基于MATLAB直流电机起动设计与仿真-课程设计解析

合集下载

一种基于Matlab的无刷直流电机控制系统建模仿真方法

一种基于Matlab的无刷直流电机控制系统建模仿真方法

一种基于Matlab的无刷直流电机控制系统建模仿真方法一、本文概述无刷直流电机(Brushless DC Motor, BLDC)以其高效率、低噪音、长寿命等优点,在航空航天、电动汽车、家用电器等领域得到广泛应用。

为了对无刷直流电机控制系统进行性能分析和优化,需要建立精确的数学模型并进行仿真研究。

Matlab作为一种强大的数学计算和仿真软件,为无刷直流电机控制系统的建模仿真提供了有力支持。

二、无刷直流电机控制系统原理1、无刷直流电机基本结构和工作原理无刷直流电机(Brushless Direct Current Motor,简称BLDCM)是一种基于电子换向技术的直流电机,其特点在于去除了传统直流电机中的机械换向器和电刷,从而提高了电机的运行效率和可靠性。

无刷直流电机主要由电机本体、电子换向器和功率驱动器三部分组成。

电机本体通常采用三相星形或三角形接法,其定子上分布有多个电磁铁(也称为线圈),而转子上则安装有永磁体。

当电机通电时,定子上的电磁铁会产生磁场,与转子上的永磁体产生相互作用力,从而驱动转子旋转。

电子换向器是无刷直流电机的核心部分,通常由霍尔传感器和控制器组成。

霍尔传感器安装在电机本体的定子附近,用于检测转子位置,并将位置信息传递给控制器。

控制器则根据霍尔传感器提供的位置信息,控制功率驱动器对定子上的电磁铁进行通电,从而实现电机的电子换向。

功率驱动器负责将控制器的控制信号转换为实际的电流,驱动定子上的电磁铁工作。

功率驱动器通常采用三相全桥驱动电路,具有输出电流大、驱动能力强等特点。

无刷直流电机的工作原理可以简单概括为:控制器根据霍尔传感器检测到的转子位置信息,控制功率驱动器对定子上的电磁铁进行通电,产生磁场并驱动转子旋转;随着转子的旋转,霍尔传感器不断检测新的转子位置信息,控制器根据这些信息实时调整电磁铁的通电状态,从而保持电机的连续稳定运行。

由于无刷直流电机采用电子换向技术,避免了传统直流电机中机械换向器和电刷的磨损和故障,因此具有更高的运行效率和更长的使用寿命。

基于MATLAB的电机仿真分析

基于MATLAB的电机仿真分析

基于MATLAB的电机仿真分析
摘要:电机是工业生产中常用的动力设备,对电机进行仿真分析可以帮助工程师们更好地了解电机的工作原理和性能特点。

本文将介绍基于MATLAB的电机仿真分析方法,并以直流电机为例进行仿真分析,通过仿真分析得出了电机的性能曲线和工作特性,为电机的设计和优化提供了参考。

关键词:电机;仿真分析;MATLAB;直流电机;性能曲线
一、引言
二、电机仿真分析的基本原理
电机的仿真分析是通过对电机的工作原理和性能参数进行数学建模,然后利用计算机软件对模型进行求解和分析。

在MATLAB中,可以通过建立电机的数学模型,然后利用工具箱中的仿真模块对电机进行仿真分析。

电机的数学建模包括电机的电气特性和机械特性两方面,其中电气特性包括电机的电路方程和电磁方程,机械特性包括电机的转子惯量、机械摩擦等参数。

通过建立完整的电机数学模型,可以对电机的性能进行准确地仿真分析。

1. 建立电机数学模型
2. 利用MATLAB进行仿真分析
在MATLAB中,可以利用Simulink工具箱对电机的数学模型进行仿真计算。

首先将电机的数学模型用Simulink建模工具进行建模,然后设置仿真参数,运行仿真模拟,得到电机的仿真结果。

通过仿真结果,可以得到电机的性能曲线、工作特性等重要参数。

3. 优化分析
根据电机的仿真结果进行分析和评估,对电机的性能进行优化。

可以通过修改电机的某些参数,重新进行仿真分析,得出最优的电机设计参数。

基于MATLAB的电机仿真分析

基于MATLAB的电机仿真分析

基于MATLAB的电机仿真分析一、电机仿真基础在进行电机仿真分析之前,我们首先需要了解电机的工作原理和基本参数。

电机是一种将电能转换为机械能的设备,根据其工作原理的不同,可以分为直流电机和交流电机。

在进行仿真分析时,需要考虑到电机的电气和机械特性,例如电压、电流、转速、转矩等参数。

电机仿真分析的基础是建立电机的数学模型,通常采用的是电路模型或者有限元模型。

电路模型适用于小功率电机,其基本原理是根据电机的电气特性建立等效电路,并通过电路方程进行仿真分析。

有限元模型适用于大功率电机,其基本原理是根据电机的物理结构建立有限元模型,并通过有限元分析进行仿真分析。

在MATLAB中,可以利用Simulink或者PDE Toolbox等工具进行电路模型和有限元模型的建模和仿真。

三、基于MATLAB的电机仿真应用1. 电机性能分析基于MATLAB的电机仿真分析可以帮助工程师了解电机的性能和特点,例如电流波形、转速响应、转矩曲线等参数。

通过仿真分析,可以优化电机设计和控制系统,提高电机的效率和可靠性。

2. 电机故障诊断基于MATLAB的电机仿真分析还可以用于电机的故障诊断,例如定子短路、转子断路、轴承故障等。

通过对电机的电气特性和机械特性进行仿真分析,可以检测和诊断电机的故障类型和位置,从而及时进行维修和保养。

3. 电机控制系统设计基于MATLAB的电机仿真分析还可以用于电机控制系统的设计和优化。

通过搭建电机模型和控制系统模型,进行仿真分析和参数调节,可以得到最优的控制系统参数,提高电机的动态性能和稳定性。

四、结论基于MATLAB的电机仿真分析是一种有效的工具,可以帮助工程师更好地了解电机的性能和特点,优化电机设计和控制系统。

在实际工程中,可以根据电机的具体要求和情况选择合适的仿真方法和工具,进行仿真分析和应用研究。

随着MATLAB工具的不断更新和完善,电机仿真分析将得到更广泛的应用和发展。

基于MATLAB的电机仿真分析

基于MATLAB的电机仿真分析

基于MATLAB的电机仿真分析电机仿真分析是指使用MATLAB软件进行电机系统的模拟和分析。

该方法以电机的数学模型为基础,利用MATLAB的仿真工具和数学计算功能,对电机的性能、运行特性和控制设计进行分析和优化。

下面将介绍基于MATLAB的电机仿真分析的基本原理和步骤。

进行电机的数学建模。

电机的数学模型可以根据电机的物理特性和运动方程来确定。

常用的电机模型有直流电机模型、交流电机模型和步进电机模型等。

在MATLAB中,可以使用函数、矩阵和方程组等数学工具来描述电机的模型。

进行电机的参数设定。

电机的参数包括电阻、电感、转子惯量、定子和转子的绕组、转子质量等。

这些参数对于电机的性能和控制设计有重要影响。

在MATLAB中,可以使用变量来表示电机的参数,并且可以根据实际情况进行设定。

然后,进行电机系统的仿真。

电机系统的仿真包括电机的动态响应、电流波形、转速曲线、电磁转矩和能量转换等。

在MATLAB中,可以使用ODE方程求解器对电机的动态响应进行仿真。

可以使用曲线拟合和插值等函数来分析电流波形和转速曲线等。

进行电机的控制设计和优化。

电机的控制设计包括速度控制、位置控制、转矩控制和电流控制等。

在MATLAB中,可以使用反馈控制和模型预测控制等算法来设计电机的控制器。

可以使用优化算法来优化电机的参数和控制策略,使得电机的性能和效率达到最佳。

1. 灵活性高:MATLAB软件具有丰富的工具箱和函数库,可以方便地进行电机系统的建模和仿真分析。

2. 精度高:MATLAB具有高精度的数学计算功能,可以对电机的动态响应和控制效果进行准确的模拟和分析。

3. 易于使用:MATLAB软件具有友好的用户界面和操作步骤,使得电机仿真分析的过程简单易行。

4. 可视化效果好:MATLAB软件可以绘制电机的波形、曲线和图像,直观地展示电机系统的性能和运行状态。

基于MATLAB的电机仿真分析是一种有效的电机设计和优化方法。

它可以帮助工程师和研究人员深入了解电机的性能和控制,提高电机的效率和可靠性。

基于MATLAB的电机仿真分析

基于MATLAB的电机仿真分析

基于MATLAB的电机仿真分析
MATLAB是一种功能强大的数学软件,它提供了丰富的工具箱和仿真模型,可以用于电机系统的建模和仿真分析。

在电机仿真分析中,MATLAB可以用于电机的电磁特性分析、热特性分析、动态响应分析等方面。

电机的电磁特性分析是电机仿真分析中最基础的部分。

通过建立电机的数学模型,可
以计算电机的转矩、电流、电压等参数。

在MATLAB中,可以利用有限元法或磁路法建立电机模型,计算电机的正常工作状态下的电磁特性。

通过仿真分析可以得到电机的磁场分布、磁链特性、功率特性等信息,为电机设计和控制提供依据。

电机的动态响应分析是电机仿真分析中的另一个重要方面。

电机在启动、变速、制动
等过程中会产生一系列的动态响应,如转速、电流、振动等。

通过将电机的数学模型与控
制算法相结合,可以仿真分析电机在不同工况下的动态响应。

MATLAB提供了丰富的控制设计工具和仿真模型,可以对电机的动态性能进行仿真分析和优化设计。

在电机仿真分析中,通常需要对电机的不同工况进行仿真分析,如额定工况、起动工况、负载变化工况等。

通过仿真分析可以得到电机在不同工况下的性能指标,如效率、功
率因数、转速调节范围等。

这些指标对电机的设计和控制具有重要意义。

基于MATLAB的电机仿真分析是一种先进的电机设计和优化方法。

它可以帮助工程师在电机设计和运行过程中预测和优化电机的性能,提高电机的效率和可靠性。

电机仿真分析
也可以提供给工程师在电机故障诊断和故障排除过程中的重要参考依据。

基于MATLAB的电机仿真分析

基于MATLAB的电机仿真分析

基于MATLAB的电机仿真分析
电机仿真方法在电机设计和优化中具有重要的应用价值。

它可以通过先进的数值方法
来求解复杂的电机问题,比如电机的电磁场分析、热场分析、优化设计等。

在电机设计中,仿真可以帮助工程师们在设计初期就预测电机的性能和优化方案,从而减少了设计时间和
成本。

在MATLAB中,电机仿真分析通常涉及以下几个方面:
1. 电机建模:通过数学模型来描述电机的特性和性能,包括电磁场、机械结构、热
特性等。

常用的电机模型包括间接轴流转子电机模型、直接轴流转子电机模型、步进电机
模型等。

2. 磁场分析:根据电机的电磁场特性,使用磁场有限元或者其他数值方法来计算电
机的电磁场分布情况。

磁场分析可以预测电机的输出转矩、转速、功率等性能参数。

3. 动力学分析:根据电机设计的机械结构和运动方程,预测电机的旋转速度、加速
度以及转子的位置、速度等参数。

在复杂的电机系统中,动力学分析通常与磁场分析耦合
在一起。

4. 热场分析:电机在长时间运行过程中会产生热量,这对电机的寿命和性能有很大
的影响。

热场分析可以预测电机的温升、温度分布等相关参数,从而优化电机的散热设计
和保护方案。

5. 优化设计:利用MATLAB的优化工具,结合电机仿真结果进行参数优化,以达到最
佳的电机性能和效率。

在实际应用中,电机仿真分析的具体流程和方法根据不同的电机类型和要求而有所不同。

例如,在直流电机的仿真分析中,一般采用电路等效模型和差动方程组来描述电机特性;而在交流电机的仿真中,多采用有限元法和磁路分析法进行磁场计算。

基于MATLAB的直流电机双闭环调速系统的设计与仿真

基于MATLAB的直流电机双闭环调速系统的设计与仿真

基于MATLAB的直流电机双闭环调速系统的设计与仿真直流电机双闭环调速系统是一种常见的控制系统,常用于工业生产中对电机速度的精确控制。

本文将基于MATLAB软件进行直流电机双闭环调速系统的设计与仿真,包括系统设计、参数设置、控制策略选择、系统仿真以及性能分析等方面。

文章将以1200字以上的篇幅进行详细阐述。

一、系统设计直流电机双闭环调速系统由速度环和电流环构成。

速度环控制系统的输入为速度设定值和电机实际速度,输出为电机期望电压;电流环控制系统的输入为速度环输出的电压和电机实际电流,输出为电机实际电压。

通过控制电机的期望电压和实际电压,达到对电机速度的调控。

二、参数设置在进行系统仿真之前,需要确定系统中各个参数的值。

包括电机的额定转矩、额定电压、电感、电阻等参数,以及控制环节的比例增益、积分增益、微分增益等参数。

这些参数的选择会影响系统的稳定性和动态性能,需要根据实际情况进行调整。

三、控制策略选择常见的控制策略包括PID控制、PI控制、PD控制等。

在直流电机双闭环调速系统中,可以选择PID控制策略。

PID控制器由比例环节、积分环节和微分环节组成,可以提高系统的稳定性和响应速度。

四、系统仿真在MATLAB中进行直流电机双闭环调速系统的仿真,可以使用Simulink模块进行搭建。

根据系统设计和参数设置,搭建速度环和电流环的控制器,连接电机实际速度和电机实际电流的反馈信号,输入速度设定值和电机期望电流,输出电机期望电压。

通过仿真可以得到系统的动态响应曲线,评估系统的性能。

五、性能分析在仿真结果中,可以分析系统的静态误差、超调量、调整时间等指标,评估系统的控制性能。

通过参数调整和控制策略更改等方式,可以优化系统的控制性能,使系统达到更好的调速效果。

总结:本文基于MATLAB软件对直流电机双闭环调速系统进行了设计与仿真。

通过系统设计、参数设置、控制策略选择、系统仿真以及性能分析等步骤,可以得到直流电机双闭环调速系统的动态响应曲线,并通过参数调整和控制策略更改等方式,优化系统的控制性能。

基于MATLAB的电机仿真分析

基于MATLAB的电机仿真分析

基于MATLAB的电机仿真分析
电机是一种将电能转换为机械能的装置,广泛应用于各种工业和生活中。

为了更好地
理解电机的工作原理和性能,需要进行电机仿真分析。

MATLAB是一种理想的电机仿真工具,它提供了丰富的工具和函数,用于建立电机模型、仿真电机动态响应和分析电机性能。

首先,我们需要构建电机的数学模型,这个模型可以根据电机的类型和特性进行定制。

例如,在直流电机中,可以使用基于电流和电动势的方程建立模型,而在交流电机中,则
需要用到转子和定子电磁场的分析等。

建立数学模型后,我们可以使用MATLAB中的Simulink工具,对电机进行动态仿真。

对于直流电机而言,我们可以将电枢电阻、电感和电机电动势等元素建立为Simulink中的block,用于建立电机的仿真环境。

然后我们可以通过仿真接口,给出不同的输入信号,
比如不同的电压和电流波形等,从而观察电机的动态响应,并分析电机的性能。

除了动态仿真外,MATLAB还提供了很多分析工具,比如功率谱分析、频谱分析和阻抗分析等,用于提取电机的性能指标,比如效率、功率因数和输出功率等。

在进行电机仿真分析时,还需要注意一些问题,比如精度问题、仿真时间问题和仿真
环境问题等。

为了保证仿真结果的可靠性和准确性,我们需要对模型进行较为精细的调整
和校验,并关注仿真时间的长短和仿真环境的影响等。

综上所述,基于MATLAB的电机仿真是一种强大的分析工具,可以帮助人们更好地理解电机的工作原理和性能,并优化电机的设计和控制。

matlab课程设计--基于Matlab的直流电机双闭环调速系统的设计与仿真

matlab课程设计--基于Matlab的直流电机双闭环调速系统的设计与仿真

matlab课程设计--基于Matlab 的直流电机双闭环调速系统的设计与仿真基于MATLAB的直流电机双闭环调速系统的设计与仿真班级:自动化12-1班姓名:学号:指导老师:前言MATLAB是一种对技术计算高性能的语言,它集成了计算、可视化和编程于一个易用的环境中。

在此环境下,问题和解答都表达为我们熟悉的数学符号。

典型的应用有:1.数学和计算;2.算法开发;3.建模、模拟和原形化;4.数据分析、探索和可视化;5.科学与工程制图;6.应用开发,包括图形用户界面的建立。

MATLAB在信号与系统中的应用主要包括符号运算和数值计算仿真分析。

由于信号与系统课程的许多内容都是基于公式演算,而MATLAB借助符号数学工具箱提供的符号运算功能,能基本满足信号与系统课程的需求。

例如解微分方程、傅里叶正反变换、拉普拉斯正反变换和z正反变换等。

MATLAB在信号与系统中的另一主要应用是数值计算与仿真分析,主要包括函数波形绘制、函数运算、冲击响应与阶跃响应仿真分析、信号的时域分析、信号的频谱分析、系统的S域分析和零极点图绘制等内容。

数值计算仿真分析可以帮助学生更深入地理解理论知识,并为将来使用MATLAB进行信号处理领域的各种分析和实际应用打下基础。

此次课程设计主要是为了进一步熟悉对matlab软件的使用,以及学会利用matlab对直流电机双闭环调速系统这种实际问题进行处理,将理论应用于实际,加深对它的理解。

目录前言第一章Matlab软件简介1.1 Matlab的产生和历史背景 (1)1.2 Matlab的语言特点 (2)第二章系统介绍2.1 设计参数要求 (4)2.2 稳态参数计算 (4)2.3 电流环设计 (5)2.4 转速换设计 (8)第三章仿真调试3.1 仿真结果分析 (11)3.2 转速电流双闭环程序流程框图 (11)3.3 Matlab源程序 (12)第四章总结 (14)参考文献第一章 Matlab软件简介1.1 Matlab的产生和历史背景在20世纪70年代中期,Cleve Moler博士和其同事在美国国家科学基金的资助下开发了调用EISPACK和LINPACK的FORTRAN子程序库。

基于MATLAB的电机仿真分析

基于MATLAB的电机仿真分析

基于MATLAB的电机仿真分析引言电机是现代工业中不可或缺的设备,它广泛应用于各种领域,如制造业、交通运输、能源等。

电机的设计和性能分析对于提高设备的效率和性能至关重要。

基于MATLAB的电机仿真分析技术,可以帮助工程师们快速而准确地分析电机的性能,并优化设计方案,从而提高生产效率和节约成本。

本文将从电机仿真的基本原理、MATLAB工具的应用和实际案例分析等方面进行探讨。

一、电机仿真的基本原理电机仿真是通过建立数学模型,利用计算机软件对电机进行运行状态的模拟和分析。

其基本原理包括建立电机的数学模型、选择仿真算法和参数设置、进行仿真计算和结果分析等步骤。

1. 建立电机的数学模型电机的数学模型可以通过物理方程建立,一般包括电机的电气方程和机械方程。

电机的电气方程描述了电机的电气特性,如电压、电流和电磁力等,而机械方程则描述了电机的运动特性,如速度、转矩和负载等。

通过建立电机的数学模型,可以定量地描述电机的运行状态,为后续的仿真计算提供基础。

2. 选择仿真算法和参数设置在建立好电机的数学模型后,需要选择合适的仿真算法和设置仿真参数。

常见的仿真算法包括有限元法、有限差分法和有限体积法等,而仿真参数则包括时间步长、收敛准则和误差控制等。

通过选择合适的仿真算法和设置仿真参数,可以保证仿真计算的准确性和效率。

3. 进行仿真计算和结果分析利用计算机软件进行仿真计算,并对仿真结果进行分析。

通过仿真计算,可以得到电机在不同工况下的电气和机械特性,如转矩-速度曲线、电流波形和效率曲线等。

结果分析可以帮助工程师们深入理解电机的性能特点,并为优化设计方案提供依据。

二、MATLAB工具的应用MATLAB是一种功能强大的科学计算软件,它提供了丰富的数学工具和仿真功能,适用于电机仿真分析。

在进行电机仿真时,MATLAB提供了一系列的工具箱和函数,如SIMULINK 仿真平台、MATLAB编程语言和电机仿真工具箱等,能够满足不同类型电机的仿真需求。

根据MATLAB的直流电机双闭环调速系统的设计与仿真

根据MATLAB的直流电机双闭环调速系统的设计与仿真

《机电控制系统分析与设计》课程大作业之一 基于MATLAB 的直流电机双闭环调速系统的设计与仿真1 计算电流和转速反馈系数β=U im ∗I dm =10V 4A =1.25Ωα=U nm ∗n =10500=0.02V ∙min/r2 按工程设计法,详细写出电流环的动态校正过程和设计结果根据设计的一般原则“先内环后外环”,从内环开始,逐步向外扩展。

在这里,首先设计电流调节器,然后把整个电流环看作是转速调节系统中的一个环节,再设计转速调节器。

电流调节器设计分为以下几个步骤:a 电流环结构图的简化 1) 忽略反电动势的动态影响在按动态性能设计电流环时,可以暂不考虑反电动势变化的动态影响,即 E ≈0。

这时,电流环如下图所示。

2) 等效成单位负反馈系统如果把给定滤波和反馈滤波两个环节都等效地移到环内,同时把给定信号改成U *i (s ) /β ,则电流环便等效成单位负反馈系统。

3) 小惯性环节近似处理由于T s 和 T 0i 一般都比T l 小得多,可以当作小惯性群而近似地看作是一个惯性环节,其时间常数为T ∑i = T s + T oi 简化的近似条件为电流环结构图最终简化成图。

ois ci 131T T ≤ωb 电流调节器结构的选择 1) 典型系统的选择:从稳态要求上看,希望电流无静差,以得到理想的堵转特性,采用 I 型系统就够了。

从动态要求上看,实际系统不允许电枢电流在突加控制作用时有太大的超调,以保证电流在动态过程中不超过允许值,而对电网电压波动的及时抗扰作用只是次要的因素,为此,电流环应以跟随性能为主,应选用典型I 型系统 2) 电流调节器选择电流环的控制对象是双惯性型的,要校正成典型 I 型系统,显然应采用PI型的电流调节器,其传递函数可以写成K i — 电流调节器的比例系数; τi — 电流调节器的超前时间常数3) 校正后电流环的结构和特性为了让调节器零点与控制对象的大时间常数极点对消,选择则电流环的动态结构图便成为图a 所示的典型形式,其中ss K s W i i i ACR )1()(ττ+=msT l 8i ==τRK K K i s i I τβ=a) 动态结构图:b) 开环对数幅频特性c. 电流调节器的参数计算电流调节器的参数有:K i 和 τi , 其中 τi 已选定,剩下的只有比例系数 K i , 可根据所需要的动态性能指标选取。

基于MATLAB的电机仿真分析

基于MATLAB的电机仿真分析

基于MATLAB的电机仿真分析
电机是现代工业中广泛使用的设备,其可将电能转化为机械能,为工业生产和生活带来重大的贡献。

为了更好地掌握电机的工作原理和性能表现,电机仿真分析成为一种重要的方法。

本文将介绍基于MATLAB的电机仿真分析。

首先,我们可以利用MATLAB中的Simulink工具箱,建立一个电机仿真模型。

在这个模型中,电机被抽象为一个黑盒子,我们只需要知道其输入和输出。

输入是电机的电流信号,输出是电机的机械输出功率信号。

同时,为了模拟电机的转速和负载特性,我们还需要添加一些环节,如转速反馈环节和负载环节。

在建立模型后,我们可以通过输入不同的电流信号,来模拟电机在不同工况下的运行情况。

我们可以得到电机的输出转矩、转速和功率等参数。

同时,我们还可以通过改变负载环节中的参数,来探究负载对电机的影响。

此外,我们还可以利用MATLAB中的分析工具,如频谱分析、时域分析和幅频特性分析等,来对仿真结果进行深入的分析。

例如,我们可以通过频谱分析得到电机输出信号中的频率分布情况,进一步了解电机的特性和性能。

总的来说,基于MATLAB的电机仿真分析是一种非常有效的方式。

通过仿真分析,我们可以更加深入地了解电机的性能、特性和工作原理,为电机的设计和优化提供重要的参考和指导。

基于MATLAB的直流电动机分级起动仿真分析

基于MATLAB的直流电动机分级起动仿真分析

基于MATLAB的直流电动机分级起动仿真分析直流电动机负载在工矿企业里有较广泛的应用,常用于重要安全设备的驱动,为确保设备安全的最后保障;分析优化直流电动机起动情况,加快泵组起动速度,对设备安全将有很大帮助。

关键字:直流电动机;起动;仿真直流电动机(direct current machine)是指能将直流电能转换成机械能的旋转电动机。

它是能实现直流电能和机械能转换的电动机。

直流电动机负载在工矿企业里有较广泛的应用,常用于重要安全设备的驱动,为确保设备安全的最后保障;分析优化直流电动机起动情况,加快泵组起动速度,对设备安全将有很大帮助;一般情况下大容量直流电动机均采用分级起动方式,由于电动机参数与负载参数均有差异,故在此仅用一常见直流他励电动机模型仿真后得出趋势,供分析参考。

从波形中可看出:1、缩短第一级电阻切除时间,起动电流I’1较之前有较大上升,主要体现在第二级电阻切除时。

2、缩短第二级电阻切除时间,第二级电阻切除时电流有所上升,但未超出第一级电阻切除时的电流。

3、缩短第三级电阻切除时间,未有明显变化。

4、三级电阻切除时间全部缩短时,起动电流I’1、I’2有较明显上升,幅度与缩短第一级起动时间时相仿。

5、第三级电阻切除时间大幅减少时,起动电流I’3也有超过I’1。

从以上结果可以得出以下结论:1、缩短三级电阻切除时间时,转矩均能达到要求,不会对电动机起动时间造成负面影响。

2、三级电阻切除时间中,对起动电流影响最大的是T1,最小的是T3;对起动转矩影响最大的是T2,最小的是T3。

因此,在优化电动机起动时间的角度看,缩短第一级电阻切除时间虽然能提高转矩,但对电动机起动电流影响较大,影响电动机状态;缩短第二级电阻切除时间综合效果最佳,但应合理掌握尺度;缩短第三级电阻切除时间效果也较好,且对电动机状态影响最小,但同样,也需合理掌握尺度;最佳方式为第二级电阻切除时间以其电流I’2不超过I’1为最佳,第三级电阻切除时间可较大幅度缩短。

基于Matlab无刷直流电机控制系统建模与仿真

基于Matlab无刷直流电机控制系统建模与仿真
收稿日期 :2007 - 06 - 26
+ eb
ec
当三相绕组为星形连接 ,且没有中线 , 则有 :
ia + ib + ic = 0 (2 ) (3 )
并且
M i b + M ic = - M ia
将式 (2 )和式 ( 3 ) 代入式 ( 1 ) , 经过简化 , 可得到 电压方程为 : ・35 ・
+ eb
ec (4 )
0
由式 (4 )可得出电机的等效电路 , 如图 1 所示 .
图1 无刷直流电机的等效电路
无刷直流电机的电磁转矩是由定子绕组中的电 流与转子磁钢产生的磁场相互作用而产生的 . 因此 , 电磁转矩方程式可表示为 :
Te =
1 ( ) ω ea ia + eb ib + ec ic
图6 电流调节 PWM 模块
2. 3. 3 换向逻辑模块 BLDCM 控制系统中逆变器的换向信号是通过
பைடு நூலகம்
图4 转矩计算模块
检测转子位置来控制的 , 并与各相反电动势是相对 应的 . 由图 3 所示的反电动势的波形可知 ,当反电动 势到达波顶或波谷时对应的开关管导通 , 并导通 120° 电角度后关断 . 根据二相导通星形三相六状态 下的 BLDCM 工 作过 程中 的基 本原 理 , 可 以得 到 BLDCM 的 开 关 管 导 通 顺 序 为 : V 4 V 1 - V 1 V 6 V 6 V 3 - V 3 V 2 - V 2 V 5 - V 5 V 4 ∗∗ , 每导通 60° 电角 度开关管导通顺序变化一次 ,依次循环导通 . 根据此 导通顺序可以方便地用 S - Functio n 生成换向逻辑 信号 . 2. 4 电源和逆变器模块 电源采用 Matlab 中的 DC 电源模块 ; 逆变器采 用多功能桥式电路模块 , 设置为 IGB T 功率开关器 件 . 将电流调节 PWM 模块和换向逻辑模块逻辑与 , 就可以产生 6 路脉冲信号 , 控制 IGB T 的开关器件 的导通和关断 ,从而产生三相端电压输出 [ 5 ] . 把以上各个模块组合起来就可以建立 BLDCM 控制系统的仿真模型 ,如图 7 所示 .

基于Matlab的直流无刷电机IP控制的设计与仿真

基于Matlab的直流无刷电机IP控制的设计与仿真

0.643
-0.512
处理方法以满足更多的数据处理需求,将是下一步
0.352
-0.309
-0.317
0.339
0.477
发提高了实验的工作效率,促进了实验室的发展,
两相绕组工作。
(
)
JLs + J ( R s + G c ( s ) β ) s + 1.5K t α + G c ( s ) K p s + 1.5K t G c ( s ) K p
3
2
(2)
相 对 于 PI 控 制 策 略 的 无 刷 直 流 电 机 调 速 系
统,IP 控制策略的闭环传递函数具有相同的特征方
真结果表明该系统速度环的抗干扰能力提高了。
2
83
舰 船 电 子 工 程
无刷直流电动机控制
节器的速度环控制系统,如图 3 所示。电流环作为
普通的无刷直流电机采用三相电压型逆变器
为,β(s) 为电流环反馈回路传递函数。
速度环的内环,其中 G c (s) 为控制器传递函数表示
供电,其定子绕组为星型接法,如图 1 所示,其中
响应能力增强。根据幅频响应曲线可知增大 IP 控
制器比例增益可以提高系统响应带宽,而稳定裕度
变换很小,保留了原系统的鲁棒性。
5
结语
[5]黎永华,皮佑国. 基于磁定位原理的永磁同步电机转子
初始位置定位研究[J]. 电气传动,2010,40(3):28-31.
[6]陆华才,徐月同,杨伟民,等. 表面式永磁直线同步电机
loop,and the motor can obtain the speed response without overshoot,and has strong anti-disturbance ability. The simulation results

基于MATLAB的他励直流电动机起动仿真分析

基于MATLAB的他励直流电动机起动仿真分析

损坏电枢绕组和传动机构,一般直流 电动机不 将 电阻从 电枢 回路 中切除 ,电枢 电压逐级升高 ,
允许直接起动。直接起动的优点是操作简单 , 最终将全压加 到电枢绕组上 。
无需其它起动设备,起动转矩大 ,速度快 小 1.3他励直流 电动机软起动
型电机 通常 电压低, 电阻大 ,故此法只适用于
起动 电流,可 以采用 电枢 回路 串入变阻器分级 枢上 。这样 ,在起动开始 时,加 于电动机 电枢
起动,起动开始时断路器均断开 ,此时 电枢 回 的端 电压很低 ,随 着转速 的升高,逐渐增加 电
路中串入的 电阻值最大 ,由于变阻器分压 ,故 枢 电压 ,就会使得起动 电流 限制在 一定范围以
【关键词 】他励直 流电动机 仿真 分析 起 动特

图 1:他励 直流电动机直接起动仿真模型
电动机 是工 业 自动化 和 电气化 设备 中最 基本也是 最重 要的部件之一,不难列 出许多 电 动机 的应 用例 子:洗 衣机、录像机、计算机硬 件 中的软驱、散热风 扇、各种金属加工机床的 拖动等等 。电动 机根 据它使用的电源可分为交 流和直流 两大类。其中直流电动机 由于其在控 制 性 能方 面 的 优 势 , 在 20世 纪 70年 代 以前 一 直在控制要求较 高的电力拖动领域 占踞主导地 位 ,近年来 虽然 这种情 况因交流电动机控制技 术 的巨大 进步 已有很大改变,但是 由于直流 电 动机具有 起动转矩大,调速范围宽等优势 ,其 在 现 代 工 业 中 的 地位 仍 然 十 分 重 要 。因 此 ,学 习直流 电动机 的工作原理, 了解其起动特性 , 仍 然 是 十 分 必 要 的 。
软件 应用 · Software Application

基于MATLAB的电机仿真分析

基于MATLAB的电机仿真分析

基于MATLAB的电机仿真分析1. 引言1.1 研究背景电机是现代工业中常见的电气设备,广泛应用于各种机械设备中,如风力发电机组、电动汽车等。

电机的性能直接影响到设备的工作效率和稳定性,因此对电机进行仿真分析具有重要意义。

随着计算机技术的不断发展,电机仿真在工程领域中得到了广泛应用。

利用MATLAB软件进行电机仿真可以更准确地分析电机的设计和工作性能,帮助工程师优化设计方案和提高电机的效率。

通过仿真分析,可以在电机实际制造之前评估其性能,从而节约时间和成本。

在电机仿真中,研究背景至关重要。

对于新型电机的设计和性能评估,需要充分了解电机的工作原理和特性,以便在仿真分析中准确模拟电机的性能。

对电机的研究背景做深入探讨,可以帮助工程师更好地理解电机的工作机制,为电机仿真提供准确的参数和条件。

【字数不足,需要继续补充】1.2 研究目的电机是现代工业中常见的电力转换设备,其性能直接影响到整个系统的运行效果。

对电机进行仿真分析具有重要的意义。

本文旨在利用MATLAB软件对电机进行仿真分析,探讨其在电机设计和优化中的应用。

通过对电机的仿真,可以更好地理解电机的运行原理和特性,为电机的设计和调试提供依据。

1. 分析MATLAB在电机仿真中的应用,探索其在电机设计过程中的优势和限制。

2. 揭示电机仿真的基本原理,帮助读者了解电机仿真的基本过程和方法。

3. 探讨电机仿真的步骤,包括建模、参数设置、仿真运行等方面的技术细节。

4. 分析电机仿真的结果,对仿真结果进行定量和定性分析,评估电机性能。

5. 探讨电机仿真的优势,比较仿真与实验的优缺点,为电机设计提供技术支持。

通过以上研究,本文旨在为电机仿真技术的应用提供理论基础和实践指导,推动电机设计和优化工作的进展。

【内容结束】2. 正文2.1 MATLAB在电机仿真中的应用MATLAB在电机仿真中的应用涉及了多个方面,包括电机建模、控制算法设计、性能分析等。

MATLAB提供了丰富的电机模型库,用户可以根据实际情况选择合适的电机模型进行仿真。

直流电动机的MATLAB仿真教学内容

直流电动机的MATLAB仿真教学内容

直流电动机的M A T L A B仿真2)直流电动机直接起动仿真直流电动机直接起动时,起动电流很大,可以达到额定电流的10-20倍,由此产生很大的冲击转矩。

适用Simulink对直流电动机的直接起动过程建立仿真模型,通过仿真获得直流电动机的直接起动电流和电磁转矩的变化过程。

他励直流电动机直接起动仿真模型原理图仅供学习与交流,如有侵权请联系网站删除谢谢2直流电动机模块参数设置图直流电源模块参数设置图定时模块参数设置图仅供学习与交流,如有侵权请联系网站删除谢谢3开关模块参数设置图他励直流电动机直接起动转速—电流关系仿真结果仅供学习与交流,如有侵权请联系网站删除谢谢4他励直流电动机直接起动仿真结果3)直流电动机电枢串联电阻启动仿真建立他励直流电动机电枢串联三级电阻起动的仿真模型,仿真分析其串联电阻起动过程,获得起动过程的电枢电流.转速和电磁转矩的变化曲线。

仅供学习与交流,如有侵权请联系网站删除谢谢5仅供学习与交流,如有侵权请联系网站删除 谢谢6他励直流电动机串起电阻启动仿真模型原理图他励直流电动机串起电阻仿真他励直流电动机串起电阻起动的转速—电流关系仿真结果4)直流电动机能耗制动仿真能耗制动时,电枢通过电阻Rb短接,使用Simulink建立直流电动机的能耗制动仿真模型,仿真分析获得转速。

电枢电流和电磁转矩的暂态过程曲线。

仅供学习与交流,如有侵权请联系网站删除谢谢7仅供学习与交流,如有侵权请联系网站删除 谢谢8他励直流电动机能耗制动仿真模型原理图他励直流电动机能耗制动仿真结果5) 直流电动机反接制动仿真直流电动机的反接制动分为电压反向的反接制动和倒拉反接制动。

电压反向反接制动作用用于电动机的快速停机,而倒拉反接制动用于低速下放位能负载。

使用Simulink建立直流电动机的电压反向反接制动的仿真模型,仿真分析获得转速。

电枢电流和电磁转矩的暂态过程曲线。

他励直流电动机电压反向反接制动仿真模型原理图仅供学习与交流,如有侵权请联系网站删除谢谢9他励直流电动机电压反向反接制动仿真结果6)直流电动机改变电枢电压调速仿真使用Simulink建立直流电动机的改变电枢电压的仿真模型,仿真分析获得转速。

机电控制系统——基于MATLAB的直流电机双闭环调速系统的设计和仿真

机电控制系统——基于MATLAB的直流电机双闭环调速系统的设计和仿真

《机电控制系统分析与设计》课程大作业一基于MATLAB的直流电机双闭环调速系统的设计与仿真学院:机电工程学院专业:机械设计制造及其自动化班级:0808108学号:12姓名:林珍坤一、 设计参数转速、电流双闭环直流调速系统,采用双极式H 桥PWM 方式驱动。

电机参数:额定功率 200W ; 额定电压 48V ; 额定电流 4A ;额定转速 500r/min ;电枢回路总电阻 R=8Ω; 允许电流过载倍数 λ=2; 电势系数C e =·min/r ; 电磁时刻常数T L =; 机电时刻常数 T m =;电流反馈滤波时刻常数T oi =; 转速反馈滤波时刻常数T on =1ms要求转速调节器和电流调节器的最大输入电压U *nm =U *im =10V ; 两调节器的输出限幅电压为10V ;PWM 功率变换器的的开关频率f=10kHz ; 放大倍数K=;动态参数设计指标: 稳态无静差;电流超调量i δ≤5%;空载启动到额定转速时的转速超调量δ≤25%; 过渡进程时刻t s =。

二、 设计计算1. 稳态参数计算按照两调节器都选用PI 调节器的结构,稳态时电流和转速误差均应为零;两调节器的输出限幅值均选择为12V电流反馈系数;A V A VI U im /25.14210nom *=⨯==λβ转速反馈系数:r V r Vn U nm min/02.0min/50010max *⋅===α2. 电流环设计(1)确按时刻常数电流滤波时刻常数T oi =,按电流环小时刻常数环节的近似处置方式,则s T T T oi s i 0003.00002.00001.0=+=+=∑(2)选择电流调节器结构电流环可按典型Ⅰ型系统进行设计。

电流调节器选用PI 调节器,其传递函数为ss K s W i i iACR ττ1)(+= (3)选择调节器参数 超前时刻常数:i τ=T L =电流环超调量为σi ≤5%,电流环开环增益:应取5.0=∑i I T K ,则I K =i T ∑5.0=0003.05.0= 于是,电流调节器比例系数为0.00881666.6717.781.25 4.8i i I s R K K K τβ⨯=⋅=⨯=⨯ (4)查验近似条件电流环截止频率ci ω=I K =1666. 67 1/s1)近似条件1:ci ω ≤sT 31此刻,s T 31=0003.01=>ci ω,知足近似条件。

基于MATLAB直流电机起动设计与仿真-课程设计资料

基于MATLAB直流电机起动设计与仿真-课程设计资料

物理与电子工程学院《电力拖动自动控制系统》课程设计报告书设计题目:直流电机起动设计与仿真专业:自动化xxx班级: 2014xxxxx本1班学生姓名: xxxxxxxx学号: 20140343121指导教师: xxxxxxxxxx2015年10月25 日物理与电子工程学院课程设计任务书专业:自动化班级:14xxxx1班摘要直流电动机具有调速范围广、调速平稳、过载能力强以及启动和制动转矩大等优点,在工农业生产中得到了广泛的应用。

文章研究了直流电动机串电阻起动方法,在直流电动机电枢绕组中串入电阻来降低起动电流和起动转矩。

相比于电机直接起动,串入电阻起动起动电流和起动转矩显著减低,而且成本又增加不多,在实际工农业生产中有广泛的应用,在课程设计中总共设了3级电阻,第一级电阻R1=0.518,第二季电阻R2=0.32,第三级电阻R3=0.162。

关键词:直流电动机;直接启动;串电阻启动;仿真;目录1 任务提出与方案论证 (1)1.1提出任务 (1)1.2方案论证 (1)2 总体设计 (1)2.1系统总体原理框图 (1)2.2直流电动机直接起动真模型仿真的建立 (2)2.3直流电动机串电阻起动真模型仿真的建立 (5)2.4直流电动机串电阻起动时电阻值计算以及仿真结果分析 (5)3 心得体会 (13)1 任务提出与方案论证1.1提出任务直流电动机刚与电源接通的瞬间,转子尚未转动起来时,他励和串励电动机的电枢电流以及并励和复励电动机的输入电流称为起动电流,这时的电磁转矩称为起动转矩。

一般情况下,在额定电压下直接起动时,起动电流可达电枢电流额定值的10~20倍,起动转矩也能达到额定转矩的10~20倍,这样的起动电流是换向所不允许的,而且过大的起动转矩会使电动机和它所拖动的生产机械遭受突然的巨大冲击,以致损坏传动机械和生产机械。

由此可见,除了额定功率在数百瓦以下的微型直流电动机,因电枢绕组导线细、电枢电阻大以及转动惯量又比较小,可以直接起动以外,一般的直流电动机是不允许采用直接起动的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

物理与电子工程学院
《电力拖动自动控制系统》课程设计报告书
设计题目:直流电机起动设计与仿真
专业:自动化xxx
班级: 2014xxxxx本1班
学生姓名: xxxxxxxx
学号: 20140343121
指导教师: xxxxxxxxxx
2015年10月25 日
物理与电子工程学院课程设计任务书
专业:自动化班级:14xxxx1班
摘要
直流电动机具有调速范围广、调速平稳、过载能力强以及启动和制动转矩大等优点,在工农业生产中得到了广泛的应用。

文章研究了直流电动机串电阻起动方法,在直流电动机电枢绕组中串入电阻来降低起动电流和起动转矩。

相比于电机直接起动,串入电阻起动起动电流和起动转矩显著减低,而且成本又增加不多,在实际工农业生产中有广泛的应用,在课程设计中总共设了3级电阻,第一级电阻R1=0.518,第二季电阻R2=0.32,第三级电阻R3=0.162。

关键词:直流电动机;直接启动;串电阻启动;仿真;
目录
1 任务提出与方案论证 (1)
1.1提出任务 (1)
1.2方案论证 (1)
2 总体设计 (1)
2.1系统总体原理框图 (1)
2.2直流电动机直接起动真模型仿真的建立 (2)
2.3直流电动机串电阻起动真模型仿真的建立 (5)
2.4直流电动机串电阻起动时电阻值计算以及仿真结果分析 (5)
3 心得体会 (13)
1 任务提出与方案论证
1.1提出任务
直流电动机刚与电源接通的瞬间,转子尚未转动起来时,他励和串励电动机的电枢电流以及并励和复励电动机的输入电流称为起动电流,这时的电磁转矩称为起动转矩。

一般情况下,在额定电压下直接起动时,起动电流可达电枢电流额定值的10~20倍,起动转矩也能达到额定转矩的10~20倍,这样的起动电流是换向所不允许的,而且过大的起动转矩会使电动机和它所拖动的生产机械遭受突然的巨大冲击,以致损坏传动机械和生产机械。

由此可见,除了额定功率在数百瓦以下的微型直流电动机,因电枢绕组导线细、电枢电阻大以及转动惯量又比较小,可以直接起动以外,一般的直流电动机是不允许采用直接起动的。

1.2方案论证
方案一:直流电动机直接启动
直流电动机直接启动适用于额定功率在数百瓦以下的微型直流电动机,因电枢绕组导线细、电枢电阻大以及转动惯量又比较小,可以直接起动,但是现在工业中绝大数机械都是大功率。

方案二:直流电动机串电阻启动
直流电动机串电阻起动方法,在直流电动机电枢绕组中串入电阻来降低起动电流和起动转矩。

相比于电机直接起动,串电阻起动起动电流和起动转矩显著减低,而且成本又增加不多,在实际工农业生产中有广泛的应用。

最终选择:
经过比较本设计选择方案二直流电动机串电阻启动能更好的达到设计要求。

2 总体设计
2.1系统总体原理框图
直流电动机启动的设计,我们首先对电路原理进行分析,通过分析,结合具体的性能指标求出相应的参数,然后在Matlab仿真软件中建立仿真模型,仿真模型采用交流输入电源,使用晶闸管和二极管作为整流器件,通过不断仿真、调
试、不断修改参数,知道符合正确的参数要求。

其系统原理框图如下图2.1。

图2.1 系统原理框图
2.2直流电动机直接起动真模型仿真的建立
(1)图中的模块有直流电源(DC Voltage Source )、理想开关、直流电动机、开关、增益、电阻(RLC branch )、示波器(scope )、信号分离模块(Demux )。

仿真模型中通过理想开关模块控制直流电源的接通和断开,使用开关模块控制电机的转矩,使电机在起动过程中的转矩为空载起动,当转速达到设定值后,使电机工作再给定的负载转矩。

图2.2 直流电动机直接起动仿真模型
交 流 输 入
控制电路
直流电动机启动电路
输出符合要求的电流和转速
图2.3 直流电机模块参数
图2.2.4 直流电源模块参数图2.4 电压参数设置
图2.5 仿真图
图2.6 电流-转速图
2.3直流电动机串电阻起动仿真模型的建立
直流电动机串电阻起动仿真模型如图2.7所示,该模型在直接起动模型的基础上,在电枢回路中串联一个由三级电阻组成的启动器。

在每个电阻(R1、R2、R3)上并联一个理想开关,用于切除电阻,开关受Step 模块控制。

(注:在Step 模块对话框中设定单位阶跃信号发生时刻,即可控制开关的闭合,从而短接该电阻)。

模型检测将转速n 、电枢电流I 等送入示波器。

图2.7 直流电动机串电阻起动仿真模型
2.4直流电动机串电阻起动时电阻值计算以及仿真结果分析
为了实现直流电动机串电阻起动,对于电枢绕组串入电阻值的计算非常重要,需要计算精确,本文为了尽可能地降低起动电流和起动转矩,采用三级串电阻计算方法。

具体实现步骤如下。

(1)将step 模块2和3的阶跃信号发生时间设为“0”,step1设为20s ,使1
R 接入电枢回路,并初选R'1的阻值。

a.
1'R =m ax
I n
C U e N
--a R =
Ω≈-10896.0220
220
在模型中设1R =1'R =1,
得到
n(r/min)
i/A
a
i/A
f
e T (N.m)
图2.8 串一级电阻启动时的转速和电流波形
由图2.8可知,串联电阻后最大启动电流为200A ,在3.5s 时电流下降到100A ,对应的转速为1500r/min ,相对于直流电机直接起动,起动电流从2500A 变为200A ,显著地减低了,起到了保护电机的作用。

为了进一步减少起动电流,需要减小启动电阻,计算1R 的阻值和预选2'R 阻值。

b.2'R =m ax
I n
C U
e N
--
a R =Ω≈Ω-Ω⨯482.00896.0200
15000.07808-220
c.1R =1'R -2'R =1-0.482=0.518Ω
(2)重新设定R 1和R 2(R 2=R'2)并设step1的信号发生时间为3.5s ,设step2的信号发生时间为20s 得到仿真图形如图2.9所示。

n(r/min)
i/A
a
i/A
f
e T (N.m)
图2.9 串二级电阻启动时的转速和电流波形
c.从图 2.9中可知,在启动6s 后电流再次下降到100A ,此时的转速为2200r/min 。

为了进一步减少起动电流,需要再次减小启动电阻。

根据式d 和e 可以计算2R 和3R 阻值。

d.
2
R =
m ax
I n
C U e N
--
a R =Ω≈Ω-Ω⨯32.00896.0200
22000.07808-220
e.3R =2'R -2R =0.482-0.32=0.162Ω
(4)重新设定2R 和3R 并设step2的信号发生时间为6s ,设step3的信号发生时间为20s 得到仿真图形如图2.10所示。

n(r/min)
i/A
a
i/A
f
T(N.m)
e
图2.10 串三级电阻启动时的转速和电流波形
从图2.10可知在启动8s后起动电流再次下降到100A,此时的转速为
2800r/min,需要再次切除
R,因此设step3的信号发生时间为8s,再次仿真,
3
得到图形如2.11所示。

n(r/min)
i/A
a
图2.11 切除
R启动时的转速和电流波形
3
由图2.11可知:在切除
R后,转速升到3000r/min,在整个启动过程中电流限制在规
3
定的范围内,满足设计要求。

3 心得体会
通过这次课程设计使我对原来学习的过程有了全新认识,学习一定要理论与实践相结合,这样才能更好地学习知识,我用的软件是MATLAB,它也是实验中最重要的一环,用的最多的是Simulink。

Simulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。

为了创建动态系统模型,Simulink提供了一个建立模型方块图的图形用户接口(GUI) ,这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且可以立即看到系统的仿真结果。

在这次课程设计中我又进一步学习了电机启动的一些知识,也由感性认识上升到实践,这样我对串电阻启动的参数的计算以及设定有了更深刻的认识,也在仿真过程中对参数改变带来的其他变化一目了然,使知识学的活灵活现,还有对直接启动的危害有了更深的了解。

另外这次课程设计让我不仅对电力电子的理论知识有了很深的认识也对我的实践动手能力有了很大的培养。

当然这次设计还有很多不足之处,例如对基础知识了解不够充分,导致设计过程中出现很多不必要的麻烦,所以在以后的学习构成中我会加倍学习相关知识,以弥补自己的不足。

参考文献
[1]汤蕴璆.电机学(第四版) [M].北京:机械工业出版社,2011
[2]洪乃刚.电力电子、电机控制系统的建模与仿真 [M].北京:机械工业出版社,2010 [4]韩松.基于MATLAB的直流电动机启动的仿真研究[D].黑龙江:绥化学院,2011
课程设计成绩评定表。

相关文档
最新文档