数列知识点及典型例题
数列专题复习之典型例题(含答案)
数列知识点-——-求通项一、由数列的前几项求数列的通项:观察法和分拆与类比法-—-—-猜测———-证明(略)二、由a n 与S n 的关系求通项a n例1已知数列{a n }的前n 项和为S n =3n -1,则它的通项公式为a n =________。
答案2·3n -1练1 已知数列{a n }的前n 项和S n =3n 2-2n +1,则其通项公式为________. 答案a n =错误!三、由数列的递推公式求通项例3、(1)设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N .设3n n n b S =-,求数列{}n b 的通项公式;答案: 13(3)2n n n n b S a -=-=-,*n ∈N .(2)(4)在数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(2,0n q ≥≠).(Ⅰ)设1n n n b a a +=-(*n N ∈),证明{}n b 是等比数列;(Ⅱ)求数列{}n a 的通项公式;答案: 11,,.1,111n n q q q a n q-≠=⎧-+⎪=-⎨⎪⎩(3)在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S ;答案:(1)2nnn a n λ=-+21212(1)22(1)(1)n n n n n n S λλλλλ+++--+=+-≠- 1(1)22(1)2n n n n S +-=+-λ=(4)已知数列{}n a 满足:()213,22n n a a a n n N *+=+=+∈(1)求数列{}n a 的通项公式; (2)设1234212111n n nT a a a a a a -=+++,求lim n n T →∞答案: 11,,.1,111n n q q q a n q-≠=⎧-+⎪=-⎨⎪⎩注意:由数列的递推式求通项常见类型(请同学们查看高一笔记)1.)(1n f a a n n +=+ 2 . n n a n f a )(1=+.3 q pa a n n +=+1(其中p,q 均为常数,)0)1((≠-p pq )。
数列的递推公式知识点、例题、练习
4.1.2 数列的递推公式知识点一数列的递推公式如果一个数列的相邻两项或多项之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的递推公式.数列递推公式与通项公式的关系:递推公式表示a n 与它的前一项a n -1(或前n 项)之间的关系,而通项公式表示a n 与n 之间的关系. 要点二 a n 与S n 的关系1.前n 项和S n :把数列{a n }从第1项起到第n 项止的各项之和,称为数列{a n }的前n 项和,记作S n ,即S n =12n a a a +++ 2.a n 与S n 的关系:a n =11,1,2n n S n S S n -=⎧⎨-≥⎩【基础自测】1.判断正误(正确的画“√”,错误的画“×”) (1)根据通项公式可以求出数列的任意一项.( ) (2)有些数列可能不存在最大项.( ) (3)递推公式是表示数列的一种方法.( ) (4)所有的数列都有递推公式.( ) 【答案】(1)√(2)√(3)√(4)×2.数列{a n }中,a n +1=a n +2-a n ,a 1=2,a 2=5,则a 5=( ) A .-3 B .-11 C .-5 D .19 【答案】D【解析】a 3=a 2+a 1=5+2=7,a 4=a 3+a 2=7+5=12,a 5=a 4+a 3=12+7=19,故选D. 3.数列{a n }中,a n =2n 2-3,则125是这个数列的第几项( ) A .4 B .8 C .7 D .12 【答案】B【解析】令2n 2-3=125得n =8或n =-8(舍),故125是第8项.故选B. 4.已知数列{a n }的前n 项和为S n =n 2,则a n =________. 【答案】2n -1【解析】当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=n 2-n 2+2n -1=2n -1.当n =1时,a 1=S 1=1满足上式,所以{a n }的通项公式为a n =2n -1.题型一 数列中项与项数关系的判断(1)写出数列的一个通项公式,并求出它的第20项;(2)判断42和10是不是该数列中的项?若是,指出是数列的第几项,若不是,请说明理由.【解析】(1)由于22=8,所以该数列前4项中,根号下的数依次相差3,所以它的一个通项公式为a n =3n -1;a 20=3×20-1=59.(2)令3n -1=42,两边平方得3n =33,解得n =11,是正整数令3n -1=10,两边平方得n =1013,不是整数.∴42是数列的第11项,10不是数列中的项. 【方法归纳】(1)由通项公式写出数列的指定项,主要是对n 进行取值,然后代入通项公式,相当于函数中,已知函数解析式和自变量的值求函数值.(2)判断一个数是否为该数列中的项,其方法是可由通项公式等于这个数求方程的根,根据方程有无正整数根便可确定这个数是否为数列中的项.(3)在用函数的有关知识解决数列问题时,要注意它的定义域是N *(或它的有限子集{1,2,3,…,n })这一约束条件.【跟踪训练1】已知数列{a n }的通项公式为a n =3n 2-28n . (1)写出此数列的第4项和第6项;(2)问-49是否是该数列的一项?如果是,应是哪一项?68是否是该数列的一项呢? 【解析】(1)a 4=3×42-28×4=-64, a 6=3×62-28×6=-60.(2)由3n 2-28n =-49解得n =7或n =73(舍去),所以-49是该数列的第7项.由3n 2-28n =68解得n =-2或n =343,所以68不是该数列的一项.题型二 已知S n 求a n例2 设S n 为数列{a n }的前n 项和,S n =2n 2-30n .求a n . 【解析】当n ≥2时,a n =S n -S n -1=2n 2-30n -[2(n -1)2-30(n -1)]=4n -32 当n =1时,a 1=S 1=-28,适合上式, 所以a n =4n -32.借助a n =⎩⎪⎨⎪⎧S 1,(n =1)S n -S n -1(n ≥2)【变式探究1】将本例中的“S n =2n 2-30n ”换为“S n =2n 2-30n +1”,求a n . 【解析】当n =1时,a 1=S 1=2×1-30×1+1=-27. 当n ≥2时,a n =S n -S n -1=2n 2-30n +1-[2(n -1)2-30(n -1)+1] =4n -32.验证当n =1时,上式不成立∴a n =⎩⎪⎨⎪⎧-27,n =14n -32,n ≥2.方法归纳已知数列{a n }的前n 项和公式S n ,求通项公式a n 的步骤: (1)当n =1时,a 1=S 1.(2)当n ≥2时,根据S n 写出S n -1,化简a n =S n -S n -1.(3)如果a 1也满足当n ≥2时,a n =S n -S n -1的通项公式,那么数列{a n }的通项公式为a n =S n -S n -1;如果a 1不满足当n ≥2时,a n =S n -S n -1的通项公式,那么数列{a n }的通项公式要分段表示为a n =⎩⎪⎨⎪⎧S 1,n =1S n -S n -1,n ≥2.【跟踪训练2】已知数列:a 1+3a 2+32a 3+…+3n -1a n =n 3,求a n .【解析】当n ≥2时,由a 1+3a 2+32a 3+…+3n -1a n =n 3,得a 1+3a 2+32a 3+…+3n -2a n -1=n -13,两式相减得3n -1a n =n 3-n -13=13,则a n =13n .当n =1时,a 1=13,满足a n =13n ,所以a n =13n .题型三 由数列递推公式求通项公式【例3】已知数列{a n }中,a 1=1,a n +1=a n +n +1,则a n =________.【答案】n (n +1)2【解析】∵a n +1=a n +n +1,a 1=1,∴a n +1-a n =n +1, ∴a n -a n -1=n ,a n -1-a n -2=n -1,…,a 2-a 1=2 以上式子相加得: a n -a 1=2+3+…+n∴a n =1+2+3+…+n =n (n +1)2.变形为:a n +1-a n =n +1,照此递推关系写出前n 项中任意相邻两项的关系,这些式子两边分别相加可求. 【变式探究2】若将“a n +1=a n +n +1”改为“a n +1=nn +1a n”,则a n =________.【答案】1n【解析】∵a n +1=n n +1a n ,a 1=1,∴a n +1a n =nn +1,∴a n a n -1=n -1n ,a n -1a n -2=n -2n -1,…,a 2a 1=12,以上式子两边分别相乘得:a n a 1=n -1n ×n -2n -1×…×12=1n∴a n =1n a 1=1n .【方法归纳】由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=g (n )·a n ,则可以分别通过累加法或累乘法求得通项公式,即:(1)累加法:当a n =a n -1+f (n )时,常用a n =a n -a n -1+a n -1-a n -2+…+a 2-a 1+a 1求通项公式.(2)累乘法:当a n a n -1=g (n )时,常用a n =a n a n -1·a n -1a n -2·…·a 2a 1·a 1求通项公式.【跟踪训练3】在数列{a n }中,a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n ,则a n =( ) A .2+ln n B .2+(n -1)ln n C .2+n ln n D .1+n +ln n 【答案】A【解析】∵在数列{a n }中,a n +1-a n =ln ⎝⎛⎭⎫1+1n =ln n +1n∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=ln n n -1+ln n -1n -2+…+ln 21+2=ln ⎝⎛⎭⎪⎫n n -1·n -1n -2·…·21+2=2+ln n .故选A.【易错辨析】数列中忽视n 的限制条件致误【例4】设S n 为数列{a n }的前n 项和,log 2(S n +1)=n +1,则a n =________.【答案】⎩⎪⎨⎪⎧3,n =12n ,n ≥2【解析】由log 2(S n +1)=n +1得S n +1=2n +1,∴S n =2n +1-1当n ≥2时a n =S n -S n -1=2n +1-1-2n +1=2n .当n =1时,a 1=S 1=3.经验证不符合上式.∴a n =⎩⎪⎨⎪⎧3,n =12n ,n ≥2.【易错警示】1. 出错原因忽视n =1的情况致错,得到错误答案:a n =2n . 2. 纠错心得已知a n 与S n 的关系求a n 时,常用a n =S n -S n -1(n ≥2)来求a n ,但一定要注意n =1的情况.一、单选题1.设数列{}n a 的前n 项和为n S ,11a =,2(1)nn S a n n =+-,(*n N ∈),若()22112n S S S n n+++--2013=,则n 的值为( ). A .1007 B .1006 C .2012 D .2014【答案】A 【分析】根据数列n a 与n S 的关系证得数列n S n ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公差的等差数列,利用等差数列的前n 项和公式求出题中的式子,化简计算即可. 【解析】2(1)nn S a n n=+-, 12(1)(2)nn n S S S n n n-∴-=+-, 整理可得,1(1)2(1)n n n S nS n n ---=-, 两边同时除以(1)n n -可得12(2)1n n S S n n n --=-,又111S = ∴数列n S n ⎧⎫⎨⎬⎩⎭是以1为首项,以2为公差的等差数列,2321(1)23nS S S S n n∴++++-- 2(1)12(1)2n n n n -=⨯+⨯-- 22(1)n n =--21n =-,由题意可得,212013n -=, 解得1007n =. 故选:A .2.南宋数学家杨辉在《解析九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .171 B .190 C .174 D .193【答案】C 【分析】根据题意可得数列3,4,6,9,13,18,24,⋯,满足:11(2)n n a a n n --=-,13a =,从而利用累加法即可求出n a ,进一步即可得到19a 的值. 【解析】3,4,6,9,13,18,24,后项减前项可得1,2,3,4,5,6,所以()1112,3n n a a n n a --=-≥=, 所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()1213n n =-+-+++()()()111133,222n n n n n -+⋅--=+=+≥.所以19191831742a ⨯=+=. 故选:C3.在数列{}n a 中,11a =,121nn n a a +-=-,则9a =( )A .512B .511C .502D .503【答案】D 【分析】利用累加法先求出通项即可求得答案. 【解析】因为11a =,121nn n a a +-=-,所以()()()121321n n n a a a a a a a a -=+-+-++-=()()()21211(21)21211222(1)2n n n n n --+-+-++-=++++--=-,所以9929503a =-=.故选:D. 4.数列23,45,69,817,1033,…的一个通项公式为( )A .221n n n a =+ B .2221n n n a +=+ C .1121n n n a ++=-D .12222n n n a ++=+【答案】A 【分析】根据数列中项的规律可总结得到通项公式. 【解析】1221321⨯=+,2422521⨯=+,3623921⨯=+,48241721⨯=+,510253321⨯=+, ∴一个通项公式为:221n nna =+. 故选:A.5.下列命题不正确的是( )A 的一个通项公式是n aB .已知数列{},3n n a a kn =-,且711a =,则1527a =C .已知数列{}n a 的前n 项和为()*,25n n n S S n N =-∈,那么123是这个数列{}n a 的第7项D .已知()*1n n a a n n N +=+∈,则数列{}n a 是递增数列【答案】C 【分析】A:根据被开方数的特征进行判断即可;B:运用代入法进行求解判断即可;C:根据前n项和与第n项之间的关系进行求解判断即可;D:根据递增数列的定义进行判断即可.【解析】对于A31⇒⨯na⇒=A正确;对于B,3na kn=-,且7151122327na k a n a=⇒=⇒=-⇒=,B正确;对于C,()*25nnS n N=-∈,13a=-,当2,n n N*≥∈时,111222n n nn n na S S---=-=-=,12127n-=,无正整数解,所以123不是这个数列{}n a的第7项,C错误;对于D.由()*11,0n n n na a n n N a a n++=+∈-=>,易知D正确,故选:C.6.已知数列{}n a的前n项和2nS n=,则数列11n na a+⎧⎫⎨⎬⎩⎭的前99项和为()A.1168B.1134C.198199D.99199【答案】D【分析】先根据11,2,1n nnS S naS n--≥⎧=⎨=⎩,求出21na n=-,然后利用裂项相消求和法即可求解.【解析】解:因为数列{}n a的前n项和2nS n=,2121nS n n-=-+,两式作差得到21(2)na n n=-≥,又当1n=时,21111a S===,符合上式,所以21na n=-,111111(21)(21)22121n na a n n n n+⎛⎫==-⎪-+-+⎝⎭,所以12233411111n na a a a a a a a+++++=111111111111233557212122121n n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++-=-= ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦, 所以12233499100111199992991199a a a a a a a a ++++==⨯+. 故选:D.7.数列{}n a 中的前n 项和22nn S =+,数列{}2log n a 的前n 项和为n T ,则20T =( ).A .190B .192C .180D .182【答案】B 【分析】根据公式1n n n a S S -=-计算通项公式得到14,12,2n n n a n -=⎧=⎨≥⎩,故2,11,2n n b n n =⎧=⎨-≥⎩,求和得到答案.【解析】当1n =时,111224a S ==+=;当2n ≥时,()11112222222n n n n n n n n a S S ----=-=+-+=-=,经检验14a =不满足上式,所以14,12,2n n n a n -=⎧=⎨≥⎩, 2log n n b a =,则2,11,2n n b n n =⎧=⎨-≥⎩,()201911921922T ⨯+=+=. 故选:B.8.已知数列{}n a 满足11a =,()()()11*12n n n n a a a a n N n n ++-=∈++,则10a 的值为( )A .1231B .2231C .1D .2【答案】B 【分析】首先根据已知条件得到1111112n n a a n n +-=-++,再利用累加法求解即可. 【解析】 因为()()()*1112n n n n a a n n n N a a ++++=∈-,所以()()()*11112nn n n a a n N a a n n ++-=∈++, 所以()()111111212n n n n a a a a n n n n ++-==-++++,即1111112n n a a n n +-=-++,当2n ≥时,11221111111n n n n a a a a a a ---⎛⎫⎛⎫⎛⎫-+-+⋯+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111111123n n n n ⎛⎫⎛⎫⎛⎫=-+-+⋯+- ⎪⎪+ ⎪ ⎝⎭⎝⎭-⎝⎭, 1111121n a a n -=-+,解得()11131122122n n n a n n +=-+=≥++ 当1n =时,上式成立,故2231n n a n +=+,故102022230131a +==+. 故选:B二、多选题9.数列{a n }的前n 项和为S n ,()*111,2N n n a a S n +==∈,则有( )A .S n =3n -1B .{S n }为等比数列C .a n =2·3n -1D .21,123,2n n n a n -=⎧=⎨⋅≥⎩【答案】ABD 【分析】根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求得n a ,进而求得n S 以及判断出{}n S 是等比数列.【解析】依题意()*111,2N n n a a S n +==∈,当1n =时,2122a a ==, 当2n ≥时,12n n a S -=,11222n n n n n a a S S a +--=-=,所以13n n a a +=,所以()2223232n n n a a n --=⋅=⋅≥,所以21,123,2n n n a n -=⎧=⎨⋅≥⎩. 当2n ≥时,1132n n n a S -+==;当1n =时,111S a ==符合上式,所以13n n S -=.13n nS S +=,所以数列{}n S 是首项为1,公比为3的等比数列. 所以ABD 选项正确,C 选项错误.故选:ABD10.已知数列{}n a 的前n 项和22n n nS +=,数列{}n b 满足1n n b a =,若n b ,2n b +,n k b +(k *∈N ,2k >)成等差数列,则k 的值不可能是( ) A .4 B .6 C .8 D .10【答案】AD 【分析】利用n a 与n S 的关系,求得n a ,进而求得n b ,然后根据n b ,2n b +,n k b +(k *∈N ,2k >)成等差数列,得到n 与k 的关系,进而求得答案.【解析】当1n =时,11212a S ===,当2n ≥时,()()2211122n n n n n n n a S S n --+++=-=-=,故n a n =(N n *∈),11n n b a n ==(N n *∈).因为n b ,2n b +,n k b +(N k *∈,2k >)成等差数列,所以22n n n k b b b ++=+,即2112n n n k=+++,所以48422n k n n ==+--,(2k >,N k *∈),从而2n -的取值为1,2,4,8,则对应的k 的值为12,8,6,5,所以k 的值不可能是4,10, 故选:AD .第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题11.数列{}n a 的前n 项的和231n S n n =++,n a =________.【分析】利用2n 时,1n n n a S S -=-求n a ,同时注意11a S =. 【解析】解析:由题可知,当2n 时,1n n n a S S -=-22313(1)(1)1n n n n ⎡⎤=++--+-+⎣⎦62n =-,当1n =时,113115a S ==++=,故答案为:5,162,2n n n =⎧⎨-⎩.12.设数列{a n }的前n 项和为S n =2n -3,则a n =________.【答案】【解析】解析 当n ≥2时,a n =S n -S n -1=(2n -3)-[2(n -1)-3]=2,又a 1=S 1=2×1-3=-1,故a n =13.已知数列{}n a 的前n 项和为n S ,若n n a b S +=,2414a a =,则数列{}n a 的通项公式为___________. 【答案】212n -⎛⎫ ⎪⎝⎭或212n -⎛⎫- ⎪⎝⎭【分析】 由n n a b S +=可得数列{}n a 是公比为12的等比数列,然后根据2414a a =求出21a =即可. 【解析】因为n n a b S +=,所以当1n =时,1112b a S a +==,即12b a = 当2n ≥时,11n n b a S --+=,然后可得10n n n a a a --+=,即()1122n n a a n -=≥ 所以数列{}n a 是公比为12的等比数列 所以21124b a a ==,4111816a a b ==, 因为22411644a ab ==,所以4b =±, 当4b =时, 21a =,2221122n n n a a --⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭当4b =-时, 21a =-,2221122n n n a a --⎛⎫⎛⎫==- ⎪ ⎪⎝⎭⎝⎭故答案为:212n -⎛⎫ ⎪⎝⎭或212n -⎛⎫- ⎪⎝⎭四、解答题 14.已知数列{}n a 的前n 项和()2*2n S n kn k N =-+∈,且n S 的最大值为4.(1)求常数k 及n a ;(2)设()17n n b n a =-,求数列{}n b 的前n 项和n T . 【答案】(1)2k =,25n a n =-+ (2)2(1)n n T n =+ 【分析】(1)由于()222*2()n S n kn n k k k N =-+=--+∈,则可得24k =,从而可求出2k =,然后利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求出n a , (2)由(1)可得11121n b n n ⎛⎫=- ⎪+⎝⎭,然后利用裂项相消求和法求解即可 (1)因为()222*2()n S n kn n k k k N =-+=--+∈,所以当n k =时,n S 取得最大值2k , 所以24k =,因为*k N ∈,所以2k =,所以24n S n n =-+,当1n =时,11143a S ==-+=,当2n ≥时,2214[(1)4(1)]25n n n a S S n n n n n -=-=-+---+-=-+,13a =满足上式,所以25n a n =-+(2)由(1)可得()()11111177252(1)21n n b n a n n n n n n ⎛⎫====- ⎪-+-++⎝⎭, 所以1111111112222321n T n n ⎛⎫⎛⎫⎛⎫=⨯-+⨯-+⋅⋅⋅+⨯- ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭ 111212(1)n n n ⎛⎫=-= ⎪++⎝⎭ 15.已知数列{}n a 满足()23*1232222n n a a a a n n N ++++=∈,求数列{}n a 的通项公式.【答案】12n na =【分析】 先根据前n 项和与通项的关系得12n n a =,再检验1n =时也满足条件即可求得答案. 【解析】因为23*1232222()n n a a a a n n N ++++=∈①, 所以()2311231222212n n a a a x a n n --++++=-≥②, ①-②得21(2)n n a n =≥,即 12n n a =, 当1n =时,112a =,满足12n n a =, 所以12n na = 16.已知数列{}n a 的前n 项和112n n S ⎛⎫=+ ⎪⎝⎭,求数列{}n a 的通项公式. 【答案】312122n n n a n ⎧=⎪⎪=⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩ 【分析】根据n S 与n a 的关系式,求解数列的通项公式即可.需要注意验证首项.【解析】()111111222n n n n S S n --⎛⎫⎛⎫=+∴=+≥ ⎪ ⎪⎝⎭⎝⎭①②-①②得()122n n a n ⎛⎫=-≥ ⎪⎝⎭ 根据题意,1111311222a S ⎛⎫==+=≠- ⎪⎝⎭ 所以数列的通项公式为312122n n n a n ⎧=⎪⎪=⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩。
数列的知识点大题总结
数列的知识点大题总结一、数列的概念和分类1. 数列的概念数列是指按一定规律排列的一组数。
在数列中,每个数都有其特定的位置,这些位置往往由自然数来表示,如1、2、3、4等。
2. 数列的分类根据数列的规律和性质的不同,可以将数列分为等差数列、等比数列和其他特殊类型的数列。
(1)等差数列等差数列指的是数列中任意相邻两项的差都相等的数列,这个公差可以是正数、负数或零。
例如:1,3,5,7,9就是一个公差为2的等差数列。
(2)等比数列等比数列是指数列中任意相邻两项的比值都相等的数列,这个比值可以是正数、负数或零。
例如:2,6,18,54就是一个比值为3的等比数列。
(3)特殊类型数列特殊类型数列指的是除了等差数列和等比数列以外的数列,如递减数列、递增数列、周期数列等。
二、数列的常用记号与符号1. 数列的一般形式数列一般用字母a表示,同时用n表示这个数列中的第n项。
即数列的一般形式可以表示为{a1, a2, a3, …, an}。
2. 数列的通项公式数列的通项公式指的是用代数式表示数列中任意一项的公式,通常用an或者Un表示数列中第n项。
例如:等差数列的通项公式为an = a1 + (n-1)d;等比数列的通项公式为an = a1 * q^(n-1)。
3. 数列的前n项和数列的前n项和指的是数列中前n个数项的和,通常用Sn表示。
其计算公式为Sn = a1 +a2 + a3 + … + an。
三、数列的性质和公式1. 等差数列的性质(1)公差的性质:在等差数列中,任意两项的公差相等。
(2)通项公式:等差数列的通项公式有通用的形式,即an = a1 + (n-1)d;(3)前n项和的公式:等差数列的前n项和公式为Sn = n/2 * (a1 + an)。
2. 等比数列的性质(1)公比的性质:在等比数列中,任意两项的比值相等。
(2)通项公式:等比数列的通项公式为an = a1 * q^(n-1);(3)前n项和的公式:等比数列的前n项和公式为Sn = a1 * (1 - q^n)/(1 - q)。
数列知识点总结及题型归纳---含答案
数列一、等差数列题型一、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥。
例:等差数列12-=n a n ,=--1n n a a 题型二、等差数列的通项公式:1(1)n a a n d =+-;说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。
例:1.已知等差数列{}n a 中,12497116a a a a ,则,==+等于( ) A .15 B .30 C .31 D .642.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B )668 (C )669 (D )6703.等差数列12,12+-=-=n b n a n n ,则n a 为 n b 为 (填“递增数列”或“递减数列”)题型三、等差中项的概念:定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项。
其中2a bA += a ,A ,b 成等差数列⇔2a bA +=即:212+++=n n n a a a (m n m n n a a a +-+=2) 例:1.设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++= ( )A .120B .105C .90D .752.设数列{}n a 是单调递增的等差数列,前三项的和为12,前三项的积为48,则它的首项是( ) A .1 B.2 C.4 D.8题型四、等差数列的性质:(1)在等差数列{}n a 中,从第2项起,每一项是它相邻二项的等差中项; (2)在等差数列{}n a 中,相隔等距离的项组成的数列是等差数列; (3)在等差数列{}n a 中,对任意m ,n N +∈,()n m a a n m d =+-,n ma a d n m-=-()m n ≠;(4)在等差数列{}n a 中,若m ,n ,p ,q N +∈且m n p q +=+,则m n p q a a a a +=+; 题型五、等差数列的前n 和的求和公式:11()(1)22n n n a a n n S na d +-==+n da )(2n 2112-+=。
数列知识点归纳总结小学奥数
数列知识点归纳总结小学奥数数列是数学中重要的概念,也是小学奥数中经常涉及的内容之一。
在小学阶段,学生们开始接触数列的基本概念和性质,逐渐学习如何判断和计算数列中的各种元素。
本文将对小学奥数中的数列知识点进行归纳总结,帮助学生更好地理解和掌握数列的概念和应用。
一、数列的定义和表示方法数列由一组按照特定规律排列的数字组成,可以用一对大括号{}或者使用通项公式表示。
例如,数列{1, 3, 5, 7, 9}可以表示为an = 2n-1,其中n为自然数。
二、等差数列等差数列是最常见的数列类型之一,数列中相邻两个数之间的差值都是相等的。
等差数列的通项公式可以表示为an = a1 + (n-1)d,其中a1是首项,d是公差,n是项数。
在应用等差数列的时候,常常需要求解数列中的某一项,或者计算数列的前n项和。
对于已知首项和公差的等差数列,首先可以根据通项公式求出所需的值。
例题1:已知等差数列{2, 5, 8, 11, ...}的首项是2,公差是3,求该数列的第10项。
解析:根据等差数列的通项公式an = a1 + (n-1)d,代入已知条件,可得a10 = 2 + (10-1)3 = 2 + 27 = 29。
因此,该数列的第10项为29。
例题2:已知等差数列{2, 5, 8, 11, ...}的首项是2,公差是3,求数列的前10项的和。
解析:根据等差数列的求和公式S = (n/2)(a1+an),代入已知条件,可得S10 = (10/2)(2+29) = 5(31) = 155。
因此,该数列前10项的和为155。
三、等比数列等比数列是另一种常见的数列类型,数列中每一项与前一项的比值都是相等的。
等比数列的通项公式可以表示为an = a1 * r^(n-1),其中a1是首项,r是公比,n是项数。
在应用等比数列的时候,同样需要计算数列中的某一项或者前n项的和。
例题3:已知等比数列{3, 6, 12, 24, ...}的首项是3,公比是2,求该数列的第8项。
数列知识点总结及例题讲解
人教版数学必修五第二章数列重难点解析第二章课文目录2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和【重点】1、数列及其有关概念,通项公式及其应用。
2、根据数列的递推公式写出数列的前几项。
3、等差数列的概念,等差数列的通项公式;等差数列的定义、通项公式、性质的理解与应用。
4、等差数列n项和公式的理解、推导及应用,熟练掌握等差数列的求和公式。
5、等比数列的定义及通项公式,等比中项的理解与应用。
6、等比数列的前n项和公式推导,进一步熟练掌握等比数列的通项公式和前n项和公式【难点】1、根据数列的前n项观察、归纳数列的一个通项公式。
2、理解递推公式与通项公式的关系。
3、等差数列的性质,灵活应用等差数列的定义及性质解决一些相关问题。
4、灵活应用等差数列前n项公式解决一些简单的有关问题。
5、灵活应用求和公式解决问题,灵活应用定义式及通项公式解决相关问题。
6、灵活应用等比数列定义、通项公式、性质解决一些相关问题。
一、数列的概念与简单表示法1.数列的定义:按一定次序排列的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n项,….3.数列的一般形式:aj,az,ag, …,an, …,或简记为{a},其中a。
是数列的第n项4.数列的通项公式:如果数列{a}的第n项a。
与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意: (1)并不是所有数列都能写出其通项公式,如上述数列④;(2)一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0, …它的通项公式可以是,也可以是; 1.(3)数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第召项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.5.数列与函数的关系:数列可以看成以正整数集N(或它的有限子集{1,2,3,…,n})为定义域的函数an= f(n),当自变量从小到大依次取值时对应的一列函数值。
高中数列知识点归纳总结及例题
高中数列知识点归纳总结及例题数列是高中数学中的一个重要概念,它在许多数学问题中都起着至关重要的作用。
通过学习数列的定义、性质和求解方法,可以帮助我们更好地理解和应用数学知识。
本文将对高中数列知识点进行归纳总结,并附上相关例题供读者练习。
1. 数列的定义与性质数列是按照一定顺序排列的一组数。
其中,每一个数称为数列的项,位置称为项数,用字母a表示数列的通项。
数列的性质包括等差数列和等比数列两种常见情况:1.1 等差数列等差数列是指数列中相邻两项之差都相等的数列。
设数列为{an},公差为d,则有如下性质:(1)通项公式:an = a1 + (n-1)d(2)前n项和公式:Sn = (a1 + an) * n / 2(3)项数公式:n = (an - a1) / d + 1例题1:已知等差数列{an}的首项是3,公差是4,求第10项的值。
解析:根据等差数列的通项公式,代入a1 = 3,d = 4,n = 10,求得a10 = 3 + (10-1) * 4 = 39。
1.2 等比数列等比数列是指数列中相邻两项之比都相等的数列。
设数列为{an},公比为q,则有如下性质:(1)通项公式:an = a1 * q^(n-1)(2)前n项和公式:Sn = a1 * (q^n - 1) / (q - 1)(3)项数公式:n = logq(an / a1) + 1例题2:已知等比数列{an}的首项是2,公比是3,求第5项的值。
解析:根据等比数列的通项公式,代入a1 = 2,q = 3,n = 5,求得a5 = 2 * 3^(5-1) = 162。
2. 数列的求和数列的求和是数学中常见的问题之一,通过找到数列的规律和应用对应的公式,可以快速求解数列的和。
下面分别介绍等差数列和等比数列的求和公式。
2.1 等差数列的求和对于等差数列{an},前n项和的计算公式为Sn = (a1 + an) * n / 2。
其中,a1为首项,an为末项,n为项数。
数列 知识点总结及数列求和,通项公式的方法归纳(附例题)
⎩⎨⎧无穷数列有穷数列按项数 2221,21(1)2nn a a n a a n a n=⎧⎪=+=⎪⎨=-+⎪⎪=-⋅⎩n n n n n常数列:递增数列:按单调性递减数列:摆动数列:数 列数列的考查主要涉及数列的基本公式、基本性质、通项公式,递推公式、数列求和、数列极限、简单的数列不等式证明等.1.数列的有关概念:(1) 数列:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. (2) 从函数的观点看,数列可以看做是一个定义域为正整数集N +(或它的有限子集)的函数。
当自变量从小到大依次取值时对应的一列函数值。
由于自变量的值是离散的,所以数列的值是一群孤立的点。
(3) 通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.如: 221n a n =-。
(4) 递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,121n n a a -=+,其中121n n a a -=+是数列{}n a 的递推公式.再如: 121,2,a a ==12(2)n n n a a a n --=+>。
2.数列的表示方法:(1) 列举法:如1,3,5,7,9,… (2)图象法:用(n, a n )孤立点表示。
(3) 解析法:用通项公式表示。
(4)递推法:用递推公式表示。
3.数列的分类:按有界性M M M >Mn n n n +⎧≤∈⎪⎨⎪⎩有界数列:存在正数,总有项a 使得a ,n N 无界数列:对于任何正数,总有项a 使得a4.数列{a n }及前n 项和之间的关系:123n n S a a a a =++++ 11,(1),(2)n n n S n a S S n -=⎧=⎨-≥⎩等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差. 2.通项公式与前n 项和公式⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差.可变形为d m n a a m n )(-+= ⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列; ⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列. 5.常用性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}p a n +、{}n pa (p 是常数)都是等差数列;在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd 。
数列的知识点总结
数列的知识点总结数列在数学中是一个重要的概念,它是由一组有序数字或者数学相似的物品所组成的序列。
在数学的学习中,数列是非常常见的一种概念,在很多数学的题目中都有着重要的应用。
在本文中,我将会深入探讨数列的相关知识,以及给出一些例题来加强读者的理解和应用能力。
一、分类数列可以根据它的项之间的关系进行分类。
1.等差数列在等差数列中,每一项与它前面的项的差值都是相等的。
假设第一个项为$a_1$,公差为$d$,则它的第$n$项为:$a_n=a_1+(n-1)d$。
例题:已知一个等差数列的第五项为$10$,公差为$2$,求第十项是多少?解:利用公式$a_n=a_1+(n-1)d$,可得:$a_{10}=a_1+9d=a_5+4d=10+4 \times 2=18$,因此第十项为$18$。
2.等比数列在等比数列中,每一项与它前面的项的比值都是相等的。
假设第一个项为$a_1$,公比为$q$,则它的第$n$项为:$a_n=a_1\times q^{n-1}$。
例题:已知一个等比数列的第二项为$4$,公比为$2$,求第六项是多少?解:利用公式$a_n=a_1 \times q^{n-1}$,可得:$a_6=a_1 \times 2^{6-1}=a_1 \times 32$。
因此,要求第六项,我们需要知道首项$a_1$,根据已知,$a_2=4=a_1 \times 2$,得到$a_1=2$,带入公式,则可得出$a_6=2 \times 32=64$。
3.等差-等比数列在等差-等比数列中,它的相邻两项之间先按照等比数列的关系进行变化,再按照等差数列的关系进行变化。
假设第一个项为$a_1$,首项的公比为$q$,公差为$d$,则它的第$n$项为:$a_n=a_1 \times q^{n-1}+d(n-1)$。
例题:已知一个等差-等比数列的第三项为$12$,公比为$2$,公差为$-2$,求第五项是多少?解:利用公式$a_n=a_1 \times q^{n-1}+d(n-1)$,可得:$a_5=a_1 \times 2^{5-1}+(-2) \times 4=16a_1-8$。
高考一轮复习 数列概念 知识点+例题+练习
自主梳理1.数列的定义按____________着的一列数叫数列,数列中的________都叫这个数列的项;在函数意义下,数列是______________________的函数,数列的一般形式为:________________________,简记为{a n },其中a n 是数列的第____项.2.通项公式:如果数列{a n }的________与____之间的关系可以______________来表示,那么这个式子叫做数列的通项公式.但并非每个数列都有通项公式,也并非都是唯一的.3.数列常用表示法有:____________________、________、________.4.数列的分类:数列按项数来分,分为____________、____________;按项的增减规律分为____________、____________、____________和________.递增数列⇔a n +1____a n ;递减数列⇔a n +1____a n ;常数列⇔a n +1____a n .5.a n 与S n 的关系:已知S n ,则a n =⎩⎪⎨⎪⎧,n =1, ,n ≥2,.自我检测1.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项a n =______.2.已知数列{a n }对任意的p ,q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10=________.3.已知数列-1,85,-157,249,…按此规律,则这个数列的通项公式是______________________________.学生姓名教师姓名 班主任 日期时间段 年级 课时 教学内容数列的概念与简单表示法 教学目标1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数. 重点数学归纳方法、递推法 难点 同上4.下列对数列的理解:①数列可以看成一个定义在N *(或它的有限子集{1,2,3,…,n })上的函数; ②数列的项数是有限的;③数列若用图象表示,从图象上看都是一群孤立的点;④数列的通项公式是唯一的.其中说法正确的序号是________.5.设a n =-n 2+10n +11,则数列{a n }从首项到第________项的和最大.探究点一 由数列前几项求数列通项例1 写出下列数列的一个通项公式,使它的前几项分别是下列各数:(1)23,415,635,863,1099,… (2)12,-2,92,-8,252,…变式迁移1 写出下列数列的一个通项公式:(1)3,5,9,17,33,… (2)2,5,22,11,…(3)1,0,1,0,…探究点二 由递推公式求数列的通项例2 根据下列条件,写出该数列的通项公式.(1)a 1=2,a n +1=a n +n ;(2)a 1=1,2n -1a n =a n -1 (n ≥2).变式迁移2 根据下列条件,确定数列{a n }的通项公式.(1)a 1=1,a n +1=3a n +2;(2)a 1=1,a n +1=(n +1)a n ;(3)a 1=2,a n +1=a n +ln ⎝⎛⎭⎫1+1n .探究点三 由a n 与S n 的关系求a n例3 已知数列{a n }的前n 项和S n =2n 2-3n +1,求{a n }的通项公式.变式迁移3 (1)已知{a n }的前n 项和S n =3n +b ,求{a n }的通项公式.(2)已知在正项数列{a n }中,S n 表示前n 项和且2S n =a n +1,求a n .1.数列的递推公式是研究的项与项之间的关系,而通项公式则是研究的项a n 与项数n 的关系.2.求数列的通项公式是本节的重点,主要掌握三种方法:(1)由数列的前几项归纳出一个通项公式,关键是善于观察;(2)数列{a n }的前n 项和S n 与数列{a n }的通项公式a n 的关系,要注意验证能否统一到一个式子中;(3)由递推公式求通项公式,常用方法有累加、累乘.3.本节易错点是利用S n 求a n 时,忘记讨论n =1的情况.一、填空题1.设数列{a n }的前n 项和S n =n 2,则a 8的值为________.2.已知数列{a n }满足:a 4n -3=1,a 4n -1=0,a 2n =a n ,n ∈N *,则a 2 009=________,a 2 014=________.3.已知数列{a n }的前n 项和为S n ,且S n =2(a n -1),则a 2=________.4.数列{a n }中,若a n +1=a n 2a n +1,a 1=1,则a 6=________.5.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21=________.6.数列{a n }满足a n +1=⎩⎨⎧2a n (0≤a n <12),2a n -1 (12≤a n <1),若a 1=67,则a 2 010的值为________.7.已知S n 是数列{a n }的前n 项和,且有S n =n 2+1,则数列{a n }的通项a n =__________________.8.将全体正整数排成一个三角形数阵:12 34 5 67 8 9 1011 12 13 14 15… … … … … …根据以上排列规律,数阵中第n (n ≥3)行从左至右的第3个数是____________.二、解答题9.写出下列各数列的一个通项公式.(1)112,223,334,445,…(2)-1,32,-13,34,-15,36…10.由下列数列{a n }递推公式求数列{a n }的通项公式:(1)a 1=1,a n -a n -1=n (n ≥2);(2)a 1=1,a n a n -1=n -1n (n ≥2); (3)a 1=1,a n =2a n -1+1 (n ≥2).11.已知数列{a n }的前n 项和S n =2n 2+2n ,数列{b n }的前n 项和T n =2-b n .(1)求数列{a n }与{b n }的通项公式;(2)设c n =a 2n ·b n ,证明:当且仅当n ≥3时,c n +1<c n .。
数列极限概念与性质例题和知识点总结
数列极限概念与性质例题和知识点总结一、数列极限的概念数列是按照一定顺序排列的一列数,例如:1,1/2,1/3,1/4,······就是一个数列。
而数列极限则是指当数列中的项数无限增大时,数列的取值趋近于某个确定的常数。
用数学语言来描述,如果对于任意给定的正数ε(无论它多么小),总存在正整数 N,使得当 n > N 时,|an A| <ε 恒成立,那么就称常数 A 是数列{an}的极限,记作lim(n→∞) an = A 。
为了更好地理解数列极限的概念,我们来看一个简单的例子。
例 1:考虑数列{1 / n},当 n 趋向于无穷大时,这个数列的极限是0 。
证明:对于任意给定的正数ε ,要使|1 / n 0| <ε ,即 1 / n <ε ,只要 n > 1 /ε 。
所以,取 N = 1 /ε + 1(表示取整),当 n > N 时,就有|1 / n 0| <ε ,所以lim(n→∞)(1 / n) = 0 。
二、数列极限的性质1、唯一性:如果数列{an}有极限,那么极限值是唯一的。
2、有界性:如果数列{an}有极限,那么数列{an}是有界的。
3、保号性:如果lim(n→∞) an = A ,且 A > 0(或 A < 0),那么存在正整数 N ,当 n > N 时,an > 0(或 an < 0)。
三、数列极限的运算性质1、如果lim(n→∞) an = A ,lim(n→∞) bn = B ,那么lim(n→∞)(an + bn) = A + Blim(n→∞)(an bn) = A Blim(n→∞)(an × bn) = A × B若B ≠ 0 ,lim(n→∞)(an / bn) = A / B2、数列极限的夹逼准则:如果数列{an},{bn},{cn}满足:存在正整数 N0 ,当 n > N0 时,an ≤ bn ≤ cn ,且lim(n→∞) an =lim(n→∞) cn = A ,那么lim(n→∞) bn = A 。
数列极限知识点总结
数列极限知识点总结一、数列的极限定义数列是一系列按照一定次序排列的数的集合,通常表示为{an},其中an表示数列的第n 个元素。
数列的极限是数列中的元素随着n的增大而逐渐接近某个值L,当n趋于无穷大时,数列的所有元素都逼近于L。
我们用极限符号lim(n→∞)an=L来表示数列{an}的极限为L。
对于一个给定的数列{an},如果它的极限存在且为L,我们称{an}收敛于L,记作lim(n→∞)an=L。
如果数列的极限不存在,我们称数列发散。
二、数列极限的性质1. 唯一性:数列的极限值是唯一的,即如果数列{an}收敛于L1和L2,那么L1=L2。
2. 有界性:收敛数列是有界的,即存在一个实数M,使得对于所有的n,有|an|<M。
3. 保号性:如果数列{an}收敛于L>0,那么存在一个正整数N,使得当n>N时,an>0;如果数列{an}收敛于L<0,那么存在一个正整数N,使得当n>N时,an<0。
三、数列极限的收敛定理1. 夹逼定理:设{an}、{bn}、{cn}是三个数列,如果存在一个正整数N,使得当n>N时,有an≤bn≤cn,并且lim(n→∞)an=lim(n→∞)cn=L,那么数列{bn}也收敛于L。
2. 复合函数极限定理:设{an}是一个数列,f(x)是一个定义在R上的函数,如果lim(n→∞)an=a存在,f(x)在x=a周围有定义,并且lim(x→a)f(x)=L存在,那么lim(n→∞)f(an)=L。
3. 唯一性定理:如果一个数列存在极限,那么它的极限是唯一的。
四、数列极限的经典例题1. 例题一:计算数列lim(n→∞)(1+1/n)n。
解析:利用自然对数的极限定义可得lim(n→∞)(1+1/n)n=e。
2. 例题二:利用夹逼定理证明数列lim(n→∞)(1/n)=0。
解析:由于-1/n≤1/n≤1/n,且lim(n→∞)(-1/n)=lim(n→∞)(1/n)=0,根据夹逼定理可得lim(n→∞)(1/n)=0。
职高数列知识点及例题(有答案)
数列一、数列的定按一定顺序排列成的一列数叫做数列.记为:{a n}.即{a n}: a 1, a 2,…,a n .二、通项公式:用项数n来表示该数列相应项的公式,叫做数列的通项公式。
1、本质:数列是定义在正整数集(或它的有限子集)上的函数.2、通项公式:a n =f(n)是a n关于n的函数关系.三、前n项之和:S n = a 1 +a2 +^+a ns1(n 1)注求数列通项公式的一个重要方法:a n 1s n s n 1 (n 2)例1、已知数列 {100-3n} ,(1)求a?、a3 ; (2)此数列从第几项起开始为负项.例2已知数列a n的前n项和,求数列的通项公式: (1) S n=n2+2n; (2) S n=n2-2n-1.解:(1)①当 n呈时,a n二S n-S ni=( n 2+2 n)-[(门-1) 2+2( n-1)]=2 n+1 ;②当 n=1 时,a1 = 3=12+2X1=3;③经检验,当n=1时,2n+1=2X+1=3, /. a n=2n+1为所求.(2)①当n多时,a n = S n- S n 1=(n 2-2n-1)-[(n-1) 2+2(n-1)-1]=2n-3 ;②当n=1 时,a1 = 3=12-2 X-1=-2 ;2(n 1)③经检验,当 n=1 时,2n-3=2 X-3=-1 兴2 , a n= 2n 3(n 2)为所求.注:数列前n项的和S n和通项a n是数列中两个重要的量,在运用它们的关系式a n S n S n1时,一定要注意条件n 2,求通项时一定要验证a1是否适合例3当数列{100-2n}前n项之和最大时,求n的值.分析:前n项之和最大转化为a n 0 a n 1 0精品资料等差数列1. 如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数, 那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常 用字母d 表示.即:a n 1 a n d(常数)(n N ?)2. 通项:a n a i (n 1)d ,推广:a . a m (n m)d .3. 求和:S n : an )na i 吟卫d.(关于n 的没有常数项的二次函数).4. 中项:若a 、b 、c 等差数列,则b 为a 与c 的等差中项:2b=a+c5. 等差数列的判定方法(1)定义法:a n 1 a n d(常数)(n N ?) (2) 中项法:2a . i a . a n 2⑶通项法:an a 1(n 1)d(4)前n 项和法:2S n An Bn练习:已知数列{ a n }满足:a 1 =2,a n = a n 1 +3,求通项a n .例1在等差数列a n 中,已知a 49,a 9 6,S n 63,求n.解:设首项. 9 a 1则6 a 6 a例 2 (1) 求这个数「 分析2:艮为a 1,公差为d, 3d 作耳18 3 /口 亠 得 63 & 18n n(n 1)得: n 6或n 71 8d d 3 2设{a n }是递增等差数列,它的前3项之和为12,前3项之积为48, 列的首项.精品资料拓展:(1)右n+m=2p 则a n+a=2a p.推广:从等差数列中抽取等距离的项组成的数列是一个等差数列。
高中数列知识点大全
高中数列知识点大全ps:整理不易,点赞支持已完结的地方:一、等差数列二、斐波那契数列三、数列的通项公式四、数列的放缩尚未完结的地方:一、等比数列的部分例题二、拓展:提丢斯数列(全国卷考到了)三、周期数列的部分例题四、求和可能要个目录一、等差数列1、等差数列的基本概念和基本公式如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫作等差数列。
(1)递推关系:a_{n+1}-a_{n}=d(常数),或 a_{n}-a_{n-1}=d(n\inN^\ast且n\geq2)。
(2)通项公式:a_{n}=a_1+(n-1)d 。
推广形式: a_{n}=a_m+(n-m)d (当 d\ne0 时, a_n 是关于 n 的一次函数)(3)求和公式:S_{n}=\dfrac{n\left( a_{1}+a_{n}\right) }{2}=na_{1}+\d frac{n\left( n-1\right) }{2}d (当 d\ne0 时, S_n 是关于 n 的二次函数,且常数项为零)例题:2011 湖北文 92、等差数列的主要性质等差数列的性质主要包括以下12个方面。
(1)若 n+m=p+q ,则 a_n+a_m=a_p+a_q 。
(反之不一定成立,如常数数列)(2)等差中项:若三个数 a,b,c 成等差数列,则称 b 为 a 和 c 的等差中项,即 2b=a+c ,可将这三个数记为:b-d , b ,b+d 。
例题一:例题二(3) a_k,a_{k+m},a_{k+2m},…构成以 md 为公差的等差数列。
(4)在等差数列中依次取出若干个n项,其和也构成等差数列,即S _ { n } , S _{ 2 n } - S _ { n } , S _ { 3 n } - S _ { 2n } , \dots \ldots 也为等差数列,公差为n^2d ;图示理解:\underbrace { a _ { 1 } , a _{ 2 } , \cdots , a _ { m } } _ { s _{ m } },\underbrace { a _ { m + 1 } , a _ { m+ 2 } , \cdots , a _ { 2 m } } _ { s _ { 2 m }- s _ { m } },\underbrace { a _ { 2m + 1 } , a _ { 2m + 2 } , \cdots , a _ { 3 m } } _ { s _ { 3 m } - s _ { 2m } },(5)两个等差数列\left\{ a _ { n } \right\}与\left\{ b _ { n } \right\}的和差的数列 \left\{ a _ { n } \pm b _ { n } \right\} ,\left\{ pa _ { n } \pm qb _{ n } \right\} 仍为等差数列。
《数列》知识点、题型、解法全方位解析
《数列》知识点、题型、解法全方位解析 内蒙古赤锋阿旗天山一中:尹国玉数列的基础知识与一般性结论:(一)数列的概念:项,项数。
一般式:}{n a 或 ,,,,,4321n a a a a a注:①数列与函数的关系:数列可以看作是一个定义域为正自然数集N 或它的有限子集{1,2,3,……,n}的函数.当自变量从小到大依次取值时对应的一列函数值,通项公式a n =f(n)就是该函数的解析表达式,数列的图象是一个点列.因此在学习数列时还应学会用函数的观点、方法研究数列.②数列分有穷数列与无穷数列。
(二)数列的有关公式:(注:并不是所有的数列都有各种公式,)1.递推公式:如)(1n n a f a =+或),(12n n n a a f a ++=等,即由数列的前若干项表示后一项的关系式,2.通项公式:a n =f(n)即由项数来表示项的关系式,即第n 项,3.前n 项和公式:①有穷数列和:即用n 表示前n 项和的式子,(有时也用售含有项和项数的混合式子表示,如2)(1n n a a n S +=)注:掌握数列的通项n a 与前n 项和n S (前项积n G )之间的关系式n a =⎩⎨⎧≥-=-)2()1(11n S S n S n n .n a =11(1)(2)n n G n G n G -=⎧⎪⎨≥⎪⎩②*无究数列和(前n 项和的极限): n n S lin S →+∞=(三)定义数列的方式方法:1.用递推公式定义:①简单一阶线性递归数列:等差等比数列等. ②简单一阶分式递归数列(倒数成等差数列) ③简单的周期数列; ④其它形式:2.用通项公式定义:3.用和或和与项的关系定义. (四)数列的图象(五)数列的单调性及最值 (六)数列的分类1.从项的个数上分:有穷数列,无穷数列.2.从”函数”类型及项与项的关系分:①简单数列:等差数列;等比数列;调和数列;幂级数.②复杂数列(数列的组合):复合数列;组合数列;分段数列;子数列. 3.从数列的性质分:单调数列;摆动数列;周期数列;不规则数列。
数列知识点(含答案)
数列知识梳理1.等差数列: 2.等比数列: 法1:代入通项公式 法1:代入通项公式=n a d n a )1(1-+ =n a 11-n q a或 =n a B An +法2:化入前n 项和公式 法2:化入前n 项和公式=n S d n n na 2)1(1-+ =n S )1(,1)1(1≠--q qq a n或=n S 2)(1n a a n + 或=n S )1(,11≠--q q q a a n 或=n S Bn An +2 或=n S )1(,1=q na 法3:等差中项: 法3:等比中项:ba Ab A a +=2,,则成等差数列如果三个数ba Ab A a +=2,,则成等差数列如果三个数法4:两项定理:d n m a a n m )(-=- 法4:两项定理:n m nmq a a -= 法5:序号定理: 法5:序号定理:qp n m a a a a q p n m +=++=+则如果,qp n m a a a a q p n m =+=+则如果,法6前n 项和定理: 法6前n 项和定理:)()(2,,232232n n n n n n n n n n S S S S S S S S S S -+=---即也是等差数列如果)()(,,2322232n n n n n n n n n n S S S S S S S S S S -⋅=---即也是等比数列如果法7:奇数项和奇S 、偶数项和偶S 定理: 法7:(删) (1)前n 项的和偶奇S S S n +=;(2)当n 为偶数时,d 2nS =-奇偶S ,其中d 为公差; (3)当n 为奇数时,则中偶奇a S =-S ,中奇a 21n S +=,中偶a 21n S -=,11S S -+=n n 偶奇,n =-+=-偶奇偶奇偶奇S S S S S S S n(其中中a 是等差数列的中间一项)法8:是递增的等差数列⇔>0d 法8:是递增的等比数列⇔>1q是递减的等差数列⇔<0d 是递减的等比数列⇔<<10q 是常数数列⇔=0d 是常数数列⇔=1q是跳动的等比数列⇔<0q 法9:{}{}1212,,,--=n n n n n n n n T S b a T S n b a 则项和分别为的前等差数列法103.不是等差也不是等比(这样的数列题一般会给出一条式子)的运算法则 法1:赋值 步骤: ①令n =1,算出=1a ……(注意11a S =!)② 令n = n - 1,得出一条新式,然后将原式与新式相减,算出=n a ……③检验:令n=1,=n a …,是否等于1a ?④结论:⎩⎨⎧≥-==-2,1,11n S S n S a n n n比较建议用下列格式 步骤:将式子调为 =nS① 令n=1, =1S 得出 ②当n ≥2, =--1n n S S 计算, =⇒-=-n n n n a S S a 1根据③检验:令n=1,=n a …,是否等于1a ?④结论:⎩⎨⎧≥-==-2,1,11n S S n S a n n n 法2:替换12n n S a a a =+++1--=n n n S S a法3:常见的运算式的运算法则 (1)形如da a n n =-+1:{}是等差数列数列n a(2)形如q a a nn =+1:{}是等比数列数列n a (3)形如:)(1n f a a n n =-+:累加法: =-=12,1a a n 得出令=-=23,2a a n 得出令…………………=--=-1,1n n a a n n 得出令将以上各式相加,算出 =n a(4)形如:)(1n f a a nn =+累乘法: ==12,1a a n 得出令==23,2a a n 得出令 …………………=-=-1,1n na a n n 得出令 将以上各式相乘,算出 =n aqpa a n n +=+1)5(形如构造法:套用公式)1()1(1-+=-++p q a p p q a n n得出p p qa p qa n n =-+-++111得出⎭⎬⎫⎩⎨⎧-+1p q a n 是等比数列 n n n n a pa a a 11)6(++=-形如取倒法:每一项都除以1-n n a a得出p a a n n =--111 得出⎭⎬⎫⎩⎨⎧n a 1是等差数列 例如:4114111=-⇒=----n n n n n n a a a a a a (7)裂项运算=+)1(1n n 111+-n n=+-)12)(12(1n n )121121(21+--n n ()()()()()1111122112n n n n n n n ⎡⎤=-⎢⎥+++++⎣⎦=+ba 1)(1b a ba --4. 求证数列{}n a 是等差数列:法则:1--n n a a 计算,n n a a -+1计算,结果等于常数,就可证5. 求证数列{}n a 是等比数列:法则:1-n n a a 计算,nn a a 1+计算,结果等于常数,就可证 6. 数列求和: 步骤:第1步:写出数列的通项公式 第2步:赋值列式(不计算):12n n S a a a =+++第3步:选择方法法一:等差数列法二:等比数列求和:法三:错位相减法:形如数列{(An+B)q n})10(≠≠q q 且常用此法,基本步骤:第①步:列方程:⎩⎨⎧+++++=+++++=--)2()1(13211321 n n n n n n qa qa qa qa qa qS a a a a a S ,第②步:作差: (1)-(2)得:n nn qa q q q A a S q -++++=-)()1(321 ,第③步:化简,2121)1()1(1q q Aq q qa a S n n n --+--=-. 法四:裂项相消法:把数列的通项拆成两项的差,使求和时出现的一些正负相互抵消,于是前n 项的和变成首尾两项或少数几项的和. 如:; ①()11111n n n n =-++;②()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;③()()()()()1111122112n n n n n n n ⎡⎤=-⎢⎥+++++⎣⎦;1a b=-;⑤()()!11! 1! 1+-=+n n n n法五:公式法:(自然数和公式) ①()()222121126n n n n ++++⋅⋅⋅+=②()223331124n n n +++⋅⋅⋅+=;7、给出一组数(图):求通项公式法则:观察法:(1)留意是否为等差、等比数列。
数列的定义
一 数列的定义一:知识点1:数列的定义:按一定次序排列的一列数,叫做数列。
主要特征是有序性。
2:数列的分类:按定义域分:有穷数列,无穷数列按值域分:有界数列,无界数列按单调性分:递增数列,递减数列,摆动数列3:数列的表示方法:列表法,图象法,解析法(通项公式,递推公式。
) 注意事项:不是每个数列都有通项公式,若有也并非唯一。
4:求数列通项及数列的前n 项和。
二:典型例题----求数列通项㈠公式法:主要针对等差数列和等比数列。
㈡已知Sn 求a n 。
例1:已知数列{}n a 的前n 项和公式132-⋅=n n S ,求{}n a 的通项公式例2:已知数列{}n a 的前n 项和2n S n pn =+,数列{}n b 的前n 项和232n T n n =-,(1)若1010a b =,求p 的值;(2)取数列{}n b 中的第1项, 第3项, 第5项, L 构成一个新数列{}n c , 求数列{}n c 的通项公式.㈢已知Sn 与a n 的关系式,求a n例3:已知数列{}n a 满足n n n a a n a a a a 求,,212211=+++=Λ 例4:数列{a n }中,a 1=1,当n ≥2时,前n 项的和S n 满足⎪⎭⎫ ⎝⎛-=212n n n S a S ⑴求S n 的表达式;⑵设12+=n S b n n ,求b n 的前n 项和T n 。
㈣形如a n+1=Aa n +B 的数列的通项的求法(两种方法求解)。
例5:已知数列{}n a ,().,,12,1*11n n n a N n a a a 求∈+==+例6: 已知数列{}n a ,().,,32,1*11n n n n a N n a a a 求∈+==+ 三:练习1:已知函数f (x )=px 2+qx ,其中p >0,p+q >1。
数列{a n }的前n 项的和S n ,,S n ,=f (n ),()*∈N n ⑴求数列{a n }的通项公式;⑵证明:a n+1>a n >1 ⑶证明:点⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛n S n M S M S M S M n n ,.,3,3,2,2,1,1332211Λ都在同一条直线上。
数列知识点归纳及例题分析
数列知识点归纳及例题分析一、数列的概念:1.归纳通项公式:注重经验的积累 例1.归纳下列数列的通项公式: 10,-3,8,-15,24,....... 221,211,2111,21111,......(3), (17)9,107,1,232.n a 与n S 的关系:⎩⎨⎧≥-==-)2(,)1(,11n S S n a a n nn注意:强调2,1≥=n n 分开,注意下标;n a 与n S 之间的互化求通项例2:已知数列}{n a 的前n 项和⎩⎨⎧≥+==2,11,32n n n S n ,求n a .3.数列的函数性质:(1)单调性的判定与证明:定义法;函数单调性法 (2)最大小项问题:单调性法;图像法(3)数列的周期性:注意与函数周期性的联系例3:已知数列}{n a 满足⎪⎩⎪⎨⎧<<-≤≤=+121,12210,21n n n n n a a a a a ,531=a ,求2017a . 二、等差数列与等比数列例4等差数列的判定或证明:已知数列{a n}中,a1=错误!,a n=2-错误!n≥2,n∈N,数列{b n}满足b n=错误!n∈N.1求证:数列{b n}是等差数列;2求数列{a n}中的最大项和最小项,并说明理由.1证明∵a n=2-错误!n≥2,n∈N,b n=错误!.∴n≥2时,b n-b n-1=错误!-错误!=错误!-错误!=错误!-错误!=1.∴数列{b n}是以-错误!为首项,1为公差的等差数列.2解由1知,b n=n-错误!,则a n=1+错误!=1+错误!,设函数fx=1+错误!,易知fx在区间错误!和错误!内为减函数.∴当n=3时,a n取得最小值-1;当n=4时,a n取得最大值3.例5等差数列的基本量的计算设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn ,满足S5S6+15=0.1若S5=5,求S6及a12求d的取值范围.解1由题意知S6=错误!=-3,a6=S6-S5=-8. 所以错误!解得a1=7,所以S6=-3,a1=7.2方法一∵S5S6+15=0,∴5a 1+10d 6a 1+15d +15=0, 即2a 错误!+9da 1+10d 2+1=0.因为关于a 1的一元二次方程有解,所以 Δ=81d 2-810d 2+1=d 2-8≥0, 解得d ≤-2错误!或d ≥2错误!. 方法二 ∵S 5S 6+15=0, ∴5a 1+10d 6a 1+15d +15=0, 9da 1+10d 2+1=0.故4a 1+9d 2=d 2-8.所以d 2≥8.故d 的取值范围为d ≤-2错误!或d ≥2错误!.例6前n 项和及综合应用1在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值;2已知数列{a n }的通项公式是a n =4n -25,求数列{|a n |}的前n 项和. 解 方法一 ∵a 1=20,S 10=S 15,∴10×20+错误!d =15×20+错误!d ,∴d =-错误!. ∴a n =20+n -1×错误!=-错误!n +错误!. ∴a 13=0,即当n ≤12时,a n >0,n ≥14时,a n <0,∴当n =12或13时,S n 取得最大值,且最大值为S 13=S 12=12×20+错误!×错误!=130.方法二 同方法一求得d =-错误!.∴S n =20n +错误!·错误!=-错误!n 2+错误!n =-错误!错误!2+错误!. ∵n ∈N,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 2∵a n =4n -25,a n +1=4n +1-25,∴a n +1-a n =4=d ,又a 1=4×1-25=-21.所以数列{a n }是以-21为首项,以4为公差的递增的等差数列. 令错误!由①得n <6错误!;由②得n ≥5错误!,所以n =6. 即数列{|a n |}的前6项是以21为首项,公差为-4的等差数列,从第7项起以后各项构成公差为4的等差数列, 而|a 7|=a 7=4×7-24=3. 设{|a n |}的前n 项和为T n ,则 T n =错误! =错误!例7已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为 3例8等差数列{},{}n n a b 的前n 项和分别为{},{}n n S T ,且7453nnS n T n ,则使得n na b 为正整数的正整数n 的个数是 3 . 先求an/bn n=5,13,35例9已知数列{}n a 中,113a =,当2≥n 时,其前n 项和n S 满足2221nn n S a S =-,则数列{}n a 的通项公式为 ()()21132214n n a n n ⎧=⎪=⎨⎪-⎩≥例10在数列{}n a 中,12a =,11ln(1)n n a a n+=++,则n a = .例1111a a -+是和的等比中项,则a +3b 的最大值为 2 . 例12 若数列1, 2cos θ, 22cos 2θ,23cos 3θ, … ,前100项之和为0, 则θ的值为例13 △ABC 的三内角成等差数列, 三边成等比数列,则三角形的形状为__等边三角形_三、数列求和: 1倒序相加法如:已知函数1()()42x f x x R =∈+,求12()()()m mS f f f m m m =+++_________2错位相减法:{}n n b a 其中{ n a }是等差数列,{}n b 是等比数列; 3裂项相消法:形如)11(1))((1CAn B An B C C An B An a n +-+-=++=4拆项分组法:形如n n n c b a ±=,如:n n n a 32+=,65()2()n n n n a n -⎧=⎨⎩为奇数为偶数,21)1(n a n n ⋅-=-练习:1、数列1,211+,3211++,···,n+++ 211的前n 项和为 B A .122+n n B .12+n nC .12++n nD .12+n n2、数列,,1617,815,413,211 前n 项和=n S .3、数列{}n a 的通项公式为nn a n ++=11,则S 100=_________________;4、设()111126121n S n n =+++++,且134n n S S +⋅=,则=n .65、设*N n ∈,关于n 的函数21)1()(n n f n ⋅-=-,若)1()(++=n f n f a n ,则数列}{n a 前100项的和=++++100321a a a a ________.答案:100.解答:])1[()1()1()1()1()1()(22221n n n n n f n f a n n n n -+-=+⋅-+⋅-=++=-,)12()1(+-=n n ,所以201)199(9)7(5)3(100321+-+++-++-=++++ a a a a100502=⨯=. 四、求数列通项式2ln n+1公式法:121+=+n n a a ,112++-=⋅n n n n a a a a ,121+=+n nn a a a 等 2累加法:形如)2)((1≥=--n n f a a n n 或)(1n f a a n n +=-,且)(n f 不为常数 3累乘法:形如)2)((1≥⋅=-n n f a a n n 且)(n f 不为常数 4待定系数法:形如1,0(,1≠+=+k b ka a n n ,其中a a =1型5转换法:已知递推关系0),(=n n a S f ⎩⎨⎧≥-==→-)2(,)1(,11n S S n a a S n n n n解题思路:利用⎩⎨⎧≥-==-)2(,)1(,11n S S n a a n nn变化1已知0),(11=--n n a S f ;2已知0),(1=--n n n S S S f (6)猜想归纳法慎用练习:考点三:数列的通项式1、在数列{}n a 中,前n 项和842--=n n S n ,则通项公式=n a _______________3、已知数列的前n 项和n n S 23+=,则=n a _______________15122n n n a n -=⎧=⎨≥⎩4、已知数列{}n a ,21=a ,231++=+n a a n n ,则 =n a )(,23*2N n nn ∈+5、在数列{}n a 中,1112,lg 1n n a a a n +⎛⎫==++ ⎪⎝⎭*N n ∈,则n a = .6、如果数列{}n a 满足)(53111*++∈=-=N n a a a a a n n n n ,,则=n a ________________7、}{n a 满足11=a ,131+=+n n n a a a ,则n a =_______132n -8、已知数列{}n a 的首项12a =,且121n n a a +=-,则通项公式n a = 121n -+ 9、若数列{}n a 满足()*112,32n n a a a n N +==+∈,则通项公式n a =10、如果数列{}n a 的前n 项和323-=n n a S ,那么这个数列的通项公式是 DA .)1(22++=n n a nB .n n a 23⋅=C .13+=n a nD .n n a 32⋅=五、数列应用题: 等差数列模型1、一种设备的价格为450000元,假设维护费第一年为1000元,以后每年增加1000元,当此设备的平均费用为最小时为最佳更新年限,那么此设备的最佳更新年限为 ;30年2、在一次人才招聘会上,有甲、乙两家公司分别公布它们的工资标准:甲公司:第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元; 乙公司:第一年月工资数为2000元,以后每年月工资在上一年的月工资基础上递增5%.设某人年初同时被甲、乙公司录取,试问:1若该人打算连续工作n 年,则在第n 年的月工资收入分别是多少元2若该人打算连续工作10年,且只考虑工资收入的总量,该人应该选择哪家公司为什么精确到1元解:1设在甲公司第n 年的工资收入为n a 元,在乙公司第n 年的工资收入为n b 元 则2301270n a n =+,120001.05n n b -=⋅ 2设工作10年在甲公司的总收入为S 甲,在甲公司的总收入为S 乙由于S S >乙甲,所以该人应该选择甲公司.等比数列模型例 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据计划,本年度投入800万元,以后每年投入将比上一年度减少51,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上一年增加41;1设n 年内本年度为第一年总投入为n a 万元,旅游业总收入为n b 万元,写出n a 、n b 的表达式;2至少经过几年旅游业的总收入才能超过总投入精确到整数 参考解答:112511800511800511800800-⎪⎭⎫⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+=n n a2解不等式n n a b >,得5≥n ,至少经过5年,旅游业的总收入才能超过总投入.六、2017年高考题一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的1. 2017年新课标Ⅰ 记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为2. 2017年新课标Ⅱ卷理 我国古代数学名着算法统宗中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯1.A 盏 3.B 盏 5.C 盏 9.D 盏 3.2017年新课标Ⅲ卷理 等差数列{}n a 的首项为1,公差不为0.若632,,a a a 成等比数列,则{}n a 前6项的和为4. 2017年浙江卷 已知等差数列}{n a 的公差为d ,前n 项和为n S ,则“0>d ”是“5642S S S >+”的.A 充分不必要条件 .B 必要不充分条件 .C 充分必要条件 .D 既不充分也不必要条件5.2017年新课标Ⅰ 几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列⋯,16,8,4,2,1,8,4,2,1,4,2,1,2,1,1其中第一项是02,接下来的两项是102,2,再接下来的三项是2102,2,2,依此类推.求满足如下条件的最小整数100:>N N 且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 二、填空题将正确的答案填在题中横线上6. 2017年北京卷理 若等差数列{}n a 和等比数列{}n b 满足8,14411==-==b a b a ,22a b =_______.7.2017年江苏卷等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a =_______________.8. 2017年新课标Ⅱ卷理 等差数列{}n a 的前n 项和为n S ,33a =,410S =, 则11nk kS ==∑. 9.2017年新课标Ⅲ卷理设等比数列{}n a 满足3,13121-=--=+a a a a ,则=4a __. 三、解答题应写出必要的文字说明、证明过程或演算步骤10. 2017年新课标Ⅱ文已知等差数列}{n a 前n 项和为n S ,等比数列}{n b 前n 项和为.2,1,1,2211=+=-=b a b a T n 1若533=+b a ,求}{n b 的通项公式; 2若213=T ,求3S . 11.2017年新课标Ⅰ文 记nS 为等比数列{}n a 的前n 项和,已知.6,232-==S S1求{}n a 的通项公式; 2求n S ,并判断21,,++n n n S S S 是否成等差数列; 12. 2017年全国Ⅲ卷文设数列{}n a 满足()123+212n a a n a n ++-=…1求数列{}n a 的通项公式; 2求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和;13.2017年天津卷文已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=. 1求{}n a 和{}n b 的通项公式; 2求数列2{}n n a b 的前n 项和*()n ∈N . 14.2017年山东卷文已知{}n a 是各项均为正数的等比数列,且121236,a a a a a +==.1求数列{}n a 的通项公式;2{}n b 为各项非零等差数列,前n 项和n S ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭前n 项和n T15. 2017年天津卷理已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.1求{}n a 和{}n b 的通项公式; 2求数列221{}n n a b -的前n 项和()n *∈N . 16. 2017年北京卷理 设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数. 1若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; 2证明:或者对任意正数M ,存在正整数m ,当n m ≥时,nc M n>;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列.17.2017年江苏卷对于给定的正整数k ,若数列{}n a 满足:1111n k n k n n n k n k a a a a a a --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.1证明:等差数列{}n a 是“(3)P 数列”;2若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 18.本小题满分12分已知}{n x 是各项均为正数的等比数列,且.2,32321=-=+x x x x Ⅰ求数列}{n x 的通项公式;Ⅱ如图,在平面直角坐标系xOy 中,依次连接点)1,(,),2,(),1,(11211+⋯++n x P x P x P n n 得到折线121+⋯n P P P ,求由该折线与直线11,,0+===n x x x x y 所围成的区域的面积n T .19.2017年浙江卷已知数列}{n x 满足:).)(1ln(,1*111N n x x x x n n n ∈++==++证明:当*N n ∈时,1n n x x <<+10; 22211++≤-n n n n x x x x ; 3212121++≤≤n n n x .。
高二数学数列知识点总结
高二数学数列知识点总结一、数列的概念1. 数列的定义:数列是由按照一定顺序排列的一列数构成的。
2. 通项公式:表示数列中第n项的公式,通常表示为 \( a_n \)。
3. 序列的分类:根据数列的项是否有限,分为有限数列和无限数列。
二、等差数列1. 等差数列的定义:每一项与它的前一项的差是常数的数列。
2. 公差:等差数列中相邻两项的差。
3. 通项公式:\( a_n = a_1 + (n - 1)d \),其中 \( a_1 \) 是首项,\( d \) 是公差。
4. 求和公式:\( S_n = \frac{n}{2} [2a_1 + (n - 1)d] \)。
三、等比数列1. 等比数列的定义:每一项与它的前一项的比是常数的数列。
2. 公比:等比数列中相邻两项的比。
3. 通项公式:\( a_n = a_1 \cdot q^{n-1} \),其中 \( a_1 \) 是首项,\( q \) 是公比。
4. 求和公式:\( S_n = a_1 \cdot \frac{1 - q^n}{1 - q} \),当\( |q| < 1 \) 时。
四、数列的极限1. 极限的定义:数列的项随着项数的增加趋近于某个值。
2. 极限的性质:唯一性、有界性、保号性。
3. 极限的运算法则:加法、减法、乘法、除法。
五、无穷数列1. 无穷等比数列的极限:\( \lim_{n \to \infty} a_n = 0 \) 当\( |q| < 1 \)。
2. 级数的收敛与发散:根据部分和的性质判断级数是否收敛。
六、递推数列1. 递推关系式:用前一项或前几项来定义数列中下一项的表达式。
2. 递推数列的求解:通过递推关系式求解数列的通项公式。
七、数学归纳法1. 原理:通过证明基础情况和归纳步骤来证明与自然数相关的命题。
2. 应用:证明数列的性质、计算数列的和等。
八、典型例题分析1. 等差数列和等比数列的性质应用。
2. 利用数列极限解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列知识点及典型例题
一、 知识点
一、
选择题:本大题共10个小题;每小题5分,共50分 1、数列 的一个通项公式是( D )
A.
B .
C .
D .
2、已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数,则b 2(a 2-a 1)=( C )A.8 B.-8 C.±8 D.
3、已知数列{}n a 是等比数列,若,a a a a 41813229=+则前30项的和=30S (B )
A 、154,
B 、15
2, C 、15
21⎪⎭
⎫ ⎝⎛ D 、153,
12)
1(3++-=n n
n a n
n 1
2)
3()1(++-=n n n a n
n 121
)1()
1(2--+-=n n a n
n 1
2)
2()1(++-=n n n a n
n ⋯--,9
24
,715,58,18
9
4、已知等比数列{a n }的公比为2, 前4项的和是1, 则前8项的和为 ( B ) A .15. B .17. C .19. D .21
5、等差数列}{n a 的前n 项和为n S ,若45818,a a S =-=则( D )
A 、18
B 、36
C 、54
D 、72
6、等差数列{a n }中,a 1+a 2+…+a 50=200,a 51+a 52+…+a 100=2700,则a 1等于( C ) A . -1221
B .-21.5
C .-20.5
D .-20
二、填空题:本大题共4小题;每小题4分,共16分。
7、已知数列的通项公式74+=n a n ,则其中三位数的个数有255个 8、设等差数列}{n a 的前n 项和为n S ,若2010S S =,则30S 的值是0。
三、解答题:本大题共7小题,共84分。
11、已知等差数列{}n a 中,公差为,1=d 且9999=s ,求+++852a a a 15a +Λ的值。
解法一:9999=S ,{}n a 是等差数列 所以 992
98
99991=⨯+
d a ,又1=d ,481-=a 所求量为首项为-47,公差为3的前5项和S 5=……
12、⑴在等比数列{}n a 中,若,a a ,a a 6243224=+=-求首项1a 和公比q 。
⑵设等比数列{}n a ,n s 是它的前n 项和,若,s s s 9632=+求公比q 。
解:⑴由已知有:24131=-q a q a 及6211=+q a q a 得5
1
1=
a , 5=q ⑵当1=q 时,{}n a 是常数列,则根据,s s s 9632=+得1111863a a a =+,01=a ,
因为{}n a 是等比数列,01≠a 故1≠q 。
当1≠q 时,()()()
q
q a q q a q q a --=
--+--1121111916131,解得321-=q 。
13、三个数成等比数列,其积为512,如果第一个数与第三个数各减2,则成等差数
列,求这三个数. (10分)
解:设三数为.,,aq a q a ⎪⎩⎪⎨⎧⎩⎨⎧==⇒=-+⎪⎪⎭⎫ ⎝⎛-=∴282)2(25123q a a aq q a a 或⎪⎩⎪⎨⎧==.218q a 则,4,816或,168,.4 14、已知数列{}n a 是等差数列,且.12,23211=++=a a a a 求1)数列{}n a 的通项公式; 2)令).(3R x a b n n n ∈=求数列{}n b 前n 项和的公式.
解:1)设数列}{n a 公差为d ,则 ,12331321=+=++d a a a a 又.2,21==d a 所以.2n a n =
2)由,323n n n n n a b ==得,323)22(343212n n n n n S ⋅+-+⋅+⋅=-Λ①
.323)22(34323132+⋅+⋅-++⋅+⋅=n n n n n S Λ②所以.32
)
31(31+⋅+-=
n n n
n S。