水电站的水锤与调节保证计算

合集下载

青羊沟水电站水锤及调节保证计算精选全文

青羊沟水电站水锤及调节保证计算精选全文

可编辑修改精选全文完整版青羊沟水电站水锤及调节保证计算1概述青羊沟水电站工程位于甘肃省酒泉市肃北蒙古族自治县鱼儿红乡境内的疏勒河干流上,为甘肃省境内疏勒河干流昌马水库以上河段水电开发规划中的梯级电站之一。

电站厂房距玉门镇约109km,距玉门市昌马乡38km,距肃北县鱼儿红乡政府约52km,对外交通便利。

电站采用有压引水式开发方式,是以发电为主的日调节中型水电站工程,电站额定水头116m。

主厂房装设2台单机容量为23MW(以下称大机)和1台单机容量为10MW(以下称小机)共3台混流式水轮发电机组,并要求大、小机在运行水头介于116m至133.42m范围内能超额定出力运行,其超额定出力范围为10%(机组具有10%的超发能力),即大机为26.356 MW、小机为11.583MW。

电站保证出力为10.23MW,多年平均年发电量为2.131亿kW.h,装机年利用小时数为3805h。

电站引水发电系统由进水口、引水发电隧洞、调压井、压力管道主管、压力管道支管组成,水流通过水轮发电机组后由尾水渠流入河道。

引水发电隧洞长7177.59m,设计流量55.3m3/s,隧洞为圆形有压洞,纵坡1/265.837,洞径D=4.6m,设计流速3.33m/s。

调压井布置于副厂房上游侧,调压井型式为阻抗式调压井,竖井内径10.0m,阻抗孔直径1.98m,底部高程2286.00m,顶部高程2335.50m。

调压井底部垂直接压力管道主管,压力主管由垂直管、弯管和水平管组成,其中垂直管长85.5m,弯管长18.85m(R=12m,a=900),水平管长205.65m,主管总长310m,主管内径4.0m(暂定),设计流速4.40m/s。

压力主管末端3条支管为“卜”型布置,1#大机支管长31m,内径2.5m,2#大机支管长24m,内径2.5m,3#小机支管长30m,内径1.6m。

厂内安装2台23MW和1台10MW共3台混流式水轮发电机组,水轮机型号分别为HLA685-LJ-177和HLA685-LJ-122;单机引用流量22.65m3/s和10m3/s,额定水头116m。

水锤计算方法【范本模板】

水锤计算方法【范本模板】

第一节概述一、水电站的不稳定工况机组在稳定运行时,水轮机的出力与负荷相互平衡,这时机组转速不变,水电站有压引水系统(压力隧洞、压力管道、蜗壳及尾水管)中水流处于恒定流状态。

在实际运行过程中,电力系统的负荷有时会发生突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了水轮机与发电机负荷之间的平衡,机组转速就会发生变化。

此时水电站的自动调速器迅速调节导叶开度,改变水轮机的引用流量,使水轮机的出力与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速.由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。

其主要表现为:(1)引起机组转速的较大变化由于发电机负荷的变化是瞬时发生的,而导叶的启闭需要一定时间,水轮机出力不能及时地发生相应变化,因而破坏了水轮机出力和发电机负荷之间的平衡,导致了机组转速的变化.丢弃负荷时,水轮机在导叶关闭过程中产生的剩余能量将转化为机组转动部分的动能,从而使机组转速升高。

反之增加负荷时机组转速降低。

(2) 在有压引水管道中发生“水锤”现象当水轮机流量发生变化时,管道中的流量和流速也要发生急剧变化,由于水流惯性的影响,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,即产生水锤。

导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。

反之导叶开启时,在压力管道和蜗壳内引起压力下降,而在尾水管中引起压力上升.(3)在无压引水系统(渠道、压力前池)中产生水位波动现象.无压引水系统中产生的水位波动计算在第八章已介绍。

二、调节保证计算的任务水锤压力和机组转速变化的计算,一般称为调节保证计算。

调节保证计算的任务及目的是:(1)计算有压引水系统的最大和最小内水压力。

最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据之一;最小内水压力作为压力管道线路布置、防止压力管道中产生负压和校核尾水管内真空度的依据。

第九章 水电站的水锤与调节保证计算

第九章 水电站的水锤与调节保证计算

水电站事故引起的负荷变化。水电站可能会各种各 样的事故,可能要求水电站丢弃全部或部分负荷。 这是水电站水锤计算的控制条件。
(二)水电站的不稳定工况表现形式
1. 引起机组转速的较大变化
丢弃负荷:剩余能量→机组转动部分动能→机组 转速升高 增加负荷:与丢弃负荷相反。 2.在有压引水管道中发生“水锤”现象
F 1 r f 1
根据水锤常数和任意时刻的开度,可利用上式确定 阀门在任意时刻的反射系数。 当阀门完全关闭时,τ=0,r=1,阀门处发生同号等值 反射。
上式对反击式水轮机是近似的。
3、水锤波在管径变化处的反射
根据水锤波的基本方 程,推导出管径变化 处的反射系数为:
到阀门之前开度变化已经结束,阀门处只受开
度变化直接引起的水锤波的影响——称为直接
水锤
计算直接水锤压力的公式: c
H H H 0 Biblioteka g(V V0 )
c H H H 0 (V V0 ) g
(1) 当阀门关闭时,管内流速减小,V-V0<0为负值,
△H为正,产生正水锤;反之当开启阀门时,即
A t
同理可写出时刻Δt=L/c后B点的压力和流速的关系:
H
B t t
c B xL H 0 (Vt t V0 ) 2 F (t t ) g c
由于F[(t+Δt)-(x+L)/c]=F[t-x/c],由上述二式得
H
同理:
B t t
c B H Vt t Vt A g
导时关闭时,在压力管道和蜗壳中将引起压力上 升,尾水管中则造成压力下降。 导叶开启时则相反。
3.在无压引水系统中产生水位波动现象。

水电站的水击及调节保证计算

水电站的水击及调节保证计算

第四章水电站的水击及调节保证计算本章重点内容:水电站有压引水系统非恒定流现象和调节保证计算的任务、单管水击简化计算、复杂管路的水击解析计算及适用条件、机组转速变化的计算方法和改善调节保证的措施。

第一节概述一、水电站的不稳定工况由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。

其主要表现为:(1) 引起机组转速的较大变化丢弃负荷:剩余能量→机组转动部分动能→机组转速升高增加负荷:与丢弃负荷相反。

(2) 在有压引水管道中发生“水击”现象管道末端关闭→管道末端流量急剧变化→管道中流速和压力随之变化→“水击”。

导时关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。

导叶开启时则相反,将在压力管道和蜗壳内引起压力下降,而在尾水管中则引起压力上升。

(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。

二、调节保证计算的任务(一) 水击的危害(1) 压强升高过大→水管强度不够而破裂;(2) 尾水管中负压过大→尾水管汽蚀,水轮机运行时产生振动;(3) 压强波动→机组运行稳定性和供电质量下降。

(二) 调节保证计算水击和机组转速变化的计算,一般称为调节保证计算。

1.调节保证计算的任务:(1) 计算有压引水系统的最大和最小内水压力。

最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据;最小内水压力作为压力管道线路布置,防止压力管道中产生负压和校核尾水管内真空度的依据;(2) 计算丢弃负荷和增加负荷时转速变化率,并检验其是否在允许的范围内。

(3) 选择调速器合理的调节时间和调节规律,保证压力和转速变化不超过规定的允许值。

(4) 研究减小水击压强及机组转速变化的措施。

2.调节保证计算的目的正确合理地解决导叶启闭时间、水击压力和机组转速上升值三者之间的关系,最后选择适当的导叶启闭时间和方式,使水击压力和转速上升值均在经济合理的允许范围内。

第二节水击现象及其传播速度1、一、水击现象1.定义在水电站运行过程中,为了适应负荷变化或由于事故原因,而突然启闭水轮机导叶时,由于水流具有较大的惯性,进入水轮机的流量迅速改变,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,这种变化是交替升降的一种波动,如同锤击作用于管壁,有时还伴随轰轰的响声和振动,这种现象称为水击。

水锤计算方法

水锤计算方法

第一节概述一、水电站的不稳定工况机组在稳定运行时,水轮机的出力与负荷相互平衡,这时机组转速不变,水电站有压引水系统(压力隧洞、压力管道、蜗壳及尾水管)中水流处于恒定流状态。

在实际运行过程中,电力系统的负荷有时会发生突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了水轮机与发电机负荷之间的平衡,机组转速就会发生变化。

此时水电站的自动调速器迅速调节导叶开度,改变水轮机的引用流量,使水轮机的出力与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速。

由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。

其主要表现为:(1) 引起机组转速的较大变化由于发电机负荷的变化是瞬时发生的,而导叶的启闭需要一定时间,水轮机出力不能及时地发生相应变化,因而破坏了水轮机出力和发电机负荷之间的平衡,导致了机组转速的变化。

丢弃负荷时,水轮机在导叶关闭过程中产生的剩余能量将转化为机组转动部分的动能,从而使机组转速升高。

反之增加负荷时机组转速降低。

(2) 在有压引水管道中发生“水锤”现象当水轮机流量发生变化时,管道中的流量和流速也要发生急剧变化,由于水流惯性的影响,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,即产生水锤。

导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。

反之导叶开启时,在压力管道和蜗壳内引起压力下降,而在尾水管中引起压力上升。

(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。

无压引水系统中产生的水位波动计算在第八章已介绍。

二、调节保证计算的任务水锤压力和机组转速变化的计算,一般称为调节保证计算。

调节保证计算的任务及目的是:(1) 计算有压引水系统的最大和最小内水压力。

最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据之一;最小内水压力作为压力管道线路布置、防止压力管道中产生负压和校核尾水管内真空度的依据。

水锤计算方法【范本模板】

水锤计算方法【范本模板】

第一节概述一、水电站的不稳定工况机组在稳定运行时,水轮机的出力与负荷相互平衡,这时机组转速不变,水电站有压引水系统(压力隧洞、压力管道、蜗壳及尾水管)中水流处于恒定流状态。

在实际运行过程中,电力系统的负荷有时会发生突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了水轮机与发电机负荷之间的平衡,机组转速就会发生变化。

此时水电站的自动调速器迅速调节导叶开度,改变水轮机的引用流量,使水轮机的出力与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速.由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。

其主要表现为:(1)引起机组转速的较大变化由于发电机负荷的变化是瞬时发生的,而导叶的启闭需要一定时间,水轮机出力不能及时地发生相应变化,因而破坏了水轮机出力和发电机负荷之间的平衡,导致了机组转速的变化.丢弃负荷时,水轮机在导叶关闭过程中产生的剩余能量将转化为机组转动部分的动能,从而使机组转速升高。

反之增加负荷时机组转速降低。

(2) 在有压引水管道中发生“水锤”现象当水轮机流量发生变化时,管道中的流量和流速也要发生急剧变化,由于水流惯性的影响,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,即产生水锤。

导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。

反之导叶开启时,在压力管道和蜗壳内引起压力下降,而在尾水管中引起压力上升.(3)在无压引水系统(渠道、压力前池)中产生水位波动现象.无压引水系统中产生的水位波动计算在第八章已介绍。

二、调节保证计算的任务水锤压力和机组转速变化的计算,一般称为调节保证计算。

调节保证计算的任务及目的是:(1)计算有压引水系统的最大和最小内水压力。

最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据之一;最小内水压力作为压力管道线路布置、防止压力管道中产生负压和校核尾水管内真空度的依据。

第九章-水电站的水锤及调节保证计算

第九章-水电站的水锤及调节保证计算

第九章水电站的水锤及调节保证计算本章重点内容:水电站有压引水系统非恒定流现象和调节保证计算的任务、单管水锤简化计算、复杂管路的水锤解析计算及适用条件、机组转速变化的计算方法和改善调节保证的措施。

第一节概述一、水电站的不稳定工况由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。

其主要表现为:(1) 引起机组转速的较大变化丢弃负荷:剩余能量→机组转动部分动能→机组转速升高增加负荷:与丢弃负荷相反。

(2) 在有压引水管道中发生“水锤”现象管道末端关闭→管道末端流量急剧变化→管道中流速和压力随之变化→“水锤”。

导时关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。

导叶开启时则相反,将在压力管道和蜗壳内引起压力下降,而在尾水管中则引起压力上升。

(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。

二、调节保证计算的任务(一) 水锤的危害(1) 压强升高过大→水管强度不够而破裂;(2) 尾水管中负压过大→尾水管汽蚀,水轮机运行时产生振动;(3) 压强波动→机组运行稳定性和供电质量下降。

(二) 调节保证计算水锤和机组转速变化的计算,一般称为调节保证计算。

1.调节保证计算的任务:(1) 计算有压引水系统的最大和最小内水压力。

最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据;最小内水压力作为压力管道线路布置,防止压力管道中产生负压和校核尾水管内真空度的依据;(2) 计算丢弃负荷和增加负荷时转速变化率,并检验其是否在允许的范围内。

(3) 选择调速器合理的调节时间和调节规律,保证压力和转速变化不超过规定的允许值。

(4) 研究减小水锤压强及机组转速变化的措施。

2.调节保证计算的目的正确合理地解决导叶启闭时间、水锤压力和机组转速上升值三者之间的关系,最后选择适当的导叶启闭时间和方式,使水锤压力和转速上升值均在经济合理的允许范围内。

第二节 水锤现象及其传播速度一、 水锤现象1.定义在水电站运行过程中,为了适应负荷变化或由于事故原因,而突然启闭水轮机导叶时,由于水流具有较大的惯性,进入水轮机的流量迅速改变,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,这种变化是交替升降的一种波动,如同锤击作用于管壁,有时还伴随轰轰的响声和振动,这种现象称为水锤。

水锤计算方法

水锤计算方法

第一节概述一、水电站的不稳定工况机组在稳定运行时,水轮机的出力与负荷相互平衡,这时机组转速不变,水电站有压引水系统(压力隧洞、压力管道、蜗壳及尾水管)中水流处于恒定流状态。

在实际运行过程中,电力系统的负荷有时会发生突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了水轮机与发电机负荷之间的平衡,机组转速就会发生变化。

此时水电站的自动调速器迅速调节导叶开度,改变水轮机的引用流量,使水轮机的出力与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速。

由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。

其主要表现为:(1) 引起机组转速的较大变化由于发电机负荷的变化是瞬时发生的,而导叶的启闭需要一定时间,水轮机出力不能及时地发生相应变化,因而破坏了水轮机出力和发电机负荷之间的平衡,导致了机组转速的变化。

丢弃负荷时,水轮机在导叶关闭过程中产生的剩余能量将转化为机组转动部分的动能,从而使机组转速升高。

反之增加负荷时机组转速降低。

(2) 在有压引水管道中发生“水锤”现象当水轮机流量发生变化时,管道中的流量和流速也要发生急剧变化,由于水流惯性的影响,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,即产生水锤。

导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。

反之导叶开启时,在压力管道和蜗壳内引起压力下降,而在尾水管中引起压力上升。

(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。

无压引水系统中产生的水位波动计算在第八章已介绍。

二、调节保证计算的任务水锤压力和机组转速变化的计算,一般称为调节保证计算。

调节保证计算的任务及目的是:(1) 计算有压引水系统的最大和最小内水压力。

最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据之一;最小内水压力作为压力管道线路布置、防止压力管道中产生负压和校核尾水管内真空度的依据。

论水电站引水系统中调节保证计算

论水电站引水系统中调节保证计算

论水电站中引水系统的调节保证计算对于水电站引水系统,利用美国垦务局等经验公式对引水管道经济直径进行分析使相应调保计算成果满足要求,为电站安全运行提供可靠的依据。

关键词:水电站引水系统设计调节保证计算5.水锤及调节保证计算5.1调节保证计算的任务和标准水锤及调节保证计算,是水电站设计的重要内容之一。

它不仅影响压力管道、机组、蜗壳等过流部件的强度,而且关系到电站运行的安全和机组运行的稳定性。

调节保证计算是机组负荷在较大范围内突然变化的情况下,考虑到调速器的影响以进行限制水锤压力和机组装机变化值的计算,解决水力惯性、机组惯性和调整性能三者之间的矛盾,以期达到电能质量最佳、机组运行经济合理、安全可靠的目的。

5.1.1水锤及调节保证计算的目的和任务1、水锤计算的目的决定管道内的最大内水压力,作为设计或校核压力管道、蜗壳和水轮机强度的依据;决定管道内最小内水压力,作为管线布置,防止压力管道中产生负压和校核尾水管内真空度的依据;研究水锤与机组运行的关系。

2、调节保证计算的目的通过调节保证计算和分析,正确合理地解决导叶启闭时间、水锤压力和机组转速上伸值三者之间的关系,最后选择适当的导叶启闭时间和方式,水锤压力和转速上伸值均在经济合理的允许范围内。

3、水锤及调节保证计算的任务根据水电站压力引水系统和水轮发电机组的特性,合理选择调速器的调节时间调节规律,进行水锤压力和机组转速变化值的计算,使二者均在允许内,并尽可能地降低水锤压力。

5.1.2 调节保证计算的标准调节保证计算标准,是指水锤压力和转速变化在技术经济上合理的允许值。

标准在规范中有所规定,但这是在一定时期和一定技术水平和经济条件下制定的,用时应结合具体情况加以确定。

1、水锤压力的计算标准甩全负荷时,允许的相对压力升高max ξ一般可按以下不同情况考虑:表5-1: max ξ取值表当设置减压阀或折流板时,max ξ=20%对于增加负荷时的负水锤,以压力水管顶部任何一点不出现负压并保持有2m 以上的余压为限。

水锤计算方法

水锤计算方法

第一节概述一、水电站的不稳定工况机组在稳定运行时,水轮机的出力与负荷相互平衡,这时机组转速不变,水电站有压引水系统(压力隧洞、压力管道、蜗壳及尾水管)中水流处于恒定流状态。

在实际运行过程中,电力系统的负荷有时会发生突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了水轮机与发电机负荷之间的平衡,机组转速就会发生变化。

此时水电站的自动调速器迅速调节导叶开度,改变水轮机的引用流量,使水轮机的出力与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速。

由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。

其主要表现为:(1) 引起机组转速的较大变化由于发电机负荷的变化是瞬时发生的,而导叶的启闭需要一定时间,水轮机出力不能及时地发生相应变化,因而破坏了水轮机出力和发电机负荷之间的平衡,导致了机组转速的变化。

丢弃负荷时,水轮机在导叶关闭过程中产生的剩余能量将转化为机组转动部分的动能,从而使机组转速升高。

反之增加负荷时机组转速降低.(2) 在有压引水管道中发生“水锤"现象当水轮机流量发生变化时,管道中的流量和流速也要发生急剧变化,由于水流惯性的影响,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,即产生水锤。

导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。

反之导叶开启时,在压力管道和蜗壳内引起压力下降,而在尾水管中引起压力上升。

(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。

无压引水系统中产生的水位波动计算在第八章已介绍。

二、调节保证计算的任务水锤压力和机组转速变化的计算,一般称为调节保证计算.调节保证计算的任务及目的是:(1)计算有压引水系统的最大和最小内水压力。

最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据之一;最小内水压力作为压力管道线路布置、防止压力管道中产生负压和校核尾水管内真空度的依据。

第九节 水电站有压引水系统非恒定流电算法简介

第九节 水电站有压引水系统非恒定流电算法简介

第九节水电站有压引水系统非恒定流电算法简介水电站有压引水系统的非恒定流计算包括水锤计算和调压室涌波计算。

这两种计算各有特点而又相互联系。

在负荷变化时,机组的转速变化与水锤和调压室涌波也有联系。

把这三种过渡过程联系起来研究的理论虽然早已基本具备,但由于计算过于繁琐,在电子计算机应用于工程实际之前,很少有把它们联系求解的实例,一般都是用孤立的、简化的方法计算。

即使对于分岔管的水锤,为了避免繁琐的计算,也往往采用很粗略的简化方法。

电子计算机的应用给较精确、合理地计算上述问题开避了新途径,现简要介绍如下。

一、简单管水锤计算简单管水锤计算一般不必利用电子计算机。

但如欲在计算中考虑水头损失或机组特性的影响,用电子计算机能较好地处理这类问题,用一般的方法则难以解决。

对于图14-12的简单管,若水锤波通过管段AP和PB的时间均为,则求解A、P、B三点压强和流量的方程为A点:式中h=H/Ho=1+ζ;q=Q/Qo=v;α=/Ho,扩为对应于Qo的AP段水管的水头损失。

式(a)可写成式中,。

将式(b)代人式(c),并令S=一A,得解式(d),舍去增根,得故式(a)、式(b)可写成P点:式(e)和式(f)可写成解式(g)和式(h),得B点:上式可写成根据式(14-76)、式(14-77)和式(14-78)所列的顺序,不难编出简单的程序迭代地求出A, P, B 三点压强和流量的变化过程,计算可以从t=2,开始,到所要求的时刻为止。

根据开度变化曲线确定。

二、分岔管的水锤计算图14-25 分岔管示意图对于图14-25所示的分岔管,若P点有n个分支,水锤波通过各分支的时间均为,通过主管PB的时间为m,,参照式(14-76),水轮机端,,……、An点的水锤压强和流量可用以下式组求出式中i=1,2,…,n,故以上式组共n个。

P点的压强和流量有n+2个未知量,用下列n十2个方程求解特征方程即式中,,i=1,2,……,n,故上式有n个。

第八章水电站的水击与调节保证计算.

第八章水电站的水击与调节保证计算.
A t1
A v ,流速为 t1
,该水击波在t2时刻传到B 。将此情况代入式(8-
点时该处压强水头 H tB 2 10),整理后得:
A t1 B t2
,流速 vB
t2
a A H H (Vt1 Vt2B ) g
(8-12)
同理,对于顺行波可得:
A B A a (8-13) HtB H ( V V t4 t3 t4 ) g 3
水击的类型。值得注意
的是:应用简化公式计 算出的ξ值必须小于0.5,
否则不能采用简化公式
计算。
四、复杂管道水击计算简化方法 实际工程中经常遇到的是复杂管路系统。复杂管路可分 为串联管、分岔管和考虑蜗壳和尾水管影响的管道系统三
种类型。
串联管
分岔管
(一)串联管水击计算的简化方法 在实际工程中常用“等价水管法”简化计算串联管。 是设想用一根等价的简单管来代替串联管,该等价简单管 在管长、管中水体动能及水击波传播时间等方面与被代替 的原串联管相同。 (1)等价管的总长与原串联管相同
二、水击波的传播速度 水击波的传播是水击现象的主要特征,水 击波速是水击研究的重要参数,其大小主要与 压力水管的直径D,管壁厚度,管壁(或衬砌) 材料的弹性模量和水的体积弹性模量等因素有 关。根据水流连续性原理和动量定律,并计及 水体的压缩性与管壁的弹性,可得水击波传播 速度为:
计算水击波速度时,对于不同的管材K值是不同的 明钢管:
水击计算的两个假定:
(1)水轮机导叶(或喷嘴)的出流条件符合孔口出 流。这一假定对冲击式水轮机是适合的,对反击式水 轮机是近似的。 (2)在TS时段内导叶(或喷嘴)的开度变化与启闭
时间成直线关系。
关闭时:
t t 0 TS

水锤计算方法

水锤计算方法

第一节概述一、水电站的不稳定工况机组在稳定运行时,水轮机的出力与负荷相互平衡,这时机组转速不变,水电站有压引水系统(压力隧洞、压力管道、蜗壳及尾水管)中水流处于恒定流状态。

在实际运行过程中,电力系统的负荷有时会发生突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了水轮机与发电机负荷之间的平衡,机组转速就会发生变化。

此时水电站的自动调速器迅速调节导叶开度,改变水轮机的引用流量,使水轮机的出力与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速。

由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。

其主要表现为:(1) 引起机组转速的较大变化由于发电机负荷的变化是瞬时发生的,而导叶的启闭需要一定时间,水轮机出力不能及时地发生相应变化,因而破坏了水轮机出力和发电机负荷之间的平衡,导致了机组转速的变化。

丢弃负荷时,水轮机在导叶关闭过程中产生的剩余能量将转化为机组转动部分的动能,从而使机组转速升高。

反之增加负荷时机组转速降低。

(2) 在有压引水管道中发生“水锤”现象当水轮机流量发生变化时,管道中的流量和流速也要发生急剧变化,由于水流惯性的影响,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,即产生水锤。

导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。

反之导叶开启时,在压力管道和蜗壳内引起压力下降,而在尾水管中引起压力上升。

(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。

无压引水系统中产生的水位波动计算在第八章已介绍。

二、调节保证计算的任务水锤压力和机组转速变化的计算,一般称为调节保证计算。

调节保证计算的任务及目的是:(1) 计算有压引水系统的最大和最小内水压力。

最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据之一;最小内水压力作为压力管道线路布置、防止压力管道中产生负压和校核尾水管内真空度的依据。

水锤计算方法

水锤计算方法

第一节概述一、水电站的不稳定工况机组在稳定运行时,水轮机的出力与负荷相互平衡,这时机组转速不变,水电站有压引水系统(压力隧洞、压力管道、蜗壳及尾水管)中水流处于恒定流状态。

在实际运行过程中,电力系统的负荷有时会发生突然变化(如因事故突然丢弃负荷,或在较短的时间内启动机组或增加负荷),破坏了水轮机与发电机负荷之间的平衡,机组转速就会发生变化。

此时水电站的自动调速器迅速调节导叶开度,改变水轮机的引用流量,使水轮机的出力与发电机负荷达到新的平衡,机组转速恢复到原来的额定转速。

由于负荷的变化而引起导水叶开度、水轮机流量、水电站水头、机组转速的变化,称为水电站的不稳定工况。

其主要表现为:(1) 引起机组转速的较大变化由于发电机负荷的变化是瞬时发生的,而导叶的启闭需要一定时间,水轮机出力不能及时地发生相应变化,因而破坏了水轮机出力和发电机负荷之间的平衡,导致了机组转速的变化。

丢弃负荷时,水轮机在导叶关闭过程中产生的剩余能量将转化为机组转动部分的动能,从而使机组转速升高。

反之增加负荷时机组转速降低.(2) 在有压引水管道中发生“水锤"现象当水轮机流量发生变化时,管道中的流量和流速也要发生急剧变化,由于水流惯性的影响,流速的突然变化使压力水管、蜗壳及尾水管中的压力随之变化,即产生水锤。

导叶关闭时,在压力管道和蜗壳中将引起压力上升,尾水管中则造成压力下降。

反之导叶开启时,在压力管道和蜗壳内引起压力下降,而在尾水管中引起压力上升。

(3) 在无压引水系统(渠道、压力前池)中产生水位波动现象。

无压引水系统中产生的水位波动计算在第八章已介绍。

二、调节保证计算的任务水锤压力和机组转速变化的计算,一般称为调节保证计算.调节保证计算的任务及目的是:(1)计算有压引水系统的最大和最小内水压力。

最大内水压力作为设计或校核压力管道、蜗壳和水轮机强度的依据之一;最小内水压力作为压力管道线路布置、防止压力管道中产生负压和校核尾水管内真空度的依据。

水击及调保计算

水击及调保计算

水电站
HYDROPOWER ENGINEERING
水击特性
为揭示水击物理本质和说明水击过程,不妨以
简单管(管壁材料、管壁厚度及管径沿管长不 变)中的水击现象为例。该简单管上游端连接 水库(可认为水位基本不变),下游端连接阀 门。不计摩阻损失,并设简单管为弹性体,管 中水体可压缩。
水电站
HYDROPOWER ENGINEERING
管径减小。这样的过程经过各时间段在各管 段将发生同样的变化,降压波向上游传播, 直到t=3L/a时刻,整个管道流速为0、压强为 H0-ΔH ,密度及管径缩小。水击波在全关阀
门处的反射特点是:同号等值反射,降压波
反射为降压波,水流从阀门流向水库。
水电站
HYDROPOWER ENGINEERING
第四过程(3L/a~4L/a):t=3L/a时刻水击波
水击波在水库处发生反射,入射波与反射波数 值相同,符号相反,升压波反射为降压波,水 流从阀门流向水库。
水电站
HYDROPOWER ENGINEERING
第三过程(
2L/a~3L/a):t=2L/a时刻水击
波传至阀门处,阀门关闭,流速由-v0变为0,
压强下降,由H0 降至H0-ΔH,水体密度减小,
第二章 水击及调节保证
一、概述 水电站水力—机械过渡过程特点
机组稳定运行时,水轮机出力与负荷平衡,机组转速
不变,水电站有压输水系统(压力隧洞、压力管道、 蜗壳及尾水管)中水流处于恒定流状态。
机组实际运行时,电力系统负荷常发生较大范围的变
化,水轮机出力与负荷失去平衡,转速发生变化,而 电网频率要求基本保持恒定,则可通过调速器改变水 轮机流量,使水轮机出力适应负荷变化,来满足电网 频率恒定要求。

第九章 水锤及调节保证计算的解析方法

第九章 水锤及调节保证计算的解析方法

τn
ynA A A 1 − y n = τ 0 + ∑ yi + ρ 1 2ρ 1
n −1
二、开度依直线规律变化的水锤 (一)水锤类型 间接水锤 一 水锤类型 间接水锤) 水锤类型(间接水锤 求解水锤压力的最大值的方法: 求解水锤压力的最大值的方法:在开度依直线 规律变化情况下, 简化方法直接求出 求出。 规律变化情况下,用简化方法直接求出。 开度依直线规律变化:阀门 导叶 导叶)开度大小的 开度依直线规律变化:阀门(导叶 开度大小的 变化与调节时间之间的关线为线性关系,即匀速的。 变化与调节时间之间的关线为线性关系,即匀速的。 τ 1
由式9-10可以看出,第n相末水锤压力不仅与 可以看出, 由式 可以看出 相 有关, 该相末阀门的相对开度τn有关,而且与以前各相末 的水锤压力的总和有关。 的水锤压力的总和有关。
a
0
D0
a
0max
导叶的开度
3、计算公式推导的条件 、 (1) 没有考虑管道摩阻的影响,因此只适用于 没有考虑管道摩阻的影响, 不计摩阻的情况; 不计摩阻的情况; (2) 采用了孔口出流的过流特性,只适用于冲 采用了孔口出流的过流特性, 击式水轮机, 击式水轮机,对反击式水轮机一般应乘以
ξ >ξ
A m
A 1
①常发生在管道较短 的低水头水电站。 的低水头水电站。
②末相水锤压力的计 算式为式 算式为式9-12。 。
ξ =
A m
σ
(σ ± 2
σ +4
2
)
LVmax σ =± 管道特性系数, close+, open−) ( gH 0Ts
从式9-12可见,末相水锤只是σ的函数,而与阀 可见,末相水锤只是 的函数 的函数, 从式 可见 门的τ 和波速a(即管壁的弹性和水的压缩性 无关。 即管壁的弹性和水的压缩性)无关 门的 0和波速 即管壁的弹性和水的压缩性 无关。

水电站的水锤与调节保证计算

水电站的水锤与调节保证计算

❖ 对第一相水锤
,随着 的减小而增大,所
以在图中表示为一根曲线。
❖ 对直接水锤 斜率为2ρ。
,为一通过坐标轴原点的直线,其
起始开度对水锤压强的影响
(l) 当起始开度
, >1时, ,最大水锤
压强发生在阀门关闭的终了,即极限水锤;
(2) 当起始开度 生在第一相末;
时, 最大水锤压强发
(3) 当起始开度 大水锤;
(2) 极限水锤计算简化公式
❖ 当水锤压强≤0.5时,可得到更为简化的近似公式 :
水锤类型的判别条件
❖I区为极限正水锤;II为第一相正水锤; III为直接 水锤; IV为极限负水锤;V为第一相负水锤;
❖ 简单判别方法: ❖ <1.0时,常发生第一相水锤; ❖ >1.5时,常发生极限水锤; ❖1.0< <1.5时,则随σ值的不同而发生第一相或
一、直接水锤和间接水锤
1、直接水锤 ❖ 如果水轮机调节时间Ts≤2L/c,则水库反射波回
到阀门之前开度变化已经结束,阀门处只受开度 变化直接引起的水锤波的影响——称为直接水锤 ❖ 计算直接水锤压力的公式:
(1) 当阀门关闭时,管内流速减小,V-V0<0为负值 ,△H为正,产生正水锤;反之当开启阀门时,
极限水锤,个别情况下发生直接水锤。按图判别 。
❖仅用 大于还是小于1作为判别水锤类型的条件 是近似的。水锤类型除与 有关,还与σ有关。
五、起始开度对水锤的影响
当机组满负荷运行时,起始开度 =1; 当机组只担任部分负荷运行时, <l。
❖ 由极限水锤
只与 有关,而与
是一根平行于 轴的水平线。
无关,图中
3、水锤波在管径变化处的反射
❖ 根据水锤波的基本 方程,推导出管径 变化处的反射系数 为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水管进口
L 压
力 管
水轮机 Hg 主阀

水锤前稳定工况(恒定流):
平均流速: V 0
电站静水头: H g
管内水压力: P 0
讨论阀门关闭时的水锤
第一节 水锤现象及传播速度
Hg
Hg
二、水锤及其传播过程 ❖ 0~L/a: 升压波
由阀门向水库传播,水库为异号 等值反射。(惯性) ❖ L/a~2L/a: 降压波 由水库向阀门传播,阀门为同号 等值反射。(压差) ❖ 2L/a~3L/a: 降压波 阀门→水库。 (惯性) ❖ 3L/a~4L/a: 升压波 ❖ 水库→阀门。(压差)
❖ 应满足的前提条件:水管的材料、管壁厚度、直径 沿管长不变。
❖ 水击连锁方程用相对值来表示为:
tAtD t2(vtAvtD t)
tD tA t 2(v tD v tA t)
二、水锤的连锁方程
D
Lat
❖ 若已知断面A在时刻 t 的压力为HtA,流速为VtA ,两个通 解消去 f 后,得:
H tAH gc g(V tAV 0)2F(ta x)
❖ 同理可写出时刻Δt=L/a后D点的压力和流速的关系:
H tD t H g c g (V tD t V 0 ) 2 F (t tx aL )
D0 —管 道 内 径m, E —管 道 的 材 料 弹 性 (材不料同, 取 值 不 同 ) t —管 壁 厚 度m,
四、研究水锤的目的
(一) 水锤的危害 (1) 压强升高过大→水管强度不够而破裂; (2) 尾水管中负压过大→尾水管空蚀,水轮机运行
时产生振动;出现严重的抬机现象 (3) 压强波动→机组运行稳定性和供电质量下降。 (二) 调节保证计算的目的
水锤和机组转速变化的计算,一般称为调节保证 计算。
❖ 计算有压引水系统最大和最小内水压力。最大内水 压力作为设计或校核压力管道、蜗壳和水轮机强度 的依据;最小内水压力作为压力管道线路布置,防 止管道中产生负压和校核尾水管内真空度的依据;
❖ 计算丢弃负荷和增加负荷时转速变化率,并检验其 是否在允许的范围内。
③ 水锤波同其它弹性波一样,在波的传播过程中,在外 部条件发生变化处(即边界处)均要发生波的反射。其反 射特性(指反射波的数值及方向)决定于边界处的物理特 性。
④ 实际上由于阀门不可能瞬时关闭,每关闭一个微小开 度,总会产生一个微小的水锤,故实际的水锤波将是 许多水锤波叠加的结果。
注:水锤波在管中传播一个来回的时间tr=2L/a,称之为 “相”,两个相为一个周期2tr=T。
❖ 由于F[(t+Δt)-(x+L)/c]=F[t-x/c],由上述二式相减得
❖ 同理:
HD ttຫໍສະໝຸດ HtAa gVtD tVtA
HtA t HtDa gVt At VtD
❖ 这两个方程为水锤连锁方程。
逆行波 顺行波
❖ 物理含义:连锁方程给出了水锤波在一段时间内通 过两个断面的压力和流速的关系。
a
逆行波
a
顺行波
a
逆行波
a
顺行波
Hg
Hg
水锤特性
① 水锤压力实际上是由于水流速度变化而产生的 惯性力。当突然启闭阀门时,由于启闭时间Ts 短、流量变化快,因而水锤压力往往较大,而 且整个变化过程是较快的。
② 由于管壁具有弹性和水体的压缩性,水锤压力 将以弹性波的形式沿管道多次来回传播。摩擦 阻力的存在造成能量损耗,水锤波将逐渐衰减。
H—压力水头;
x—距离,管道末端阀门为原点,向上游为正。
a—水锤波速。
上述基本方程的通解: ΔH=H-Hg=F(t-x/a)+f(t+x/a) Hg 初始静水头 ΔV=V-V0=-g/a[F(t-x/a)-f(t+x/a)] V0 初始流速
注:F 和f 为两个波函数,其量纲(单位)与水头H相同, 故可视为压力波。 ❖ F(t-x/a)为逆水流方向移动的压力波,称为逆行波; ❖ f(t+x/a)为顺水流方向移动的压力波,称为顺行波。 ❖ 任何断面任何时刻的水锤压力值等于两个方向相反的压 力波之和;而流速差值为两个压力波之差再乘以-g/a。
❖ 选择调速器合理的调节时间和调节规律,保证压力 和转速变化不超过规定的允许值。
❖ 研究减小水锤压强及机组转速变化的措施。
第三节 水锤基本方程和边界条件
一、基本方程
《水力学》中已经介绍。忽略小项,不计摩阻项,得到:
V g H
H a2 V
t
x t g x
式中
Lat
V—管道中的水流速度,向下游为正;
和水体和管道弹性的相互作用,在压力管道和蜗壳中将引 起压力上升或下降,尾水管中压力也发生相反的变化,并 且这种压力变化将以波的形式在压力管道中来回传播,此 即水锤现象。此时应考虑水体的压缩性、膨胀性。
3.在无压引水系统中(渠道、前池)产生水位波动现象。
第一节 水锤现象及传播速度
二、水锤及其传播过程
主要内容
5.1 水锤及其传播方向 5.2水锤的基本方程和边界条件 5.3简单管道水锤计算的解析方法 5.4复杂管道的水锤计算 5.5机组的调节保证计算
第一节 水锤现象及传播速度
一、水电站的不稳定工况
由于负荷变化而引起导水叶开度、水轮机流量、水电
站水头、机组转速的变化,称为水电站的不稳定工况。 此时,有压引水系统的水流为非恒定流。 (一) 引起水轮机流量变化的两种情况 ➢ 水电站正常运行情况下的负荷变化。
三、水锤波的传播速度
水锤波传播速度的大小与管壁材料、厚度、管 径、管道的支撑方式以及水体的弹性模量有关。
100m0/s(露天钢管)
a Eww 120m0/s(埋藏式钢管)
1EwD0 900~120m0/s(钢筋混凝土管) Et
Ew —水 体 的 弹 性 模 量2,.06为103 MPa
w —水 体 的 密 度 ,10为00kg/ m3
担任峰荷或调频任务的电站,水轮机的流量处于不 断变化中;正常的开机或停机。 ➢ 水电站事故引起的负荷变化。水电站因各种各样的 事故(电气、水机、水工),可能要求水电站丢弃 全部或部分负荷。水电站水锤计算的控制条件。
(二)水电站的不稳定工况表现形式 1. 引起机组转速的较大变化 ❖ 丢弃负荷:剩余能量→机组转动部分动能→机组转速升高 ❖ 增加负荷:与丢弃负荷相反。 2.在有压引水管道中发生“水锤”现象 ❖ 导叶关闭或开启时,由于水流的流量的改变、水流的惯性
相关文档
最新文档