对数函数
对数函数知识点(一)
对数函数知识点(一)对数函数定义对数函数是指满足以下条件的函数: - 底数为正实数且不等于1;- 函数定义域为实数集合中大于0的数; - 函数值域为实数集合。
常见的对数函数1.自然对数函数–底数为常数e(自然对数的底数),记作ln(x)或logₑ(x)。
–特点:以常数e为底的对数函数,在微积分中有广泛的应用。
2.以10为底的常用对数函数–底数为常数10,记作log₁₀(x)或log(x)。
–特点:以10为底的对数函数,在计算中常常用到。
对数函数的性质1.定义域和值域–自然对数函数的定义域为(0,+∞),值域为(-∞,+∞)。
–以10为底的常用对数函数的定义域为(0,+∞),值域为(-∞,+∞)。
2.基本性质–对数函数的图像总是位于一、二象限。
–对数函数的图像与直线y=x关于y=x对称。
3.特殊值–自然对数函数ln(x)当x=1时,ln(1)=0。
–以10为底的常用对数函数log(x)当x=1时,log(1)=0。
4.对数函数的性质–对数函数有唯一的反函数即指数函数。
–对数函数满足对数运算法则,如log(xy)=log(x)+log(y)。
5.对数函数的性质与图像–对数函数的图像有一个特点,就是随着自变量x的增大,函数值增长缓慢,近似于直线y=0。
–对数函数在x>1时,图像急剧上升;在0<x<1时,图像急剧下降。
应用领域•对数函数在科学计算、金融领域、生物学及工程学中有广泛的应用。
•对数函数常常用于解决指数增长与衰减问题、复杂的计算问题、百分比增长问题等。
以上为对数函数的相关知识点和详解。
对数函数作为数学中重要的函数之一,在各个领域中都有广泛的应用。
希望通过本文的介绍,能够对对数函数有更深入的了解。
对数函数的性质和图像对数函数的性质1.指数和对数的关系–对数函数是指数函数的反函数。
对于正实数a和b,有以下关系:logₐ(b) = x if and only if aˣ = b。
–例如,log₂(8) = 3,因为2³ = 8。
对数函数的定义和基本性质
对数函数的定义和基本性质1. 对数函数的定义对数函数是实数域上的一个函数,通常用符号y = log_a(x)(其中a是底数,x是真数)表示。
对数函数是对数arithmetic和函数function的组合。
对数函数是一类重要的数学函数,在数学分析、高等数学、工程学等领域中都有广泛的应用。
2. 对数函数的基本性质(1)单调性对数函数y = log_a(x)在定义域(即真数集)内是单调递增的。
当底数a > 1时,随着真数x的增加,对数函数的值也增加;当底数0 < a < 1时,随着真数x的增加,对数函数的值减少。
(2)反函数对数函数y = log_a(x)(其中a是底数,x是真数)和函数y = a^x(其中a是底数,x是真数)是互为反函数的关系。
也就是说,对于任意一个正实数y,都存在一个正实数x使得log_a(y) = x,则有a^x = y。
(3)对数恒等式对数恒等式是指对数函数在不同底数之间可以进行转换。
具体来说,有以下两个恒等式:•对数换底公式:log_a(b) = log_c(b) / log_c(a)(其中a, b, c 都是正实数,且a != 1, c != 1)。
•对数性质公式:log_a(b^c) = c * log_a(b)(其中a, b, c都是正实数,且a != 1)。
(4)对数函数的图像对数函数的图像是一条经过点(1, 0),且斜率在0和+∞之间的曲线。
当底数a > 1时,图像位于第一象限;当底数0 < a < 1时,图像位于第二象限。
(5)对数函数的渐近线对数函数没有水平渐近线,但有一条垂直渐近线,即x = 0。
当x趋近于0时,对数函数的值趋近于负无穷;当x趋近于正无穷时,对数函数的值趋近于正无穷。
(6)对数函数与指数函数的关系对数函数和指数函数是互为逆运算的关系。
具体来说,对于任意一个正实数y,如果y = log_a(x),则有x = a^y。
高中对数函数公式
高中对数函数公式高中数学中,对数函数是一个重要的函数概念,它在数学和科学中有广泛的应用。
对数函数的基本概念是以一些常数为底的对数函数,通常用符号 log 表示。
一、基本概念对数函数可以统一表示为 f(x) = log_a(x),其中 a 是一个大于 0 且不等于 1 的常数,x 是函数的自变量。
a 被称为底数,x 是函数的取值范围。
以 10 为底的对数函数被称为常用对数函数,通常用符号 log 表示;以 e (自然对数的底) 为底的对数函数被称为自然对数函数,通常用符号 ln 表示。
对数函数与指数函数是密切相关的,它们互为逆运算。
也就是说,如果 a^b = c,那么 log_a(c) = b。
1.基本性质对数函数的一些基本性质如下:(1)log_a(1) = 0(2)log_a(a) = 1(3)log_a(b * c) = log_a(b) + log_a(c)(4)log_a(b / c) = log_a(b) - log_a(c)(5)log_a(b^c) = c * log_a(b)(6)log_a(a^x) = x(7)log_a(b) = log_c(b) / log_c(a)二、对数函数的图像和性质对数函数的图像特点与底数a的大小有关。
当底数a大于1时,对数函数的图像呈现上升的形状,叫做增函数;当底数a在0到1之间时,对数函数的图像呈现下降的形状,叫做减函数。
1.常用对数函数(底数为10)常用对数函数 f(x) = log(x) 的图像特点如下:(1)定义域:x>0(2)值域:(-∞,+∞)(3)单调性:增函数(4)对称轴:y轴(5)零点:x=1(6)满足关系:log(1) = 02.自然对数函数(底数为e)自然对数函数 f(x) = ln(x) 的图像特点如下:(1)定义域:x>0(2)值域:(-∞,+∞)(3)单调性:增函数(4)对称轴:y轴(5)零点:x=1(6)满足关系:ln(1) = 0三、对数函数的应用对数函数在科学和工程中有广泛的应用,例如:1.测量:pH值用对数函数来衡量酸碱度,声音的强度用分贝来表示也是对数函数的应用。
对数函数运算公式大全
对数函数运算公式大全对数函数是指以常数为底的对数函数。
对数函数运算公式如下:1. 对数函数定义:对数函数的定义为 y = logₐ(x),其中 a 为底数,x 为实数。
2.换底公式:- logₐ(x) = logₑ(x) / logₑ(a),其中 logₑ表示以自然对数为底的对数。
- logₐ(x) = 1 / logₐ(a)。
- logₐ(b) = logₐ(c) / logₐ(b),其中 b、c 为任意正数。
3.对数函数的性质:- logₐ(1) = 0,对于任意正数 a。
- logₐ(a) = 1,对于任意正数 a。
- logₐ(a^m) = m,对于任意正数 a 和整数 m。
- logₐ(m * n) = logₐ(m) + logₐ(n),对于任意正数 a、m 和 n。
- logₐ(m / n) = logₐ(m) - logₐ(n),对于任意正数 a、m 和 n。
- logₐ(m^n) = n * logₐ(m),对于任意正数 a、m,并且 n 为任意实数。
- a^logₐ(x) = x,对于任意正数 a 和实数 x。
4.常用对数函数:- 以底数 10 的对数函数称为常用对数函数,记为 log(x) 或 lg(x)。
- log(x) 的运算规则与对数函数相同。
5.自然对数函数:- 以底数 e(自然常数) 的对数函数称为自然对数函数,记为 ln(x)。
- ln(x) 的运算规则与对数函数相同。
6.对数函数的图像及性质:-对数函数的图像是一个以点(1,0)为对称轴的增函数,即随着x的增大,y也增大。
- 当 x > 1 时,logₐ(x) > 0;当 0 < x < 1 时,logₐ(x) < 0;当 x = 1 时,logₐ(x) = 0。
-当a>1时,对数函数呈现上凸形状;当0<a<1时,对数函数呈现下凸形状。
以上是对数函数运算公式的大致内容,其中包含了对数函数的定义、换底公式、性质以及常用对数函数和自然对数函数的特点。
对数函数及其性质-对数的公式互化-详尽的讲解
2.1 对数与对数运算1.对数的概念一般地,如果a x =N (a >0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中a 叫做对数的底数,N 叫做真数.说明:(1)实质上,上述对数表达式,不过是指数函数y =a x 的另一种表达形式,例如:34=81与4=log 381这两个式子表达是同一关系,因此,有关系式a x =N ⇔x =log a N ,从而得对数恒等式:a log a N =N .(2)“log ”同“+”“×”“ ”等符号一样,表示一种运算,即已知一个数和它的幂求指数的运算,这种运算叫对数运算,不过对数运算的符号写在数的前面.(3)根据对数的定义,对数log a N (a >0,且a ≠1)具有下列性质: ①零和负数没有对数,即N >0; ②1的对数为零,即log a 1=0; ③底的对数等于1,即log a a =1. 2.对数的运算法则利用对数的运算法则,可以把乘、除、乘方、开方的运算转化为对数的加、减、乘、除运算,反之亦然.这种运算的互化可简化计算方法,加快计算速度.(1)基本公式①log a (MN )=log a M +log a N (a >0,a ≠1,M >0,N >0),即正数的积的对数,等于同一底数的各个因数的对数的和.②log a MN =log a M -log a N (a >0,a ≠1,M >0,N >0),即两个正数的商的对数,等于被除数的对数减去除数的对数.③log a M n =n ·log a M (a >0,a ≠1,M >0,n ∈R ),即正数的幂的对数等于幂的底数的对数乘以幂指数.(2)对数的运算性质注意点①必须注意M >0,N >0,例如log a [(-3)×(-4)]是存在的,但是log a (-3)与log a (-4)均不存在,故不能写成log a [(-3)×(-4)]=log a (-3)+log a (-4).②防止出现以下错误:log a (M ±N )=log a M ±log a N ,log a (M ·N )=log a M ·log a N ,log a M N =log a Mlog a N,log a M n =(log a M )n . 3.对数换底公式在实际应用中,常碰到底数不为10的对数,如何求这类对数,我们有下面的对数换底公式:log b N =log c Nlog c b(b >0,且b ≠1;c >0,且c ≠1;N >0).证明 设log b N =x ,则b x =N .两边取以c 为底的对数, 得x log c b =log c N .所以x =log c N log c b ,即log b N =log c Nlog c b.换底公式体现了对数运算中一种常用的转化,即将复杂的或未知的底数转化为已知的或需要的底数,这是数学转化思想的具体应用.由换底公式可推出下面两个常用公式:(1)log b N =1log N b 或log b N ·log N b =1 (N >0,且N ≠1;b >0,且b ≠1);(2)log bn N m =mnlog b N (N >0;b >0,且b ≠1;n ≠0,m ∈R ).题型一 正确理解对数运算性质对于a >0且a ≠1,下列说法中,正确的是( )①若M =N ,则log a M =log a N ; ②若log a M =log a N ,则M =N ; ③若log a M 2=log a N 2,则M =N ; ④若M =N ,则log a M 2=log a N 2.A .①与③B .②与④C .②D .①、②、③、④解析 在①中,当M =N ≤0时,log a M 与log a N 均无意义,因此log a M =log a N 不成立. 在②中,当log a M =log a N 时,必有M >0,N >0,且M =N ,因此M =N 成立. 在③中,当log a M 2=log a N 2时,有M ≠0,N ≠0,且M 2=N 2,即|M |=|N |,但未必有M =N .例如,M =2,N =-2时,也有log a M 2=log a N 2,但M ≠N .在④中,若M =N =0,则log a M 2与log a N 2均无意义,因此log a M 2=log a N 2不成立. 所以,只有②成立. 答案 C点评 正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件,使用运算性质时,应牢记公式的形式及公式成立的条件.题型二 对数运算性质的应用求下列各式的值:(1)2log 32-log 3329+log 38-5log 53;(2)lg25+23lg8+lg5·lg20+(lg2)2;(3)log 52·log 79log 513·log 734.分析 利用对数的性质求值,首先要明确解题目标是化异为同,先使各项底数相同,才能使用性质,再找真数间的联系,对于复杂的真数,可以先化简再计算.解 (1)原式=2log 32-(log 332-log 39)+3log 32-3 =2log 32-5log 32+2+3log 32-3=-1. (2)原式=2lg5+2lg2+lg 102·lg(2×10)+(lg2)2=2lg(5×2)+(1-lg2)·(lg2+1)+(lg2)2 =2+1-(lg2)2+(lg2)2=3. (3)∵log 52·log 79log 513·log 734=12log 52·2log 73-log 53·13log 74=-lg2lg5·lg3lg7lg3lg5·13·lg4lg7=-32.点评 对数的求值方法一般有两种:一种是将式中真数的积、商、幂、方根利用对数的运算性质将它们化为对数的和、差、积、商,然后化简求值;另一种方法是将式中的和、差、积、商运用对数的运算法则将它们化为真数的积、商、幂、方根,然后化简求值.题型三 对数换底公式的应用计算:(log 2125+log 425+log 85)(log 52+log 254+log 1258).分析 由题目可获取以下主要信息:本题是一道对数化简求值题,在题目中各个对数的底数都各不相同.解答本题可先通过对数换底公式统一底数再进行化简求值.解 方法一 原式=⎝⎛⎭⎫log 253+log 225log 24+log 25log 28⎝⎛⎭⎫log 52+log 54log 525+log 58log 5125=⎝⎛⎭⎫3log 25+2log 252log 22+log 253log 22⎝⎛⎭⎫log 52+2log 522log 55+3log 523log 55 =⎝⎛⎭⎫3+1+13log 25·(3log 52) =13log 25·log 22log 25=13.方法二 原式=⎝⎛⎭⎫lg125lg2+lg25lg4+lg5lg8⎝⎛⎭⎫lg2lg5+lg4lg25+lg8lg125 =⎝⎛⎭⎫3lg5lg2+2lg52lg2+lg53lg2⎝⎛⎭⎫lg2lg5+2lg22lg5+3lg23lg5 =⎝⎛⎭⎫13lg53lg2⎝⎛⎭⎫3lg2lg5=13.点评 方法一是先将括号内换底,然后再将底统一;方法二是在解题方向还不清楚的情况下,一次性地统一为常用对数(当然也可以换成其他非1的正数为底),然后再化简.上述方法是不同底数对数的计算、化简和恒等证明的常用方法.已知log (x +3)(x 2+3x )=1,求实数x 的值.错解 由对数的性质可得x 2+3x =x +3. 解得x =1或x =-3.错因分析 对数的底数和真数必须大于0且底数不等于1,这点在解题中忽略了. 正解 由对数的性质知⎩⎪⎨⎪⎧x 2+3x =x +3,x 2+3x >0,x +3>0且x +3≠1.解得x =1,故实数x 的值为1.对数的定义及其性质是高考中的重要考点之一,主要性质有:log a 1=0,log a a =1,a log a N =N (a >0,且a ≠1,N >0).1.(上海高考)方程9x -6·3x -7=0的解是________. 解析 ∵9x -6·3x -7=0,即32x -6·3x -7=0 ∴(3x -7)(3x +1)=0 ∴3x =7或3x =-1(舍去) ∴x =log 37.答案 log 372.(辽宁高考)设g (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,则g ⎝⎛⎭⎫g ⎝⎛⎭⎫12=____. 解析 g ⎝⎛⎭⎫12=ln 12<0,g ⎝⎛⎭⎫ln 12=eln 12=12, ∴g ⎝⎛⎭⎫g ⎝⎛⎭⎫12=12. 答案 121.对数式log (a -3)(7-a )=b ,实数a 的取值范围是( )A .(-∞,7)B .(3,7)C .(3,4)∪(4,7)D .(3,+∞) 答案 C解析 由题意得⎩⎪⎨⎪⎧a -3>0,a -3≠1,7-a >0,解得3<a <7且a ≠4.2.设a =log 32,则log 38-2log 36用a 表示的形式是( ) A .a -2 B .3a -(1+a )2 C .5a -2 D .-a 2+3a -1 答案 A解析 ∵a =log 32,∴log 38-2log 36=3log 32-2(log 32+1) =3a -2(a +1)=a -2.3.log 56·log 67·log 78·log 89·log 910的值为( ) A .1 B .lg5 C.1lg5 D .1+lg2答案 C解析 原式=lg6lg5·lg7lg6·lg8lg7·lg9lg8·lg10lg9=lg10lg5=1lg5.4.已知log a (a 2+1)<log a 2a <0,则a 的取值范围是( ) A .(0,1) B.⎝⎛⎭⎫0,12 C.⎝⎛⎭⎫12,1 D .(1,+∞)答案 C解析 由题意,得⎩⎪⎨⎪⎧0<a <1,2a >1,∵a >0,a ≠1,log a (a 2+1)<log a 2a ,∴0<a <1.∴12<a <1.5.已知函数f (x )=a x -1+log a x (a >0,a ≠1)在[1,3]上最大值与最小值之和为a 2,则a 的值为( )A .4 B.14 C .3 D.13答案 D6.若方程(lg x )2+(lg7+lg5)lg x +lg7·lg5=0的两根为α,β,则αβ等于( ) A .lg7·lg5 B .lg35 C .35 D.135答案 D解析 ∵lg α+lg β=-(lg7+lg5)=-lg35=lg 135∴α·β=135.7.已知f (log 2x )=x ,则f ⎝⎛⎭⎫12=________. 答案2解析 令log 2x =12,则212=x ,∴f ⎝⎛⎭⎫12=212= 2. 8.log (2-1)(2+1)=________.答案 -1 解析 log 2-1(2+1)=log2-1(2+1)(2-1)2-1=log (2-1)12-1=-1. 9.已知lg2=0.301 0,lg3=0.477 1,lg x =-2+0.778 1,则x =________. 答案 0.06解析 ∵lg2=0.301 0,lg3=0.477 1,而0.301 0+0.477 1=0.778 1,∴lg x =-2+lg2+lg3, 即lg x =lg10-2+lg6.∴lg x =lg(6×10-2),即x =6×10-2=0.06.10.(1)已知lg x +lg y =2lg(x -2y ),求log 2xy 的值;(2)已知log 189=a,18b =5,试用a ,b 表示log 365.解 (1)lg x +lg y =2lg(x -2y ), ∴xy =(x -2y )2,即x 2-5xy +4y 2=0. 即(x -y )(x -4y )=0,解得x =y 或x =4y , 又∵⎩⎪⎨⎪⎧x >0,y >0,x -2y >0,∴x >2y >0,∴x =y ,应舍去,取x =4y .则log 2x y =log 24y y =log 24=lg4lg 2=4.(2)∵18b =5,∴log 185=b, 又∵log 189=a , ∴log 365=log 185lg 1836=blog 18(18×2)=b 1+log 182=b 1+log 18189=b 1+(1-log 189)=b2-a.11.设a ,b ,c 均为不等于1的正数,且a x =b y =c z ,1x +1y +1z =0,求abc 的值.解 令a x =b y =c z =t (t >0且t ≠1), 则有1x =log t a ,1y =log t b ,1z =log t c ,又1x +1y +1z=0,∴log t abc =0,∴abc =1. 12.已知a ,b ,c 是△ABC 的三边,且关于x 的方程x 2-2x +lg(c 2-b 2)-2lg a +1=0有等根,试判定△ABC 的形状.解 ∵关于x 的方程x 2-2x +lg(c 2-b 2)-2lg a +1=0有等根, ∴Δ=0,即4-4[lg(c 2-b 2)-2lg a +1]=0. 即lg(c 2-b 2)-2lg a =0,故c 2-b 2=a 2, ∴a 2+b 2=c 2,∴△ABC 为直角三角形.2.2.1 对数与对数运算(一)学习目标1.理解对数的概念,能进行指数式与对数式的互化. 2.了解常用对数与自然对数的意义. 3.理解对数恒等式并能用于有关对数的计算.自学导引1.如果a (a >0且a ≠1)的b 次幂等于N ,就是a b =N ,那么数b 叫做以a 为底N 的对数,记作b =log a N ,其中a 叫做对数的底数,N 叫做真数.2.对数的性质有:(1)1的对数为零; (2)底的对数为1; (3)零和负数没有对数.3.通常将以10为底的对数叫做常用对数,以e 为底的对数叫做自然对数,log 10N 可简记为lg N ,log e N 简记为ln N .4.若a >0,且a ≠1,则a b =N 等价于log a N =b . 5.对数恒等式:a log a N =N (a >0且a ≠1).一、对数式有意义的条件例1 求下列各式中x 的取值范围:(1)log 2(x -10);(2)log (x -1)(x +2);(3)log (x +1)(x -1)2.分析 由真数大于零,底数大于零且不等于1可得到关于x 的不等式(组),解之即可. 解 (1)由题意有x -10>0,∴x >10,即为所求.(2)由题意有⎩⎪⎨⎪⎧ x +2>0,x -1>0且x -1≠1,即⎩⎪⎨⎪⎧x >-2,x >1且x ≠2,∴x >1且x ≠2. (3)由题意有⎩⎪⎨⎪⎧(x -1)2>0,x +1>0且x +1≠1,解得x >-1且x ≠0,x ≠1.点评 在解决与对数有关的问题时,一定要注意:对数真数大于零,对数的底数大于零且不等于1.变式迁移1 在b =log (a -2)(5-a )中,实数a 的取值范围是( )A .a >5或a <2B .2<a <5C .2<a <3或3<a <5D .3<a <4 答案 C解析 由题意得⎩⎪⎨⎪⎧5-a >0a -2>0a -2≠1,∴2<a <5且a ≠3.二、对数式与指数式的互化例2 将下列对数形式化成指数形式或将指数形式转化为对数形式: (1)54=625; (2)log 128=-3;(3)⎝⎛⎭⎫14-2=16; (4)log 101 000=3. 分析 利用a x =N ⇔x =log a N 进行互化. 解 (1)∵54=625,∴log 5625=4. (2)∵log 128=-3,∴⎝⎛⎭⎫12-3=8. (3)∵⎝⎛⎭⎫14-2=16,∴log 1416=-2. (4)∵log 101 000=3,∴103=1 000.点评 指数和对数运算是一对互逆运算,在解题过程中,互相转化是解决相关问题的重要途径.在利用a x =N ⇔x =log a N 进行互化时,要分清各字母分别在指数式和对数式中的位置.变式迁移2 将下列对数式化为指数式求x 值: (1)log x 27=32; (2)log 2x =-23;(3)log 5(log 2x )=0; (4)x =log 2719;(5)x =log 1216.解 (1)由log x 27=32,得x 32=27,∴x =2723=32=9.(2)由log 2x =-23,得2-23=x ,∴x =1322=322.(3)由log 5(log 2x )=0,得log 2x =1,∴x =21=2. (4)由x =log 2719,得27x =19,即33x =3-2,∴x =-23.(5)由x =log 1216,得⎝⎛⎭⎫12x =16,即2-x=24, ∴x =-4.三、对数恒等式的应用例3 (1)a log a b ·log b c ·log c N 的值(a ,b ,c ∈R +,且不等于1,N >0); (2)412(log 29-log 25).解 (1)原式=(a log a b )log b c ·log c N =b log b c ·log c N =(b log b c )log c N =c log c N =N .(2)原式=2(log 29-log 25)=2log 292log 25=95.点评 对数恒等式a log a N =N 中要注意格式:(1)它们是同底的;(2)指数中含有对数形式;(3)其值为真数.变式迁移3 计算:3log 35+(3)log 315.解 原式=5+312log 315=5+(3log 315)12=5+15=655.1.一般地,如果a (a >0,a ≠1)的b 次幂等于N ,就是a b =N ,那么b 叫做以a 为底N 的对数,记作log a N =b ,其中a 叫做对数的底数,N 叫做真数.2.利用a b =N ⇔b =log a N (其中a >0,a ≠1,N >0)可以进行指数与对数式的互化. 3.对数恒等式:a log a N =N (a >0且a ≠1).一、选择题1.下列指数式与对数式互化不正确的一组是( ) A .100=1与lg1=0 B .27-13=13与log 2713=-13C .log 312=9与912=3D .log 55=1与51=5 答案 C2.指数式b 6=a (b >0,b ≠1)所对应的对数式是( )A .log 6a =aB .log 6b =aC .log a b =6D .log b a =6 答案 D3.若log x (5-2)=-1,则x 的值为( ) A.5-2 B.5+2C.5-2或5+2 D .2- 5 答案 B4.如果f (10x )=x ,则f (3)等于( ) A .log 310 B .lg3 C .103 D .310 答案 B解析 方法一 令10x =t ,则x =lg t , ∴f (t )=lg t ,f (3)=lg3.方法二 令10x =3,则x =lg3,∴f (3)=lg3. 5.21+12·log 25的值等于( )A .2+ 5B .2 5C .2+52 D .1+52答案 B解析 21+12log 25=2×212log 25=2×2log 2512=2×512=2 5.二、填空题6.若5lg x =25,则x 的值为________. 答案 100解析 ∵5lg x =52,∴lg x =2,∴x =102=100. 7.设log a 2=m ,log a 3=n ,则a 2m +n的值为________.答案 12解析 ∵log a 2=m ,log a 3=n ,∴a m =2,a n =3, ∴a 2m +n =a 2m ·a n =(a m )2·a n =22×3=12. 8.已知lg6≈0.778 2,则102.778 2≈________. 答案 600解析 102.778 2≈102×10lg6=600. 三、解答题9.求下列各式中x 的值 (1)若log 3⎝⎛⎭⎫1-2x 9=1,则求x 值;(2)若log 2 003(x 2-1)=0,则求x 值. 解 (1)∵log 3⎝⎛⎭⎫1-2x 9=1,∴1-2x 9=3∴1-2x =27,即x =-13 (2)∵log 2 003(x 2-1)=0 ∴x 2-1=1,即x 2=2 ∴x =±210.求x 的值:(1)x =log224;(2)x =log 93;(3)x =71-log 75; (4)log x 8=-3;(5)log 12x =4.解 (1)由已知得:⎝⎛⎭⎫22x=4, ∴2-12x =22,-x2=2,x =-4.(2)由已知得:9x =3,即32x =312.∴2x =12,x =14.(3)x =7÷7log 75=7÷5=75.(4)由已知得:x -3=8, 即⎝⎛⎭⎫1x 3=23,1x =2,x =12. (5)由已知得:x =⎝⎛⎭⎫124=116.2.2.1 对数与对数运算(二)学习目标1.掌握对数的运算性质及其推导.2.能运用对数运算性质进行化简、求值和证明.自学导引1.对数的运算性质:如果a >0,a ≠1,M >0,N >0,那么, (1)log a (MN )=log a M +log a N ; (2)log a MN =log a M -log a N ;(3)log a M n =n log a M (n ∈R ). 2.对数换底公式:log a b =log c blog c a.一、正确理解对数运算性质例1 若a >0,a ≠1,x >0,y >0,x >y ,下列式子中正确的个数有( ) ①log a x · log a y =log a (x +y ); ②log a x -log a y =log a (x -y ); ③log a xy =log a x ÷log a y ;④log a (xy )=log a x ·log a y .A .0个B .1个C .2个D .3个 答案 A解析 对数的运算实质是把积、商、幂的对数运算分别转化为对数的加、减、乘的运算.在运算中要注意不能把对数的符号当作表示数的字母参与运算,如log a x ≠log a ·x ,log a x 是不可分开的一个整体.四个选项都把对数符号当作字母参与运算,因而都是错误的.点评 正确理解对数运算性质公式,是利用对数运算性质公式解题的前提条件. 变式迁移1 若a >0且a ≠1,x >0,n ∈N *,则下列各式正确的是( ) A .log a x =-log a 1x B .(log a x )n =n log a xC .(log a x )n =log a x nD .log a x =log a 1x答案 A二、对数运算性质的应用例2 计算:(1)log 535-2log 573+log 57-log 51.8;(2)2(lg 2)2+lg 2·lg5+(lg 2)2-lg2+1; (3)lg 27+lg8-lg 1 000lg1.2;(4)(lg5)2+lg2·lg50.分析 利用对数运算性质计算.解 (1)原式=log 5(5×7)-2(log 57-log 53)+log 57-log 595=log 55+log 57-2log 57+2log 53+log 57-2log 53+log 55 =2log 55=2.(2)原式=lg 2(2lg 2+lg5)+(lg 2-1)2 =lg 2(lg2+lg5)+1-lg 2=lg 2+1-lg 2=1. (3)原式=32lg3+3lg2-32lg3+2lg2-1=3lg3+6lg2-32(lg3+2lg2-1)=32.(4)原式=(lg5)2+lg2·(lg2+2lg5)=(lg5)2+2lg5·lg2+(lg2)2=(lg5+lg2)2=1.点评 要灵活运用有关公式.注意公式的正用、逆用及变形使用. 变式迁移2 求下列各式的值: (1)log 535+2log 122-log 5150-log 514;(2)[(1-log 63)2+log 62·log 618]÷log 64.解 (1)原式=log 5(5×7)-2log 2212+log 5(52×2)-log 5(2×7)=1+log 57-1+2+log 52-log 52-log 57=2.(2)原式=[log 262+log 62·log 6(3×6)]÷log 622=log 62(log 62+log 63+1)÷(2log 62)=1.三、换底公式的应用例3 (1)设3x =4y =36,求2x +1y 的值;(2)已知log 189=a,18b =5,求log 3645. 解 (1)由已知分别求出x 和y . ∵3x =36,4y =36, ∴x =log 336,y =log 436, 由换底公式得:x =log 3636log 363=1log 363,y =log 3636log 364=1log 364,∴1x =log 363,1y =log 364, ∴2x +1y =2log 363+log 364 =log 36(32×4)=log 3636=1.(2)∵log 189=a,18b =5,∴log 185=b . ∴log 3645=log 1845log 1836=log 18(9×5)log 18(18×2)=log 189+log 1851+log 182=a +b 1+log 18189=a +b2-a .点评 指数式化为对数式后,两对数式的底不同,但式子两端取倒数后,利用对数的换底公式可将差异消除.变式迁移3 (1)设log 34·log 48·log 8m =log 416,求m ; (2)已知log 1227=a ,求log 616的值. 解 (1)利用换底公式,得lg4lg3·lg8lg4·lg mlg8=2,∴lg m =2lg3,于是m =9.(2)由log 1227=a ,得3lg32lg2+lg3=a ,∴lg3=2a lg23-a ,∴lg3lg2=2a3-a .∴log 616=4lg2lg3+lg2=42a3-a +1=4(3-a )3+a.1.对于同底的对数的化简常用方法是:(1)“收”,将同底的两对数的和(差)化成积(商)的对数; (2)“拆”,将积(商)的对数拆成对数的和(差).2.对于常用对数的化简要充分利用“lg5+lg2=1”来解题. 3.对于多重对数符号对数的化简,应从内向外逐层化简求值.一、选择题1.lg8+3lg5的值为( )A .-3B .-1C .1D .3 答案 D解析 lg8+3lg5=lg8+lg53=lg1 000=3. 2.已知lg2=a ,lg3=b ,则log 36等于( ) A.a +b a B.a +b bC.a a +bD.b a +b 答案 B解析 log 36=lg6lg3=lg2+lg3lg3=a +b b.3.若lg a ,lg b 是方程2x 2-4x +1=0的两个根,则⎝⎛⎭⎫lg ab 2的值等于( ) A .2 B.12 C .4 D.14答案 A解析 由根与系数的关系,得lg a +lg b =2,lg a ·lg b =12,∴⎝⎛⎭⎫lg ab 2=(lg a -lg b )2 =(lg a +lg b )2-4lg a ·lg b =22-4×12=2.4.若2.5x =1 000,0.25y =1 000,则1x -1y 等于( )A.13 B .3 C .-13 D .-3 答案 A解析 由指数式转化为对数式: x =log 2.51 000,y =log 0.251 000,则1x -1y =log 1 0002.5-log 1 0000.25=log 1 00010=13. 5.设函数f (x )=log a x (a >0,且a ≠1),若f (x 1x 2…x 2 005)=8,则f (x 21)+f (x 22)+…+f (x 22 005)的值等于( )A .4B .8C .16D .2log a 8 答案 C解析 因为f (x )=log a x ,f (x 1x 2…x 2 005)=8,所以f (x 21)+f (x 22)+…+f (x 22 005) =log a x 21+log a x 22+…+log a x 22 005=2log a |x 1|+2log a |x 2|+…+2log a |x 2 005| =2log a |x 1x 2…x 2 005| =2f (x 1x 2…x 2 005)=2×8=16. 二、填空题6.设lg2=a ,lg3=b ,那么lg 1.8=__________. 答案a +2b -12解析 lg 1.8=12lg1.8=12lg 1810=12lg 2×910=12(lg2+lg9-1)=12(a +2b -1). 7.若log a x =2,log b x =3,log c x =6,则log abc x 的值为____. 答案 1解析 log abc x =1log x abc =1log x a +log x b +log x c∵log a x =2,log b x =3,log c x =6 ∴log x a =12,log x b =13,log x c =16,∴log abc x =112+13+16=11=1.8.已知log 63=0.613 1,log 6x =0.386 9,则x =________. 答案 2解析 由log 63+log 6x =0.613 1+0.386 9=1. 得log 6(3x )=1.故3x =6,x =2. 三、解答题9.求下列各式的值: (1)12lg 3249-43lg 8+lg 245; (2)(lg5)2+2lg2-(lg2)2.解 (1)方法一 原式=12(5lg2-2lg7)-43·32lg2+12(2lg7+lg5) =52lg2-lg7-2lg2+lg7+12lg5 =12lg2+12lg5=12(lg2+lg5) =12lg10=12. 方法二 原式=lg 427-lg4+lg7 5=lg42×757×4=lg(2·5)=lg 10=12.(2)方法一 原式=(lg5+lg2)(lg5-lg2)+2lg2 =lg10·lg 52+lg4=lg ⎝⎛⎭⎫52×4=lg10=1. 方法二 原式=(lg10-lg2)2+2lg2-lg 22 =1-2lg2+lg 22+2lg2-lg 22=1. 10.若26a =33b =62c ,求证:1a +2b =3c.证明 设26a =33b =62c =k (k >0),那么⎩⎪⎨⎪⎧6a =log 2k ,3b =log 3k ,2c =log 6k ,∴⎩⎪⎨⎪⎧1a =6log 2k=6log k 2,1b =3log 3k =3log k3,1c =2log 6k=2log k6.∴1a +2b=6·log k 2+2×3log k 3 =log k (26×36)=6log k 6=3×2log k 6=3c ,即1a +2b =3c. 2.2.2 对数函数及其性质1.对数函数的概念形如y =log a x (a >0且a ≠1)的函数叫做对数函数. 对于对数函数定义的理解,要注意:(1)对数函数是由指数函数变化而来的,由指数式与对数式关系知,对数函数的自变量x 恰好是指数函数的函数值y ,所以对数函数的定义域是(0,+∞);(2)对数函数的解析式y =log a x 中,log a x 前面的系数为1,自变量在真数的位置,底数a 必须满足a >0,且a ≠1;(3)以10为底的对数函数为y =lg x ,以e 为底的对数函数为y =ln x . 2.对数函数的图象及性质:a >10<a <1图象性质函数的定义域为(0,+∞),值域为(-∞,+∞)函数图象恒过定点(1,0),即恒有log a 1=0当x >1时,恒有y >0; 当0<x <1时,恒有y <0当x >1时,恒有y <0;当0<x <1时,恒有y >0函数在定义域(0,+∞)上为增函数 函数在定义域(0,+∞)上为减函数3.指数函数与对数函数的关系比较名称 指数函数 对数函数 解析式 y =a x (a >0,且a ≠1)y =log a x (a >0,且a ≠1)定义域 (-∞,+∞) (0,+∞) 值域(0,+∞) (-∞,+∞) 函数值变 化情况a >1时,()()()⎪⎩⎪⎨⎧<<==>>011101x x x a x ; 0<a <1时,x ()()()⎪⎩⎪⎨⎧<>==><011101x x x a x a >1时,log a x()()()⎪⎩⎪⎨⎧<<>==>>1001010x x x ; 0<a <1时,log a x()()()⎪⎩⎪⎨⎧<<>==><1001010x x x 图象必 过定点点(0,1)点(1,0)单调性a >1时,y =a x 是增函数;0<a <1时,y =a x 是减函数a >1时,y =log a x 是增函数; 0<a <1时,y =log a x 是减函数图象y =a x 的图象与y =log a x 的图象关于直线y =x 对称实际上,观察对数函数的图象不难发现,对数函数中的值y =log m n 有以下规律: (1)当(m -1)(n -1)>0,即m 、n 范围相同(相对于“1”而言),则log m n >0;(2)当(m -1)(n -1)<0,即m 、n 范围相反(相对于“1”而言),则log m n <0.有了这个规律,我们再判断对数值的正负就很简单了,如log 213<0,log 52>0等,一眼就看出来了!题型一 求函数定义域求下列函数的定义域:(1)y =log 3x -12x +3x -1;(2)y =11-log a (x +a )(a >0,a ≠1).分析 定义域即使函数解析式有意义的x 的范围. 解 (1)要使函数有意义,必须{ 2x +3>0,x -1>0,3x -1>0,3x -1≠1同时成立,解得⎩⎨⎧x >-32,x >1,x >13,x ≠23. ∴x >1. ∴定义域为(1,+∞).(2)要使原函数有意义,需1-log a (x +a )>0, 即log a (x +a )<1=log a a .当a >1时,0<x +a <a ,∴-a <x <0. 当0<a <1时,x +a >a ,∴x >0.∴当a >1时,原函数定义域为{x |-a <x <0}; 当0<a <1时,原函数定义域为{x |x >0}.点评 求与对数函数有关的定义域问题,首先要考虑:真数大于零,底数大于零且不等于1,若分母中含有x ,还要考虑不能使分母为零.题型二 对数单调性的应用(1)log 43,log 34,log 4334的大小顺序为( )A .log 34<log 43<log 4334B .log 34>log 43>log 4334C .log 34>log 4334>log 43D .log 4334>log 34>log 43(2)若a 2>b >a >1,试比较log a a b ,log b ba ,logb a ,log a b 的大小.(1)解析 ∵log 34>1,0<log 43<1, log 4334=log 43⎝⎛⎭⎫43-1=-1, ∴log 34>log 43>log 4334.答案 B(2)解 ∵b >a >1,∴0<ab<1.∴log a a b <0,log b ba ∈(0,1),logb a ∈(0,1).又a >b a >1,且b >1,∴log b ba <logb a ,故有log a a b <log b ba<log b a <log a b .点评 比较对数的大小,一般遵循以下几条原则:①如果两对数的底数相同,则由对数函数的单调性(底数a >1为增;0<a <1为减)比较. ②如果两对数的底数和真数均不相同,通常引入中间变量进行比较.③如果两对数的底数不同而真数相同,如y =log a 1x 与y =log a 2x 的比较(a 1>0,a 1≠1,a 2>0,a 2≠1).当a 1>a 2>1时,曲线y 1比y 2的图象(在第一象限内)上升得慢.即当x >1时,y 1<y 2;当0<x <1时,y 1>y 2.而在第一象限内,图象越靠近x 轴对数函数的底数越大.当0<a 2<a 1<1时,曲线y 1比y 2的图象(在第四象限内)下降得快.即当x >1时,y 1<y 2;当0<x <1时,y 1>y 2即在第四象限内,图象越靠近x 轴的对数函数的底数越小.已知log a 12<1,那么a 的取值范围是________.分析 利用函数单调性或利用数形结合求解.解析 由log a 12<1=log a a ,得当a >1时,显然符合上述不等式,∴a >1;当0<a <1时,a <12,∴0<a <12. 故a >1或0<a <12.答案 a >1或0<a <12点评 解含有对数符号的不等式时,必须注意对数的底数是大于1还是小于1,然后再利用相应的对数函数的单调性进行解答.理解会用以下几个结论很有必要:(1)当a >1时,log a x >0⇔x >1,log a x <0⇔0<x <1; (2)当0<a <1时,log a x >0⇔0<x <1,log a x <0⇔x >1.题型三 函数图象的应用若不等式2x -log a x <0,当x ∈⎝⎛⎭⎫0,12时恒成立,求实数a 的取值范围. 解要使不等式2x<logax 在x ∈⎪⎭⎫ ⎝⎛21,0时恒成立,即函数y=logax 的图象在⎪⎭⎫ ⎝⎛21,0内恒在函数y=2x 图象的上方,而y=2x 图象过点⎪⎭⎫⎝⎛2,21.由图可知,loga 21>2,显然这里0<a<1,∴函数y=logax 递减.又loga21>2=log 2a a ,∴a2>21,即a>2221⎪⎭⎫ ⎝⎛.∴所求的a 的取值范围为2221⎪⎭⎫ ⎝⎛<a<1.点评 原问题等价于当x ∈⎪⎭⎫ ⎝⎛21,0时,y1=2x 的图象在y2=logax 的图象的下方,由于a的大小不确定,当a>1时,显然y2<y1,因此a 必为小于1的正数,当y2的图象通过点⎪⎭⎫⎝⎛2,21时,y2满足条件,此时a 0=2221⎪⎭⎫⎝⎛.那么a 是大于a 0还是小于a 0才满足呢?可以画图象观察,请试着画一画.这样可以对数形结合的方法有更好地掌握.设函数f (x )=lg(ax 2+2x +1),若f (x )的值域是R ,求实数a 的取值范围.错解 ∵f (x )的值域是R , ∴ax 2+2x +1>0对x ∈R 恒成立, 即{ a >0Δ<0⇔{ a >04-4a <0⇔a >1.错因分析 出错的原因是分不清定义域为R 与值域为R 的区别. 正解 函数f (x )=lg(ax 2+2x +1)的值域是R ⇔真数t =ax 2+2x +1能取到所有的正数.当a =0时,只要x >-12,即可使真数t 取到所有的正数,符合要求;当a ≠0时,必须有{ a >0Δ≥0⇔{ a >04-4a ≥0⇔0<a ≤1. ∴f (x )的值域为R 时,实数a 的取值范围为[0,1].本节内容在高考中考查的形式、地位与指数函数相似,着重考查对数的概念与对数函数的单调性,考查指数、对数函数的图象、性质及其应用.1.(广东高考)已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N 等于( )A .{x |x >-1}B .{x |x <1}C .{x |-1<x <1}D .∅解析 由题意知M ={x |x <1},N ={x |x >-1}. 故M ∩N ={x |-1<x <1}. 答案 C2.(湖南高考)下列不等式成立的是( ) A .log 32<log 23<log 25 B .log 32<log 25<log 23 C .log 23<log 32<log 25 D .log 23<log 25<log 32解析 ∵y =log 2x 在(0,+∞)上是增函数, ∴log 25>log 23>log 22=1.又y =log 3x 在(0,+∞)上为增函数, ∴log 32<log 33=1.∴log 32<log 23<log 25. 答案 A3.(全国高考)若x ∈(e-1,1),a =ln x ,b =2ln x ,c =ln 3x ,则( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a 解析 ∵1e <x <1,∴-1<ln x <0.令t =ln x ,则-1<t <0. ∴a -b =t -2t =-t >0.∴a >b . c -a =t 3-t =t (t 2-1)=t (t +1)(t -1), 又∵-1<t <0,∴0<t +1<1,-2<t -1<-1,∴c -a >0,∴c >a . ∴c >a >b .答案 C1.已知函数f (x )=1+2x 的定义域为集合M ,g (x )=ln(1-x )的定义域为集合N ,则M ∩N 等于( )A .{x |x >-1}B .{x |x <1} C.⎩⎨⎧⎭⎬⎫x |-12<x <1 D .∅答案 C2.已知函数f (x )=lg 1-x 1+x ,若f (a )=12,则f (-a )等于( )A.12 B .-12 C .-2 D .2 答案 B解析 f (-a )=lg 1+a 1-a =-lg ⎝ ⎛⎭⎪⎫1+a 1-a -1 =-lg 1-a 1+a=-f (a )=-12.3.已知a =log 23,b =log 32,c =log 42,则a ,b ,c 的大小关系是( ) A .c <b <a B .a <b <c C .b <c <a D .c <a <b 答案 A解析 因为a =log 23>1,b =log 3 2<1,所以a >b ; 又因为2>3,则log 32>log 33=12,而log 42=log 22=12,所以b >12,c =12,即b >c .从而a >b >c .4.函数f (x )=lg|x |为( )A .奇函数,在区间(0,+∞)上是减函数B .奇函数,在区间(0,+∞)上是增函数C .偶函数,在区间(-∞,0)上是增函数D .偶函数,在区间(-∞,0)上是减函数 答案 D解析 已知函数定义域为(-∞,0)∪(0,+∞),关于坐标原点对称,且f (-x )=lg|-x |=lg|x |=f (x ),所以它是偶函数.又当x >0时,|x |=x ,即函数y =lg|x |在区间(0,+∞)上是增函数. 又f (x )为偶函数,所以f (x )=lg|x |在区间(-∞,0)上是减函数.5.函数y =a x 与y =-log a x (a >0,且a ≠1)在同一坐标系中的图象只可能为( )答案 A解析 方法一 若0<a <1,则曲线y =a x 下降且过(0,1),而曲线y =-log a x 上升且过(1,0);若a >1,则曲线y =a x 上升且过(0,1),而曲线y =-log a x 下降且过(1,0).只有选项A 满足条件.方法二 注意到y =-log a x 的图象关于x 轴对称的图象的表达式为y =log a x ,又y =log a x 与y =a x 互为反函数(图象关于直线y =x 对称),则可直接选定选项A.6.设函数f (x )=log 2a (x +1),若对于区间(-1,0)内的每一个x 值都有f (x )>0,则实数a 的取值范围为( )A .(0,+∞) B.⎝⎛⎭⎫12,+∞ C.⎝⎛⎭⎫12,1 D.⎝⎛⎭⎫0,12 答案 D解析 已知-1<x <0,则0<x +1<1,又当-1<x <0时,都有f (x )>0,即0<x +1<1时都有f (x )>0,所以0<2a <1,即0<a <12.7.若指数函数f (x )=a x (x ∈R )的部分对应值如下表:x -2 0 2 f (x )0.69411.44则不等式log a (x -1)<0答案 {x |1<x <2}解析 由题可知a =1.2,∴log 1.2(x -1)<0,∴log 1.2(x -1)<log 1.21,解得x <2, 又∵x -1>0,即x >1,∴1<x <2. 故原不等式的解集为{x |1<x <2}.8.函数y =log a x (1≤x ≤2)的值域为[-1,0],那么a 的值为________. 答案 12解析 若a >1,则函数y =log a x 在区间[1,2]上为增函数,其值域不可能为[-1,0]; 故0<a <1,此时当x =2时,y 取最小值-1, 即log a 2=-1,得a -1=2,所以a =12.9.已知函数f (x )=⎩⎪⎨⎪⎧(3a -1)x +4a ,x <1log a x ,x ≥1是实数集R 上的减函数,那么实数a 的取值范围为__________.答案 ⎣⎡⎭⎫17,13解析 函数f (x )为实数集R 上的减函数, 一方面,0<a <1且3a -1<0,所以0<a <13,另一方面,由于f (x )在R 上为减函数, 因此应有(3a -1)×1+4a ≥log a 1,即a ≥17.因此满足题意的实数a 的取值范围为17≤a <13.10.已知f (x )=1+log 2x (1≤x ≤4),求函数g (x )=f 2(x )+f (x 2)的最大值和最小值. 解 ∵f (x )的定义域为[1,4], ∴g (x )的定义域为[1,2].∵g (x )=f 2(x )+f (x 2)=(1+log 2x )2+(1+log 2x 2) =(log 2x +2)2-2, 又1≤x ≤2,∴0≤log 2x ≤1. ∴当x =1时,g (x )min =2;当x =2时,g (x )max =7.学习目标1.掌握对数函数的概念、图象和性质.2.能够根据指数函数的图象和性质得出对数函数的图象和性质,把握指数函数与对数函数关系的实质.自学导引1.对数函数的定义:一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).2.对数函数的图象与性质定义y=log a x (a>0,且a≠1)底数a>10<a<1图象定义域(0,+∞)值域R单调性在(0,+∞)上是增函数在(0,+∞)上是减函数共点性图象过点(1,0),即log a1=0函数值特点x∈(0,1)时,y∈(-∞,0);x∈[1,+∞)时,y∈[0,+∞)x∈(0,1)时,y∈(0,+∞);x∈[1,+∞)时,y∈(-∞,0]对称性函数y=log a x与y=log1a x的图象关于x轴对称3.反函数对数函数y=log a x(a>0且a≠1)和指数函数y=a x_(a>0且a≠1)互为反函数.一、对数函数的图象例1 下图是对数函数y =log a x 的图象,已知a 值取3,43,35,110,则图象C 1,C 2,C 3,C 4相应的a 值依次是( )A.101,53,34,3B .53,101,34,3 C .101,53,3,34 D .53,101,3,34 答案 A解析 方法一 因为对数的底数越大,函数的图象越远离y 轴的正方向,所以C1,C2,C3,C4的a 值依次由大到小,即C1,C2,C3,C4的a 值依次为101,53,34,3. 方法二过(0,1)作平行于x 轴的直线,与C1,C2,C3,C4的交点的横坐标为(a1,1),(a2,1),(a3,1),(a4,1),其中a1,a2,a3,a4分别为各对数的底,显然a1>a2>a3>a4,所以C1,C2,C3,C4的底值依次由大到小.点评 函数y=logax (a>0,且a ≠1)的底数a 的变化对图象位置的影响如下:①上下比较:在直线x=1的右侧,底数大于1时,底数越大,图象越靠近x 轴;底数大于0且小于1时,底数越小,图象越靠近x 轴.②左右比较:(比较图象与y=1的交点)交点的横坐标越大,对应的对数函数的底数越大. 变式迁移1 借助图象比较m ,n 的大小关系: (1)若logm5>logn5,则m n ;(2)若logm0.5>logn0.5,则m n. 答案 (1)< (2)>二、求函数的定义域例2 求下列函数的定义域: (1)y =3log 2x ; (2)y =log 0.5(4x -3); (3)y =log (x +1)(2-x ).分析 定义域即使函数解析式有意义的x 的范围.解 (1)∵该函数是奇次根式,要使函数有意义,只要对数的真数是正数即可, ∴定义域是{x |x >0}.(2)要使函数y =log 0.5(4x -3)有意义, 必须log 0.5(4x -3)≥0=log 0.51, ∴0<4x -3≤1.解得34<x ≤1.∴定义域是⎩⎨⎧⎭⎬⎫x |34<x ≤1.(3)由⎩⎪⎨⎪⎧ x +1>0x +1≠12-x >0,得⎩⎪⎨⎪⎧x >-1x ≠0,x <2即0<x <2或-1<x <0, 所求定义域为(-1,0)∪(0,2).点评 求与对数函数有关的函数定义域时,除遵循前面已学习过的求函数定义域的方法外,还要对这种函数自身有如下要求:一是要特别注意真数大于零;二是要注意对数的底数;三是按底数的取值应用单调性,有针对性的解不等式.变式迁移2 求y =log a (4x -3)(a >0,a ≠1)的定义域. 解 log a (4x -3)≥0.(*)当a >1时,(*)可化为log a (4x -3)≥log a 1, ∴4x -3≥1,x ≥1. 当0<a <1时,(*)可化为 log a (4x -3)≥log a 1,∴0<4x -3≤1,34<x ≤1. 综上所述,当a >1时,函数定义域为[1,+∞),当0<a <1时,函数定义域为⎝⎛⎦⎤34,1.三、对数函数单调性的应用例3 比较大小:(1)log 0.81.5与log 0.82;(2)log 35与log 64.分析 从比较底数、真数是否相同入手.解 (1)考查对数函数y =log 0.8x 在(0,+∞)内是减函数,∵1.5<2,∴log 0.81.5>log 0.82.(2)log 35和log 64的底数和真数都不相同,找出中间量“搭桥”,再利用对数函数的单调性,即可求解.∵log 35>log 33=1=log 66>log 64,∴log 35>log 64.点评 比较两个对数值的大小,常用方法有:①底数相同真数不同时,用函数的单调性来比较;②底数不同而真数相同时,常借助图象比较,也可用换底公式转化为同底数的对数后比较;③底数与真数都不同,需寻求中间值比较.变式迁移3 比较下列各组中两个值的大小:(1)log 0.52.7,log 0.52.8; (2)log 34,log 65;(3)log a π,log a e (a >0且a ≠1).解 (1)∵0<0.5<1,∴对数函数y =log 0.5x 在(0,+∞)上是减函数.又∵2.7<2.8,∴log 0.52.7>log 0.52.8.(2)∵y =log 3x 在(0,+∞)上是增函数,∴log 34>log 33=1.∵y =log 6x 在(0,+∞)上是增函数,∴log 65<log 66=1.∴log 34>log 65.(3)当a >1时,y =log a x 在(0,+∞)上是增函数.∵π>e ,∴log a π>log a e.当0<a <1时,y =log a x 在(0,+∞)上是减函数.∵π>e ,∴log a π<log a e.综上可知,当a >1时,log a π>log a e ;当0<a <1时,log a π<log a e.例4 若-1<log a 34<1,求a 的取值范围. 分析 此不等式为对数不等式且底数为参数.解答本题可根据对数函数的单调性转化为一般不等式求解,同时应注意分类讨论.解 -1<log a 34<1⇔log a 1a <log a 34<log a a . 当a >1时,1a <34<a ,∴a >43. 当0<a <1时,1a >34>a ,∴0<a <34. ∴a 的取值范围是⎝⎛⎭⎫0,34∪⎝⎛⎭⎫43,+∞. 点评 (1)解对数不等式问题通常转化为不等式组求解,其依据是对数函数的单调性.(2)解决与对数函数相关的问题时要遵循“定义域优先”原则.(3)若含有字母,应考虑分类讨论.变式迁移4 已知log a (2a +1)<log a 3a <0,求a 的取值范围.解 log a (2a +1)<log a 3a <0(*)当a >1时,(*)可化为⎩⎪⎨⎪⎧0<2a +1<10<3a <12a +1<3a ,解得⎩⎪⎨⎪⎧ -12<a <00<a <13a >1,∴此时a 无解.当0<a <1时,(*)可化为⎩⎪⎨⎪⎧ 2a +1>13a >12a +1>3a ,解得⎩⎨⎧ a >0a >13a <1,∴13<a <1. 综上所述,a 的取值范围为⎝⎛⎭⎫13,1.1.求对数函数定义域要注意底数中是否含有自变量,此时底数大于0且不等于1.2.应用对数函数的图象和性质时要注意a >1还是0<a <1。
对数函数
对数与对数运算一、对数的定义一般地,如果 ()1,0≠>a a a 的b 次幂等于N , 就是 N a b =,那么数 b 叫做 以a 为底 N 的对数,记作 b N a =log ,a 叫做对数的底数,N 叫做真数。
特别提醒:1、对数记号log a N 只有在01a a ≠且>,0N >时才有意义,就是说负数和零是没有对数的。
2、记忆两个关系式:①log 10a =;②log 1a a =。
3、常用对数:我们通常将以10为底的对数叫做常用对数。
为了简便, N 的常用对数N 10log , 简记作:lg N 。
例如:10log 5简记作lg 5 ; 5.3log 10简记作lg 3.5。
4、自然对数:在科学技术中常常使用以无理数e 为底的对数,以e 为底的对数叫自然对数。
为了简便,N 的自然对数N e log ,简记作:ln N 。
如:3log e 简记作ln 3;10log e 简记作ln10。
二、对数运算性质:如果 0,1,0,0,a a M N n R ≠∈>>> 有:log ()log log a a a MN M N =+log log log aa a MM N N=- log log () n a a M n M n R =∈ 特别提醒:1、对于上面的每一条运算性质,都要注意只有当式子中所有的对数记号都有意义时,等式才成立。
如[]2log (3)(5)--是存在的,但[]222log (3)(5)log (3)log (5)--=-+-是不成立的。
2、注意上述公式的逆向运用:如lg5lg 2lg101+==;三、对数的换底公式及推论: 对数换底公式:()log log 0,1,0,1,0log m a m NN a a m m N a=≠≠>>> 两个常用的推论:(1)1log log =⋅a b b a (2)1log log log =⋅⋅a c b c b a四、两个常用的恒等式:N a N a =log , log log m n a a nb b m=()0,1,0,0a a b N ≠>>>类型一 指数式与对数式的相互转化例1:将下列指数式与对数式进行互化.(1)3x =127; (2)⎝ ⎛⎭⎪⎫14x =64;(3)5-12 =15; (4)log 24=4;(5)lg0.001=-3;(6)log2-1(2+1)=-1.解析:(1)log 3127=x .(2) log 14 64=x .(3)log 515=-12.(4)(2)4=4.(5)10-3=0.001.(6)(2-1)-1=2+1.练习1:将下列指数式与对数式进行互化.(1)e 0=1;(2)(2+3)-1=2-3;(3)log 327=3;(4)log 0.10.001=3. 答案:(1)ln1=0.(2)log (2+3)(2-3)=-1.(3)33=27.(4)0.13=0.001.练习2:将下列对数式与指数式进行互化.(1)2-4=116;(2)53=125;(3)lg a =2;(4)log 232=5.答案:(1)log 2116=-4. (2)log 5125=3. (3)102=a . (4)25=32. 类型二 对数基本性质的应用 例2:求下列各式中x 的值.(1)log 2(log 5x )=0; (2)log 3(lg x )=1;解析:(1)∵log 2(log 5x )=0,∴log 5x =1,∴x =5. (2)∵log 3(lg x )=1,∴lg x =3,∴x =103=1 000.练习1:已知log 2(log 3(log 4x ))=log 3(log 4(log 2y ))=0,求x +y 的值.80 练习2:已知4a =2,lg x =a ,则x =__10____. 类型三 对数的运算法则例3:计算(1)log a 2+log a 12(a >0且a ≠1);(2)log 318-log 32;(3)2log 510+log 50.25;解析:(1)log a 2+log a 12=log a (2×12)=log a 1=0.(2)log 318-log 32=log 3(18÷2)=log 39=2.(3)2log 510+log 50.25=log 5100+log 50.25=log 5(100×0.25)=log 525=2. 练习1:计算log 535+2log 22-log 5150-log 514的值.4练习2:计算:2log 510+log 50.25的值为____2____. 类型四 带有附加条件的对数式的运算例4:lg2=a ,lg3=b ,试用a 、b 表示lg108,lg1825. 解析:lg108=lg(27×4)=lg(33×22)=lg33+lg22=3lg3+2lg2=2a +3b .lg 1825=lg18-lg25=lg(2×32)-lg 10222=lg2+lg32-lg102+lg22=lg2+2lg3-2+2lg2=3a +2b -2.练习1:已知lg2=0.301 0,lg3=0.477 1,求lg 45.0.8266 练习2:若lg x -lg y =a ,则lg(x 2)3-lg(y2)3等于( D )A .a 2B .aC .3a2 D .3a 类型五 应用换底公式求值例5: 计算:lg 12-lg 58+lg12.5-log 89·log 278.解析:lg 12-lg 58+lg12.5-log 89·log 278=lg 12-lg 58+lg 252-lg9lg8·lg8lg27=lg ⎝ ⎛⎭⎪⎫12×85×252-2lg33lg3=1-23=13.练习1: 计算(log 2125+log 425+log 85)·(log 52+log 254+log 1258).13 练习2: log 89·log 32的值为( A )A .23B .1C .32 D .2 类型六 应用换底公式化简例6: 已知log 89=a ,log 25=b ,用a 、b 表示lg3.解析:∵log 89=lg9lg8=2lg33lg2=a ,①又∵log 25=lg5lg2=1-lg2lg2=b ,②由①②消去lg2可得:lg3=3a2 1+b.练习1:已知log 23=a ,log 37=b ,则log 1456=( A )A .ab +3ab +1 B .a b +3 ab +1 C .b +3ab +1 D .ab -3ab +1练习2: 已知log 72=p ,log 75=q ,则lg5用p 、q 表示为( B )A .pqB .q p +qC .1+pq p +q D .pq1+pq1、使对数log a (-2a +1)有意义的a 的取值范围为( B )A .0<a <12且a ≠1B .0<a <12C .a >0且a ≠1D .a <122、已知x 、y 为正实数,则下列各式正确的是( A )A .2lg x +lg y 2=2lg x +2lg yB .2lg(x +y )=2lg x ·2lg yC .2(lg x ·lg y )=2lg x +2lg yD .2lg(xy )=2lg x ·2lg y3、若lg2=a ,lg3=b ,则lg12lg15等于( A )A .2a +b 1-a +bB .2a +b1+a +bC .a +2b 1-a +bD .a +2b1+a +b4、.log 52·log 425等于( C )A .-1B .12 C .1D .2 5、化简log 1a b -log a 1b 的值为( A )A .0B .1C .2log a bD .-2log a b1.已知log 7[log 3(log 2x )]=0,那么x -12等于( C )A .13B .123 C .122D .1332.若f (10x )=x ,则f (3)的值为( B )A .log 310B .lg3C .103D .310 3.如果lg x =lg a +3lg b -5lg c ,那么( C )A .x =a +3b -cB .x =3ab5cC .x =ab 3c 5D .x =a +b 3-c 34.方程2log 3x =14的解是( C )A .33 B .3 C .19D .95.e ln3-e -ln2等于( C )A .1B .2C .52D .36.若log (1-x )(1+x )2=1,则x =_____-3___. 7.若log x (2+3)=-1,则x =___2-3_____. 8.已知log 32=a ,则2log 36+log 30.5=____2+a ____. 9. (1)设log a 2=m ,log a 3=n ,求a 2m +n 的值;12. (2)设x =log 23,求22x +2-2x +22x+2-x 的值.103. 10. 已知log a x +3log x a -log x y =3(a >1).(1)若设x =a t ,试用a 、t 表示y ;y =at 2-3t +3(t ≠0).(2)若当0<t ≤2时,y 有最小值8,求a 和x 的值.a =16,x =64.对数函数一、对数函数的定义:函数x y a log =)10(≠>a a 且叫做对数函数。
对数函数-高考数学复习
解析
当
当
当
1
1
logm7=log ,logn7=log ,
7
7
1
1
1<m<n 时,0<log7m<log7n,所以
>
,即 logm7>logn7;
log7
log7
1
1
0<m<n<1 时,log7m<log7n<0,所以log > log ,即 logm7>logn7;
函数y=loga|x|与y=|logax|(a>0,a≠1)的性质
y=loga|x|
函数
a>1
0<a<1
定义域 (-∞,0)∪(0,+∞)
R
值域
奇偶性 偶函数
在(0,+∞)内单调递增; 在(-∞,0)内单调递增;
单调性
在(-∞,0)内单调递减 在(0,+∞)内单调递减
图象
y=|logax|
a>1
0<a<1
1.函数f(x)=log3(x-1)是对数函数.( × )
2.若logax>1,则x>a.( × )
3.函数f(x)=loga(ax-1)(a>0,a≠1)在其定义域上是单调递增函数.(
4.函数 y=|lo1 x| 的单调递减区间是(1,+∞).( × )
2
)
题组二 回源教材
5.(人教A版必修第一册习题4.4第1题改编)函数 y= 0.5 (4-3) 的定义域
对数函数及其性质
.2对数函数及其性质1.对数函数的概念1定义:一般地,我们把函数y=log a xa>0,且a≠1叫做对数函数,其中x是自变量,函数的定义域是0,+∞.2对数函数的特征:特征错误!判断一个函数是否为对数函数,只需看此函数是否具备了对数函数的特征.比如函数y=log7x是对数函数,而函数y=-3log4x和y=log x2均不是对数函数,其原因是不符合对数函数解析式的特点.例1-1函数fx=a2-a+1log a+1x是对数函数,则实数a=__________.解析:由a2-a+1=1,解得a=0,1.又a+1>0,且a+1≠1,∴a=1.答案:1例1-2下列函数中是对数函数的为__________.1y=log a>0,且a≠1;2y=log2x+2;3y=8log2x+1;4y=log x6x>0,且x≠1;5y=log6x.解析:答案:52.对数函数y=log a xa>0,且a≠1的图象与性质1图象与性质谈重点对对数函数图象与性质的理解对数函数的图象恒在y轴右侧,其单调性取决于底数.a>1时,函数单调递增;0<a<1时,函数单调递减.理解和掌握对数函数的图象和性质的关键是会画对数函数的图象,在掌握图象的基础上性质就容易理解了.我们要注意数形结合思想的应用.2指数函数与对数函数的性质比较3底数a对对数函数的图象的影响①底数a与1的大小关系决定了对数函数图象的“升降”:当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.②底数的大小决定了图象相对位置的高低:不论是a>1还是0<a<1,在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大.点技巧对数函数图象的记忆口诀两支喇叭花手中拿,1,0点处把花扎,若是底数小于1,左上穿点渐右下,若是底数大于1,左下穿点渐右上,绕点旋转底变化,顺时方向底变大,可用直线y =1来切,自左到右a 变大.例2如图所示的曲线是对数函数y =log a x 的图象.已知a 43,35,110中取值,则相应曲线C 1,C 2,C 3,C 4的a 值依次为A 43,35,110B 43,110,35C .4335,110D .43110,35解析:由底数对对数函数图象的影响这一性质可知,C 4的底数<C 3的底数<C 2的底数<C 1的底数.故相应于曲线C 1,C 2,C 3,C 4,43,35,110.答案:A点技巧 根据图象判断对数函数的底数大小的方法 1方法一:利用底数对对数函数图象影响的规律:在x 轴上方“底大图右”,在x 轴下方“底大图左”;2方法二:作直线y =1,它与各曲线的交点的横坐标就是各对数的底数,由此判断各底数的大小.3.反函数1对数函数的反函数指数函数y=a x a>0,且a≠1与对数函数y=log a xa>0,且a≠1互为反函数.2互为反函数的两个函数之间的关系①原函数的定义域、值域是其反函数的值域、定义域;②互为反函数的两个函数的图象关于直线y=x对称.3求已知函数的反函数,一般步骤如下:①由y=fx解出x,即用y表示出x;②把x替换为y,y替换为x;③根据y=fx的值域,写出其反函数的定义域.例3-1若函数y=fx是函数y=a x a>0,且a≠1的反函数,且f2=1,则fx=A.log2x B.12xC.12log x D.2x-2解析:因为函数y=a x a>0,且a≠1的反函数是fx=log a x,又f2=1,即log a2=1,所以a=2.故fx=log2x.答案:A例3-2函数fx=3x0<x≤2的反函数的定义域为A.0,+∞ B.1,9C.0,1 D.9,+∞解析:∵ 0<x≤2,∴1<3x≤9,即函数fx的值域为1,9.故函数fx的反函数的定义域为1,9.答案:B例3-3若函数y=fx的反函数图象过点1,5,则函数y=fx的图象必过点A.5,1 B.1,5 C.1,1 D.5,5解析:由于原函数与反函数的图象关于直线y=x对称,而点1,5关于直线y=x的对称点为5,1,所以函数y=fx的图象必经过点5,1.答案:A4.利用待定系数法求对数函数的解析式及函数值对数函数的解析式y=log a xa>0,且a≠1中仅含有一个常数a,则只需要一个条件即可确定对数函数的解析式,这样的条件往往是已知fm=n或图象过点m,n等等.通常利用待定系数法求解,设出对数函数的解析式fx=log a xa>0,且a≠1,利用已知条件列方程求出常数a的值.利用待定系数法求对数函数的解析式时,常常遇到解方程,比如log a m=n,这时先把对数式log a m=n化为指数式的形式a n=m,把m化为以n为指数的指数幂形式m=k n k>0,且k≠1,则解得a=k>0.还可以直接写出1na m=,再利用指数幂的运算性质化简1nm.例如:解方程log a4=-2,则a-2=4,由于2142-⎛⎫= ⎪⎝⎭,所以12a=±.又a>0,所以12a=.当然,也可以直接写出124a-=,再利用指数幂的运算性质,得11212214(2)22a---====.例4-1已知f e x=x,则f5=A.e5B.5e C.ln 5 D.log5e解析:方法一令t=e x,则x=ln t,所以ft=ln t,即fx=ln x.所以f5=ln 5.方法二令e x=5,则x=ln 5,所以f5=ln 5.答案:C例4-2已知对数函数fx的图象经过点1,29⎛⎫⎪⎝⎭,试求f3的值.分析:设出函数fx的解析式,利用待定系数法即可求出.解:设fx=log a xa>0,且a≠1,∵对数函数fx的图象经过点1,29⎛⎫⎪⎝⎭,∴11log299af⎛⎫==⎪⎝⎭.∴a2=19.∴a=11222111933⎡⎤⎛⎫⎛⎫==⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.∴fx=13log x.∴f3=111331log 3log3-⎛⎫= ⎪⎝⎭=-1.例4-3已知对数函数fx的反函数的图象过点2,9,且fb=12,试求b的值.解:设fx=log a xa>0,且a≠1,则它的反函数为y=a x a>0,且a≠1,由条件知a2=9=32,从而a=3.于是fx=log3x,则fb=log3b=12,解得b=123=5.对数型函数的定义域的求解1对数函数的定义域为0,+∞.2在求对数型函数的定义域时,要考虑到真数大于0,底数大于0,且不等于1.若底数和真数中都含有变量,或式子中含有分式、根式等,在解答问题时需要保证各个方面都有意义.一般地,判断类似于y=log a fx的定义域时,应首先保证fx>0.3求函数的定义域应满足以下原则:①分式中分母不等于零;②偶次根式中被开方数大于或等于零;③指数为零的幂的底数不等于零;④对数的底数大于零且不等于1;⑤对数的真数大于零,如果在一个函数中数条并存,求交集.例5求下列函数的定义域.1y =log 51-x ;2y =log 2x -15x -4;3y =.分析:利用对数函数y =log a xa >0,且a ≠1的定义求解.解:1要使函数有意义,则1-x >0,解得x <1,所以函数y =log 51-x 的定义域是{x |x <1}.2要使函数有意义,则54>0,21>0,211,x x x -⎧⎪-⎨⎪-≠⎩解得x >45且x ≠1,所以函数y =log 2x -15x -4的定义域是4,15⎛⎫⎪⎝⎭1,+∞.3要使函数有意义,则0.5430,log (43)0,x x ->⎧⎨-≥⎩解得34<x ≤1,所以函数y =的定义域是3<14x x ⎧⎫≤⎨⎬⎩⎭.6.对数型函数的值域的求解1充分利用函数的单调性和图象是求函数值域的常用方法.2对于形如y =log a fxa >0,且a ≠1的复合函数,其值域的求解步骤如下:①分解成y =log a u ,u =fx 这两个函数;②求fx 的定义域;③求u 的取值范围;④利用y =log a u 的单调性求解.3对于函数y =f log a xa >0,且a ≠1,可利用换元法,设log a x =t ,则函数ftt R 的值域就是函数f log a xa >0,且a ≠1的值域.注意:1若对数函数的底数是含字母的代数式或单独一个字母,要考查其单调性,就必须对底数进行分类讨论.2求对数函数的值域时,一定要注意定义域对它的影响.当对数函数中含有参数时,有时需讨论参数的取值范围.例6-1求下列函数的值域:1y =log 2x 2+4;2y =212log (32)x x +-.解:1∵x 2+4≥4,∴log 2x 2+4≥log 24=2.∴函数y =log 2x 2+4的值域为2,+∞.2设u =3+2x -x 2,则u =-x -12+4≤4.∵u >0,∴0<u ≤4.又y =12log u 在0,+∞上为减函数,∴12log u ≥-2.∴函数y =212log (32)x x +-的值域为-2,+∞.例6-2已知fx =2+log 3x ,x ∈1,3,求y =fx 2+fx 2的最大值及相应的x 的值.分析:先确定y =fx 2+fx 2的定义域,然后转化成关于log 3x 的一个一元二次函数,利用一元二次函数求最值.解:∵fx =2+log 3x ,x ∈1,3,∴y =fx 2+fx 2=log 3x 2+6log 3x +6且定义域为1,3.令t =log 3xx ∈1,3.∵t =log 3x 在区间1,3上是增函数,∴0≤t ≤1.从而要求y =fx 2+fx 2在区间1,3上的最大值,只需求y =t 2+6t +6在区间0,1上的最大值即可.∵y =t 2+6t +6在-3,+∞上是增函数,∴当t =1,即x =3时,y max =1+6+6=13.综上可知,当x =3时,y =fx 2+fx 2的最大值为13.7.对数函数的图象变换及定点问题1与对数函数有关的函数图象过定点问题对数函数y =log a xa >0,且a ≠1过定点1,0,即对任意的a >0,且a ≠1都有log a 1=0.这是解决与对数函数有关的函数图象问题的关键.对于函数y=b+k log a fxk,b均为常数,且k≠0,令fx=1,解方程得x=m,则该函数恒过定点m,b.方程fx=0的解的个数等于该函数图象恒过定点的个数.2对数函数的图象变换的问题①函数y=log a xa>0,且a≠1错误!函数y=log a x+ba>0,且a≠1②函数y=log a xa>0,且a≠1错误!函数y=log a x+ba>0,且a≠1③函数y=log a xa>0,且a≠1错误!函数y=log a|x|a>0,且a≠1④函数y=log a xa>0,且a≠1错误!函数y=|log a x|a>0,且a≠1例7-1若函数y=log a x+b+ca>0,且a≠1的图象恒过定点3,2,则实数b,c的值分别为__________.解析:∵函数的图象恒过定点3,2,∴将3,2代入y=log a x+b+ca>0,且a≠1,得2=log a3+b+c.又∵当a>0,且a≠1时,log a1=0恒成立,∴c=2.∴log a3+b=0.∴b=-2.答案:-2,2例7-2作出函数y=|log2x+1|+2的图象.解:第一步作函数y=log2x的图象,如图①;第二步将函数y=log2x的图象沿x轴向左平移1个单位长度,得函数y=log2x+1的图象,如图②;第三步将函数y=log2x+1在x轴下方的图象作关于x轴的对称变换,得函数y=|log2x +1|的图象,如图③;第四步将函数y=|log2x+1|的图象,沿y轴方向向上平移2个单位长度,便得到所求函数的图象,如图④.8.利用对数函数的单调性比较大小两个对数式的大小比较有以下几种情况:1底数相同,真数不同.比较同底数是具体的数值的对数大小,构造对数函数,利用对数函数的单调性比较大小.要注意:明确所给的两个值是哪个对数函数的两个函数值;明确对数函数的底数与1的大小关系;最后根据对数函数的单调性判断大小.2底数不同,真数相同.若对数式的底数不同而真数相同时,可以利用顺时针方向底数增大画出函数的图象,再进行比较,也可以先用换底公式化为同底后,再进行比较.3底数不同,真数也不同.对数式的底数不同且指数也不同时,常借助中间量0,1进行比较.4对于多个对数式的大小比较,应先根据每个数的结构特征,以及它们与“0”和“1”的大小情况,进行分组,再比较各组内的数值的大小即可.注意:对于含有参数的两个对数值的大小比较,要注意对底数是否大于1进行分类讨论.例8-1比较下列各组中两个值的大小.1,log32;2log23,;3log aπ,.分析:1构造函数y=log3x,利用其单调性比较;2分别比较与0的大小;3分类讨论底数的取值范围.解:1因为函数y=log3x在0,+∞上是增函数,所以f<f2.所以<log32.2因为log23>log21=0,<=0,所以log23>.3当a>1时,函数y=log a x在定义域上是增函数,则有log aπ>;当0<a<1时,函数y=log a x在定义域上是减函数,则有log aπ<.综上所得,当a>1时,log aπ>;当0<a<1时,log aπ<.例8-2若a2>b>a>1,试比较loga ab,logbba,log b a,log a b的大小.分析:利用对数函数的单调性或图象进行判断.解:∵b>a>1,∴0<ab<1.∴loga ab<0,log a b>log a a=1,log b1<log b a<log b b,即0<log b a<1.由于1<ba<b,∴0<logbba<1.由log b a-logbba=2logbab,∵a2>b>1,∴2ab>1.∴2logbab>0,即log b a>logbba.∴log a b>log b a>logb ba>logaab.9.利用对数函数的单调性解对数不等式1根据对数函数的单调性,当a>0,且a≠1时,有①log a fx=log a gx fx=gxfx>0,gx>0;②当a >1时,log a fx >log a gx ⇔fx >gxfx >0,gx >0;③当0<a <1时,log a fx >log a gx ⇔fx <gxfx >0,gx >0.2常见的对数不等式有三种类型:①形如log a fx >log a gx 的不等式,借助函数y =log a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.②形如log a fx >b 的不等式,应将b 化为以a 为对数的对数式的形式,再借助函数y =log a x 的单调性求解.③形如log a fx >log b gx 的不等式,基本方法是将不等式两边化为同底的两个对数值,利用对数函数的单调性来脱去对数符号,同时应保证真数大于零,取交集作为不等式的解集.④形如f log a x >0的不等式,可用换元法令t =log a x ,先解ft >0,得到t 的取值范围.然后再解x 的范围.例9-1解下列不等式:11177log log (4)x x >-;2log x 2x +1>log x 3-x .解:1由已知,得>0,4>0,<4,x x x x ⎧⎪-⎨⎪-⎩解得0<x <2.所以原不等式的解集是{x |0<x <2}.2当x>1时,有21>3,21>0,3>0,x xxx+-⎧⎪+⎨⎪-⎩解得1<x<3;当0<x<1时,有21<3,21>0,3>0,x xxx+-⎧⎪+⎨⎪-⎩解得0<x<23.所以原不等式的解集是20<<1<<33x x x⎧⎫⎨⎬⎩⎭或.例9-2若22log3a⎛⎫⎪⎝⎭<1,求a的取值范围.解:∵22log3a⎛⎫⎪⎝⎭<1,∴-1<2log3a<1,即12log log log3a a aaa<<.1∵当a>1时,y=log a x为增函数,∴123aa<<.∴a>32,结合a>1,可知a>32.2∵当0<a<1时,y=log a x为减函数,∴12>>3aa.∴a<23,结合0<a<1,知0<a<23.∴a的取值范围是230<<>32a a a⎧⎫⎨⎬⎩⎭,或.10.对数型函数单调性的讨论1解决与对数函数有关的函数的单调性问题的关键:一是看底数是否大于1,当底数未明确给出时,则应对底数a是否大于1进行讨论;二是运用复合法来判断其单调性;三是注意其定义域.2关于形如y=log a fx一类函数的单调性,有以下结论:函数y=log a fx的单调性与函数u=fxfx>0的单调性,当a>1时相同,当0<a<1时相反.例如:求函数y=log23-2x的单调区间.分析:首先确定函数的定义域,函数y=log23-2x是由对数函数y=log2u和一次函数u=3-2x复合而成,求其单调区间或值域时,应从函数u=3-2x的单调性、值域入手,并结合函数y=log2u的单调性考虑.解:由3-2x>0,解得函数y=log23-2x的定义域是错误!.设u=3-2x,x 错误!,∵u=3-2x在错误!上是减函数,且y=log2u在0,+∞上单调递增,∴函数y=log23-2x在错误!上是减函数.∴函数y=log23-2x的单调减区间是错误!.例10-1求函数y=log a a-a x的单调区间.解:1若a>1,则函数y=log a t递增,且函数t=a-a x递减.又∵a -a x >0,即a x <a ,∴x <1.∴函数y =log a a -a x 在-∞,1上递减.2若0<a <1,则函数y =log a t 递减,且函数t =a -a x 递增.又∵a -a x >0,即a x <a ,∴x >1.∴函数y =log a a -a x 在1,+∞上递减.综上所述,函数y =log a a -a x 在其定义域上递减.析规律 判断函数y =log a fx 的单调性的方法 函数y =log a fx 可看成是y =log a u 与u =fx 两个简单函数复合而成的,由复合函数单调性“同增异减”的规律即可判断.需特别注意的是,在求复合函数的单调性时,首先要考虑函数的定义域,即“定义域优先”.例10-2已知fx =12log x 2-ax -a 在1,2⎛⎫-∞- ⎪⎝⎭上是增函数,求a 的取值范围.解:1,2⎛⎫-∞- ⎪⎝⎭是函数fx 的递增区间,说明1,2⎛⎫-∞- ⎪⎝⎭是函数u =x 2-ax -a 的递减区间,由于是对数函数,还需保证真数大于0.令ux =x 2-ax -a ,∵fx =12log ()u x 在1,2⎛⎫-∞- ⎪⎝⎭上是增函数,∴ux 在1,2⎛⎫-∞- ⎪⎝⎭上是减函数,且ux >0在1,2⎛⎫-∞- ⎪⎝⎭上恒成立.∴1,2210,2a u ⎧≥-⎪⎪⎨⎛⎫⎪-≥ ⎪⎪⎝⎭⎩即1,10.42a a a ≥-⎧⎪⎨+-≥⎪⎩ ∴-1≤a ≤12. ∴满足条件的a 的取值范围是112a a ⎧⎫-≤≤⎨⎬⎩⎭. 11.对数型函数的奇偶性问题判断与对数函数有关的函数奇偶性的步骤是:1求函数的定义域,当定义域关于原点不对称时,则此函数既不是奇函数也不是偶函数,当定义域关于原点对称时,判断f -x 与fx 或-fx 是否相等;2当f -x =fx 时,此函数是偶函数;当f -x =-fx 时,此函数是奇函数;3当f -x =fx 且f -x =-fx 时,此函数既是奇函数又是偶函数;4当f -x ≠fx 且f -x ≠-fx 时,此函数既不是奇函数也不是偶函数.例如,判断函数fx=log )a x x ∈R ,a >0,且a ≠1的奇偶性.解:∵f -x +fx ==log )a x+log )a x=log a x 2+1-x 2=log a 1=0,∴f-x=-fx.∴fx为奇函数.例11已知函数fx=1log1axx+-a>0,且a≠1.1求函数fx的定义域;2判断函数fx的奇偶性;3求使fx>0的x的取值范围.分析:对于第2问,依据函数奇偶性的定义证明即可.对于第3问,利用函数的单调性去掉对数符号,解出不等式.解:1由11xx+->0,得-1<x<1,故函数fx的定义域为-1,1.2∵f-x=1log1axx-+=1log1axx+--=-fx,又由1知函数fx的定义域关于原点对称,∴函数fx是奇函数.3当a>1时,由1log1axx+->0=log a1,得11xx+->1,解得0<x<1;当0<a<1时,由1log1axx+->0=log a1,得0<11xx+-<1,解得-1<x<0.故当a>1时,x的取值范围是{x|0<x<1};当0<a<1时,x的取值范围是{x|-1<x<0}.12.对数型函数模型的实际应用地震震级的变化规律、溶液pH的变化规律、航天问题等,可以用对数函数模型来研究.此类题目,通常给出函数解析式模型,但是解析式中含有其他字母参数.其解决步骤是:1审题:弄清题意,分清条件和结论,抓住关键的词和量,理顺数量关系;2建模:将文字语言转化成数学语言,利用数学知识,求出函数解析式模型中参数的值;3求模:求解函数模型,得到数学结论;4还原:将用数学方法得到的结论还原为实际问题的结论.由此看,直接给定参数待定的函数模型时,利用待定系数法的思想,代入已知的数据得到相关的方程而求得待定系数.一般求出函数模型后,还利用模型来研究一些其他问题.代入法、方程思想、对数运算性质,是解答此类问题的方法精髓.例12我国用长征二号F型运载火箭成功发射了“神舟”七号载人飞船,实现了中国历史上第一次的太空漫步,令中国成为世界上第三个有能力把人送上太空并进行太空漫步的国家其中,翟志刚完全出舱,刘伯明的头部和手部部分出舱.在不考虑空气阻力的条件下,假设火箭的最大速度y单位:km/s关于燃料重量x单位:吨的函数关系式为y=k ln m+x-k+4ln 2k≠0,其中m是箭体、搭载的飞行器、航天员的重量和.-1m吨时,火箭的最大速度是4 km/s.1求y=fx;2已知长征二号F型运载火箭的起飞重量是吨箭体、搭载的飞行器、航天员、燃料,火箭的最大速度为8 km/s,求装载的燃料重量e=,精确到.解:1由题意得当x-1m时,y=4,则4=k ln m-1m-k+4ln 2,解得k=8.所以y=8ln m+x-+4ln 2,即y=8ln m xm+.2由于m+x=,则m=-x,令479.888ln479.8x=-,解得x≈.故火箭装载的燃料重量约为吨.。
对数的函数
对数的函数
对数是一种常见的数学函数。
它在数学中被广泛应用,特别是在科学、工程和经济学领域。
对数的定义是:如果b是一个大于0且不等于1的正数,x是任意正数,那么对数函数logb(x)就是使得b的
多少次方等于x的数。
也就是说,logb(x) = y,当且仅当b的y次
方等于x。
对数函数有许多重要的性质,比如:
1. 对于任意正数a、b和c,有下列规律:logb(ac) = logb(a) + logb(c)和logb(a/b) = logb(a) - logb(b)。
2. 对于任意正数a和b,以及任意正整数n,有下列规律:logb(an) = n logb(a)和logb(a) = 1/loga(b)。
3. 对数函数有一些特殊的底数,如e和10。
loge(x)通常写成
ln(x),称为自然对数。
自然对数在微积分和概率统计等领域中经常
出现。
4. 对数函数在数学中也有广泛的应用。
比如,在指数增长模型中,对数函数可以用来线性化数据,使得数据更易于分析。
在密码学中,对数函数被用来加密和解密数据。
在信号处理中,对数函数被用来压缩和扩展数据范围。
总之,对数函数是一种非常有用的数学函数,应用广泛,对于理解和解决许多实际问题都有帮助。
- 1 -。
第四节 对 数 函 数
同步精练
一、单项选择题
1.函数y=lg(x2-2x-8)的定义域是( C )
A.(-2,4)
B.(-4,2)
C.(-∞,-2)∪(4,+∞) D.(-∞,-4)∪(2,+∞)
【提示】 要使函数有意义,必须有x2-2x-
8>0,解一元二次不等式得x<-2或x>4,故选C.
2.设a=20.3,b=0.32,c=log20.3,则a,b,c的大小关 系为( D )
真题回放
3.(2016年山东春季高考)已知某城市2015年底的人口总 数为200万,假设此后该城市人口的年增长率为1%(不考虑 其他因素).
(1)若经过x年该城市人口总数为y万,试写出y关于x的函 数关系式;
(2)如果该城市人口总数达到210万,那么至少需要经过 多少年(精确到1年)? 解:(1)y关于x的关系式是y=200(1+1%)x=200×1.01x,x≥0. (2)设至少需要经过x年, 则200×1.01x=210, 即1.01x=1.05,xlg1.01=lg1.05,x≈5. ∴至少需要经过5年.
3x 2 0
x
2 3
要使函数有意义,必须有2
2
x x
1 1
0 1,
即 x
x
1 2 1,
解得x> 2 且
3
x≠1,∴函数的定义域为x
|
x
2 3
且x
1.
典例解析
【举一反三1】 在对数式log(a-2)(5-a)中,实数a的取 值范围是( C )
A.(-∞,2)∪(5,+∞)
B.(2,5)
解:由题意得对∀x∈R,不等式x2+mx+3>0恒成立, 由此可得Δ=m2-4×1×3<0,解得 2 3<m<2 3, ∴m的取值范围为( 2 3,2 3).
对数函数y=log
对数函数y=log
1.基本定义
对数函数是指一个函数,它可以表示为y=log(x),其中x和y 都是实数,并且x>0.
2.对数函数的特性
对数函数的定义域和值域
- 定义域:对数函数的定义域为正实数集(0,+∞)。
- 值域:对数函数的值域为实数集。
对数函数的图像
- 对数函数的图像是一个连续的曲线,呈现出不同的特性。
对于正实数x,当x趋近于0时,对数函数逐渐趋近于负无穷大;当x趋近于正无穷大时,对数函数逐渐趋近于正无穷大。
对数函数的性质
- 对于任意正实数a和b,有以下性质成立:
- log(a*b) = log(a) + log(b)
- log(a/b) = log(a) - log(b)
- log(a^n) = n*log(a),其中n为实数
对数函数的应用
- 对数函数在数学、工程、经济等领域有广泛的应用。
例如:- 在数学中,对数函数经常用于解决指数方程和指数函数相关的问题。
- 在工程领域,对数函数可用于描述信号的增益和衰减。
- 在经济学中,对数函数可用于描述经济增长和指数增长率。
3.总结
对数函数y=log是一个重要的数学函数,具有特殊的性质和广泛的应用。
通过对对数函数的了解,我们可以更好地理解和应用数学知识,并在实际问题中求解和优化相关的计算。
对数的函数
对数的函数
对数的函数是一种以底数为基准的函数。
对数函数的定义是:对于正实数a和正实数x,a的x次幂的对数为y,即a的y次幂等于x,表示为y=loga(x)。
其中,log表示以a为底数的对数函数,a称为底数,x称为真数,y称为对数。
对于任意正实数a和b以及任意实数x和y,对数函数具有以下性质:
1.对数函数y=loga(x)是单调递增函数,即当x1<x2时,有loga(x1)<loga(x2);
2.对数函数的反函数是幂函数,即a的y次幂等于x等价于
y=loga(x),所以loga(x)的反函数为a的x次幂;
3.底数为常数时,对数函数称为常用对数函数,底数为10时,称为以10为底的对数函数,表示为y=log10(x),常用对数函数在计算中应用广泛;
4.对于任意正实数a和b,有loga(ab)=loga(a)+loga(b),loga(a/b)=loga(a)-loga(b),loga(a^n)=nloga(a);
5.对于任意正实数a、b和c,loga(b)=logc(b)/logc(a),这是换底公式。
对数函数在数学和科学中有广泛应用,例如在计算复杂度、放射性衰变、声音和光的强度等领域中都有应用。
- 1 -。
对数公式大全
对数公式大全对数公式大全:1、一般对数公式:loga(x)=y,其中a>0,a≠1,x>0,表示以a为底x的对数等于y。
2、对数运算律:loga(xy)=loga(x)+loga(y),loga(x/y)=loga(x)-loga(y)。
3、指数公式:a^y=x,其中a>0,a≠1,x>0,表示以a为底x的幂等于y。
4、指数运算律:a^(x+y)=a^x*a^y,a^(x-y)=a^x/a^ y。
5、对数换底公式:logb(x)=loga(x)/loga(b),其中a>0,a≠1,b>0,b≠1,x>0,表示以b为底x的对数等于以a为底x的对数除以以a为底b的对数。
6、特殊对数公式:log2x=lnx/ln2,表示以2为底x的对数等于以e为底x的自然对数除以以e为底2的自然对数。
7、二次函数对数公式:log(ax^2+bx+c)=2logax+logab+logac,其中a>0,a≠1,b、c为任意实数,表示对于二次函数ax^2+bx+c,以a为底的对数等于a的2倍对数加上a的对数乘以b再加上a的对数乘以c。
8、立方函数对数公式:log(ax^3+bx^2+cx+d)=3logax+2logab+logac+logad,其中a>0,a≠1,b、c、d为任意实数,表示对于立方函数ax^3+bx^2+cx+d,以a为底的对数等于a的3倍对数加上a的2倍对数乘以b再加上a的对数乘以c再加上a的对数乘以d。
9、对数函数求导公式:(dy/dx)logax=a^x/x,其中a>0,a≠1,x>0,表示函数y=logax的导函数等于以a为底x的指数除以x。
对数函数常用公式
对数函数常用公式对数函数是数学中的一种重要函数,它在科学、工程、经济等领域中都有广泛的应用。
下面介绍一些对数函数常用公式。
1. 对数的定义对数是指一个数在某个底数下的指数,即:如果a^x = b,那么x就是以a为底数,b的对数,记作loga b。
2. 对数的性质(1)loga (mn) = loga m + loga n(2)loga (m/n) = loga m - loga n(3)loga m^n = n loga m(4)loga 1 = 0(5)loga a = 1(6)loga b = 1/logb a3. 常用对数函数常用的对数函数有自然对数函数和常用对数函数。
自然对数函数是以e为底数的对数函数,记作ln x。
其中e是一个无理数,约等于2.71828。
常用对数函数是以10为底数的对数函数,记作log x。
4. 对数函数的图像自然对数函数和常用对数函数的图像如下所示:自然对数函数的图像是一个上升的曲线,它在x轴上的截距为1,y轴上的截距为0。
常用对数函数的图像也是一个上升的曲线,它在x轴上的截距为1,y轴上的截距为0。
5. 对数函数的应用对数函数在科学、工程、经济等领域中都有广泛的应用。
例如:(1)在化学中,pH值是以10为底数的负对数函数,它用来表示溶液的酸碱度。
(2)在物理中,声音的强度和光的亮度都是以10为底数的对数函数。
(3)在经济中,利率的计算也是以对数函数为基础的。
对数函数是一种非常重要的数学工具,它在各个领域中都有广泛的应用。
掌握对数函数的常用公式和性质,对于学习和应用对数函数都非常有帮助。
对数函数
对数函数知识精要: 1、对数函数定义:函数log (0,1)a y x a a =>≠叫做对数函数。
对数函数log (0,1)a y x a a =>≠与指数函数(0,1)x y a a a =>≠互为反函数。
2、性质:(1)对数函数log a y x =的图像都在y 轴的右方; (2)对数函数log a y x =的图像经过点(1,0);(3)对数函数log (1)a y x a =>,当x>1时,y>0;当0<x<1时, y<0;对数函数log (01)a y x a =<<,当x>1时,y<0;当0<x<1时, y>0;(4)对数函数log (1)a y x a =>在(0,+∞)上是增函数,对数函数log (10)a y x a =>>在(0,+∞)上是减函数。
(5)对数函数图像在第一象限的规律是:以直线x=1把第一象限分成两个区域,每个区域里对数函数底数都是由左向右逐渐增大,如右图所示,C 1,C 2,C 3,C 4对应1log a y x =,2log a y x =,3log a y x =,4log a y x =,则0<a 4<a 3<1<a 2<a 1。
3、复合函数的单调性在复合函数[()]y f g x =中,如果()u g x =和()y f x =的增减性相异,则[()]y f g x =为减函数,如果()()u g x y f x ==和的增减性相同,则[g()]y f x =为增函数。
Oyx1C 12C 3C 4C名题精解 1、图像问题例1 由函数lg y x =图像,画出下列各函数图像。
(1)lg()y x =-(2)lg y x =-(3)|lg |y x =(4)lg ||y x =(5)lg |1|y x =-(6)lg(||1)y x =+ 解题策略:利用函数图象变换。
对数函数
其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因 此指数函数里对于a的规定,同样适用于对数函数。
“log”是拉丁文logarithm(对数)的缩写,读作:[英][lɔɡ][美][lɔɡ, lɑɡ]。
பைடு நூலகம் 实际应用
在实数域中,真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式 子大于等于零(若为负数,则值为虚数),底数则要大于0且不为1。
对数函数对数函数的底数为什么要大于0且不为1?【在一个普通对数式里 a<0,或=1的时候是会有相应b的 值。但是,根据对数定义:log以a为底a的对数;如果a=1或=0那么log以a为底a的对数就可以等于一切实数(比 如log11也可以等于2,3,4,5,等等)】
通常我们将以10为底的对数叫常用对数(common logarithm),并把log10N记为lgN。另外,在科学计数中 常使用以无理数e=2.···为底数的对数,以e为底的对数称为自然对数(natural logarithm),并且把logeN 记为In N。根据对数的定义,可以得到对数与指数间的关系:
德国的史蒂非(1487-1567)在1544年所著的《整数算术》中,写出了两个数列,左边是等比数列(叫原 数),右边是一个等差数列(叫原数的代表,或称指数,德文是Exponent,有代表之意)。
对数函数的定义
复合函数单调性
对于复合函数 f [ g ( x)] y 的单调性,必须考虑 f (u)与 y u g ( x)的单调性,从而得出 f [ g ( x)] y 的单调性。
y f (x)
增函数 增函数 减函数 减函数
u g (x)
增函数 减函数 增函数 减函数
y f [ g ( x)]
y a (0 a 1)
x
y
y a (a 1)
x
O
x
图象的解析式是: a x (a 0且a 0)。此函数是指数函数。 y 当a 1时,函数在 , 上是增函数; 当0 a 1时,函数在 , 上是减函数。
y
y x
O
x
y x 在定义域 0, 上是增函数。
小结:在求解函数单调区间时必须注意单调区间 是定义域的某个区间。
1 例3.求函数y 2 解: x2 4x 3 0,
x 2 4 x 3
的单调递减区间。
1 令u x 4 x 3, 则y , 2 u 1 y 在定义域内是减函数。 2 2 2 又u x 4 x 3 x 2 1在1, 2 上是增函数,
2
1 函数y log2 6 x x 的单调递增区间为 3, 。 2
2
小结
(一)函数单调性解题应用.
1、已知单调性,求参数范围。(有时候需要讨论)
2、利用函数单调性求函数的值域或最值。 3、利用单调性求解不等式。(重在转化问题)
4、求函数单调区间的题型(包括求复合函数单调区间)
作业:
1.已知函数f(x)= loga(1-ax), (a>0,且a≠1) (1)求反函数f-1 (x) 及其定义域 (2)解关于x的不等式log a(1-ax) > f -1(1) 2.设a>0,且a≠1,解关于x的不等式
对数函数性质
对数函数性质对数函数是高中数学中的一个重要知识点,在许多数学、物理、化学等领域中都有广泛的应用。
在学习对数函数时,我们需要掌握对数函数的性质,在这里,我将为大家详细介绍对数函数的性质,希望能对大家的学习有所帮助。
一、对数函数定义及性质对数函数的公式为:y=loga x ,其中x、y、a都是实数,a>0,且a≠1。
1.定义域和值域(1)定义域:对数函数的定义域为正实数集R+(2)值域:对数函数的值域为实数集R2.奇偶性(1)当a>1时,对数函数是增函数,是奇函数。
(2)当0<a<1时,对数函数是减函数,是偶函数。
(3)对于任意的a,对数函数均不具有周期性。
3.单调性(1)当a>1时,对数函数是单调递增的;(2)当0<a<1时,对数函数是单调递减的;(3)对于任意的a,对数函数均单调。
4.对称轴当a>1时,对数函数的对称轴是y=x;当0<a<1时,对数函数的对称轴是y=-x。
5.渐近线当a>1时,对数函数的x轴渐近线是x轴;当0<a<1时,对数函数的y 轴渐近线是x轴。
二、对数函数在求解实际问题中的应用对数函数是一种用于描述关系紧密的现象的数学工具,它广泛应用于数学、物理、化学、生物等领域。
下面分别介绍对数函数在不同领域的应用。
1.经济学中的应用对数函数在经济学中有广泛的应用,例如在计算经济增长率和物价指数时常常用到对数函数。
(1)经济增长率的计算对数函数可以用来表示数据的增长趋势。
在经济学中,经济增长率是一个重要指标。
假设某国的国内生产总值(GDP)在2010年为100亿美元,在2011年增加到120亿美元,那么这个国家的GDP增长率为:所以,GDP的增长率为20%。
可以使用以下公式来计算增长率:增长率 = log10(120) - log10(100) = 0.0792。
因此,增长率为7.92%。
(2)物价指数的计算物价指数是描述物价水平的一个指标。
对数函数
对数函数一般地,如果a(a大于0,且a不等于1)的b次幂等于N,那么数b叫做以a为底N 的对数,记作log aN=b,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
一般地,函数y=log(a)X,(其中a是常数,a>0且a不等于1)叫做对数函数,它实际上就是指数函数的反函数,可表示为x=a^y。
因此指数函数里对于a的规定,同样适用于对数函数。
定义真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零,底数则要大于0且不为1 。
对数函数的底数为什么要大于0且不为1?【在一个普通对数式里a<0,或=1 的时候是会有相应b的值的。
但是,根据对数定义:log以a为底a的对数;如果a=1或=0那么log以a为底a的对数就可以等于一切实数(比如log1 1也可以等于2,3,4,5,等等)】通常我们将以10为底的对数叫常用对数(common logarithm),并把log10N记为lgN。
另外,在科学技术中常使用以无理数e=2.71828···为底数的对数,以e为底的对数称为自然对数(natural logarithm),并且把loge N 记为In N。
根据对数的定义,可以得到对数与指数间的关系:当a 〉0,a≠ 1时,a^X=N→X=logaN。
由指数函数与对数函数的这个关系,可以得到关于对数的如下结论:在实数范围内,负数和零没有对数loga a=1 log以a为底a的对数为1(a为常数) 恒过点(1,0)运算性质一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作log(a)(N)=b,其中a叫做对数的底数,N叫做真数。
对数函数化简问题底数则要>0且≠1 真数>0并且,在比较两个函数值时:如果底数一样,真数越大,函数值越大。
(a>1时)如果底数一样,真数越大,函数值越小。
对数函数课件
严格单调对数函数
非严格单调对数函数
奇函数
满足f(-x)=-f(x)的对数函数,如y=loge(-x)。
偶函数
满足f(-x)=f(x)的对数函数,如y=log10(x)。
03
对数函数的应用
Chapter
当对数函数的真数为1时,可以求解对数方程。
扩展定义的应用
05
对数函数习题及解答
Chapter
总结词
掌握对数函数的图像与性质是对数函数学习的基础。
详细描述
对数函数的图像与性质是学习对数函数的关键,需要了解对数函数的基本定义,掌握对数函数的单调性、奇偶性、周期性等性质,同时需要通过图像观察对数函数的增长趋势和变化规律。
VS
求解对数方程是学习对数函数的重要应用。
详细描述
对数方程是数学考试中常见的一类题目,需要学生掌握对数方程的解法,包括直接求解法和换底公式法等。在解题过程中需要注意方程的解是否有意义,以及解的合理性。
总结词
求解对数不等式是学习对数函数的又一重要应用。
对数不等式是数学考试中另一类常见的题目,需要学生掌握对数不等式的解法,包括利用单调性、换底公式等方法。在解题过程中同样需要注意不等式的解是否有意义,以及解的合理性。
对数函数既不是奇函数也不是偶函数。
奇偶性
02
对数函数的图像与性质
Ch。
自然对数函数图像
以10为底数的对数函数图像,如log10(x)。
常用对数函数图像
与自然对数函数图像关于直线y=x对称。
反对数函数图像
函数值随着自变量的增加而增加的对数函数,如y=log2(x)。
对数函数课件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对数函数
教学目标
1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能实行初步的应用.
(1) 能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系准确描绘对数函数的图象.
(2) 能把握指数函数与对数函数的实质去研究理解对数函数的性质,初步学会用对数函数的性质解决简单的问题.
2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维水平.
3.通过指数函数与对数函数在图象与性质上的对比,对学生实行对称美,简洁美等审美教育,调动学生学习数学的积极性.
教学建议
教材分析
(1) 对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这个重要数学思想的进一步理解与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决相关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.
(2) 本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.因为对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点.
(3) 本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适合,把握不住关键,所以应是本节课的难点.
教法建议
(1) 对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的理解逐步转化为对对数函数的理解,而且画对数函数图象时,既要考虑到对底数的分类讨论而且对每一类问题也能够多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.
(2) 在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师仅仅持续地反函数这条主线引导学生思考的方
向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提升学习兴趣.
教学设计示例
对数函数
教学目标
1. 在指数函数及反函数概念的基础上,使学生掌握对数函数的概念,能准确描绘对数函数的图像,掌握对数函数的性质,并初步应用性质解决简单问题.
2. 通过对数函数的学习,树立相互联系,相互转化的观点,渗透数形结合,分类讨论的思想.
3. 通过对数函数相关性质的研究,培养学生观察,分析,归纳的思维水平,调动学生学习的积极性.
教学重点,难点
重点是理解对数函数的定义,掌握图像和性质.
难点是由对数函数与指数函数互为反函数的关系,利用指数函数图像和性质得到对数函数的图像和性质.
教学方法
启发研讨式
教学用具
投影仪
教学过程
一. 引入新课
今天我们一起再来研究一种常见函数.前面的几种函数都是以形式定义的方式给出的,今天就是研究指数函数的反函数-----对数函数.
2.8对数函数(板书)
一. 对数函数的概念
1. 定义:形如叫做对数函数.
因为定义就是从反函数角度给出的,所以下面我们的研究就从这个角度出发.如从定义中你能了解对数函数的什么性质吗?最初步的理解是什么?
教师可提示学生从反函数的三定与三反去理解,从而找出对数函数的定义域为,对数函数的值域为,且底数就是指数函数中的,故有着相同的限制条
件.
在此基础上,我们将一起来研究对数函数的图像与性质.
二.对数函数的图像与性质(板书)
1. 作图方法
提问学生打算用什么方法来画函数图像?学生应能想到利用互为反函数的两个函数图像之间的关系,利用图像变换法画图.同时教师也应指出用列表描点法也是能够的,让学生从中选出一种,最终确定用图像变换法画图.
因为指数函数的图像按和分成两种不同的类型,故对数函数的图像也应
以1为分界线分成两种情况和,并分别以和为例画图.
具体操作时,要求学生做到:
(1) 指数函数和的图像要尽量准确(关键点的位置,图像的变化趋势等).
(2) 画出直线.
(3) 的图像在翻折时先将特殊点对称点找到,变化趋势由靠近轴
对称为逐渐靠近轴,而的图像在翻折时可提示学生分两段翻折,在左侧的先翻,然后再翻在右侧的部分.
学生在笔记本完成具体操作,教师在学生完成后将关键步骤在黑板上演示一遍,画出
和的图像.(此时同底的指数函数和对数函数画在同一坐标系内)如图:
2. 草图.
教师画完图后再利用投影仪将和的图像画在同一坐标系内,如图:
然后提出让学生根据图像说出对数函数的性质(要求从几何与代数两个角度说明)
3. 性质
(1) 定义域:
(2) 值域:
由以上两条可说明图像位于轴的右侧.
(3) 截距:令得,即在轴上的截距为1,与轴无交点即以轴为渐近线.
(4) 奇偶性:既不是奇函数也不是偶函数,即它不关于原点对称,也不关于轴对称.
(5) 单调性:与相关.当时,在上是增函数.即图像是上升的
当时,在上是减函数,即图像是下降的.
之后能够追问学生有没有最大值和最小值,当得到否定答案时,能够再问能否看待何时函数值为正?学生看着图能够答出应有两种情况:
当时,有;当时,有.
学生回答后教师可指导学生巧记这个结论的方法:当底数与真数在1的同侧时函数值为正,当底数与真数在1的两侧时,函数值为负,并把它当作第(6)条性质板书记下来.
最后教师在总结时,强调记住性质的关键在于要脑中有图.且应将其性质与指数函数的性质对比记忆.(特别强调它们单调性的一致性)
对图像和性质有了一定的了解后,一起来看看它们的应用.
三.简单应用 (板书)
1. 研究相关函数的性质
例1. 求下列函数的定义域:
(1) (2) (3)
先由学生依次列出相对应的不等式,其中特别要注意对数中真数和底数的条件限制.
2. 利用单调性比较大小(板书)
例2. 比较下列各组数的大小
(1)与; (2)与;
(3)与;(4)与.
让学生先说出各组数的特征即它们的底数相同,故能够构造对数函数利用单调性来比大小.最后让学生以其中一组为例写出详细的比较过程.
三.巩固练习
练习:若,求的取值范围.
四.小结
五.作业略
板书设计
2.8对数函数
一. 概
念
1.定义 2.理解
二.图像与性质
1.作图方法
2.草图
图1 图2
3.性质
(1) 定义域(2)值域(3)截距(4)奇偶性(5)单调性
三.应用
1.相关函数的研究
例1 例2
练习
探究活动
(1) 已知是函数的反函数,且都有意义.
①求;
②试比较与4的大小,并说明理由.
(2) 设常数则当满足什么关系时,的解集为
答案:
三.巩固练习
练习:若,求的取值范围.
四.小结
五.作业略
板书设计
2.8对数函数
一. 概
念
1.定义 2.理解
二.图像与性质
1.作图方法
2.草图
图1 图2
3.性质
(1) 定义域(2)值域(3)截距(4)奇偶性(5)单调性
三.应用
1.相关函数的研究
例1 例2
练习
探究活动
(1) 已知是函数的反函数,且都有意义.
①求;
②试比较与4的大小,并说明理由.
(2) 设常数则当满足什么关系时,的解集为
答案:。