2020年成人高考专升本高等数学一知识点汇总复习(自编)

合集下载

成人高考(专升本)高等数学(一)知识点复习资料

成人高考(专升本)高等数学(一)知识点复习资料

它们是作为相应三角函数的反函数定义出来的,由于
[答]
.
,y=cosx在定义域内不单调,所以对于
2.初等函数
1.直线的倾角和斜率:

2.直线的斜截式方程: 3.两 直 线 的 平 行 与 垂 直 : 己 知 两 条 直 线
时,函数
的左极限是 A,记作

所谓初等函数是指由基本初等函数经过有限次的四则
,只考虑
母 y换成 x得
(1)各组函数中,两个函数相等的是
3)对分段函数求函数值时,不同点的函数值应代入相 结论:
应范围的公式中去求;
这就是
的反函数。
A.
4)分段函数的定义域是各段定义域的并集。
(1)直接函数
与它的反函数 y=

例 4.分段函数
图形,必定对称于直线 y=x(一般地,二者是不同的函
B.
数,其图形是不同的曲线);
(2)
是微积分中常用的指数函数。 4.对数函数
例如,匀速直线运动路程公式 示速度)
(其中 v表 内自变量 x的不同值,函数不能用一个统一的公式表示, 是 一 个 函 数 , 则 称 它 为 而是要用两个或两个以上的公式来表示。这类函数称为
的反函数,记为
自由落体运动
(其中 g为重力加速度)
“分段函数”。
3.了解函数
与其反函数
之间的关
系(定义域、值域、图像),会求单调函数的反函数。
4.熟练掌握函数的四则运算与复合运算。
5.掌握基本初等函数的性质及其图像。
6.了解初等函数的概念。
7.会建立简单实际问题的函数关系式。
(4)设
,则
例 5.函数的性质
它的定义域是

专升本数学知识汇总

专升本数学知识汇总

专升本数学知识汇总对于许多想要通过专升本来提升学历的同学来说,数学往往是一个重点和难点科目。

下面就为大家汇总一下专升本数学所涉及的主要知识。

一、函数与极限函数是数学中的重要概念,专升本考试中常见的函数类型包括:一元一次函数、一元二次函数、反比例函数、指数函数、对数函数、三角函数等。

对于函数,需要掌握其定义域、值域、单调性、奇偶性、周期性等性质。

例如,一元二次函数的图像是一个抛物线,其对称轴、顶点坐标等特征需要牢记。

极限是微积分的基础,也是专升本数学中的重点内容。

极限的计算方法有多种,如代入法、等价无穷小替换、洛必达法则等。

理解极限的概念和性质,熟练掌握极限的计算方法,对于后续学习导数和积分至关重要。

二、导数与微分导数是函数的变化率,它反映了函数在某一点处的瞬时变化情况。

导数的定义、几何意义和物理意义都需要清楚理解。

常见函数的导数公式要牢记,如:(x^n)'= nx^(n 1) 、(sin x)'= cos x 、(cos x)'= sin x 等。

同时,还要掌握导数的四则运算、复合函数求导法则。

微分则是导数的一种应用,它可以近似计算函数的增量。

三、积分积分包括不定积分和定积分。

不定积分是求导的逆运算,而定积分则用于计算曲线围成的面积、旋转体的体积等。

常用的积分公式需要熟练掌握,如:∫x^n dx =(1 /(n + 1))x^(n + 1) + C 等。

积分的计算方法有换元积分法、分部积分法等。

四、向量代数与空间解析几何向量是既有大小又有方向的量,在空间中具有重要的应用。

需要掌握向量的加减法、数乘运算、点乘和叉乘运算等。

空间解析几何中,直线和平面的方程是重点。

如直线的点向式方程、一般式方程,平面的点法式方程、一般式方程等。

五、多元函数微分学多元函数包括二元函数、三元函数等。

需要掌握多元函数的偏导数、全微分的概念和计算方法,以及多元函数的极值和条件极值问题。

六、多元函数积分学包括二重积分和三重积分。

2020年最新整理成人高考专升本《高数一》章节考点知识汇总

2020年最新整理成人高考专升本《高数一》章节考点知识汇总

2020年最新整理成人高考专升本《高数一》章节考点知识汇总极限、连续1[.单选题]下列函数在(-∞,+∞)内单调递减的是()。

A.y=-xB.y=x2C.y=-x2D.y=cosx[答案]A2[.单选题]曲线y=x3-6x+2的拐点坐标()。

A.(0,4)B.(0,2)C.(0,3)D.(0,-2)[答案]B3[.单选题]若cotx是f(x)- 个原函数,则f(x)等于()。

A.csc2xB.-csc2xC.sec2xD.-sec2x[答案]B4[.单选题]当x→0时, sin(x²+5³*)与x²比较是()。

A.较高阶无穷小量B.较低阶无穷小量C.等价无穷小量D.同阶但不等价无穷小量[答案]C8.当x-→0时, x²是2x的( )。

A.低阶无穷小C.同阶但不等价无穷小D.高阶无穷小[答案]D9[.单选题]当x→0时,2x+x2是x的()。

A.等价无穷小B.较低阶无穷小C.较高阶无穷小D.同阶但不等价的无穷小[答案]D10[.单选题]函数f(x)在点x=x0处连续是f(x)在x0处可导的()。

A.充分非必要条件B.必要非充分条件C.充分必要条件D.既非充分条件也非必要条件[答案]B一元函数微分学当x→>0时,2x+x²与x²比较的是()A.高阶无穷小B.低阶无穷小C.同阶但不等价无穷小[答案]B函数y= sinx在区间[0 , π]上满足罗尔定理的ξ=A.0B.π/4C.π/2D.π[答案]C[.单选题]函数y=x2-x+1在区间[-1,3]上满足拉格朗日中值定理的ξ=()。

A.-3/4B.0C.3/4D.1[答案]D[解析]y=x2-x+1在[-1,3]上满足拉格朗日中值定理,设y=cos3x ,则y'=()A.1/3sin3xB.-1/3sin3xC.3sin3xD.-3sin3x[答案]D一元函数积分学1.设函数f(x)=sinx,则不定积分ff"(x)dx=()A.sinx+CB.cosx+CC.-sinx+CD.-cosx+C[答案]AA.>0B.<0C.=0D.不存在[答案]C[解析][解析]被积函数sin5x为奇函数,积分区间[-1,1]为对称区间,由定积分的对称性质知选C。

成人高考专升本数学一知识点

成人高考专升本数学一知识点

成人高考专升本数学一知识点一、函数、极限和连续。

1. 函数。

- 函数的概念。

- 设D是非空实数集,如果对于D中的任意一个数x,按照某种确定的对应关系f,在实数集R中都有唯一确定的数y与之对应,则称f:D→ R是定义在D上的一个函数,记作y = f(x),x∈ D。

x称为自变量,y称为因变量,D称为函数的定义域,函数值f(x)的全体所构成的集合称为函数的值域。

- 函数的性质。

- 单调性:设函数y = f(x)在区间I上有定义,如果对于区间I上任意两点x_1,x_2,当x_1时,恒有f(x_1)(或f(x_1)>f(x_2)),则称函数y = f(x)在区间I上是单调增加(或单调减少)的。

- 奇偶性:设函数y = f(x)的定义域D关于原点对称,如果对于任意x∈D,都有f(-x)=f(x),则称y = f(x)为偶函数;如果对于任意x∈ D,都有f(-x)= - f(x),则称y = f(x)为奇函数。

- 周期性:设函数y = f(x)的定义域为D,如果存在一个正数T≠0,使得对于任意x∈ D,有x + T∈ D且f(x+T)=f(x),则称y = f(x)是周期函数,T称为函数y = f(x)的周期。

通常我们说的周期是指最小正周期。

- 有界性:设函数y = f(x)在区间I上有定义,如果存在正数M,使得对于任意x∈ I,都有| f(x)|≤ M,则称函数y = f(x)在区间I上有界;否则称函数y = f(x)在区间I上无界。

- 反函数。

- 设函数y = f(x)的定义域为D,值域为W。

如果对于W中的任意一个y,在D中有唯一确定的x使得y = f(x),则在W上定义了一个函数,这个函数称为y =f(x)的反函数,记作x = f^-1(y)。

习惯上,我们把y = f(x)的反函数记作y = f^-1(x)。

- 复合函数。

- 设函数y = f(u)的定义域为D_1,函数u = g(x)的定义域为D_2,且g(x)的值域R_2⊆ D_1,则由y = f(u)和u = g(x)复合而成的函数y = f(g(x))称为复合函数,u称为中间变量。

成人高考专升本高等数学(一)复习资料

成人高考专升本高等数学(一)复习资料

第一阶段(3月初)主要任务是全面复习,夯实基础。

这个阶段,要按照考试大纲所列复习考试内容,全面系统地复习基础知识,对基本概念与基本原理狠下功夫,对两者的理解要深、透、不留死角。

复习基础知识时要讲究方法,注意各种知识点的归纳与类比、分析与综合,注意各知识点之间纵向与横向的联系,建立基础知识框架,总体把握基础知识的脉络。

第二阶段(8月初)主要任务是重点复习,强化练习。

这个阶段,要抓住复习重点,加强考试热点、常考知识点的复习,同时强化练习,掌握基本方法、基本技能,提高解题能力。

第三阶段(9月底10月初)主要任务是冲刺复习,模拟测试。

这个阶段,在重点复习的同时,要进行模拟测试。

通过模拟测试能发现自己的薄弱环节,从而拾遗补缺,针对薄弱环节重点复习。

同时,通过模拟测试,有利于熟悉考试情景,合理安排答题时间,调整应考心里,从而提高应试能力。

第一章极限和连续第一节极限[复习考试要求]1.理解极限的概念(对极限定义、、等形式的描述不作要求)。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

2.了解极限的有关性质,掌握极限的四则运算法则。

3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。

会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。

会运用等价无穷小量代换求极限。

4.熟练掌握用两个重要极限求极限的方法。

第二节函数的连续性(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处连续性的方法 (2)会求函数的间断点。

(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单的命题。

(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限 精选考题例题1 设,0≠b 当0→x 时,bx sin 是2x 的( ) 高阶无穷小量 等阶无穷小量 同阶但不等价无穷小量 低阶无穷小量 【答案】 D【考点】 本题考查了无穷小量的比较的知识点. 【解析】 因为,1lim 1lim sin lim sin lim 00020∞==⋅⋅=→→→→x b x b bxbx x bx x x x x 故bx sin 是比2x 低阶的无穷小量,即bx sin 是2x 的低阶无穷小量.例题2 函数22)(-+=x x x f 的间断点为=x _______________. 【答案】 2【考点】 本题考查了函数的间断点的知识点. 【解析】 函数22)(-+=x x x f 在2=x 处无定义,故2=x 为)(x f 的间断 点.例题3 计算.1)1sin(lim 21--→x x x 解:.2111lim 1)1(lim 1)1sin(lim 12121=+=--=--→→→x x x x x x x x 第二章 一元函数微分学第一节 导数与微分(一)导数与微分(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义要求函数在一点处的导数的方法。

成人高考专升本高数必过知识点

成人高考专升本高数必过知识点

专升本高等数学科目题型及考情分析一、高等数学科目题型分析高等数学作为成人高考专升本经管类(高数二)、理工类(高数一)专业考察科目,二者考试的题型都相同,包括如下表所示:题型题数每题分值总共分值一、选择题共10小题4分40分二、填空题共10小题4分40分三、解答题共8小题8-10分70分二、高等数学科目考情分析(一)、考试比重分析数学科目总分为150分,其中单选题共10小题,每小题4分,共40分.填空题共10小题,每小题4分,共40分。

简答题共8小题,每小题8-10分,共70分。

不管是从年份,还是从省份来看,专升本经管类、理工科的录取分数线一般都是维持在100-130分左右,所以我们参考的学生只要三科总分达到150分以上,平均到每门科目上只需要50分,考过是没有问题的。

高等数学这门科目,对于很多参考的学员来说是一座大山,很多学员数学基础都相对比较差,考试基本考蒙,甚至是不写,直接填完选择题就交卷,战略上完全放弃了这门科目,其实这种方法是不可取的,高等数学这门科目实际在学习的过程中你会发现,完全是可以拿到高分的,最怕的是还没开始就打退堂的学员,因为成人高考作为一种基本的水平性的测试,试卷考察的内容都比较浅显和简单。

只要用心、静心、耐心去学,不愁拿不到高分。

通过高等数学的直播课会教大家,常考的题型和对应的解题思路,直播课下来,你会发现有不一样的收获。

(二)、考点分析由于高数一和高数二在大体知识点上差异不大,所以我们会放在一起去讲,只有个别细微的知识点我们会单独标出,比如概率分布就是高数二的学员要考察,而高数一的学员不需要考察,大家只要对考点熟悉,常用的定理、公式记住,那么做题就很轻松,因为每年基本的题目分值就占到了110-120分,所以基础的题目把握了,考试就很轻松了。

那么我们一起来看下考试的知识点。

137138三、高等数学各部分考情分析(一)单项选择题本部分共计10小题,每小题4分,共40分,下面我们一起梳理单项选择题的考试知识点和真题解析。

成人高考专升本高等数学(一)考试辅导复习资料【全】

成人高考专升本高等数学(一)考试辅导复习资料【全】

成人高等学校招生考试专升本高等数学(一)(适合2022年及往后的成考复习)函数、极限与连续本章内容一、函数二、极限三、连续本章约13%,20分选择题、填空题、解答题第一节函数知识点归纳●函数的概念、性质●反函数●复合函数●基本初等函数●初等函数考试要求1、理解概念会求函数包括分段函数的定义域、表达式及函数值,并会作出简单的分段函数图象。

2、掌握判断掌握函数的单调性、奇偶性、有界性和周期性定义,会判断所给函数的相关性质。

3、理解函数理解函数与它的反函数之间的关系,会求单调函数的反函数。

4、掌握过程掌握函数四则运算与复合运算,熟练掌握复合函数的复合过程。

5、掌握性质掌握基本初等函数的简单性质及其图象。

6、掌握概念掌握初等函数的概念。

第一节函数一、函数的概念定理设x和y是两个变量,D是一个给定的数集,如果对于每个数x∈D,变量y按照一定法则总有确定的数值和它对应,则称y是x的函数,记作y=f(x).y是因变量,x是自变量。

函数值全体组成的数集W={y|y=f(x),x∈D} 称为函数的值域。

函数概念的两个基本要素对于给定的函数y=f(x),当函数的定义域D确定后,按照对应法则f,因变量的变化范围也随之确定,所以定义域和对应法则就是确定一个函数的两个要素。

两个函数只有在它们的定义域和对应法则都相同时,才是相同的。

例:研究函数y=x和y=2是不是表示相同的函数。

解:y=x是定义在(−∞,+∞)上的函数关系,y=2是定义在(−∞,0)∪(0,+∞)上的函数关系,它们定义域不同,所以这两个函数是不同的函数关系。

例:研究下面这两个函数是不是相同的函数关系f(x)=x,g(x)=2解:f(x)=x和g(x)=2是定义在(−∞,+∞)上的函数关系,f(x)的值域在(−∞,+∞)上的函数,g(x)的值域在[0,+∞),它们定义域相同,值域不同函数。

函数的定义域(1)在分式中,分母不能为零;(2)在根式中,负数不能开偶次方根;(3)在对数式中,真数必须大于零,底数大于零且不等于1;(4)在反三角函数式中,应满足反三角函数的定义要求;(5)如果函数的解析式中含有分式、根式、对数式和反三角函数式中的两者或两者以上的,求定义域时应取各部分定义域的交集。

成人高考专升本高数一复习资料

成人高考专升本高数一复习资料

精品文档. 成人高考高数一复习资料第一章极限和连续第一节极限[复习考试要求]1.理解极限的概念(对极限定义、、等形式的描述不作要求)。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

2.了解极限的有关性质,掌握极限的四则运算法则。

3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。

会进行无穷小量阶的比较(高阶、低阶、同阶和等价)。

会运用等价无穷小量代换求极限。

4.熟练掌握用两个重要极限求极限的方法。

[主要知识内容](一)数列的极限1.数列按一定顺序排列的无穷多个数称为数列,记作,其中每一个数称为数列的项,第n项。

为数列的一般项或通项,例如(1)1,3,5,…,,…(2)(3)(4)1,0,1,0,…,…都是数列。

在几何上,数列可看作数轴上的一个动点,它依次取数轴上的点。

2.数列的极限定义对于数列,如果当时,无限地趋于一个常数A,则称当n 趋于无穷大时,数列以常数A为极限,或称数列收敛于A,记作否则称数列没有极限,如果数列没有极限,就称数列是发散的。

数列极限的几何意义:将常数A及数列的项依次用数轴上的点表示,若数列以A为极限,就表示当n趋于无穷大时,点可以无限靠近点A。

(二)数列极限的性质定理1.1(惟一性)若数列收敛,则其极限值必定惟一。

定理1.2(有界性)若数列收敛,则它必定有界。

注意:这个定理反过来不成立,也就是说,有界数列不一定收敛。

定理 1.3(两面夹定理)若数列,,满足不等式且。

定理1.4若数列单调有界,则它必有极限。

下面我们给出数列极限的四则运算定理。

定理1.5(1)(2)(3)当时,(三)函数极限的概念1.当时函数的极限(1)当时的极限定义对于函数,如果当x无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的极限是A,记作或(当时)(2)当时的左极限定义对于函数,如果当x从的左边无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的左极限是A,记作或例如函数当x从0的左边无限地趋于0时,无限地趋于一个常数1.我们称:当时,的左极限是1,即有(3)当时,的右极限定义对于函数,如果当x从的右边无限地趋于时,函数无限地趋于一个常数A,则称当时,函数的右极限是A,记作或又如函数当x从0的右边无限地趋于0时,无限地趋于一个常数-1 。

2020年成人高等学校招生全国统一考试专升本 高等数学(一)

2020年成人高等学校招生全国统一考试专升本 高等数学(一)

6.设函数y =x +2s i n x ,则d y =( )A .(1+c o s x )dx B .(1+2c o s x )dx C .(1-c o s x )dx D .(1-2c o s x )d x 7.设函数z =x 2-4y 2,则d z =( )A .x d x -4y d yB .x d x -y d yC .2x d x -4y d yD .2x d x -8y d y8.方程x 2+y 2-z 2=0表示的二次曲面是( )A .圆锥面B .球面C .旋转抛物面D .柱面9.l i m x ң1x 2+x +1x 2-x +2=( )A .2B .1C .32D .1210.微分方程y '+y =0的通解为y =( )A .C x e xB .C x e -x C .C exD .C e-x 第Ⅱ卷(非选择题,共110分)得分评卷人二、填空题(11~20小题,每小题4分,共40分)11.ʏ1-ɕe xd x =.12.设函数y =e 2x,则d y =.13.l i m x ң0s i n x2x2=.14.ʏ(3x +2s i n x )dx =.15.曲线y =a r c t a n (3x +1)在点0,π4处切线的斜率为.16.若函数f (x )x 2-2,x ɤ0,a +s i n x ,x >0在x =0处连续,则a =.17.过点(-1,2,3)且与直线x -12=y +23=z -24垂直的平面方程为.18.函数f (x )=x 3-6x 的单调递减区间为.19.区域D ={(x ,y )|1ɤx ɤ2,1ɤy ɤx 2}的面积为.20.方程y 3+l n y -x 2=0在点(1,1)的某邻域确定隐函数y =y (x ),则d y d xx =1=.得分评卷人三、解答题(21~28题,共70分.解答应写出推理㊁演算步骤) 21.(本题满分8分)计算ʏx s i n x d x .22.(本题满分8分)已知函数f (x )=e xc o s x ,求f ᵡπ2.23.(本题满分8分)计算l i m x ң01-c o s x -x 22s i n 2x.24.(本题满分8分)计算ʏ1031+x dx.参考答案一㊁选择题1.ʌ答案ʏʌ解析ɔʏ1-ɕex d x =ex1-ɕ=e -0=e.12.ʌ答案ɔ2e 2xdx ʌ解析ɔy '=(e 2x )'=2e 2x ,故d y =y'd x =2e 2xd x .13.ʌ答案ɔ1ʌ解析ɔx ң0时,x 2ң0,故有l i m x ң0s i n x 2x2=1.14.ʌ答案ɔ32x 2-2c o s x +C ʌ解析ɔʏ(3x +2s i n x )dx =32x 2-2c o s x +C .15.ʌ答案ɔ32ʌ解析ɔy '=[a r c t a n (3x +1)]'=31+(3x +1)2,故曲线在点0,π4处的切线斜率为y'x =031+(3x +1)2x =0=32.16.ʌ答案ɔ-2ʌ解析ɔ由于f (x )在x =0处连续,故有l i m x ң0-f (x )=l i m x ң0+f (x )=f (0),而f (0)=-2,l i m x ң0-f (x )=l i m x ң0-(x 2-2)=-2,l i m x ң0+f (x )=l i m x ң0+(a +s i n x )=a ,因此a =-2.17.ʌ答案ɔ2x +3y +4z =16ʌ解析ɔ已知直线与所求平面垂直,故所求平面的法向量为n =(2,3,4),因此所求平面的方程为2(x +1)+3(y -2)+4(z -3)=0,即2x +3y +4z =16.18.ʌ答案ɔ(-2,2)ʌ解析ɔ易知f '(x )=3x 2-6,令f '(x )<0,则有-2<x <2,故f (x )的单调递减区间为(-2,2).19.ʌ答案ɔ43ʌ解析ɔ区城D 的面积为ʏ21(x 2-1)d x =13x 3-x21=43.20.ʌ答案ɔ12ʌ解析ɔ方程两边对x 求导,得3y 2㊃d y d x +1y ㊃d y d x -2x =0,即d y d x =2x y 3y 3+1,故有d y d x x =1=2x y 3y 3+1x =1=2ˑ1ˑ13ˑ13+1=12.三、解答题21.ʏxs i n x d x =-ʏx d (c o s x )=-(x c o s x -ʏc o s xd x )=-xc o s x +ʏc o s xd x =-xc o s x +s i n x +C .22.f'(x )=e x c o s x +e x ㊃(c o s x )'=e xco s x -e xs i n x =e x(c o s x -s i n x ),fᵡ(x )=e x (c o s x -s i n x )+e x (c o s x -s i n x )'=e x(c o s x -s i n x )+e x(-s i n x -c o s x )=-2e xs i n x ,故有f ᵡπ2=-2e π2s i n π2=-2e π2.23.l i m x ң01-c o s x -x 22s i n 2x =l i m x ң01-c o s x 2s i n 2x -l i m x ң0x 22s i n 2x=l i m x ң012x 22x 2-12l i m x ң0x 2x 2=14-12=-14.24.ʏ1031+x d x =ʏ10(1+x )13d (x +1)=11+13(1+x )13+110=34(1+x )4310=34(243-1).25.原方程对应的特征方程为r 2-r -2=0,。

2023福建成人高考专升本高等数学一知识点

2023福建成人高考专升本高等数学一知识点

2023福建成人高考专升本高等数学一知识点一、导数与微分1. 导数的概念导数的概念是高等数学中非常重要的基础知识之一。

导数表示了函数在某一点上的变化率,可以用来描述函数的增减性、凹凸性以及函数图像的特征。

在学习导数的过程中,需要掌握导数的定义、性质以及一些常见函数的导数表达式。

2. 导数的计算导数的计算是导数知识点的核心内容之一。

在计算导数时,需要掌握基本的导数计算公式,例如幂函数的导数、三角函数的导数、指数函数的导数等。

还需要掌握基本的导数运算法则,例如和差法则、积法则、商法则等。

在解决实际问题时,还需要灵活运用导数的定义和性质进行计算。

3. 微分的概念微分是导数的基本应用之一,它表示了函数在某一点附近的近似变化量。

微分可以应用于求解函数的极值、函数的最优化问题等实际应用中。

在学习微分时,需要掌握微分的定义、微分的计算,以及微分在实际问题中的应用。

二、不定积分与定积分1. 不定积分的概念与性质不定积分是求解函数原函数的过程,它是积分的基本形式之一。

在学习不定积分时,需要掌握不定积分的概念、基本性质、基本的不定积分公式以及一些特殊函数的不定积分表达式。

2. 不定积分的计算方法在计算不定积分时,需要掌握基本的不定积分计算规则,例如换元积分法、分部积分法、有理函数积分法等。

还需要熟练掌握积分的计算技巧,灵活应用积分的基本性质和公式进行计算。

3. 定积分的概念与计算定积分是积分的另一种形式,它表示了函数在一个区间上的累积变化量。

在学习定积分时,需要掌握定积分的概念、性质,以及定积分的计算方法,包括定积分的几何意义、定积分的计算公式、定积分的性质等。

三、级数与幂级数1. 级数的概念与性质级数是一种特殊的数列,它是指将一个数列的各项按照一定的顺序相加得到的一种新的数列。

在学习级数时,需要掌握级数的概念、收敛性、发散性,以及一些常见级数的性质和判别方法。

2. 幂级数的概念与收敛域幂级数是级数的一种特殊形式,它表示了一个形如∑(an*x^n)的无穷级数。

成教专升本高中数学知识点总结(最全版)

成教专升本高中数学知识点总结(最全版)
不等式
解集

把 看成一个整体,化成 , 型不等式来求解
(2)一元二次不等式的解法
判别式
二次函数 的图象
一元二次方程 的根
(其中
无实根
的解集

的解集
〖1.2〗函数及其表示
【1.2.1】函数的概念
(1)函数的概念
①设 、 是两个非空的数集,如果按照某种对应法则 ,对于集合 中任何一个数 ,在集合 中都有唯一确定的数 和它对应,那么这样的对应(包括集合 , 以及 到 的对应法则 )叫做集合 到 的一个函数,记作 .
②函数的三要素:定义域、值域和对应法则.
③只有定义域相同,且对应法则也相同的两个函数才是同一函数.
(2)区间的概念及表示法
①设 是两个实数,且 ,满足 的实数 的集合叫做闭区间,记做 ;满足 的实数 的集合叫做开区间,记做 ;满足 ,或 的实数 的集合叫做半开半闭区间,分别记做 , ;满足 的实数 的集合分别记做 .
⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.
⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.
⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.
⑧函数的单调性法.
【1.2.2】函数的表示法
(5)函数的表示方法
表示函数的方法,常用的有解析法、列表法、图象法三种.
解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.
(6)映射的概念
①设 、 是两个集合,如果按照某种对应法则 ,对于集合 中任何一个元素,在集合 中都有唯一的元素和它对应,那么这样的对应(包括集合 , 以及 到 的对应法则 )叫做集合 到 的映射,记作 .

全国成人高考专升本高等数学(一)考点汇编

全国成人高考专升本高等数学(一)考点汇编

第一章极限和连续【考点1】极限的三大性质1.唯一性2.局部保号性3.局部有界性【考点2】极限的四大运算法则若lim f (x )=A ,lim g (x )=B ,那么1.lim f (x )士g (x )=lim f (x )士lim g (x )=A 士B2.lim f (x ).g (x )=lim f (x ).lim g (x )=A .B3.limf g x x =l l i i m m f g x x =AB(B 子0)4.lim f (x )g (x )=lim f (x )lim g (x )=A B (A >0)【考点3】夹逼准则若数列{xn },{y n },{z n }满足y n <x n <z n ,且l n y n =lnz n =a ,则数列的极限存在,且l nx n =a若函数f (x ),g (x ),h (x )满足g (x )<f (x )<h (x ),且lim g (x )=lim h (x )=A ,则lim f (x )存在,且lim f (x )=A 【考点4】无穷小量与无穷大量的比阶是在同一自变量变化过程中的无穷小,且a 子0若lim=0,则β是a 的高阶无穷小,记为β=o (a );若lim =父,则β是a 的低阶无穷小;若lim =c 产0,则β是a 的同阶无穷小;若lim =1,则β是a 的等价无穷小,记为β~a ;若lim=c 产0(k >0),则β是a 的k 阶无穷小。

【考点5】无穷小量的性质无穷小乘有界函数仍为无穷小;有限个无穷小的和仍为无穷小;有限个无穷小的乘积仍为无穷小。

【考点6】两个重要极限1.lim =1x →0x (1)x2.lx1+x )|=e 【考点7】连续与间断(|l x|l l x=lx=f (x 0)若f (x 0+0),f (x 0−0)均存在,则x 0是第一类间断点f (x 0+0)=f (x 0−0)产f (x 0)时,x 0为可去间断点f (x 0+0)产f (x 0−0)时,x 0为跳跃间断点若f (x 0+0),f (x 0−0)至少有一个不存在,则x 0是第二类间断点极限不存在且为无穷大时,x 0为无穷间断点极限不存在且为振荡时,x 0为振荡间断点sin x 连续:〈第二章一元函数微分学【考点1】导数的概念与几何意义增量式:f '(x 0)=ix,f '(x )=ix(证明用)差值式:f '(x 0)=lx(计算用)切线方程:y −f (x 0)=f '(x 0)(x −x 0)法线方程:y −f (x 0)=−(x −x 0)(f '(x 0)士0)【考点2】导数的计算C '=0(x a)'=axa −1(cos x )'=−sin x (tan x )'=sec 2x(sec x )'=sec x tan x (csc x )'=−csc x cot x (e x)'=ex(log a x )'=(arcsin x )'=(arccos x )'=−(arccot x )'=−(ln (x +))'=(u 土v )'=u '土v '(Cu )'=Cu '(uv )'=u 'v +uv '1.复合函数求导2.反函数求导3.隐函数求导4.幂指函数求导5.参数方程求导6.分段函数求导(sin x )'=cos x (cot x )'=−csc 2x(a x)'=axln a(ln x )'=(arctan x )'=(ln (x +))'='=(v 士0)1−x1−x【考点3】微分中值定理1.罗尔定理:设f (x )在[a ,b ]内连续,(a ,b )内可导,且f (a )=f (b ),则二ξe (a ,b ),使得f '(ξ)=0.2.拉格朗日中值定理:设f (x )在[a ,b ]内连续,(a ,b )内可导,则二ξe (a ,b ),使得f '(ξ)=f (b )−f (a ).【考点4】洛必达法则若lim f (x )=0(伪/?),lim g (x )=0(伪),f (x ),g (x )在点x 0的某去心邻域内可导,且limf '(x )存在或为无穷大,则limf (x )=limf '(x )x →x 0g '(x )x →x 0g (x )x →x 0g '(x )【考点5】单调性与极值1.单调性设函数y =f (x )在[a ,b ]上连续,在(a ,b )内可导如果在(a ,b )内f '(x )之0,且等号仅在有限个点成立,则y =f (x )在上单调递增;如果在(a ,b )内f '(x )<0,且等号仅在有限个点成立,则y =f (x )在上单调递减;2.极值f (x )在x =x 0处连续,且在x 0的某去心邻域内可导若x e (x 0−δ,x 0)时,f '(x )<0,x e (x 0,x 0+δ)时,f '(x )>0,则x 0为极小值点若x e (x 0−δ,x 0)时,f '(x )>0,x e (x 0,x 0+δ)时,f '(x )<0,则x 0为极大值点【考点6】凹凸性与拐点b −ax →x 0x →x 0设y=f(x)在[a,b]上连续,在(a,b)内二阶可导若f''(x)>0,则称y=f(x)为凹函数;若f''(x)<0,则称y=f(x)为凸函数2.拐点若f(x)在x0处连续,在x0的某去心邻域二阶可导,f''(x)在点(x0,f(x0))两侧变号(f'(x)单调性相反),则点(x0,f(x0))为y=f(x)的拐点【考点7】曲线的渐近线1.铅直渐近线:若x mx0f(x)=伪,则x=x0为一条铅直渐近线(x→x+0)(x→x−0)2.水平渐近线:若lx=b,则y=b为一条水平渐近线第三章一元函数积分学【考点1】原函数与不定积分的概念1.原函数的定义:如果F(x)在区间I上可导,而且对v x=I,都有F'(x)=f(x)或dF(x)=f(x)dx,则称函数F(x)为f(x)在区间I上的一个原函数2.原函数存在定理①连续函数必有原函数②含有跳跃、可去、无穷间断点的函数一定没有原函数③含有震荡间断点的函数可能有也可能没有原函数3.原函数之间的关系:如果F(x)是f(x)的一个原函数,则F(x)+C也是f(x)的原函数,其中C为任意常数,这说明,原函数若存在,不唯一。

2020成人高考高升专数学知识点及公式

2020成人高考高升专数学知识点及公式

2020成人高考高升专数学常用知识点及公式温馨提示:数学公式不能死记硬背,而是理解掌握后灵活运用,上课第一章 集合和简易逻辑知识点1:交集、并集、补集1、交集:集合A 与集合B 的交集记作A ∩B ,取A 、B 两集合的公共元素2、并集:集合A 与集合B 的并集记作A ∪B ,取A 、B 两集合的全部元素3、补集:已知全集U ,集合A 的补集记作A C u ,取U 中所有不属于A 的元素 解析:集合的交集或并集主要以列举法或不等式的形式出现知识点2:简易逻辑概念:在一个数学命题中,往往由条件甲和结论乙两部分构成,写成“如果甲成立,那么乙成立”。

若为真命题,则甲可推出乙,记作“甲=乙”;若为假命题,则甲推不出乙,记作“甲≠乙”。

题型:判断命题甲是命题乙的什么条件,从两方面出发:①充分条件看甲是否能推出乙 ②必要条件看乙是否能推出甲 A 、 若甲=乙 但 乙=甲,则甲是乙的充分必要条件(充要条件) B 、若甲=乙 但 乙≠甲,则甲是乙的充分不必要条件 C 、若甲≠乙 但 乙=甲,则甲是乙的必要不充分条件D 、若甲≠乙 但 乙≠甲,则甲不是乙的充分条件也不是乙的必要条件技巧:可先判断甲、乙命题的范围大小,再通过“大范围≠小范围,小范围=大范围”判断甲、乙相互推出情况第二章 不等式和不等式组知识点1:不等式的性质1. 不等式两边同加或减一个数,不等号方向不变2. 不等式两边同乘或除一个正数,不等号方向不变3. 不等式两边同乘或除一个负数,不等号方向改变(“>”变“<”)解析:不等式两边同加或同乘主要用于解一元一次不等式或一元二次不等式移项和合并同类项方面 知识点2:一元一次不等式1. 定义:只有一个未知数,并且未知数的最好次数是一次的不等式,叫一元一次不等式。

2. 解法:移项、合并同类项(把含有未知数的移到左边,把常数项移到右边,移了之后符号要发生改变)。

3. 如:6x+8>9x-4,求x ? 把x 的项移到左边,把常数项移到右边,变成6x-9x>-4-8,合并同类项之后得-3x>-12,两边同除-3得x<4(记得改变符号)。

成人高考专升本《高等数学(一)》考点汇总

成人高考专升本《高等数学(一)》考点汇总

学习攻略—收藏助考锦囊系统复习资料汇编考试复习重点推荐资料百炼成金模拟考试汇编阶段复习重点难点梳理适应性全真模拟考试卷考前高效率过关手册集高效率刷题好资料分享学霸上岸重点笔记总结注:下载前请仔细阅读资料,以实际预览内容为准助:逢考必胜高分稳过成人高考专升本《高等数学(一)》考点汇总一、函数、极限和连续(一)函数1.知识范围(1)函数的概念函数的定义函数的表示法分段函数隐函数(2)函数的性质单调性奇偶性有界性周期性(3)反函数反函数的定义反函数的图像(4)基本初等函数幂函数指数函数对数函数三角函数反三角函数(5)函数的四则运算与复合运算(6)初等函数2.要求(1)理解函数的概念。

会求函数的表达式、定义域及函数值。

会求分段函数的定义域、函数值,会作出简单的分段函数的图像。

(2)理解函数的单调性、奇偶性、有界性和周期性。

(3)了解函数与其反函数之间的关系(定义域、值域、图像),会求单调函数的反函数。

(4)熟练掌握函数的四则运算与复合运算。

(5)掌握基本初等函数的性质及其图像。

(6)了解初等函数的概念。

(7)会建立简单实际问题的函数关系式。

(二)极限1.知识范围(1)数列极限的概念数列数列极限的定义(2)数列极限的性质唯一性有界性四则运算法则夹逼定理单调有界数列极限存在定理(3)函数极限的概念函数在一点处极限的定义左、右极限及其与极限的关系趋于无穷时函数的极限函数极限的几何意义(4)函数极限的性质唯一性四则运算法则夹通定理(5)无穷小量与无穷大量无穷小量与无穷大量的定义无穷小量与无穷大量的关系无穷小量的性质无穷小量的阶(6)两个重要极限2.要求(1)理解极限的概念(对极限定义中“ ”、“ ”、“ ”等形式的描述不作要求)。

会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。

(2)了解极限的有关性质,掌握极限的四则运算法则。

(3)理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。

成人高考高升专数学知识点大全

成人高考高升专数学知识点大全

成人高考高升专数学知识点大全高中数学比较难,难在它的深度和广度,但如果能理清思路,抓住重点,多加练习,学渣变学霸也不是不可能的。

接下来WTT在这里给大家分享一些关于成人高考高升专数学知识点,供大家学习和参考,希望对大家有所帮助。

成人高考高升专数学知识点【篇一】1、知识范围(1)向量的概念向量的定义、向量的模、单位向量、向量在坐标轴上的投影、向量的坐标表示法、向量的方向余弦(2)向量的线性运算向量的加法、向量的减法、向量的数乘(3)向量的数量积二向量的夹角、二向量垂直的充分必要条(4)二向量的向量积、二向量平行的充分必要条2、要求(1)理解向量的概念,掌握向量的坐标表示法,会求单位向量、方向余弦、向量在坐标轴上的投影。

(2)熟练掌握向量的线性运算、向量的数量积与向量积的计算方法。

(3)熟练掌握二向量平行、垂直的充分必要条。

【篇二】1、知识范围(1)不定积分、原函数与不定积分的定义、原函数存在定理不定积分的性质(2)基本积分公式 (3)换元积分法、第一换元法(凑微分法)、第二换元法(4)分部积分法 (5)一些简单有理函数的积分2、要求(1)理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理。

(2)熟练掌握不定积分的基本公式。

(3)熟练掌握不定积分第一换元法,掌握第二换元法(限于三角代换与简单的根式代换)。

(4)熟练掌握不定积分的分部积分法。

(5)会求简单有理函数的不定积分。

【篇三】1、知识范围(1)导数概念导数的定义、左导数与右导数、函数在一点处可导的充分必要条导数的几何意义与物理意义、可导与连续的关系(2)求导法则与导数的基本公式导数的四则运算、反函数的导数、导数的基本公式(3)求导方法复合函数的求导法、隐函数的求导法、对数求导法由参数方程确定的函数的求导法、求分段函数的导数(4)高阶导数高阶导数的定义、高阶导数的计算(5)微分微分的定义、微分与导数的关系、微分法则一阶微分形式不变性2、要求(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法。

(完整版)专升本高等数学知识点汇总

(完整版)专升本高等数学知识点汇总

(完整版)专升本高等数学知识点汇总-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN专升本高等数学知识点汇总常用知识点:一、常见函数的定义域总结如下:(1)c bx ax y bkx y ++=+=2一般形式的定义域:x ∈R(2)xk y = 分式形式的定义域:x ≠0 (3)x y = 根式的形式定义域:x ≥0(4)x y a log = 对数形式的定义域:x >0二、函数的性质1、函数的单调性当21x x <时,恒有)()(21x f x f <,)(x f 在21x x ,所在的区间上是增加的。

当21x x <时,恒有)()(21x f x f >,)(x f 在21x x ,所在的区间上是减少的。

2、 函数的奇偶性定义:设函数)(x f y =的定义区间D 关于坐标原点对称(即若D x ∈,则有D x ∈-)(1) 偶函数)(x f ——D x ∈∀,恒有)()(x f x f =-。

(2) 奇函数)(x f ——D x ∈∀,恒有)()(x f x f -=-。

三、基本初等函数1、常数函数:c y =,定义域是),(+∞-∞,图形是一条平行于x 轴的直线。

2、幂函数:u x y =, (u 是常数)。

它的定义域随着u 的不同而不同。

图形过原点。

3、指数函数定义: x a x f y ==)(, (a 是常数且0>a ,1≠a ).图形过(0,1)点。

4、对数函数定义: x x f y a log )(==, (a 是常数且0>a ,1≠a )。

图形过(1,0)点。

5、三角函数(1) 正弦函数: x y sin =π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。

(2) 余弦函数: x y cos =.π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。

(3) 正切函数: x y tan =.π=T , },2)12(,|{)(Z R ∈+≠∈=k k x x x f D π, ),()(+∞-∞=D f . (4) 余切函数: x y cot =.π=T , },,|{)(Z R ∈≠∈=k k x x x f D π, ),()(+∞-∞=D f .5、反三角函数(1) 反正弦函数: x y sin arc =,]1,1[)(-=f D ,]2,2[)(ππ-=D f 。

成人高考专升本《高等数学(一)》通关资料

成人高考专升本《高等数学(一)》通关资料

(特殊情况:对数求导法时,先两边同时取对数, 再求解)
一、求导方法
(七)对数函数求导法
利用对数函数的运算性质可以将原来的函数两边同时取对数后化简 然后利用隐函数求导法或复合求导法求导,因此称为对数求导法 通常解决函数类型为:
y u( x)v( x) 步骤为: (1)两边同时取对数得 ln y vx.lnu( x)
0,则函数f (x)在区间(a, b)内是递增的 0,则函数f (x)在区间(a, b)内是递减的 0不影响f (x)的单调性.
五、导数的应用
(四)函数的极值
1.极值的第一充分条件
设f (x)在x0的某领域内可导.
1 若x x0 时,f"(x) 0,x 0 x ," f (x) 0时则0 称x 为极大值点,0f (x )为极大
在连续的曲线上的凹弧与凸弧之间的分界点称为曲线的拐点。
五、导数的应用
(六)曲线的水平渐近线与铅直渐近线
定义:
若 lim f (x) A或 lim f (x) A或 lim f (x) A,
dt
三、导数
(六)隐函数的求导
解析法表示函数通常有两种: (1).y f(x)来表示的,称之为显函数。
如y sinwx,y xe ln(x 1 2 x ) (2).x与y之间的函数关系是由一 个方程F(x,y)
这种称之为隐函数,
0来确定
如2x y3 -1 0,xy -x e y e 0 对于隐函数的求导通常做法: 可直接在方程F(x,y) 0的两端同时对x求导,而把y 视为中间变量,利用复合函数求导法即可。
M (x0,f (x0 ))的切线方程为:
y - f (x ) "f (x )(x x )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年成人高考专升本高等数学一知识点复习一、题型分布:试卷分选择、填空、解答三部分,分别占40分、40分、70分二、内容分布难点:隐函数求导、全微分、多元函数极值、常微分方程复习方法:1、结合自身情况定目标2、分章节重点突破,多做题,做真题第一章:极限与连续1-1、极限的运算1、极限的概念(1)设函数y=f(x)在点x0的某个邻域内有定义,如果当x无限趋于x0时函数f(x)无限地趋于一个常f(x)=A数A,则称A为函数f(x)当x→x0时的极限,记作limx→x0(2)左极限、右极限;在某点极限存在,左右极限存在且唯一。

f(x)=Alimx→x0−f(x)=Alimx→x0+2、无穷小量与无穷大量无穷小量定义:对于函数y=f(x),如果当x在某个变化过程中,函数f(x)的极限为0,则称在该f(x)=0变化过程中, f(x)为无穷小量,记作limx→x0无穷大量定义:对于函数y=f(x),如果当x在某个变化过程中,函数f(x)的极限值越来越大,则f(x)=∞称在该变化过程中, f(x)为无穷大量,记作limx→x03、无穷小量与无穷大量的关系在同一变化过程中,如果f(x)为无穷大量,且f(x)≠0,则1为无穷小量;f(x)为无穷大量;在同一变化过程中,如果f(x)为无穷小量,且f(x)≠0,则1f(x)4、无穷小量的性质性质1:有限个无穷小量的代数和仍是无穷小量★性质2:无穷小量与有界函数的积仍是无穷小量5、无穷小量的比较与替换定义:设α,β是同一变化过程中的无穷小量,即limα=0,limβ=0=0,则称β是α比较高阶的无穷小量(1)如果limβα=∞,则称β是α比较低阶的无穷小量(2)如果limβα=c≠0,则称β是与α同阶的无穷小量(3)如果limβα(4)如果lim βα=1,则称β与α是等价的无穷小量★常见的等价无穷小量:当x →0时,x ~sin x ~tan x ~ arc sin x ~ arc tan x ~ e x −1 ~ ln (1+x) 1−cos x ~12x 2★★6、两个重要极限 (1)limx→0sin x x=1(2)lim x→∞(1+1x )x=e 或lim x→0(1+x)1x=e★★7、求极限的方法 (1)直接代入法:分母不为零 (2)分子分母消去为0公因子 (3)分子分母同除以最高次幂(4)利用等价代换法求极限(等价无穷小) (5)利用两个重要极限求极限 (6)洛必达求导法则(见第二章)1-2、函数的连续性1、函数在某一点上的连续性定义1:设函数y =f(x)在点x 0的某个邻域内有定义,如果有自变量∆x 趋近于0时,相应的函数改变量∆y 也趋近于0,即lim ∆x→0[f (x 0+∆x )−f (x 0)]=0,则称函数y =f(x)在x 0处连续。

定义2:设函数y =f(x)在点x 0的某个邻域内有定义,如果当 x →x 0时,函数f(x)的极限存在,且等于x 0处的函数值f(x 0), lim x→x 0f (x )=f(x 0),则称函数y =f(x)在x 0处连续。

第二章、一元函数微分学2-1、导数与微分 1、导数概念定义1:设函数y =f(x)在点x 0的某个邻域内有定义,如果有自变量x 在点x 0处的改变量∆x ,相应的函数改变量∆y =f (x 0+∆x )−f (x 0)。

如果极限lim ∆x→0f (x 0+∆x )−f (x 0)∆x存在,则称此极限为函数y =f(x)在x 0处的导数。

表示形式如下:lim∆x→0f (x 0+∆x )−f (x 0)∆x、limx→x 0f (x )−f (x 0)x−x 0、limℎ→0f (x 0+ℎ)−f (x 0)h★★2、常见的求导公式(1)、(c )′=0 (2)、(x a )′=ax a−1 (3)、(log a x )′=1xlna (4)、(lnx )′=1x (5)、(a x )′=a x lna (6)、(e x )′=e x (7)、(sin x )′=cos x (8)、(cos x )′=−sin x★★3、导数的运算法则 (1)(u ±v )′=u ′+v′ (2)(u ∙v )′=u ′v +uv′ (3)(cu )′=cu ′ (4)(uv )′=u ′v+uv ′v 2★4、复合函数求导如果函数u =φ(x)在点x 处可导,函数y =f(u)在对应点u 处也可导,则复合函数y =f[φ(x )]在点x 处可导,且有dydx =dy du ∙dudx 。

5、隐函数求导隐函数:x 与y 之间的函数关系是由一个方程F (x,y )=0来确定这种称之为隐函数。

如:xy −e y +x 2=0隐函数的求导方法:直接在方程F (x,y )=0的两端同时对x 求导,而把y 视为中间变量,利用复合函数求导即可。

6、高阶求导如果函数y=f(x)的导数函数y′=f′(x)仍是函数x的可导函数,那么就称函数f′(x)的导数为函数f(x)的二阶导数,二阶导数记为函数y′′,f′′(x)★7、微分公式dy=y′dx(1)d(c)=0(2)d(x a)=ax a−1dx(3)d(a x)=a x lnadx(4)d(e x)=e x dx(5)d(log a x)=1xlna dx(6)d(lnx)=1xdx(7)d(sin x)=cos x dx(8)d(cos x)=−sin x dx★★2-2、洛必达法则1、概念如果当x→a(或∞)时,函数f(x)与g(x)都趋于0或都趋于∞,则称limx→a f(x)g(x)为未定型极限,并分别简记为00或∞∞。

limx→af(x)g(x)=limx→af′(x)g′(x)2、求法(1)先判定是否符合00或∞∞型(2)分别对分子分母求导,如果求导完还是00或∞∞型那么再对分子分母求导(3)当出现分母不为0时,就可以直接代入求解。

★★2-3、导数的应用1、函数的单调性、单调区间设函数y=f(x)在区间(a,b)内可导,(1)如果在区间(a,b)内f′(x)>0,则函数y=f(x)在区间(a,b)内是单调递增的(2)如果在区间(a,b)内f′(x)<0,则函数y=f(x)在区间(a,b)内是单调递减的2、函数的极值设函数y=f(x)在点x0的某个邻域内有定义(1)如果x≠x0时,恒有f(x)<f(x0)则称x0为极大值点,f(x0)为极大值。

(2)如果x≠x0时,恒有f(x)>f(x0)则称x0为极小值点,f(x0)为极小值。

极值求法:(1)求f(x)的导数f′(x)(2)令f′(x)=0,求出x i即为驻点(3)分别求出x i左右的导数f′(x)的符号,左正右负,此时f(x)取得极大值;左负右正,此时f(x)取得极小值。

3、曲线的凹凸性及拐点曲线的凹凸性:设函数y=f(x)在区间[a,b]上连续,在(a,b)内具有一阶导数和二阶导数,那么:(1)如果在区间(a,b)内f′′(x)>0,则函数y=f(x)在区间[a,b]的图形是凹的(2)如果在区间(a,b)内f′′(x)<0,则函数y=f(x)在区间[a,b]的图形是凸的曲线的拐点:在连续的曲线上的凹弧与凸弧之间的分界点称为曲线的拐点。

第三章、一元函数积分学3-1、不定积分1、原函数:设函数f(x)在某一区间上有定义,若存在函数F(x),使F′(x)=f(x)成立,则称F(x)为函数f(x)的原函数。

2、不定积分函数f(x)在区间I上的所有原函数的全体F(x)+C叫做f(x)在区间I上的不定积分,记作∫f(x)dx,即∫f(x)dx=F(x)+C★3、不定积分的性质(1)∫kf(x)dx=k∫f(x)dx(2)∫[f(x)±g(x)]dx=∫f(x)dx ±∫g(x)dx(3)(∫f(x)dx)′=f(x)(4)∫f′(x)dx=f(x)+C★★4、基本积分公式(1)∫k dx=kx+C(2)∫x a dx=1a+1x a+1+C(3)∫a x dx=1lna a x+C(4)∫e x dx=e x+Cdx=ln |x|+C(5)∫1x(6)∫sinx dx=−cosx+C(7)∫cosx dx=sinx+C★★5、第一换元积分法(凑微分法)设f(u)具有原函数F(u),u=φ(x)可导,则有换元公式∫f[φ(x)]φ′(x)dx=∫f[φ(x)]dφ(x)=∫f(u)du=F(u)+C=F[φ(x)]+C6、分部积分法设函数具有连续的导函数,则有∫uv′dx=uv−∫vu′dx即∫u dv=uv−∫v d u3-2、定积分 ★1、定积分的性质(1)∫k f(x)dx =bak ∫f(x)dx ba (2)∫[f(x)±g(x)]dx =ba ∫f(x)dx ba ±∫g(x)dx ba (3)∫f(x)dx =a a0 (4)∫f(x)dx =ba ∫f(x)dx ca +∫f(x)dx bc★2、变上限的定积分定理若函数f(x)在区间[a,b]上连续,则变上限积分φ(x )=∫f(t)dt xa是被积函数f(x)的一个原函数,即φ′(x )=f(x)★★3、牛顿---莱布尼茨公式∫f(x)dx =ba F (x )|ab =F (b )−F(a)4、反常积分(广义积分)∫f(x)dx =lim b→+∞∫f(x)dx ba+∞a∫f(x)dx =lim a→−∞∫f(x)dx bab −∞★5、定积分的求法 (1)定积分的换元积分法∫f(x)dx =b a∫f[φ(t )]φ′(t )dt βα(2)定积分的分部积分法∫uv′dx =ba uv|ab −∫v u′dx ba 或∫u dv =ba uv|a b−∫vdu ba ★★(3)奇偶函数在对称区间上的积分若f(x)在[-a,a]上为连续奇函数,则∫f(x)dx =a−a0 若f(x)在[-a,a]上为连续偶函数,则∫f(x)dx =a−a 2∫f(x)dx a★3-3、定积分的应用 1、求平面图形的面积(1)由曲线y =f(x),直线x =a ,x =b(a <b )及x 轴所围成的面积为:S=∫|f (x )|dx ba (2)由两曲线y =f 1(x ),y =f 2(x ),f 2(x )>f 1(x )及两直线x =a ,x =b 所围成的面积为S=∫[f 2(x )−f 1(x )]dx ba(3)由曲线x =φ(y),直线y =c ,y =d(c <d )及y 轴所围成的面积为:S=∫|φ(y )|dy dc (4)由两曲线x =φ1(y),x =φ2(y),φ2(y)>φ1(y)及两直线y =c ,y =d 所围成的面积为S=∫[φ2(y)−φ1(y)]dy dc(5)由两曲线y =f 1(x ),y =f 2(x ),f 2(x )>f 1(x )所围成的封闭图形的面积为S=∫[f 2(x )−f 1(x )]dx b a其中a 是交点中x 的最小值,b 是交点中x 的最大值★2、旋转体的体积(1)由曲线段y =f(x), x ∈[a,b ]绕x 轴旋转一周所成的旋转体的体积为:V=π∫f 2(x )dx b a (2)由曲线段x =φ(y), y ∈[c,d ]绕y 轴旋转一周所成的旋转体的体积为:V=π∫φ2(y )dy b a (3)由两曲线y =f 1(x ),y =f 2(x ),且f 1(x ),f 2(x )在x 轴同侧,|f 2(x )|>|f 1(x )|及两直线x =a ,x =b 所围成的平面图形绕x 轴旋转一周所成的旋转体的体积为: V =π∫[f 22(x )−f 12(x )]dx ba(4)由两曲线x =φ1(y),x =φ2(y),且φ1(y ),φ2(y)在y 轴同侧,|φ2(y )|>|φ1(y )|及两直线y =c ,y =d 所围成的平面图形绕y 轴旋转一周所成的旋转体的体积为: V =π∫[φ22(y )−φ12(y )]dy dc第四章、空间解析几何4-1、平面与直线★1、平面方程(1)平面一般式方程:Ax+By+Cz+D=0,法向量n={A,B,C}(2)平面点法式方程:A(x−x0)+B(y−y0)+C(z−z0)=0,法向量n={A,B,C}(3)特殊的平面方程①Ax+By+Cz=0表示过原点的平面方程②Ax+By+D=0表示平行于z轴的平面方程③Ax+By=0表示过z轴的平面方程④Cz+D=0表示垂直于z轴的平面方程★2、直线方程直线的标准式方程:x−x0m =y−y0n=z−z0p方向向量S={m,n,p}3、平面的位置关系设两平面π1:A1x+B1y+C1z+D1=0平面π2:A2x+B2y+C2z+D2=0(1)π1⊥π2的充要条件:A1A2+B1B2+C1C2=0(2)π1// π2的充要条件:A1A2=B1B2=C1C24、两直线的位置关系设两直线l1、l2的方程l1:x−x1m1=y−y1n1=z−z1p1和l2:x−x2m2=y−y2n2=z−z2p2(1)l1⊥l2的充要条件:m1m2+n1n2+p1p2=0(2)l1// l2的充要条件:m1m2=n1n2=p1p25、直线l与平面π的位置关系π:Ax+By+Cz+D=0l:x−x0m=y−y0n=z−z0p直线l // π的充要条件:Am+Bn+Cp=0直线l⊥π的充要条件:Am =Bn=Cp4-2、简单二次曲面★常见的二次曲面方程球面:(x−a)2+(y−b)2+(z−c)2=R2椭球面:x 2a2+y2b2+z2c2=1圆柱面:x2+y2=R2椭圆柱面:x 2a2+y2b2=1双曲柱面:x 2a2−y2b2=1抛物柱面:x2−2py=0旋转抛物面:z=x2+y2椭圆锥面:x 2a2+y2b2−z2c2=0第五章、多元函数微分学★★5-1、多元函数偏导数与全微分1、含有两个及以上自变量的函数,如z=f(x,y)2、偏导数的求法对x求偏导,将函数中的y视为常数;对y求偏导,将函数中的x视为常数;3、二阶偏导数ð2Z ðx2、ð2Zðxðy、ð2Zðy24、全微分dz=ðzðx dx+ðzðydy★5-2、二元函数的极值1、无条件极值二元函数的无条件极值的求法(1)求f x(x,y),f y(x,y),并解方程组f x(x,y)=0,f y(x,y)=0,求得一切驻点(x i,y i)。

相关文档
最新文档