第9章 钯催化C-C键交叉偶联反应的机理PPT
钯催化交叉偶联反应
钯催化的交叉偶联反应一、偶联反应综述1.交叉偶联反应偶联反应,从广义上讲,就是由两个有机分子进行某种化学反应而生成一个新有机分子的过程。
狭义的偶联反应是涉及有机金属催化剂的碳-碳键生成的反应,根据类型的不同,又可分为自身偶联反应和交叉偶联。
交叉偶联反应是一个有机分子与另一有机分子发生的不对称偶联反应。
2.碳碳键形成的重要性新碳-碳键的形成在有机化学中是极其重要的。
人们了解了天然有机物质的结构和性能,并根据有机物质的结构,通过碳原子组装成链,建立有机分子,最终实现天然有机物质的人工合成。
目前为止,人类已经利用有机合成化学手段创造出几千万种物质,且越来越多的有机物质已经广泛应用到制药、建材、食品、纺织等人类生活领域,我们的生活也几乎离不开有机物了。
合成药物、塑料等有机物质时,需要用小的有机分子将碳原子连接在一起构建新的复杂大分子,因而有机合成中高效的连接碳-碳键的方法是有机合成化学中的重要工具。
从以往该领域诺贝尔化学奖的授予情况也可以看出合成新碳-碳键的重要性:1912年维克多·格林尼亚因发明格林尼亚试剂——有机镁试剂获奖,1950年迪尔斯和阿尔德因发明双烯反应迪尔斯-阿尔德反应获奖,1979年维蒂希与布朗因发明维蒂希反应共同获奖,2005年伊夫·肖万、罗伯特·格拉布、理查德·施罗克因在有机化学的烯烃复分解反应研究方面作了突出贡献获奖。
3.有机合成中的钯催化交叉偶联反应随着时代发展,合成有机化学的研究愈加深入,20世纪后半期,科学家们发现了大量通过过渡金属催化来创造新有机分子的反应,促使有机合成化学快速发展。
特别是赫克、根岸英一和铃木章发现的钯催化交叉偶联反应,为化学家们提供了一个更为精确有效的工具。
三位科学家发现的钯催化交叉偶联反应中都使用了金属钯作为反应的催化剂,当碳原子与钯原子连在一起时,钯原子唤醒了“懒惰”的碳原子但又不至于使它太活泼,于是形成温和的碳-钯键,在反应过程中,钯原子又可以把别的碳原子吸引过来,形成另一个金属-碳键,此时两个碳原子都连接在钯原子上,它们的距离足够接近而发生反应,生成新的碳-碳单键。
钯催化交叉偶联反应
钯催化的交叉偶联反应一、偶联反应综述1.交叉偶联反应偶联反应,从广义上讲,就是由两个有机分子进行某种化学反应而生成一个新有机分子的过程。
狭义的偶联反应是涉及有机金属催化剂的碳-碳键生成的反应,根据类型的不同,又可分为自身偶联反应和交叉偶联。
交叉偶联反应是一个有机分子与另一有机分子发生的不对称偶联反应。
2.碳碳键形成的重要性新碳-碳键的形成在有机化学中是极其重要的。
人们了解了天然有机物质的结构和性能,并根据有机物质的结构,通过碳原子组装成链,建立有机分子,最终实现天然有机物质的人工合成。
目前为止,人类已经利用有机合成化学手段创造出几千万种物质,且越来越多的有机物质已经广泛应用到制药、建材、食品、纺织等人类生活领域,我们的生活也几乎离不开有机物了。
合成药物、塑料等有机物质时,需要用小的有机分子将碳原子连接在一起构建新的复杂大分子,因而有机合成中高效的连接碳-碳键的方法是有机合成化学中的重要工具。
从以往该领域诺贝尔化学奖的授予情况也可以看出合成新碳-碳键的重要性:1912年维克多·格林尼亚因发明格林尼亚试剂——有机镁试剂获奖,1950年迪尔斯和阿尔德因发明双烯反应迪尔斯-阿尔德反应获奖,1979年维蒂希与布朗因发明维蒂希反应共同获奖,2005年伊夫·肖万、罗伯特·格拉布、理查德·施罗克因在有机化学的烯烃复分解反应研究方面作了突出贡献获奖。
3.有机合成中的钯催化交叉偶联反应随着时代发展,合成有机化学的研究愈加深入,20世纪后半期,科学家们发现了大量通过过渡金属催化来创造新有机分子的反应,促使有机合成化学快速发展。
特别是赫克、根岸英一和铃木章发现的钯催化交叉偶联反应,为化学家们提供了一个更为精确有效的工具。
三位科学家发现的钯催化交叉偶联反应中都使用了金属钯作为反应的催化剂,当碳原子与钯原子连在一起时,钯原子唤醒了“懒惰”的碳原子但又不至于使它太活泼,于是形成温和的碳-钯键,在反应过程中,钯原子又可以把别的碳原子吸引过来,形成另一个金属-碳键,此时两个碳原子都连接在钯原子上,它们的距离足够接近而发生反应,生成新的碳-碳单键。
第9章 钯催化C-C键交叉偶联反应的机理
Negishi couplings
1 反式(trans)过渡态比顺式(cis)的更容易生成 2 两者是相互竞争的反应 3 只有顺式过渡态可以转化为最终产物 4 顺反式不会直接相互转换
8
Sonogashira couplings
1 Cu(I)可以活化炔烃生成炔基铜 2 根据脱质子和配体交换的顺序,可以将机理分为阳离子 型机理和阴离子型机理。 3 离子型机理与前两种机理存在竞争关系,可以有效提高 反应速率。 4 离子型机理中碱有两个作用:结合质子和卤素(吸电基 有利于反应进行)
9
C-H活化芳基化反应
1 转移金属化过程是反应的决速步 2 钯不与氢原子直接作用,碱与质子结合后形成卡宾可以 与钯结合形成稳定的环状过渡态 3 Concerted metalation deprotonation (CMD)机理
10
2.3 还原消除
trans
cis cis
1 只有顺式产物会进行还原消除 2 还原消除过程不可逆 3 过渡态能垒大小:vinyl < Ph < ethynyl < Me, 马来酰胺 < “empty” < ethylene < PMe3 ≈ MeCN 4 能垒大小与π电子接受能力成反比,因此π电子接受能力差的配体(PMe3)会在还原消除过程前解 离。
4
2.1 氧化加成
协同机理: 1 构型保持 2 气相反应 3 某些极性溶剂
SN2机理: 1 构型反转
2 液相反应
1 位阻小的磷配体,按SN2机理进行,在烷基位置反应。 2 位阻大的磷配体,按协同机理进行,在芳基位置反应。
Chem. Eur. J. 2010, 16, 13390-135397.2.2 转移金Fra bibliotek化11
钯催化交叉偶联反应
钯催化交叉偶联反应什么是钯催化交叉偶联反应?钯催化交叉偶联反应(Palladium-Catalyzed Cross-Coupling Reaction)是一种重要的有机合成反应。
它是一类碳-碳键构造的反应,是通过将两种不同的碳基官能团或碳碳键连接在一起,以形成新的C-C化合物。
反应机理在钯催化交叉偶联反应中,两个分子的有机基团进行偶联,然后由钯离子起催化作用,生成新的碳碳键。
催化剂形式上是Pd(0)配合物,反应机理如下:1.钯催化剂先通过脱对氢化学计量通常分配Pdcatalyst (I)。
2.钯催化剂进一步和配体形成配合物(PdL2)。
3.配合物和卤代烃发生交换生成过渡态PdL2(RX)。
过渡态中,钯离子与亲电吸引剂的卤素原子形成键;此过程中C-X钩体断裂,形成第一级碳中间体。
4.结合第二个有机基团生成PdL2(RY)介于新的物种。
5.最后的反应产物通常通过还原反应,将钯催化剂还原为Pd(0)。
应用钯催化交叉偶联反应已经成为有机合成中的重要反应之一,广泛应用于制药、化工、材料科学等领域。
其重要应用包括:•制备非对映选择性或对映选择性的C-C连接化合物。
•制备有机材料。
•合成复杂天然产物的合成方法研究。
反应类型钯催化交叉偶联反应可以根据反应物和类型进行分类。
最常用的交叉偶联反应类型是官能团反应 (Functional Group Coupling) 和碳-碳双键偶联反应 (Carbon-Carbon Double Bond Coupling),这些反应分类包括下列:1.骨架化反应 (Fragmentation Reaction)2.偶联反应 (Cross-Coupling Reaction)3.代换反应 (Substitution Reaction)4.重排反应 (Rearrangement Reaction)反应优点由于钯催化交叉偶联反应具有高效性、选择性、重复性和收率高的特点,它已经成为有机化学领域极为重要的反应之一。
钯催化反应及其机理
钯催化反应及其机理研究摘要:目前过渡金属催化的有机反应研究一直是一个比较热的话题,其中由于钯催化的反应活性和稳定性等原因,使其在有机反应中得到了广泛的使用,被全球广泛关注。
本文主要列举了钯催化的交叉偶联反应的机理,及与偶联反应相关的钯催化的碳氢键活化反应、钯催化的脂肪醇的芳基化反应等的机理。
关键词:过渡金属催化偶联反应钯催化机理1.引言进入二十一世纪以后,钯催化的偶联反应已经建立了比较完整的理论体系,研究的侧重点也和以前有所不同化学键的断裂和形成是有机化学的核心问题之一。
在众多化学键的断裂和形成方式中,过渡金属催化的有机反应有着独特的优势:这类反应通常具有温和的反应条件,产率很高并有很好的选择性(包含立体、化学、区域选择性)。
很多常规方法根本无法实现的化学反应,采用了过渡金属催化后可以很容易地得到实现。
在众多过渡金属中,金属钯是目前研究得最深入的一个。
自上世纪七十年代以来,随着Kumada,Heck,Suzuki,Negishi [1]等偶联反应的陆续发现,钯催化的有机反应发展十分迅速,时至今日,钯催化的偶联反应作为形成碳-碳、碳-杂键最简洁有效的方法之一,已经得到了广泛应用。
2.钯催化各反应机理的研究2.1.钯催化的交叉偶联反应自上世纪七十年代以来,随着Kumada,Heck,Suzuki,Negishi 等偶联反应的陆续发现[1],钯催化的有机反应发展十分迅速,时至今日,钯催化的偶联反应作为形成碳-碳、碳-杂键最简洁有效的方法之一,已经得到了广泛应用[2]。
交叉偶联,就是两个不同的有机分子通过反应连在了一起(英文中交叉偶联为crosscoupling,同种分子偶联为homo coupling)。
2.1.1Heck反应Heck 反应是不饱和卤代烃和烯烃在强碱和钯催化下生成取代烯烃的反应,是一类形成与不饱和双键相连的新C—C 键的重要反应[3]。
反应物主要为卤代芳烃(碘、溴)与含有α-吸电子基团的烯烃,生成物为芳香代烯烃。
09-钯催化反应
4
Kumada交叉偶联反应
二、Kumada交叉偶联反应的特点(续) 4 、使用配体 dppf 会一定程度上减慢 -H 消除,加速还原消除, 因此,可以使仲烷基格氏试剂在反应中不发生异构化;
5、氯代芳香化合物反应很顺利,即使是氟苯也能碱性Ni催化 的交叉偶联反应;
6、偶联反应具有立体选择性,起始的烯基卤代物的立体化学 保持;
27
Sonogashira交叉偶联反应
二、Sonogashira交叉偶联反应的特点
1、交叉偶联反应在室温或稍高于室温的温度下进行,这比 Castro-Stephens偶联的反应条件要温和得多,是一大优点;
2、使用催化量的Cu助催化剂,可以避免极易爆炸的炔铜(摇晃就 可能引起爆炸)的处置; 3 、 Cu(I) 化 合 物 可 以 用 市 售 的 CuI 或 CuBr , 通 常 用 底 物 的 0.55mol%的助催化剂量; 4、最好的Pd催化剂是Pd(PPh3)2Cl2 or Pd(PPh3)4;
5、溶剂和试剂不需要严格干燥,然而,为了保持 Pd 催化剂的活 28 性,溶剂的脱氧是必需的;
Sonogashira交叉偶联反应
二、Sonogashira交叉偶联反应的特点(续)
6、通常碱也同时用作溶剂,偶尔也用一个助溶剂;
7、不论实验量的大小,反应总是进行得很好;
8、偶联反应是立体选择性的,底物的立体化学在产物中保持; 9、卤代物的反应活性顺序:I ≈ OTf > Br >> Cl; 10、碘和溴的活性差异相当大,因此在溴存在下,仍选择性地与 碘反应;
有机合成反应
第九章 钯催化反应中的人名反应
1
Kumada交叉偶联反应
Kumada cross-coupling reaction
交叉偶联反应
四川师范大学化学与材料科学学院
17
交叉偶联反应
The key is the choice of ligand ……
R1
P(t-Bu)3
Ar N N Ar
PR2
Adam, F. L.; Fu, G. C. Angew. Chem. Int. Ed. 2002, 41, 4176
Ph-X BDE:Cl: 96 kcal mol-1 F: 126 kcal mol-1 CN: 132 kcal mol-1
交叉偶联反应
交叉偶联反应
主讲人:向仕凯 博士、讲师
xiangsk@
四川师范大学化学与材料科学学院
1
Suzuki偶联反应高分子材料: 液晶性、导电性、 发光性等
交叉偶联反应
2007
四川师范大学化学与材料科学学院
3
交叉偶联反应
抗真菌药物、天然药物
Ambruticin (1) is a novel antifungal agent that was isolated from fermentation extracts
R R' Negishi偶联
HY R'
Sn R'
Y= N, O, S
R
Y R'
R R'
Buchwald-Hartwig偶联
Stille偶联
Si R'
R R' Hiyama偶联
Ar
I > Ar Br >> Ar Cl
Ar
X
MLn
M
Ar X
Ph-X BDE: I: 65 kcal mol-1 Br: 81 kcal mol-1 Cl: 96 kcal mol-1
金属钯催化的碳-碳偶联反应
金属钯催化的碳-碳偶联反应中文在有机化学中,C-C键的形成是有机合成研究的重要内容,而纳米过渡金属催化的偶联反应则是形成C-C键的一种有效手段。
在经典的纳米过渡金属催化的C-C偶联反应的基础上,我们不断寻找新的催化剂,优化反应体系,以期使传统的C-C偶联反应达到更好的效果。
本文中,我们采用一种新的磁性纳米Pd/Fe3O4/s-G催化剂,利用一锅法从芳胺衍生物出发,通过对反应条件的优化,分别采用亚硝酸叔丁酯和BF3•Et2O为重氮化试剂和添加剂,在甲醇溶剂中保持60 ℃反应5小时,经过重氮化/Suzuki偶联反应,成功实现了芳胺与芳基硼酸衍生物的交叉偶联反应。
该反应是对经典Suzuki反应的有益补充,同时也为联芳基类化合物的形成提供了新的论文方法。
与此同时,我们对新的磁性纳米Pd催化剂的循环实验进行了研究,结果表明,该催化剂能够重复使用4次并且保证催化效率基本不变,且易于通过磁性分离进行回收。
近几年来,非活性的C-H键官能化反应一直是有机化学中的研究热点。
虽然在C-H活化方面各国的研究学者已经取得了很大进展,但是将C-H键直接转化成C-C、C-X、C-N、C-O、C-S 键等,仍然是具有挑战性的课题。
虽然已有多种官能团被用于导向的C-H键活化,但Pd催化的以乙酰基为导向基团的C-H活化反应目前仅有过一例报道。
在本文中,我们以芳香酮类化合物和烯烃为底物,以Pd(OAc)2为催化剂,Cu(OAc)2•H2O为氧化剂,完成了酰基邻位sp2 C-H键活化氧化Heck反应。
该反应是导向的氧化C-H官能化反应的一个新的发展。
译文In the field of organic chemistry, the formation of C-C is an important content of organic synthesis, while the nano transition-metal-catalyzed cross-couplings are the effective measures of the formation of C-C. In the basement of classical C-C cross-couplings, we keep looking for new catalysts and optimizing reaction systems in order to make traditional C-C cross-couplings to achieve better effect. In this article, a new, magnetic Pd/Fe3O4/s-G-catalyzed one-pot diazotization/cross-coupling of anilines and arylboronic acids has been developed. Through the on-going optimation of our reaction, we at last choose tBuONO as diazo reagent and BF3•Et2O as the additive. The experiments are conducted in MeOH at sixty degrees celsius and the reaction time is five hours. This process complemented the traditional Suzuki cross-couplings and provided a more economic approach for the preparation of biaryl products. At the same time, we have also studied the cycle test of our new catalyst. It turned out that this kind of catalyst can be reused four times and the effect is largely unchanged. The recycling of the catalyst is very convenient through magnetic separation. In recent years, the activation of inact C-H has been the researchfocus of organic chemistry. Although there has been great progress on the activation of C-H around the world, we still face huge challenges in transforming C-H to C-C, C-X, C-N, C-O, C-S directly. There is only one case of Pd-catalyzed reactions about the activation of C-H with acetyl as the directing group though a lot of functional groups have been used in directed C-H activation. In this article, Pd(OAc)2 and Cu(OAc)2•H2O are served as the catalyst and oxidant separately. We use aromatic ketone derivatives and olefins as our reaction substrates and achieve the ortho-activation of sp2 C-H and oxidative Heck reaction smoothly. This is a new development of directed and oxidative functionalization of C-H.。
钯催化反应中的人名反应
8、最常用的是格氏试剂和有机锂试剂。然而用有机钠、有机铜、 有机铝、有机锌、有机锆、有机硼等化合物也是可以的;
9、有机锂更普遍,因为有许多方法可以制备,甚至烃的直接锂 化;
10、碱敏感的官能团不适合,因为格氏试剂和有机锂都是很强
的碱。但是有机锌(Negishi交叉偶联反应)可以。
h
6
Kumada交叉偶联反应
实际上,Stille交叉偶联反应的成功很大程度上应该归功于这个 方法所体现的温和条件。在这样温和的条件下,能够兼容许 多官能团,比如:羧基、酰胺、酯基、硝基、醚、胺、羟基、 酮基、甲酰基(醛基),两个反应底物的立体化学也都不受影 响。
催化剂中的金属除了Pd之外,发现Mn、Ni和Cu也可以催化这个
反应。使用催化剂量的锡也有h 报道。
h
7
Kumada交叉偶联反应
四、机理(Mechanism)
h
8
Kumada交叉偶联反应
五、应用(Application)
h
9
Stille交叉偶联反应
Stille交叉偶联反应
h
10
Stille交叉偶联反应
一、背景(Background)
1976年, C. Eaborn等人报道了第一个钯催化的有机锡(organotin, organostannane)化合物的反应。一年之后的1977年,M. Kosugi 和T. Migita报道了过渡金属催化的有机锡化合物与芳基卤代物及 酰卤之间的C-C键成键反应。1978年的时候,J. K. Stille应用有机 锡化合物合成酮,反应条件比Kosugi报道的条件温和得多,收率 也显著提高。在20世纪80年代早期,Stille是应用这一方法的先 驱。
3、可以很方便地制备、分离、储存;
钯催化交叉偶联反应
钯催化的交叉偶联反应一、偶联反应综述1.交叉偶联反应偶联反应,从广义上讲,就是由两个有机分子进行某种化学反应而生成一个新有机分子的过程。
狭义的偶联反应是涉及有机金属催化剂的碳-碳键生成的反应,根据类型的不同,又可分为自身偶联反应和交叉偶联。
交叉偶联反应是一个有机分子与另一有机分子发生的不对称偶联反应。
2.碳碳键形成的重要性新碳-碳键的形成在有机化学中是极其重要的。
人们了解了天然有机物质的结构和性能,并根据有机物质的结构,通过碳原子组装成链,建立有机分子,最终实现天然有机物质的人工合成。
目前为止,人类已经利用有机合成化学手段创造出几千万种物质,且越来越多的有机物质已经广泛应用到制药、建材、食品、纺织等人类生活领域,我们的生活也几乎离不开有机物了。
合成药物、塑料等有机物质时,需要用小的有机分子将碳原子连接在一起构建新的复杂大分子,因而有机合成中高效的连接碳-碳键的方法是有机合成化学中的重要工具。
从以往该领域诺贝尔化学奖的授予情况也可以看出合成新碳-碳键的重要性:1912年维克多·格林尼亚因发明格林尼亚试剂——有机镁试剂获奖,1950年迪尔斯和阿尔德因发明双烯反应迪尔斯-阿尔德反应获奖,1979年维蒂希与布朗因发明维蒂希反应共同获奖,2005年伊夫·肖万、罗伯特·格拉布、理查德·施罗克因在有机化学的烯烃复分解反应研究方面作了突出贡献获奖。
3.有机合成中的钯催化交叉偶联反应随着时代发展,合成有机化学的研究愈加深入,20世纪后半期,科学家们发现了大量通过过渡金属催化来创造新有机分子的反应,促使有机合成化学快速发展。
特别是赫克、根岸英一和铃木章发现的钯催化交叉偶联反应,为化学家们提供了一个更为精确有效的工具。
三位科学家发现的钯催化交叉偶联反应中都使用了金属钯作为反应的催化剂,当碳原子与钯原子连在一起时,钯原子唤醒了“懒惰”的碳原子但又不至于使它太活泼,于是形成温和的碳-钯键,在反应过程中,钯原子又可以把别的碳原子吸引过来,形成另一个金属-碳键,此时两个碳原子都连接在钯原子上,它们的距离足够接近而发生反应,生成新的碳-碳单键。
钯催化交叉偶联反应
钯催化交叉偶联反应钯催化交叉偶联反应钯催化交叉偶联反应是一类用于碳碳键形成的重要化学反应,在有机合成中应用十分广泛。
简介:为制造复杂的有机材料,需要通过化学反应将碳原子集合在一起。
但是碳原子在有机分子中与相邻原子之间的化学键往往非常稳定,不易与其他分子发生化学反应。
以往的方法虽然能令碳原子更加活跃,但是,过于活跃的碳原子却又会产生大量副产物,而用钯作为催化剂则可以解决这个问题。
钯原子就像“媒人”一样,把不同的碳原子吸引到自己身边,使碳原子之间的距离变得很近,容易结合——也就是“偶联”。
这样的反应不需要把碳原子激活到很活跃的程度,副产物比较少,因此更加精确而高效。
赫克、根岸英一和铃木章通过实验发现,碳原子会和钯原子连接在一起,进行一系列化学反应。
这一技术让化学家们能够精确有效地制出他们需要的复杂化合物。
发展阶段:一、大约100年前,法国化学家维克多·格林尼亚发现,将一个镁原子同一个碳原子偶联在一起,会将额外的电子推向这个碳原子,使得它能够更容易同另外一个碳原子连接在一起。
不过,科学家们发现,这样的方法在创造简单的分子时起到了效果,但是在对更为复杂的分子进行合成时,却在试管里发现了很多并不需要的副产品。
二、早在上世纪60年代,赫克就为钯催化交叉偶联反应奠定了基础,1968年,他报告了新的化学反应——赫克反应,该反应使用钯作为主要的催化剂来让碳原子连接在一起。
三、1977年,根岸英一对其成果进行了精练,他使用一种有机氯化物作为催化剂;两年后,铃木章发现使用有机硼化合物的效果会更好。
应用:如今,“钯催化交叉偶联反应”被应用于许多物质的合成研究和工业化生产。
例如合成抗癌药物紫杉醇和抗炎症药物萘普生,以及有机分子中一个体格特别巨大的成员——水螅毒素。
科学家还尝试用这些方法改造一种抗生素——万古霉素的分子,用来灭有超强抗药性的细菌。
此外,利用这些方法合成的一些有机材料能够发光,可用于制造只有几毫米厚、像塑料薄膜一样的显示器。
钯催化的偶联反应
AgNO3/KF作用下的Pd催化2-溴噻吩S原子邻位上的C-H键选择性偶联反应摘要:溴噻吩的衍生物与芳基碘在加入了钯的硝酸银/氟化钾催化剂的催化下发生C—H键的偶联反应,而C—Br键未发生变化。
这些含有C —Br键的偶联产物在钯的进一步催化下使溴噻吩和芳基碘的C—C键相连接从而得到理想的产量。
引言:狭义上的偶联反应是涉及由基金属催化剂的C-C键生成的反应,根据类型不同,可分为交叉偶联反应和自身偶联反应。
交叉偶联反应是一个有机分子与另一有机分子发生的不对称偶联反应。
例如:烯丙基锂与2-氯辛烷可以发生交叉偶联反应生成4-甲基-1-癸烯。
格利雅试剂、有机铝、有机锌、有机锡、有机铜、有机铅、有机汞等多种有机金属化合物也都可以与卤化烷等烃基化试剂发生交叉偶联反应,生成相应的不对称烃,是合成不对称烃,特别是单烷基芳烃和含有三级碳原子的链烃的有效方法。
交叉偶联反应的范围很广,像芳烃重氮盐与苯酚或N,N-二甲基苯胺的偶联反应,也属于交叉偶联反应。
正文:芳香族化合物与有机卤化物的C-H键取代反应和那些含金属试剂与相同的有机卤化物的偶联反应相比,在有机合成中更有前景。
【1】相比之下,C-H键上的直接反应将有利于含有不同种类的官能团的衍生物的合成,并且,反应也会加强合成中原子的效应。
我们注意到噻吩衍生物的偶联反应是发生在C-H键上,从而形成了联噻吩。
在添加了AgF后,反应效率得到了提高。
【2】当噻吩与2-溴噻吩反应生成正联溴噻吩时,仍然是C-H键发生偶联,而C-Br键未发生变化。
我们的注意力集中到溴噻吩衍生物C-H键的交叉耦合上,来介绍噻吩环上的取代基。
【3】溴噻吩上的C-H键偶联,如果可以通过C-Br键的反应而进一步改变偶联产物,那么C-H键和C-Br键的偶联反应的相互结合将得到一种新的合成取代噻吩的方法。
这将把人们的注意力都吸引到设计更先进的有机金属材料来揭示液晶、光发射和有机半导体的特点。
【4】在此,我们报告一个新的催化剂系统—AgNO3/KF,它有助于提高钯催化下溴噻吩衍生物C-H键的取代反应发的效率。
有机合成钯催化交叉偶联反应(精选文档)
1.格氏试剂——拉开钯催化交叉偶联反应的序幕
有机合成化学所构造出来的物质大部分都是以碳胳为骨架所构建起来的,然而碳原子本身十分稳定,在化学反应中并不活泼。因此化学家们希望通过各种化学反应,来激活碳原子,使其更容易参与到反应中并与其它碳原子相连,构造更
复杂的有机物。通过多年的尝试与努力, Grignard (格林尼亚发明了有机镁试剂(即格氏试剂,并利用其活化了碳原子,成功将碳原子连接在一起。以下为利用格氏试剂所进行的烷基化反应:
赫克反应与格氏反应相比,具有更好的化学选择性,减少反应的副产物,而且赫克反应在常温下进行,反应条件温和,对于工业生产具有重要的应用价值。不过赫克反应的局限之处在于,它往往只能用于有机合成中碳碳单键的合成,在合成一些更大的分子时会显示出其缺陷及产生较多的副产物。化学家们并不满足于停留在当前的成果中,而是孜孜不倦地进一步改进钯催化交叉偶联反应。
为铃木反应。
铃木反应与根岸反应相
似,均经历了三个过程:氧
构建单键最重要的反应之
一,并以他自己的名字赫克对
反应命名。
赫克反应的反应机理如
下(见右图:反应开始,活泼
的钯Pd(0催化剂与卤代烃发
生被称为氧化-加成的反应,
在这步反应中,生成了R-Pd-X ,钯的氧化态形式上从(0转化为(Ⅱ ,也就意味着生成了Pd-C键;第二步,烯烃与钯配位,此时烯烃和R基团同时与钯连接,这样就使它们能够相互发生反应;第三步, R基团迁移到烯烃的碳原子上,而钯同时与烯烃的另一个碳原子相连,这一步称为迁移-插入,结果生成了C-C键;第四步, R替换了底物烯烃上的一个氢原子,即通过消除烯烃的β-H得到了一个新的取代烯烃,同时还生成了HPdX ,它随即失去HX得到Pd(0,进入另一次催化循环。
有机合成中钯催化下的交叉偶联反应
有机合成中钯催化下的交叉偶联反应-2010年诺贝尔化学奖简介陈明华( 兴义师范学院化学生物系,贵州兴义 562400)摘要:介绍了2010年诺贝尔化学奖的科学背景,即“有机合成中钯催化下的交叉偶联反应”的产生、发展和应用,体现了有机化学已经发展成为一门艺术形式,在这个形式下,科学家们在试管里创造性的产生出不可思议的化学物质的过程。
关键词:钯催化剂;交叉偶联反应;赫克反应;铃木反应;根岸反应Palladium-Catalyzed Cross Couplings in Organic SynthesisCHEN Ming-Hua(Department of Chemistry and Biological, Xingyi Normal College, Xingyi, Guizhou 562400)Abstract: This paper introduces scientific background of the Nobel Prize in Chemistry for 2010, it’s palladium-catalyzed cross couplings in organic synthesis.And this fack had been presents that “Organic chemistry has developed into an art form where scientists produce marvelous chemical creations in their test tubes”.Key words: palladium catalyst; cross-coupling reaction; heck reaction; suzuki reaction; negishi reaction2010年10月6日,瑞典皇家科学院决定授予美国特拉华大学(University of Delaware) 理查德-赫克(Richard F. Heck), 普渡大学(Purdue University)根岸荣一(Ei-ichi Negishi)和日本北海道大学(Hokkaido University)的铃木彰(Akira Suzuki)三位教授2010年的诺贝尔化学奖,以表彰他们在“有机合成中钯催化下的交叉偶联反应”作出的贡献[1]。
钯催化反应及其机理
钯催化反应及其机理研究摘要:目前过渡金属催化的有机反应研究一直是一个比较热的话题,其中由于钯催化的反应活性和稳定性等原因,使其在有机反应中得到了广泛的使用,被全球广泛关注。
本文主要列举了钯催化的交叉偶联反应的机理,及与偶联反应相关的钯催化的碳氢键活化反应、钯催化的脂肪醇的芳基化反应等的机理。
关键词:过渡金属催化偶联反应钯催化机理1.引言进入二十一世纪以后,钯催化的偶联反应已经建立了比较完整的理论体系,研究的侧重点也和以前有所不同化学键的断裂和形成是有机化学的核心问题之一。
在众多化学键的断裂和形成方式中,过渡金属催化的有机反应有着独特的优势:这类反应通常具有温和的反应条件,产率很高并有很好的选择性(包含立体、化学、区域选择性)。
很多常规方法根本无法实现的化学反应,采用了过渡金属催化后可以很容易地得到实现。
在众多过渡金属中,金属钯是目前研究得最深入的一个。
自上世纪七十年代以来,随着 Kumada,Heck,Suzuki,Negishi [1]等偶联反应的陆续发现,钯催化的有机反应发展十分迅速,时至今日,钯催化的偶联反应作为形成碳-碳、碳-杂键最简洁有效的方法之一,已经得到了广泛应用。
2.钯催化各反应机理的研究.钯催化的交叉偶联反应自上世纪七十年代以来,随着 Kumada,Heck,Suzuki,Negishi 等偶联反应的陆续发现[1],钯催化的有机反应发展十分迅速,时至今日,钯催化的偶联反应作为形成碳-碳、碳-杂键最简洁有效的方法之一,已经得到了广泛应用[2]。
交叉偶联,就是两个不同的有机分子通过反应连在了一起(英文中交叉偶联为crosscoupling,同种分子偶联为 homo coupling)。
反应Heck 反应是不饱和卤代烃和烯烃在强碱和钯催化下生成取代烯烃的反应,是一类形成与不饱和双键相连的新 C—C 键的重要反应[3]。
反应物主要为卤代芳烃(碘、溴)与含有α-吸电子基团的烯烃,生成物为芳香代烯烃。
suzuki交叉偶联反应
suzuki交叉偶联反应交叉偶联反应是有机化学中一种重要的反应类型,通常用于合成有机分子中的碳—碳键。
suzuki交叉偶联反应是其中最常见和广泛应用的一种,它以四氢呋喃为溶剂,在存在钯催化剂和有机硼试剂的条件下进行。
本文将系统介绍suzuki交叉偶联反应的反应机理、应用领域以及相关的实验条件。
suzuki交叉偶联反应的反应机理可以分为两个主要步骤:(1)钯与有机硼试剂发生配位,形成一个活性的钯配合物;(2)该钯配合物与称为亲电试剂的底物发生交叉偶联反应,生成所需的产物。
在这个反应中,钯是关键的催化剂。
它可以与有机硼试剂形成一个烯烃配合物,其中钯与硼之间形成了一个稳定的钯—硼键。
这个钯—硼配合物可以在反应溶剂中与亲电试剂反应,发生碳—碳键的形成。
最终,用于交叉偶联反应的有机硼试剂和亲电试剂都会耗尽,而生成的产物则是两者的结合物。
suzuki交叉偶联反应被广泛应用于有机合成中。
因为它能够有效地构建复杂的有机分子骨架,并且具有较高的化学选择性和几乎没有废气产生。
这使得suzuki交叉偶联反应成为药物合成、天然产物合成以及有机电子材料合成等领域中的重要工具。
在实际应用中,suzuki交叉偶联反应通常在四氢呋喃或二甲基亚砜等溶剂中进行。
所需的钯催化剂可以通过还原钯盐与配体进行现场生成,也可以直接购买商用的钯配合物。
有机硼试剂可以使用各种不同的试剂,如芳香硼酸、芳香硼酸酯和芳香硼酸酰胺等。
亲电试剂的选择则取决于所需的化学转化。
此外,suzuki交叉偶联反应还可以在不同的温度下进行,通常在室温或略高温的条件下进行。
反应时间也可以根据底物的性质和反应的需要进行调节。
反应之后,产物可以通过简单的工艺步骤进行分离和纯化。
虽然suzuki交叉偶联反应在有机合成中具有广泛的应用,但也存在一些限制。
特别是,底物中的制约基团可能会对反应产率和选择性产生影响。
此外,一些复杂的底物可能需要更高的反应条件。
总之,suzuki交叉偶联反应是有机合成领域中一种重要的反应类型。
钯催化的碳—碳偶联反应研究简介
钯催化的碳—碳偶联反应研究简介在有机化学中,C-C键的形成是有机合成研究的重要内容,而过渡金属钯催化的偶联反应则是形成C-C键的一种有效手段。
目前钯催化的偶联反应已在科研、医药生产等领域得到广泛应用。
偶联反应的种类较多,文章主要内容是简单介绍过渡金属钯在以下几种碳碳偶联反应以及合成中的应用。
标签:钯催化;碳-碳键;偶联反应前言与一般催化剂相同,过渡金属催化的有机反应也只是改变了化学反应的速度,降低了反应的活化能,使原来难于发生的反应变得容易进行。
过渡金属催化的有机反应常常具有很高的选择性,这种选择性决定了其在未来的偶联反应中具有更广阔的发展空间,概括其选择性主要有以下几点:包括化学选择性、区域选择性和立体选择性。
文章以下便针对常用的几种偶联反应进行简要分析。
1 常用偶联反应简介1.1 Stille偶联反应Stille偶联反应是有机锡化合物和不含β-氢的卤代烃(或三氟甲磺酸酯)在钯催化下发生的交叉偶联反应。
其机理最初就是由Stille根据转金属复合物的决速步骤而提出的四步循环机理。
四(三苯基膦)合钯(0)是最常用的钯催化剂。
对于Stille交叉偶联反应还有一个有趣的现象就是添加物对这个反应有很大的影响,尤其是铜的添加物,对反应起着很大的作用,在反应过程中Cu与反应媒介生成了更加活泼的铜媒介,使得反应更易发生。
1.2 Negishi偶联反应Negishi交叉偶联反应有机锌试剂与卤代烃在钯配合物的催化下发生偶联反应,生成新的碳-碳键。
最早的报道见于1977年,这个反应可以进行Csp3-Csp2,也可以进行Csp3-Csp3之间进行的碳-碳键偶联。
反应整体上经过了卤代烃对金属的氧化加成、金属转移与还原消除这三步。
这个反应的卤代物的活性顺序为Zn>Mg>>Li。
对于锌试剂在温和条件下就能发生反应。
与格式试剂相比,锌试剂在官能团容忍度上更胜一筹。
用含钯催化剂时,通常产率较高,对官能团的耐受性也比较好。
催化交叉偶联反应
催化交叉偶联反应
催化交叉偶联反应是一种重要的有机合成反应,通常用于构建碳-碳键和碳-杂原子键。
该反应通过催化剂的作用,在两个不同的反应物之间发生偶联,形成新的化学键。
催化交叉偶联反应的优点包括反应条件温和、选择性高、副产物少等。
这些优点使得该反应在药物合成、天然产物合成、材料科学等领域得到广泛应用。
在催化交叉偶联反应中,催化剂起着至关重要的作用。
催化剂可以通过与反应物形成活性中间体,降低反应的活化能,从而加速反应的进行。
常见的催化剂包括钯、镍、铜等过渡金属催化剂,以及有机小分子催化剂等。
催化交叉偶联反应的类型很多,其中一些常见的反应包括 Suzuki-Miyaura 偶联、Heck 偶联、Stille 偶联、Sonogashira 偶联等。
这些反应可以用于合成各种有机化合物,如药物、香料、染料、高分子材料等。
近年来,随着催化交叉偶联反应研究的不断深入,新的催化剂和反应条件不断被开发出来,使得该反应的应用范围不断扩大。
同时,人们也在探索更加绿色、环保的催化交叉偶联反应方法,以减少对环境的影响。
总的来说,催化交叉偶联反应是一种重要的有机合成反应,具有广泛的应用前景。
随着研究的不断深入,相信该反应将会在更多领域发挥重要作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 Pathway 0: 没有碱反应不能进 行。
2 Pathway A: 主要的反应途径, 碱首先活化硼酸。
3 Pathway B: 与Pathway A属于 竞争反应,碱首先活化钯中间体。
Stille couplings
1 环合机理 A:钯过渡态上只有一个配体配位 B:有利于配体离去的特性(大位阻的磷配 体) C:环合步骤为决速步(F取代Cl降低能垒, Au降低环合过渡态的位阻)
2.1 氧化加成
协同机理:
1 构型保持 2 气相反应 3 某些极性 溶剂
SN2 机 理 : 1 构型反 转
2 液相反 应
1 位阻小的磷配体,按SN2机理进行,在 烷基位置反应。 2 位阻大的磷配体,按协同机理进行,在 芳基位置反应。
Chem. Eur. J. 2010,
2.2 转移金属化
Suzuki couplings
1 转移金属化过程是反应的决速步 2 钯不与氢原子直接作用,碱与质子结合 后形成卡宾可以与钯结合形成稳定的环状 过渡态 3 Concerted metalation deprotonation (CMD)机理
2.3 还原消除
tran s
cis
cis
1 只有顺式产物会进行还原消除
2 还原消除过程不可逆
实验化学 Experime
ntal Chemistr
y
有机反应机 理
钯催化C-C键交叉偶联反应 及其机理
Acc. Chem. Res. 2013, 46, 2626-
1. 钯催化C-C键交叉偶联反应
Angew. Chem. Int. Ed. 2012, 51, 5062-5085.
2. 反应机理
1 氧化加成
2 转移金属化
3 还原消除
存在问题:
1 缺乏更为具体深入的理论和验证研 究。 2 对于具体的因素和条件对于反应的 影响缺乏明确和系统解释和依据,如 配体、金属和底物的类型对于反应的 影响。
2 线性机理 A:钯过渡态上有两个配体配位 B:有利于X基团离去的特征(极性溶剂、 三氟磺酸基) C:锡试剂取代X基团是最高能垒
Negishi ቤተ መጻሕፍቲ ባይዱouplings
1 反式(trans)过渡态比顺式(cis)的更 容易生成 2 两者是相互竞争的反应 3 只有顺式过渡态可以转化为最终产物 4 顺反式不会直接相互转换
3 过渡态能垒大小:vinyl < Ph < ethynyl < Me, 马来酰胺 < “empty” < ethylene < PMe3 ≈ MeCN
4 能垒大小与π电子接受能力成反比,因此π电子接受能力差的配体 (PMe3)会在还原消除过程前解离。
3. 结论
计算化学 Computatio
nal Chemistry
Sonogashira couplings
1 Cu(I)可以活化炔烃生成炔基铜 2 根据脱质子和配体交换的顺序,可以将 机理分为阳离子型机理和阴离子型机理。 3 离子型机理与前两种机理存在竞争关系, 可以有效提高反应速率。 4 离子型机理中碱有两个作用:结合质子 和卤素(吸电基有利于反应进行)
C-H活化芳基化反 应