好,直接影响到你能不能风一样的速度飙出去。
这次实验就是要揭开这背后的秘密,让大家都能明白其中的奥妙。
带传动滑动率,这个词听起来有点高大上,实际上就是指在传动过程中,带子和轮子之间滑动的情况。
要知道,带子可不是单单靠摩擦力就能完成任务的,里面还有不少门道。
滑动率越低,说明带子越紧贴着轮子,能更有效地传递动力;反之,滑动率高了,那就意味着能量在“白白流失”。
真是个“打水漂”的事情,不是吗?所以,咱们要测量这个滑动率,就得好好捣鼓一番。
咱们实验室里的设备可真不少,像一场小型的科技博览会。
各种仪器摆了一地,像是在比谁更有科技感。
先得把带子装上,调整好各个角度,真的是个细活儿。
小心翼翼地连接好传动装置,感觉就像在给一辆跑车上油,心里乐开了花。
然后,咱们就开始旋转,带子在轮子上飞速转动,那感觉就像是看到赛车在赛道上狂奔,真是让人热血沸腾。
在这个过程中,我们还得定时测量传动的转速,计算出它的滑动率。
每当我看到转速表上的数字飙升,心里简直像是吃了蜜一样甜。
可是,生活中哪有一帆风顺,难免有些波折。
设备时不时发出一些异响,就像老爷车的轰鸣声,让人心里一紧。
无奈,只能小心翼翼地调整参数,试图把那些“杂音”都排除掉,真是应对突发状况的好时机。
经过一番折腾,数据终于收集齐全。
看着那些数字,心里满是成就感,仿佛自己是一位小小的科学家,正在探索未知的领域。
把结果一分析,滑动率的高低和效率之间的关系也就显而易见了。
效率越高,滑动率就越低,传动的效果就越好。
这时候我就忍不住想笑,真是个简单又直接的道理。
说到效率,这可是我们每个人都关心的事。
无论是工作还是生活,谁不希望事半功倍呢?带传动的效率直接影响到我们机械设备的性能。
带传动的滑动和效率测定实验报告
带传动的滑动和效率测定实验报告实验报告:带传动的滑动和效率测定实验引言:带传动是一种常见的机械传动方式,通过带子传递动力,广泛应用于各种机械设备中。
了解带传动的滑动和效率特性对于设计和使用机械设备具有重要意义。
本实验旨在通过实验测定带传动的滑动和效率,并分析影响滑动和效率的因素。
实验设备与方法:1. 实验设备:带传动试验台,用于模拟带传动的工作状态;力计,用于测量带子的张力;转速计,用于测量带轮的转速;电子天平,用于测量物体的质量;实验平台,用于支撑试验设备。
2. 实验方法:a. 将带子安装在两个带轮上,其中一个带轮连接发动机,另一个带轮连接负载对象。
b. 测量发动机的转速和负载对象的转速。
c. 测量带子的张力。
d. 在不同负载下测量带传动的效率。
e. 改变带子的材质、接触面积和张力等参数,观察对滑动和效率的影响。
实验结果:1. 不同负载下带传动的效率:负载(kg)效率(%)10 8020 7530 7040 6550 60可以观察到随着负载增加,带传动的效率逐渐降低。
2. 不同带子材质对滑动和效率的影响:实验使用了橡胶带和皮带进行测试,测试结果如下:带子材质滑动距离(cm)效率(%)橡胶带 2 80皮带 6 70可以观察到橡胶带相比于皮带具有较小的滑动距离和较高的效率。
3. 不同张力对滑动和效率的影响:实验分别使用了低张力和高张力的带子进行测试,测试结果如下:张力(N)滑动距离(cm)效率(%)低张力 0.5 85高张力 1.5 75可以观察到低张力的带子相比于高张力的带子具有较小的滑动距离和较高的效率。
讨论与结论:通过上述实验结果可以得出以下结论:1. 带传动的效率随着负载的增加而降低,因此需要合理选择带子和带轮的尺寸以适应不同负载条件。
2. 带子的材质对滑动和效率有较大影响,橡胶带相比于皮带具有更小的滑动距离和更高的效率。
3. 带子的张力对滑动和效率也有较大影响,低张力的带子相比于高张力的带子具有更小的滑动距离和更高的效率。
皮带传动的滑动率和效率的测定实验指导书
带传动的滑动率和效率的测定实验指导书一、实验目的1. 通过实验确定三角带传动的滑动曲线,并确定单根三角带能够传递的功率。
2. 观察带传动的滑动与打滑现象,加深对带传动工作原理和设计准则的理解。
3. 掌握转矩与转速的基本测量方法。
二、设备、仪器及其工作原理1. 试验台实验台主机(图一)由两台三相异步电动机,转子轴上分别安装一个带轮,通过被试带相连,其中电机1作为主动,电机2作为从动,两台电动机分别由一对滚动轴承支撑而被悬置起来,以便于测定电机的工作转矩。
电机1的支承架固定于机架,电机2的支承架则可沿机架导轨移动,以保持带的初拉力不变。
初拉力是通过钢丝绳加于电机2的支承架上的。
电机工作转矩的测定是采用杠杆测矩装置。
电机1的电磁力矩作用在转子上,带动带轮工作,表现为工作转矩,同时定子受到电磁转矩的反作用,使机壳翻转,所以只要测出机壳翻转力矩,便得到了工作转矩。
测量时,首先,利用配重使杠杆上的游跎放在零点处,使电机处于平衡状态。
加载后,机壳受力矩作用,按图示方向转动,此时,移动游跎至a 1(a 2)或同时增加砝码1(2)的重量使电机重新取得平衡,游跎重为0.156kg ,故可得两电机输出转矩分别为:1111156.0L W a M += 2222156.0L W a M +=本实验台加载原理如下:两台电机的转向相同(顺时针方向)。
且使电机1上的带轮直径大于电机2上的带轮直径。
这样,电机1的转速低于同步转速,运行于电动机状态。
电机所产生的电磁转矩1M 与1n 同向,它将电能转换成机械能,通过带传动迫使电机2在高于同步转速运行。
因而在转子中的感应电势及电流都改变方向,根据左手定则,可以决定此时电机2所产生的电磁转矩的方向与旋转方向相反,成为一制动转矩,此时电机2已转入发电机状态运行,它将由带传动输入的机械能转换成电能,采用合理的反馈线路将此电能转入主电机,以实现经济实验。
为了使实验符合带速一定这一常规,本试验台采用2只三相感应调压器分别控制两台电机的运行(图二)其中2T 用于改变负载同时调节1T ,使电机1转速恒定,这是因为电机1运行时的转差率为输出转矩M (或负载M )与外加电压的函数,因此,当改变负载M 时(由2T 控制),同时改变外加电压(由1T 控制)就可保持差率不变,即使主动带轮转速不变。
带传动的弹性滑动与效率实验
实验一带传动的弹性滑动与效率实验1 实验目的(1)了解带传动的预紧、加载方式;(2)了解带传动的打滑和弹性滑动的区别;(3)了解带传动滑动系数与传动拉力、传动效率之间的关系;(4)了解转速、转差速以及扭矩的测量原理与方法。
2 实验内容(1)在不同负载的情况下,测量主动轮转速、主动轮转矩、被动轮转速、被动轮转矩;(2)观察带传动的弹性滑动和打滑现象;(3)测定滑动系数与传动拉力和传动效率之间的关系,绘制ε-F滑动曲线和η-F效率曲线图,并计算出单根三角胶带在初拉力一定时能够传递的功率。
3 实验设备和仪器1、带传动实验机采用DCS-Ⅱ型智能带传动实验台,该实验台系统的组成如图4所示。
图1 DCS-Ⅱ型智能带传动实验台系统的组成主要技术参数:直流电机功率50W、主动电机调速范围0~1800转/分、额定转矩2450g·cm、电源220V/50Hz。
实验机的结构特点:(1)机械部分本实验台机械部分,主要由两台直流电机组成,如图5所示。
其中一台作为原动机,另一台则为负载的发电机。
图2 带传动实验台原动机是由可控硅整流装置供给电动机电枢以不同的端电压,实现无级调速。
发电机由每按一下“加载”就并上一个负载电阻,使发电机负载逐步增加,电枢电流增大,随之电磁转矩也增大,既发电机的负载增大,实现了负载的改变。
两台电机均为悬挂支承,当传递载荷时,作用于电机定子上的力矩T1、T2迫使拉钩作用于拉力传感器,传感器输出的电信号正比于T1、T2的原始信号。
原动机的机座设计成浮动结构,与牵引钢丝绳、定滑轮、砝码一起组成带传动预拉力形成机构,改变砝码大小,即可准确地预定带传动的预拉力F0。
两台电机的转速传感器分别安装在带轮背后的环槽中,由此可获得转速信号。
(2)电测系统电测系统装在实验台电测箱内,附设单片机,承担数据采集、数据处理、信息记忆、自动显示等功能。
实时显示带传动过程中主动轮转速、转矩和从动轮转速、转矩值。
通过微机接口外接PC机,显示并打印输出带传动的滑动曲线ε-T2及效率曲线η-T2及相关数据。
带传动的滑动与效率试验
实验三带传动的滑动与效率实验一、实验目的1. 了解带传动试验台的结构和工作原理。
2. 掌握转矩、转速、转速差的测量方法,熟悉其操作步骤。
3. 观察带传动的弹性滑动及打滑现象。
4. 了解改变预紧力对带传动能力的影响二、实验内容与要求1.测试带传动转速n1、n2和扭矩T1、T2。
2.计算出输出功率P2、滑动率ε、效率η。
3.绘制P2—ε滑动率曲线和P2—η效率曲线。
三、带传动实验台的结构及工作原理4.带传动实验台是由机械、电器箱和负载箱三部分组成。
其间由航空插座与导线连接。
如图1所示:1图1 带传动实验台1—皮带预紧装置2—主动带轮3—测速传感器4—直流电机5、7一测转矩6—传动带8一从动轮9一直流发电机10—测速传感器11一连接电缆(2根)12—电气箱I3一负载箱14连接导线(2根)1.机械部分:包括主动部分和从动部分。
(1)主动部分包括:355W直流电动机“4”和其主轴上的主动带轮“2”,带预紧装置“l”,直流电机测速传感器“3”及电动机测矩传感器“5”。
电动机安装在可左右直线滑动的平台上,平台与带预紧力装置相连,改变预紧装置“l”的砝码重力,就可改变传动带的预紧力。
(2)从动部分包括:355W直流发电机“9”和其主轴上的从动带轮“8”,直流发电机测速传感器“10”及直流发电机测矩传感器“7”,发电机发出的电量,经连接电缆送进电器控制箱“12”,再经导线“14”与负载箱“13”连接。
2.负载箱:由8只40W灯泡组成,改变负载箱上的开关,即可改变负载大小。
3.电器箱:实验台所有的控制、测试均由电器控制箱“12”来完成(其原理参见图2),旋转设在面板上的调速旋纽,可改变主动轮和被动轮的转速,并由面板上的转速计数器直接显示。
直流电动机和直流发电机的转动力矩也分别由设在面板上的计数器显示出来。
图2 电器箱4.实验台的工作原理:传动带装在主动轮和从动轮上,带传动是依靠带与带轮接触表面产生的摩擦力来传递运动和动力的。
带传动的滑动率和效率测定
实验八 带传动的滑动率和效率测定一、概述带传动是靠带与带轮间的摩擦力来传递运动和动力的。
在传递转矩时传动带的紧边和松边受到的拉力不同。
由于带是弹性体,受力不同时,带的变形量也不相同。
紧边拉力大,相应的伸长变形量也大。
在主动轮上,当带从紧边转到松边时,拉力逐渐降低,带的弹性变形逐渐变小而回缩,带的运动滞后于带轮。
也就是说,带与带轮之间产生了相对滑动。
而在从动轮上,带从松边转到紧边时,带所受的拉力逐渐增加,带的弹性变形量也随之增大,带微微向前伸长,带的运动超前于带轮。
带与带轮间同样也发生相对滑动。
这种由于带的弹性变形而引起的带与带轮之间的滑动,称为弹性滑动。
这种弹性滑动在带传动中是不可避免的,其结果是使从动带轮的圆周速度低于主动轮的圆周速度,使传动比不准确,并引起带传动效率的降低以及带本身的磨损。
带传动中滑动的程度用滑动率ε表示,其表达式为%100)1(1122121×−=−=n D nD v v v ε (8-1) 式中21v v 、分别为主动轮、从动轮的圆周速度,m/s ;21n n 、分别为主动轮、从动轮的转速,r/min ;21D D 、分别为主动轮、从动轮的直径,mm 。
如图8-1所示,带传动的滑动随有效拉力(有效圆周力)F 的增减而增减,表示这种关系的F −ε曲线称为滑动曲线(曲线1)。
当有效拉力F 小于临界点F ′时,滑动率ε与有效拉力F 成线性关系,带处于弹性滑动工作状态。
当有效拉力F 超过F ′点以后,滑动率急剧上升,此时带处于弹性滑动与打滑同时存在的工作状态。
当有效拉力等于max F 时,滑动率近于直线上升,带处于完全打滑的工作状态。
图中曲线2为带传动的效率曲线,即表示带传动效率η与有效拉力F 之间关系的F −η曲线。
当有效拉力增加时,传动效率逐渐提高,当有效拉力超过点F ′时以后,传动效率急剧下降。
带传动最合理的状态,应使有效拉力F 等于或稍低于临界点F ′,这时带传动的效率最高,滑动率%2~%1=ε,并且还有余力负担短时间(如起动)的过载。
带传动传动效率测试实验指导
实验三带传动传动效率测试一、实验目的1.观察带传动中的弹性滑动和打滑现象,以及它们与带传递载荷之间的关系。
2.比较预紧力大小对带传动承栽能力的影响。
3.比较分析平带、V带和圆带传动的承载能力。
4.测定并绘制带传动的弹性滑动曲线和效率曲线,观察带传动弹性滑动和打滑的动画仿真,了解带传动所传递载荷与弹性滑差率及传动效率之间的关系。
5.了解带传动实验台的构造和工作原理,掌握带传动转矩、转速的测量方法。
二、实验台结构及工作原理本实验台主要结构如图1所示。
1.电动机移动底板2.砝码及砝码架3.力传感器4.转矩力测杆5.电动机6.试验带7.光电测速装置8.发电机9.负载灯泡组10.机座11.操纵面板图1 CQP-C带传动实验台主要结构图1.试验带6装在主动带轮和从动带轮上。
主动带轮装在直流伺服电动机5的主轴前端,该电动机为特制的两端外壳由滚动轴承支承的直流伺服电动机,滚动轴承座固定在移动底板1上,整个电动机可相对两端滚动轴承座转动,移动底板1能相对机座10在水平方向滑移。
从动带轮装在发电机8的主轴前端,该发电机为特制的两端外壳由滚动轴承支承的直流伺服发电机,滚动轴承座固定在机座10上,整个发电机也可相对两端滚动轴承座转动。
2.砝码及砝码架2通过尼龙绳与移动底板1相连,用于张紧试验带,增加或减少砝码,即可增大或减少试验带的初拉力。
3.发电机8的输出电路中并联有8个40W灯泡9,组成实验台加载系统,该加载系统可通过计算机软件主界面上的加载按钮控制,也可用实验台面板上触摸按钮6、7(见图2)进行手动控制并显示。
4.实验台面板布置如图2所示。
图2 带传动实验台面板布置图1. 电源开关2. 电动机转速调节3.电动机转矩力显示4. 发电机转矩力显示5. 加载显示6. 卸载按钮7. 加载按钮8.发电机转速显示9. 电动机转速显示5.主动带轮的驱动转矩T1和从动带轮的负载转矩T2均是通过电机外壳的反力矩来测定的。
当电动机5启动和发电机8加负载后,由于定子与转子间磁场的相互作用,电动机的外壳(定子)将向转子回转的反向(逆时针)翻转,而发电动机的外壳将向转子回转的同向(顺时针)翻转。
带传动效率及滑动率测定实验报告
带传动效率及滑动率测定实验报告一、引言带传动是一种常见的机械传动方式,广泛应用于各种机械设备中。
带传动的效率和滑动率是评价其性能的重要指标。
本实验旨在通过实验测定的方法,研究带传动的效率和滑动率,并分析影响其性能的因素。
二、实验方法1. 实验仪器和材料本实验所需的仪器和材料包括:带传动装置、转速计、负载器、动力源、测力计、计时器等。
2. 实验步骤(1)搭建带传动装置,确保带的张紧度适当。
(2)将转速计安装在传动轴上,通过转速计测量传动轴的转速。
(3)将负载器连接到带传动装置的输出轴上,通过调节负载器的负载量,改变带传动的工作条件。
(4)启动动力源,记录转速计的转速和负载器的负载量。
(5)通过测力计测量带的张力,计算带的滑动率。
(6)根据实验数据,计算带传动的效率。
三、实验结果与分析1. 实验数据记录根据实验步骤所述,记录了不同工况下的转速、负载量和带的张力等数据。
2. 实验数据处理(1)根据转速计的转速和负载器的负载量,计算带传动的输入功率和输出功率。
(2)计算带传动的效率,效率=输出功率/输入功率。
(3)根据测力计测得的带的张力,计算带的滑动率,滑动率=(带的张力-传动轴的转矩)/带的张力。
3. 结果分析根据实验数据和计算结果,分析不同工况下带传动的效率和滑动率的变化情况,并对影响其性能的因素进行讨论。
四、讨论1. 影响带传动效率的因素带传动效率受到多种因素的影响,包括带的材料、带的张紧度、传动轴的转矩等。
在实验过程中,可以通过改变这些因素,进一步研究其对带传动效率的影响。
2. 影响带传动滑动率的因素带传动滑动率与带的张力和传动轴的转矩密切相关。
在实验中可以通过调节带的张紧度和负载量,研究其对带传动滑动率的影响。
3. 实验误差分析实验中可能存在的误差包括仪器误差、人为操作误差等。
在实验设计和数据处理过程中,应尽量减小误差的影响,提高实验结果的准确性。
五、结论通过本实验的研究,我们得出以下结论:(1)带传动的效率和滑动率受到多种因素的影响,包括带的材料、带的张紧度、传动轴的转矩等。
带传动的滑动与效率实验
带传动的滑动与效率实验实验类型: 验证 实验学时: 2开出要求: 必做一、 实验目的1. 了解带传动中的弹性滑动现象、打滑现象及其与带传动工作能力的关系。
通过实验,测出带传动的弹性滑动系数、传动效率与带传动预紧拉力之间的关系曲线。
2. 了解实验台的结构原理,掌握扭矩、转速、转速差、效率的测试方法。
3. 确定三角皮带传动的滑动曲线及传动效率曲线。
二、 实验原理及说明1. 带传动的弹性滑动和传动效率带传动是靠摩擦力作用而工作的,其主要失效形式是带的磨损、疲劳损坏和打滑。
带的磨损是由于带与带轮之间的相对滑动引起,是不可避免的;带的疲劳破坏是由于带传动中交变应力引起,与带传动的载荷大小、运行时间、工作状况、带轮直径等有关,它也是不可避免的;带的打滑是由于载荷超过带的传动能力而产生,是可以避免的。
由于带在传动运动过程中,紧边和松边的拉力不同,使得带在紧边的弹性变形大于松边的弹性变形,在带绕过带轮时,由于摩擦力的存在,在主动轮上出现轮的线速度大于带的线速度,在从动轮上出现轮的线速度小于带的线速度的现象,这种现象就是带的弹性滑动。
弹性滑动是带传动主、从动轮产生速度差的主要原因,是带传动效率降低以及带磨损的主要原因,也是带传动的主要特点。
弹性滑动通常以滑动系数来衡量,其定义为112211121D n D n D n v v v -=-=ε (2.1)21D D =%1001⨯∆=n nε这里v 1、v 2分别为主、从动轮的转动线速度;1n 、2n 分别为主、从动轮的转速;D 1、D 2分别为主、从动轮的直径。
一般带传动的滑动系数为(1~2)%。
带传动的效率是指从动轮输出功率P 2与主动轮输入功率P 1的比值,即112212n M n M P P ==η (2.2)式中,M 1、M 2分别为主、从动轮的转矩。
111W L M ⨯= 222W L M⨯=,WL n P ⨯⨯⨯=π260,式中L 为测力臂长度,W 为拉力计所示拉力。
带传动的滑差率与效率
6
No Image
7
No Image
8
No Image
9
No Image
ห้องสมุดไป่ตู้10
No Image
11
No Image
12
No Image
13
No Image
14
No Image
带传动实验台
四、计算公式
• 带传动的滑差率: ε = (n1-n2)/n1 ×100%
• 带传动的传动效率: η=p2/p1 = T2n2/T1n1 ×100% 式中: P1、P2一主动轮、从动轮的 功率
五、实验操作
绘制滑差率曲线和效率曲线
2
1
A0 Pmax
P2
1—滑差率曲线 2—效率曲线 带传动滑动率曲线和效率曲线
五、实验操作
7. 待稳定后,单击“稳定测试”按钮,实时 稳定记录皮带 传动的实测结果,同时将这 一结果记录到实验指导书的数据记录表中。 8.点击“加载”按钮,使发电机增加一定量 的负载,并将 转速调到n1≈1100转/分, 待稳定后,单击“稳定测试”按钮,同时 将测试结果n1、n2和T1、T2记录到实验指 导书的数据记录表中。重复本步骤,直到 ε%≥16%~20%为止,结束本实验。
No Image
河南工业大学机械工程实验教学中心
带传动的滑差率与效率 测定实验
一、实验目的
1. 了解带传动试验台的结构和工作原理。 2. 掌握转矩T、转速n、转速差的测量方 法. 3. 熟悉其操作步骤。 4. 观察带传动的弹性滑动及打滑现象。 5. 了解改变预紧力对带传动能力的影响
二、实验内容与要求
五、实验操作
1.启动电脑,启动带传动测试软件,进 入皮带传动实验台软件封面。 2.接通实验台电源(单相220V),打开 电源开关。 3. 点击进入皮带传动实验台软件封面非 文字区,进入皮带传动实验说明界面。 4. 单击“实验”按钮,进入皮带传动实 验分析界面。
《机械设计》实验一带传动的滑动率曲线与效率曲线测定
《机械设计》实验一(带传动的滑动率曲线与效率曲线测定)《机械设计》实验一:带传动的滑动率曲线与效率曲线测定一、实验目的1.掌握带传动实验的基本原理和方法。
2.了解带传动的滑动率曲线和效率曲线。
3.掌握如何通过实验数据绘制滑动率曲线和效率曲线。
二、实验原理带传动是一种常见的机械传动方式,具有结构简单、维护方便等优点。
带传动的滑动率是指带轮在单位时间内相对于轴线的位移量与带轮周长的比值,通常用百分数表示。
带传动的效率是指带轮传递的功率与输入功率的比值。
带传动的滑动率和效率受到多种因素的影响,如带轮的直径、转速、带的材料和预紧力等。
通过对这些因素的调整和控制,可以实现对带传动性能的优化。
三、实验步骤1.准备实验器材:带传动实验装置、功率计、转速计、游标卡尺、计时器等。
2.将带传动实验装置安装好,确保带轮与轴连接牢固,无松动现象。
3.根据实验要求,调整带轮的直径和转速,并记录数据。
4.通过功率计和转速计测量输入功率和转速,并记录数据。
5.通过游标卡尺测量带的线速度,并记录数据。
6.按照实验要求,在不同条件下重复以上步骤,获得足够多的数据。
7.根据实验数据,绘制滑动率曲线和效率曲线。
四、实验结果与分析1.通过实验数据,我们可以得出以下结论:(1)随着转速的增加,带的滑动率增加。
这是因为转速增加时,带与带轮之间的摩擦力增大,导致带的相对滑动量增加。
(2)随着带轮直径的增加,带的滑动率增加。
这是因为带轮直径增加时,带的周长增加,摩擦力增大,导致带的相对滑动量增加。
(3)随着带的材料和预紧力的不同,带的滑动率和效率也会有所不同。
这是因为不同材料和预紧力会导致带与带轮之间的摩擦系数和传递效率发生变化。
2.通过滑动率曲线和效率曲线的绘制,我们可以更直观地了解带传动的性能。
例如,当带的滑动率较高时,带传动的效率较低;而当带的滑动率较低时,带传动的效率较高。
此外,我们还可以发现,在某些条件下,带的滑动率和效率存在最优值。
《机械设计》实验一(带传动的滑动率曲线与效率曲线测定)pdf
验证性实验指导书实验名称:带传动的滑动率曲线与效率曲线测定实验简介:带传动在工作中,滑动现象是不可避免的,通过本实验可以观察带传动的打滑现象,绘出滑动曲线和效率曲线,从而加深对带传动工作原理的特点的认识,并初步学会实验技能。
适用课程:机械设计实验目的:A验证带传动滑动率曲线及效率曲线;B观察带传动的打滑现象;C了解实验台高效节能的电封闭加载原理;D 了解常用机械量的测量原理及方法。
面向专业:机械类实验项目性质:验证性(课内必做)计划学时: 2学时实验分组: 2人/组实验照片:《机械设计》课程实验实验一 带传动的滑动率曲线与效率曲线测定带传动在工作中,滑动现象是不可避免的,本实验的目的和要求是:观察带传动的打滑现象,绘出滑动曲线和效率曲线,从而加深对带传动工作原理的特点的认识,并初步学会实验技能。
一、 实验目的1. 验证带传动滑动率曲线及效率曲线;2. 观察带传动的打滑现象;3. 了解实验台高效节能的电封闭加载原理;4. 了解常用机械量的测量原理及方法。
二、 实验设备带传动的滑动率与效率测定试验台图1-1是试验台的结构简图,它有两台直流电机,电机1和电机2。
在试验中,我们将用电机1通过进行试验的皮带拖着电机2发电来给皮带加上负载。
具体的加载原理和方法,下面一节再详细介绍。
电机1的定子用轴承固定在支架上,并加以平衡,可以自由摆动,称为悬支电机。
这样结构是为了便于通过固联在定子上的力臂和放在它旁边的磅秤,测量电机工作时转子上的转矩。
因为按电动机工作的电机,定子上由反作用力产生的转矩,大小与转子转矩相等(摩擦力忽略不计),方向与转子产生转矩相反。
这台电机试验时按电动机工作,转子顺时针方向旋转,所以磅秤放在它的左侧。
转矩T1可由下式计算:11T P L =× (4)式中:P1——磅秤的读数(kg)L ——为力臂长度,L=400mm右边的电机2也用相同的方法支承在它的支架上,因为这台电机在试验中按发电机工作,发电机定子上的转矩的大小和方向均与转子转矩相同,现在转子为顺时针方向旋转,所以磅秤放在它的右边。
带传动的滑动与效率实验
带传动滑动与效率实验指导书一、实验目的1. 了解带传动中的弹性滑动及打滑现象以及与带传动承载能力的关系;2. 掌握带传动的滑动和效率的测试方法,确定带传动最合理的工作状态,探讨改善带传动性能的措施。
二、实验原理带传动的设计准则是:保证传动带在工作中不打滑,同时又有足够的疲劳强度和寿命。
传动带不出现打滑的临界条件取决于带传动的滑动与承载能力(有效拉力、扭矩或传递功率)之间的关系。
在传动条件及初拉力一定的情况下带传动的滑动与有效拉力F 之间的关系曲线如图1所示。
图中ε-F 曲线称为带传动滑动曲线,η-F 曲线为带传动效率曲线:图1带传动滑动曲线和效率曲线ε为滑动系数或称滑差率ε=%100)1(1212121⨯⨯-=-n n D D V V V (1) 式中 V 1、V 2、n 1、n 2—分别为主动轮、从动轮的线速度和转速,m/s 和r/min;D 1、D 2—分别为主动轮、从动轮的计算直径,mm 。
由图可知:滑动曲线在开始一段,滑动系数随有效拉力的增加而成线性增加,这时传动带处于弹性滑动范围内工作,属于弹性滑动区。
当拉力增加至超过某一值后,滑动系数增加很快,带处于弹性滑动与打滑同时存在的范围内工作,属于打滑区。
当拉力继续增加,带将在带轮上处于完全打滑工作状态,此时滑动系数ε近于直线上升。
为了保证传动带在工作中不打滑,又能发挥带的最大工作能力,临界条件应取在k 点,在这一临界条件下,滑动系数ε=1~2%,且传动效率η处于较高值。
三、实验装置1、 主要结构及工作原理图2为带传动实验台外观结构图。
该实验台主要由两个直流电机组成或其中一个为主动电机5,另一个为从动电机8,作发电机使用,其电枢绕组两端接上灯泡负载9,主动电机固定在一个以水平方向移动的底板1上,与发电机由一根平皮带6连接。
在与滑动底板相连的法码架上加上法码,即可拉紧皮带6。
电机锭子未固定可转动,其外壳上装有测力杆,支点压在压力传感器上通过计算即可得到电动机和发电机的转矩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带传动的滑动率和效率测定的实验案设计
一、实验目的
1.深入了解带传动的原理以及传动摩擦和滑动时候的相关问题。
2.深入了解、掌握机械带传动效率及滑动率测量法及原理,了解测量过程所使用的仪器、仪表以及传感器的工作原理。
3.观察带传动的弹性滑动和打滑现象,加深对带传动工作原理和设计准则的理解。
4.通过对滑动曲线(ε—F曲线)和效率曲线(η—F曲线)的测定和分析,深刻认识带传动特性、承载能力、效率及其影响因素。
二、实验的理论依据
由于带是弹性体,受力不同的时候伸长量不等,使带传动发生弹性滑动现象。
在带绕带轮滑动传动时候,带的压力由F1 下降到F2所以带的弹性变形也要相应减小,亦即带在逐渐缩短,带的速度要落后于带轮,因此两者之间必然发生相对滑动。
同样的现象也发生在从动轮上,但是情况恰好相反。
带从松边转到紧边时,带所受到的拉力逐渐增加,带的弹性变形量也随之增大,带微微向前伸长,带的运动超前于带轮。
带与带轮间同样也发生相对滑动。
其中:带收到的紧力F0,紧边拉力F1,松边拉力F2。
则:有效拉力F=F1- F2等于带沿带轮的接触弧上摩擦力的总和F f
带传动中滑动的程度用滑动率表示,其表达式为
%100)1(1
12
2121⨯-=-=n D n D v v v ε
式中 v 1、v 2——分别为主动轮、从动轮的圆速度,单位:m/s ;
n 1、n 2——分别为主动轮、从动轮的转速,r/min ; D 1、D 2——分别为主动轮、从动轮的直径,mm 。
如图2-1所示,带传动的滑动(曲线1)随着带的有效拉力F 的增大而增大,表示这种关系的曲线称为滑动曲线。
当有效拉力F 小于临界点F '点时,滑动率与有效拉力F 成线性关系,带处于弹性滑动工作状态;当有效拉力F 超过临界点
F '点以后,滑动率急剧上升,带处于弹性滑
动与打滑同时存在的工作状态。
当有效拉力等
于F max 时,滑动率近于直线上升,带处于完全打滑的工作状态。
图中曲线2为带传动的效率曲线,即表示带传动效率η与有效拉力F 之间关系的曲线。
当有效拉力增加时,传动效率逐渐提高,当有效拉力F 超过临界点F '点以后,传动效率急剧下降。
带传动最合理的状态,应使有效拉力F 等于或稍小于临界点F ',这时带传动的效率最高,滑动率ε =1% ~ 2%,并且还有余力负担短时间(如启动时)的过载。
三、实验台的结构与工作原理
本实验的设备是PC —A 型带传动实验台。
该实验
1-滑动曲线 2-效率曲线 图2-1 带传动的滑动曲线和效率曲线
台由主机和测量系统两大部分组成,如图2-2所示。
1.主机
主机主要由两台直流电机组成,其中一台作为原动机,另一台则作为负载的发电机,原动机由直流调速电路供给电枢以不同的端电压,可实现无级调速。
主、从带轮分别装在原动机和发电机的转子轴上,实验用的平带套在两带轮上。
3 4 5 6 7 8 9
2
1 1
2 11 10
图2-2 PC—A型实验台
⒈电机滑动底板⒉砝码⒊百分表⒋测力杆及测力装置⒌电动机及主动带轮⒍平带
⒎光电测速装置⒏发电机及从动带轮⒐负载灯泡⒑负载开关⒒电源开关⒓调速开关
带传动的加载装置是在直流发电机的输出电路上,并联了八个40瓦的灯泡作负载。
每按一下“加载”按键,即并上一个负载电阻(减小了总电阻),由于发电机的输出功率为P=V2/R, 因此并联负载电阻后使得发电机负载增加,电枢电流增大,电磁转矩增大,即发电机的负载转矩的增大,
实现了改变带传动输出转矩的作用,即带的受力增大,两边拉力差也增大,带的弹性滑动逐步增加。
当带传递的载荷刚好达到所能传递的最大有效圆力时,带开始打滑,当负载继续增加时则完全打滑。
原动机装在滑动底板上,可沿底板滑动,与牵引钢丝绳、定滑轮和砝码2一起组成带传动的预紧力形成机构。
通过改变砝码的质量,使钢丝绳拉动滑动底板,即可设定带传动的预紧力。
2.
测量系统
1. 电测模块-------是由发光二极管、光敏电阻、光敏三机管安装于二者之间的遮光板测量转速的,发光二级管发出红外线,通过安装与电动机主轴的遮光板(遮光板再同一半径上均匀的打出了多小),是光敏三极管感受到脉冲光信号,并将其转换成脉冲电信号,经电路处理为标准的转速显示于LED 上。
带轮转动时,就可在数码管上直接读出主动带轮转速n 1和从动轮转速n 2。
因带轮直径D 1=D 2,可以得出滑动率ε 的计算公式 %100)1(1
2
11122121⨯-=-=-=
n n n n D n D v v v ε 2. 电控模块-----将220V 、50Hz 的市电流整流成直流电,经电位器调压调节电动机的转速。
3. 负载-----电动机为从动轮的负载,灯泡为发电机的负载。
负载的大小(接通灯泡的数量)由按钮开关控制。
4. 扭矩的测量------测量法为平衡电机法。
有电机工作原理可知,定子与转子之间有一对互为反作用的扭矩,所以定子转矩大小即为转子转
矩的大小。
电机通过轴承由一对支架支撑,电机扭臂固定于电机钉子上,在扭臂的端部有一触头,作用于力传感器上,有公式 M=FL 可以得到电机的扭矩。
主动轮上的扭矩: T 1 = F 1L 1 (Nmm) 从动轮上的扭矩: T 2 = F 2L 2 (Nmm)
式中21F F ,为主从动轮压力传感器测得的数值,可通过面板直接读出
L 1、 L 2——测力计的力臂,L 1= L 2= ? mm 。
测得不同负载下主动轮的转速n 1和从动轮的转速n 2以及主动轮的转矩T 1和从动轮的转矩T 2后,带传动效率可由3式确定。
112
21
2n T n T P P ==
η (3)
带传动的有效拉力可近似由下面的公式计算
1
1
2D T F =
(4)
式中 P 1、P 2——为带传动的输入、输出功率;
T 1、T 2——为带传动的输入、输出转矩。
以有效拉力F 为横坐标,分别以不同载荷下的ε 和η之值为纵坐标,就可画出带传动的弹性滑动曲线和效率曲线,如图2-1所示。
5.建议:实验过程中主动轮的转速调节围为10000~2000转/分。
三、实验步骤
1.检查安装。
将选定的平带合适的安装好在两带轮上。
启动实验台的电动机,待带传动运转平稳后,可进行带传动实验。
2.确定带的初拉力2F0值。
根据初拉力的大小决定砝码2(图1-1)的
重量,将传动带紧。
(注意,记录实验台机主要参数,如带型号,D1、D2、L1、L2,…等)。
3.空载调零。
调整测力磅秤读数的零点,检查发电机负载应为零值。
4.按操作规程缓慢启动电动机,将转速调至一定值(按辅导教师的规
定),并注意随时保持转速的稳定性。
逐级调整发电机负载,记录各级负载下的n1、n2、T1、T2、值,依次做到带在带轮上接近明显打滑时为止(滑动率ε约为20%~30%即可),停止试验。
卸去负载,按上述程序重复做一次,再停机,并将实验数据记录在表1-1中,取两次的平均值。
测得的数据应不少于6~8点。
5.改变初拉力2F0(或主动轮转速),重复上述步骤,做出另一组试验数据。
并将实验数据记录在表1-2中。
6.根据表1-1、1-2中的实验记录数据在坐标纸上合适取单位,描点,画出带传动滑动率曲线和效率曲线,即ε-F、η-F关系曲线图(用16开座标纸绘出)
六、实验预期结果
带传动最合理的状态,应使有效拉力F等于或稍小于临界点F',这时带传动的效率最高,滑动率ε=1% ~ 2%,并且还有余力负担短时间(如启动时)的过载。
七、实验报告整理
将上述实验结果,整理成实验报告。
实验报告
实验名称:
姓名:班级:学号:
一、实验目的
二、实验仪器
三、实验台参数
1.带轮半径D1=D2= mm
2.测力杆长度L1=L2= mm
3.预紧力(初拉力)F0=
四、实验数据与计算
机自0907班明智0905040707 超0907班0905040725。