水电站的水锤与调节保证计算
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水管进口
L 压
力 管
水轮机 Hg 主阀
道
水锤前稳定工况(恒定流):
平均流速: V 0
电站静水头: H g
管内水压力: P 0
讨论阀门关闭时的水锤
第一节 水锤现象及传播速度
Hg
Hg
二、水锤及其传播过程 ❖ 0~L/a: 升压波
由阀门向水库传播,水库为异号 等值反射。(惯性) ❖ L/a~2L/a: 降压波 由水库向阀门传播,阀门为同号 等值反射。(压差) ❖ 2L/a~3L/a: 降压波 阀门→水库。 (惯性) ❖ 3L/a~4L/a: 升压波 ❖ 水库→阀门。(压差)
❖ 应满足的前提条件:水管的材料、管壁厚度、直径 沿管长不变。
❖ 水击连锁方程用相对值来表示为:
tAtD t2(vtAvtD t)
tD tA t 2(v tD v tA t)
二、水锤的连锁方程
D
Lat
❖ 若已知断面A在时刻 t 的压力为HtA,流速为VtA ,两个通 解消去 f 后,得:
H tAH gc g(V tAV 0)2F(ta x)
❖ 同理可写出时刻Δt=L/a后D点的压力和流速的关系:
H tD t H g c g (V tD t V 0 ) 2 F (t tx aL )
D0 —管 道 内 径m, E —管 道 的 材 料 弹 性 (材不料同, 取 值 不 同 ) t —管 壁 厚 度m,
四、研究水锤的目的
(一) 水锤的危害 (1) 压强升高过大→水管强度不够而破裂; (2) 尾水管中负压过大→尾水管空蚀,水轮机运行
时产生振动;出现严重的抬机现象 (3) 压强波动→机组运行稳定性和供电质量下降。 (二) 调节保证计算的目的
水锤和机组转速变化的计算,一般称为调节保证 计算。
❖ 计算有压引水系统最大和最小内水压力。最大内水 压力作为设计或校核压力管道、蜗壳和水轮机强度 的依据;最小内水压力作为压力管道线路布置,防 止管道中产生负压和校核尾水管内真空度的依据;
❖ 计算丢弃负荷和增加负荷时转速变化率,并检验其 是否在允许的范围内。
③ 水锤波同其它弹性波一样,在波的传播过程中,在外 部条件发生变化处(即边界处)均要发生波的反射。其反 射特性(指反射波的数值及方向)决定于边界处的物理特 性。
④ 实际上由于阀门不可能瞬时关闭,每关闭一个微小开 度,总会产生一个微小的水锤,故实际的水锤波将是 许多水锤波叠加的结果。
注:水锤波在管中传播一个来回的时间tr=2L/a,称之为 “相”,两个相为一个周期2tr=T。
❖ 由于F[(t+Δt)-(x+L)/c]=F[t-x/c],由上述二式相减得
❖ 同理:
HD ttຫໍສະໝຸດ HtAa gVtD tVtA
HtA t HtDa gVt At VtD
❖ 这两个方程为水锤连锁方程。
逆行波 顺行波
❖ 物理含义:连锁方程给出了水锤波在一段时间内通 过两个断面的压力和流速的关系。
a
逆行波
a
顺行波
a
逆行波
a
顺行波
Hg
Hg
水锤特性
① 水锤压力实际上是由于水流速度变化而产生的 惯性力。当突然启闭阀门时,由于启闭时间Ts 短、流量变化快,因而水锤压力往往较大,而 且整个变化过程是较快的。
② 由于管壁具有弹性和水体的压缩性,水锤压力 将以弹性波的形式沿管道多次来回传播。摩擦 阻力的存在造成能量损耗,水锤波将逐渐衰减。
H—压力水头;
x—距离,管道末端阀门为原点,向上游为正。
a—水锤波速。
上述基本方程的通解: ΔH=H-Hg=F(t-x/a)+f(t+x/a) Hg 初始静水头 ΔV=V-V0=-g/a[F(t-x/a)-f(t+x/a)] V0 初始流速
注:F 和f 为两个波函数,其量纲(单位)与水头H相同, 故可视为压力波。 ❖ F(t-x/a)为逆水流方向移动的压力波,称为逆行波; ❖ f(t+x/a)为顺水流方向移动的压力波,称为顺行波。 ❖ 任何断面任何时刻的水锤压力值等于两个方向相反的压 力波之和;而流速差值为两个压力波之差再乘以-g/a。
❖ 选择调速器合理的调节时间和调节规律,保证压力 和转速变化不超过规定的允许值。
❖ 研究减小水锤压强及机组转速变化的措施。
第三节 水锤基本方程和边界条件
一、基本方程
《水力学》中已经介绍。忽略小项,不计摩阻项,得到:
V g H
H a2 V
t
x t g x
式中
Lat
V—管道中的水流速度,向下游为正;
和水体和管道弹性的相互作用,在压力管道和蜗壳中将引 起压力上升或下降,尾水管中压力也发生相反的变化,并 且这种压力变化将以波的形式在压力管道中来回传播,此 即水锤现象。此时应考虑水体的压缩性、膨胀性。
3.在无压引水系统中(渠道、前池)产生水位波动现象。
第一节 水锤现象及传播速度
二、水锤及其传播过程
主要内容
5.1 水锤及其传播方向 5.2水锤的基本方程和边界条件 5.3简单管道水锤计算的解析方法 5.4复杂管道的水锤计算 5.5机组的调节保证计算
第一节 水锤现象及传播速度
一、水电站的不稳定工况
由于负荷变化而引起导水叶开度、水轮机流量、水电
站水头、机组转速的变化,称为水电站的不稳定工况。 此时,有压引水系统的水流为非恒定流。 (一) 引起水轮机流量变化的两种情况 ➢ 水电站正常运行情况下的负荷变化。
三、水锤波的传播速度
水锤波传播速度的大小与管壁材料、厚度、管 径、管道的支撑方式以及水体的弹性模量有关。
100m0/s(露天钢管)
a Eww 120m0/s(埋藏式钢管)
1EwD0 900~120m0/s(钢筋混凝土管) Et
Ew —水 体 的 弹 性 模 量2,.06为103 MPa
w —水 体 的 密 度 ,10为00kg/ m3
担任峰荷或调频任务的电站,水轮机的流量处于不 断变化中;正常的开机或停机。 ➢ 水电站事故引起的负荷变化。水电站因各种各样的 事故(电气、水机、水工),可能要求水电站丢弃 全部或部分负荷。水电站水锤计算的控制条件。
(二)水电站的不稳定工况表现形式 1. 引起机组转速的较大变化 ❖ 丢弃负荷:剩余能量→机组转动部分动能→机组转速升高 ❖ 增加负荷:与丢弃负荷相反。 2.在有压引水管道中发生“水锤”现象 ❖ 导叶关闭或开启时,由于水流的流量的改变、水流的惯性