直线一级倒立摆系统实验指导书自动控制综合实验(2)
一阶倒立摆模糊控制实验报告
一阶倒立摆模糊控制实验报告一、实验目的本实验旨在通过模糊控制方法来控制一阶倒立摆系统,实现摆杆保持竖直的稳定控制。
二、实验原理1. 一阶倒立摆系统一阶倒立摆系统由一个垂直的支撑杆和一个在杆顶端垂直摆动的杆组成。
系统的输入为杆的控制力矩,输出为杆的角度。
系统的动力学方程可以表示为:Iθ''(t) + bθ'(t) + mgl sin(θ(t)) = u(t)其中,I为倒立摆的转动惯量,b为摩擦阻尼系数,θ为倒立摆的角度,m为倒立摆的质量,l为杆的长度,g为重力加速度,u为输入的控制力矩。
2. 模糊控制方法模糊控制方法是一种基于模糊逻辑的控制方法,通过将模糊集合与模糊规则相结合,构建模糊控制器来实现对系统的控制。
在本实验中,可以使用模糊控制器来实现倒立摆系统的稳定控制。
三、实验步骤1. 搭建实验平台,包括倒立摆系统、传感器和执行器。
2. 训练模糊控制器a. 定义模糊集合:根据角度误差和角速度误差定义模糊集合,并确定模糊集合的划分方式。
b. 构建模糊规则:根据经验或系统建模,确定模糊规则。
c. 设计模糊控制器:根据模糊集合和模糊规则,设计模糊控制器,包括模糊推理和模糊解模块。
d. 调整模糊控制器参数:根据系统响应实验,根据控制效果调整模糊控制器参数。
3. 实施模糊控制a. 读取传感器数据:获取倒立摆的角度和角速度数据。
b. 计算控制器输出:根据模糊控制器和传感器数据计算控制力矩的输出。
c. 执行控制器输出:将控制力矩作用在倒立摆上。
4. 监测系统响应:实时监测倒立摆的角度和角速度,判断控制效果。
5. 调整模糊控制器参数:根据实验监测结果,调整模糊控制器参数,以提高控制效果。
四、实验结果分析通过实验,我们可以观察到倒立摆系统在模糊控制下的稳定控制效果。
通过实时监测倒立摆的角度和角速度,可以验证控制器的性能。
实验结果可以通过绘制控制力矩输入和倒立摆角度响应曲线,以及观察系统的稳态误差来分析。
倒立摆创新实验指导书
倒立摆创新实验指导书1. 实验目的本实验旨在通过搭建倒立摆实验装置,探究倒立摆系统的动力学特性,并利用创新方法改进系统的控制性能。
2. 实验原理倒立摆是一种具有非线性特点的物理系统,通常由一个悬挂在水平轴上的摆杆(或杆状物体)和一个在摆杆上悬挂的质心实例组成。
倒立摆的稳定问题一直是控制理论与工程实践中的经典难题。
该实验采用现代控制理论中的线性二阶倒立摆模型,即摆杆与直流电机驱动器的组合。
摆杆通过电机驱动器实现倒立运动。
控制器通过调节电机驱动器中的电流来调节摆杆的位置,从而使摆杆稳定在垂直位置上。
3. 实验装置•一根长摆杆•一个电机驱动器•一个直流电动机•一块微控制器开发板•一个传感器(可选)4. 实验步骤第一步:组装倒立摆装置1.将长摆杆垂直放置在平稳的地面上,并将电动机安装在杆的底部。
2.通过螺丝将电机和摆杆牢固连接。
第二步:电路连接1.将电动机与电机驱动器相连,确保连接稳固。
2.将电机驱动器连接到微控制器开发板,确保连接正确。
第三步:程序编写1.在微控制器开发板上编写程序,用于控制倒立摆系统。
2.编写程序以读取传感器数据(如果有使用传感器)。
3.编写程序以实现倒立摆系统的控制算法。
4.将程序烧录到开发板上。
第四步:实验执行1.将倒立摆系统放置在适当的位置。
2.打开电源,启动微控制器开发板。
3.观察摆杆的倒立运动。
4.记录数据并分析实验结果。
5. 实验注意事项1.搭建倒立摆装置时要注意安全。
2.确保电路连接正确,避免短路等意外情况发生。
3.在实验执行过程中,保持仪器和装置的稳定性。
4.注意观察实验现象,并记录实验数据。
6. 实验结果分析根据实验数据和观察结果,分析倒立摆系统的倒立运动特性。
可以比较不同控制算法下的倒立效果,评估不同控制策略对系统性能的影响。
7. 创新实验内容本实验还可以进行创新实验,在以下方面进行改进:•调整控制算法,提高倒立摆系统的响应速度和稳定性。
•优化摆杆的结构和材料,改进系统的物理性能。
便携式一级倒立摆实验指导(第二版)最终版DOC
Reinovo便携式直线一级倒立摆实验指导书(第二版)深圳市元创兴科技有限公司2011年08月目录第一章开发环境及其系统组成 (1)第二章系统控制原理简介 (2)第三章便携式倒立摆建模及仿真 (3)第四章实验 (13)实验一运动控制基础实验 (13)1.1 编码器原理 (13)1.2 编码器使用实验 (14)实验二根轨迹控制实验 (17)2.1 根轨迹分析 (17)2.2 根轨迹校正及仿真 (18)2.3 仿真模型搭建 (22)2.4 根轨迹实时控制实验 (27)实验三频率响应控制实验 (30)3.1 频率响应分析 (30)3.2 频域控制器设计及仿真 (31)3.3 仿真实验 (35)3.4 直线一级倒立摆频率响应校正法实时控制实验 (38)实验四 PID控制实验 (40)4.1 PID控制分析 (40)4.2 PID控制参数设定及仿真 (40)4.3 PID控制实时控制实验 (44)实验五状态空间极点配置控制实验 (47)5.1 状态空间分析 (47)5.2 极点配置及仿真 (48)5.3 极点配置控制实验 (55)实验六线性二次最优控制(LQR)控制实验 (57)6.1 线性二次最优控制(LQR)基本原理及分析 (57)6.2 LQR控制参数调节及仿真 (58)6.3 直线一级倒立摆LQR控制实验 (60)实验七Bang-Bang起摆控制算法实验 (62)7.1 Bang-Bang起摆控制算法 (62)7.2 Bang_Bang控制算法实物控制 (63)实验八能量自摆起实验 (65)8.1 基于能量反馈的起摆算法 (65)8.2 能量自摆起实物控制 (66)第一章开发环境及其系统组成一开发环境要求硬件要求:1、Pentium II、Pentium III、AMD Athlon或者更高;2、内存至少256MB,推荐512MB 以上;3、至少有一个USB2.0接口;软件要求:1、Microsoft Windows 98、Microsoft Windows 2000、Microsoft Windows XP;2、Microsoft Visual C++ 6.0;3、Matlab 6.5。
(最新整理)倒立摆实验报告
的维数,若 r=n,则系统能控,能够进行极点配置。
第二步:受控系统中引入状态反馈向量 K, K k1 kn 。引入状态反
馈向量后系统特征多项式为: f (s) sI ( A BK ) sn a1sn1 an1s an
(11)
设期望特征根为 1*, 2*,, n* ,则期望特征多项式为:
==
(5) (6)
x 0 1 0 0 x 0
x
x
0 0
0 0
0 0
0
x
1
1 0
0 0 29.4 0 3
x
y
x
1 0
0 0
0 1
0 0
x
0 0
(7) (8)
(9)
2 、PID 控制器设计与调节 PID 整定说明: (1)比例(P 作用)增大,系统响应快,对提高稳态精度有益,但过大易
图 4 PID 控制器参数设计界面
1.4 PID 控制器设计
使用 SISO 界面的
添加零点和极
点,使补偿器 C 为 PID 形式。
1
KDS2 + KPS + KI
(1 + aS)(1 + bS)
GPID = KP + KIS + KDS =
S
=k∗
S
(13)
使用 SISO 界面的“Analysis”选项框中 Response to Step Command 的命 令即可查看被控对象阶跃响应曲线。通过调整 SISO 界面添加的零点,同时观察 单位阶跃输入时的闭环响应曲线,寻找合适的 P、I、D 参数。设合适的补偿器 下的根轨迹和参数以及响应曲线如图 5 和图 6:
x (x, x, ,)
现代控制一级倒立摆
现代控制一级倒立摆倒立摆实验电子工程学院自动化学号:目录1实验设备简介 (4)1.1倒立摆介绍 (4)1.2直线一级倒立摆 (5)2 倒立摆建模 (6)2.1 直线一阶倒立摆数学模型的推导 (6)2.1.1受力分析 (6)2.1.2微分方程建模 (8)2.1.3状态空间数学模型 (9)2.2 实际系统模型建立 (10)3系统定性、定量分析 (11)3.1系统稳定性与可控性分析 (11)3.1.1稳定性分析 (11)3.1.2能控性分析 (13)4极点配置的设计步骤 (13)4.1极点配置的计算 (13)4.2用MATLAB进行极点配置的计算 (15)4.3极点配置的综合分析 (16)5小结 (17)1实验设备简介1.1倒立摆介绍倒立摆是处于倒置不稳定状态,人为控制使其处于动态平衡的一种摆。
如杂技演员顶杆的物理机制可简化为一级倒立摆系统,是一个复杂,多变量,存在严重非线性,非自制不稳定系统。
常见的倒立摆一般由小车和摆杆两部分组成,其中摆杆可能是一级,二级或多级,在复杂的倒立摆系统中,摆杆的长度和质量均可变化。
1.2直线一级倒立摆根据自控原理实验书上相关资料,直线一级倒立摆在建模时,一般忽略系统中的一些次要因素.例如空气阻力、伺服电机的静摩擦力、系统连接处的松弛程度等,之后可将直线一级倒立摆系统抽象成小车和匀质的杆组成的系统。
倒立摆系统是典型的机电一体化系统其机械部分遵循牛顿的力学定律其电气部分遵守电磁学的基本定理.无论哪种类型的倒立摆系统,都具有3个特性,即:不确定性、耦合性、开环不稳定性. 直线型倒立摆系统,是由沿直线导轨运动的小车以及一端固定于小车上的匀质长杆组成的系统.小车可以通过传动装置由交流伺服电机驱动. 小车导轨一般有固定的行程,因而小车的运动范围是受到限制的。
2 倒立摆建模2.1 直线一阶倒立摆数学模型的推导对于忽略各种摩擦参数和空气阻力之后,直线一即倒立摆抽象为小车和均质杆组成的系统。
(创新管理)倒立摆创新实验指导书
(创新管理)倒立摆创新实验指导书倒立摆创新实验指导书--线性二次最优LQR控制实验壹、实验目的让实验者了解且掌握线性二次最优控制LQR控制的原理和方法,学习如何使用最优控制算法对直线壹级倒立摆系统进行设计控制实验。
二、设计要求用最优控制算法设计控制器,使得当于小车上施加0.1m的阶跃信号时,闭环系统的响应指标为:1.杆的上升时间小于2秒2.动态误差小于2%3.的超调量小于5%三、线性二次最优控制LQR基本原理及分析线性二次最优控制LQR基本原理为,由系统方程:确定下列最佳控制向量的矩阵K:u(t)=-K*x(t)使得性能指标达到最小值:式中Q——正定(或正半定)厄米特或实对称阵R——为正定厄米特或实对称阵图2-1最优控制LQR控制原理图方程右端第二项是考虑到控制能量的损耗而引进的,矩阵Q和R确定了误差和能量损耗的相对重要性。
且且假设控制向量u(t)是无约束的。
对线性系统:.根据期望性能指标选取Q和R,利用MATLAB命令lqr就能够得到反馈矩阵K的值。
K=lqr(A,B,Q,R)改变矩阵Q的值,能够得到不同的响应效果,Q的值越大(于壹定的范围之内),系统抵抗干扰的能力越强,调整时间越短。
可是Q不能过大,其影响将于实验结果分析中阐述。
关于线性二次最优控制LQR的详细原理请参见现代控制理论的关联书籍。
四、实验步骤1)打开直线壹级倒立摆LQR实时控制模块,(进入MATLABSimulink实时控制工具箱“GoogolEducationProducts”打开“InvertedPendulum\LinearInvertedPendulum\Linear1-StageIPExperiment\LQRExp eriments”中的“LQRControlDemo”)图2-5直线壹级倒立摆LQR控制实时控制程序其中“LQRController”为LQR控制器模块,“RealControl”为实时控制模块,双击“LQRController”模块打开LQR控制器参数设置窗口如下:于“LQRController”模块上点击鼠标右键选择“Lookundermask”打开模型如下:双击“RealControl”模块打开实时控制模块如下图:其中“Pendulum”模块为倒立摆系统输入输出模块,输入为小车的速度“Vel”和“Acc”,输出为小车的位置“Pos”和摆杆的角度“Angle”。
直线型倒立摆实验
实验一直线倒立摆建模、仿真及实验实验目的:本实验的目的是让学生掌握对实际系统进行建模的方法,熟悉利用MATLAB 对系统模型进行仿真,对实验结果进行观察和分析,直观的感受系统模型的数学意义。
实验内容:1.建立一级倒立摆的数学模型;2.分析一级倒立摆的可控性;3.分析一级倒立摆模型的阶跃响应实验器材(装置):实验要求:建立一级倒立摆的数学模型,分别计算摆杆角度和小车位移的传递函数,摆杆角度和小车加速度的传递函数,并建立相应的状态空间方程;利用状态空间方程分析一级倒立摆的可控性;利用传递函数分析一级倒立摆模型的阶跃响应;记录实验中的数据和图。
实验步骤(方法):实验记录与数据处理:注意事项:1.1 直线一级倒立摆的物理模型系统建模可以分为两种:机理建模和实验建模。
实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对象并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。
这里面包括输入信号的设计选取,输出信号的精确检测,数学算法的研究等等内容。
机理建模就是在了解研究对象的运动规律基础上,通过物理、化学的知识和数学手段建立起系统内部的输入-状态关系。
对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难。
但是忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。
下面我们采用牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型。
1.1.1微分方程的推导牛顿力学方法在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图 1-1 所示。
我们不妨做以下假设:M 小车质量m 摆杆质量b 小车摩擦系数l 摆杆转动轴心到杆质心的长度I 摆杆惯量F 加在小车上的力x小车位置φ 摆杆与垂直向上方向的夹角θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)图 1-1 直线一级倒立摆模型图是系统中小车和摆杆的受力分析图。
直线一级倒立摆系统的状态空间极点配置控制设计详细实验报告
一、直线一级倒立摆建模根据自控原理实验书上相关资料,直线一级倒立摆在建模时,一般忽略掉系统中的一些次要因素.例如空气阻力、伺服电机的静摩擦力、系统连接处的松弛程度等,之后可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示:倒立摆系统是典型的机电一体化系统,其机械部分遵循牛顿的力学定律,其电气部分遵守电磁学的基本定理.因此,可以通过机理建模方法得到较为准确的系统数学模型,通过实际测量和实验来获取系统模型参数.无论哪种类型的倒立摆系统,都具有3个特性,即:不确定性、耦合性、开环不稳定性. 直线型倒立摆系统,是由沿直线导轨运动的小车以及一端固定于小车上的匀质长杆组成的系统. 小车可以通过传动装置由交流伺服电机驱动. 小车导轨一般有固定的行程,因而小车的运动范围是受到限制的。
虽然倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性:1) 非线性倒立摆是一个典型的非线性复杂系统,实际中可以通过线性化得到系统的近似模型,线性化处理后再进行控制。
也可以利用非线性控制理论对其进行控制。
倒立摆的非线性控制正成为一个研究的热点。
2) 不确定性主要是模型误差以及机械传动间隙,各种阻力等,实际控制中一般通过减少各种误差来降低不确定性,如通过施加预紧力减少皮带或齿轮的传动误差,利用滚珠轴承减少摩擦阻力等不确定因素。
3) 耦合性倒立摆的各级摆杆之间,以及和运动模块之间都有很强的耦合关系,在倒立摆的控制中一般都在平衡点附近进行解耦计算,忽略一些次要的耦合量。
4) 开环不稳定性倒立摆的平衡状态只有两个,即在垂直向上的状态和垂直向下的状态,其中垂直向上为绝对不稳定的平衡点,垂直向下为稳定的平衡点。
由于机构的限制,如运动模块行程限制,电机力矩限制等。
为了制造方便和降低成本,倒立摆的结构尺寸和电机功率都尽量要求最小,行程限制对倒立摆的摆起影响尤为突出,容易出现小车的撞边现象。
由此,约束限制直线型一级倒立摆系统的实际控制要求可归结为3点:(1)倒立摆小车控制过程的最大位移量不能超过小车轨道的长度;(2)为保证倒立摆能顺利起立,要求初始偏角小于20°;(3)为保证倒立摆保持倒立的平衡态,要求控制系统响应速度足够快。
直线一级倒立摆实验教程
声明
固高科技保留在没有预先通知的情况下修改产品或其特性的权利。 固高科技并不承担由于使用产品不当而产生的直接或是间接的伤害或损坏的责任。
商标
Windows 和 Microsoft 是 Microsoft 的注册商标。 IPM 和 IPM Motion Studio 是 Technosoft 公司的商标。 MATLAB 是 MathWorks 公司的商标。 LabVIEW 是美国国家仪器(NI)公司的商标。
直线一级倒立摆 实验教程
直线摆系列 GLIP2001
V1.00
2012.04
© 2012 Googol Technology. All rights reserved
直线一级倒立摆实验教程 V1.00
固高科技 (深圳) 有限公司
版权声明
固高科技有限公司版权所有. 固高科技保留所有版权以及相关的知识产权。 GLIP2001 型直线一级倒立摆实验教程 在版权法保护下,在没有固高科技的书面许可下,任何人都不能直接的或是间接的复制、生产、加工 本产品以及附属产品。
1
直线一级倒立摆实验教程 V1.00ຫໍສະໝຸດ 固高科技 (深圳) 有限公司
目
录
版权声明 ........................................................................................................................................................... 1 声明 ...............................................................................................
直线一级倒立摆控制器设计(自动控制理论课程设计)
H a r b i n I n s t i t u t e o f T e c h n o l o g y课程设计说明书(论文)课程名称:自动控制理论课程设计设计题目:直线一级倒立摆控制器设计院系:电气工程及其自动化学院班级:设计者:学号:指导教师:**哈尔滨工业大学哈尔滨工业大学课程设计任务书*注:此任务书由课程设计指导教师填写。
1、理论模型建立和分析1.1直线一级倒立摆数学模型的推导对于忽略空气阻力和各种摩擦之后,直线一级倒立摆系统抽象为小车和匀质杆组成的系统。
xbp图1-1 倒立摆系统小车和摆杆的受力分析本系统参数定义如下:M——小车质量;m——摆杆质量。
b——小车摩擦系数;l——摆杆转动轴心到杆质心的长度;I——摆杆惯量;F——加在小车上的力;x——小车位置;φ——摆杆与垂直向上方向的夹角。
θ——摆杆与垂直向下方向的夹角方程为:Mx F bx N=--(1-1)因此主动控制力可近似线性化地表示为:()22sin d N m x l dtθ=+ (1-2)即:2cos sin N mx ml ml θθθθ=+- (1-3)代入前面式子:()2cos sin M m x bx ml ml F θθθθ+++-= (1-4)垂直方向上:()22cos d P mg m l dt θ-=- (1-5)即:2sin cos P mg ml ml θθθθ-=+ (1-6) 力矩平衡方程:sin cos Pl Nl I θθθ--= (1-7)注意等式前面的负号,由于,cos cos ,sin sin θπφφθφθ=+=-=-()22sin cos I ml mgl mlxθθθ++=- (1-8)1.微分方程模型 设θπφ=+,近似处理:2cos 1,sin ,()0d dtθθθφ=-=-= 设u=F ,则:()()2M m x bx ml u I ml mgl mlx φφφ⎧++-=⎪⎨+-=⎪⎩ (1-9)2.传递函数模型对上式拉氏变换处理,设初始条件为0,则:()()22222()()()()()()()M m X s s bX s ml s s U s I ml s s mgl s mlX s s ⎧++-Φ=⎪⎨+Φ-Φ=⎪⎩(1-10) 输出为角度为φ,由第二式得到()22()()I ml g X s s ml s ⎡⎤+⎢⎥=-Φ⎢⎥⎣⎦ (1-11)或者()222()()s mls X s I ml s mglΦ=+- (1-12)如果令x ν=,则有()22()()s mlV s I ml s mglΦ=+- (1-13)把上式代入10式,则有:()()()22222()()()()I ml I ml g g M m s s b s s ml s s U s ml s ml s ⎡⎤⎡⎤++⎢⎥⎢⎥+-Φ++Φ-Φ=⎢⎥⎢⎥⎣⎦⎣⎦(1-14)整理:()()212432()()()ml s s q G s U s b I ml M m mgl bmgl s s s sqqqΦ==+++--(1-15)其中()()()22q M m I ml ml ⎡⎤=++-⎣⎦从而,有()()()()()222222432222432()()()()()X s s G s s U s ml s I ml s mglq mlsb I ml M m mgl bmgl s s s s qqqI ml mgls q q b I ml M m mgl bmgl s s s sqqqΦ=⨯Φ+-=⨯+++--+-=+++--(1-16)3.状态空间数学模型X AX BuY CX Du=+=+,可得状态方程()()()()()()()()()2222222222x x I ml b I ml m gl x x u I M m Mml I M m Mml I M m Mml mgl M m mlb ml x u I M m Mml I M m Mml I M m Mml φφφφφ=⎧⎪-++⎪=++⎪++++++⎪⎨=⎪⎪+-⎪=++⎪++++++⎩()()()()()()()()()22222222220100000000100010000010x x I ml b I ml m gl x x I M m Mml I M m Mml I M m Mml u mlb mgl M m ml I M m Mml I M m Mml I M m Mmlx y φφφφφ-++++++++=+-+++++++==⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎣⎦⎣⎦00x x uφφ+⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎡⎤⎪⎢⎥⎡⎤⎪⎢⎥⎥⎢⎥⎪⎢⎥⎣⎦⎪⎢⎥⎩⎣⎦1.2系统阶跃响应分析1.2.1、阶跃响应源程序:参考模型 %实际系统参数M=0.5; m=0.2; b=0.1; l=0.3; I=0.006; g=9.8; T=0.005;%求传递函数gs(输出为摆杆角度)和gspo(输出为小车位置)q=(M+m)*(I+m*l^2)-(m*l)^2; num=[m*l/q 0];den=[1 b*(I+m*l^2)/q -(M+m)*m*g*l/q -b*m*g*l/q]; gs=tf(num,den);numpo=[(I+m*l^2)/q 0 -m*g*l/q];denpo=[1 b*(I+m*l^2)/q -(M+m)*m*g*l/q -b*m*g*l/q 0]; gspo=tf(numpo,denpo);%求状态空间sys(A,B,C,D)p=I*(M+m)+M*m*l^2;A=[0 1 0 0;0 -(I+m*l^2)*b/p m^2*g*l^2/p 0;0 0 0 1;0 -m*b*l/p m*g*l*(M+m)/p 0]; B=[0;(I+m*l^2)/p;0;m*l/p]; C=[1 0 0 0;0 0 1 0]; D=0;sys=ss(A,B,C,D);%通过传递函数求系统(摆杆角度和小车位置)的开环阶越响应t=0:T:5; y1=step(gs,t); y2=step(gspo,t); figure(1);plot(t,y2,'b',t,y1,'r'); axis([0 2.5 0 80]);legend('Car Position','Pendulum Angle'); 1.2.2、仿真结果:通过传递函数求系统(摆杆角度和小车位置)的开环阶越响应01020304050607080图1-2 摆杆和小车位置的开环阶跃响应注:左边红色代表小车位置,右边蓝色代表摆杆角度响应。
直线一级倒立摆控制方法研究毕业论文
直线一级倒立摆控制方法研究毕业论文目录前言 (1)第1章倒立摆系统 (2)1.1 倒立摆的简介 (2)1.2 倒立摆的分类 (3)1.3 倒立摆的特性 (5)1.4 控制器的设计方法 (6)1.5 倒立摆系统研究的背景及意义 (6)1.6 直线倒立摆控制系统硬件框图 (8)第2章倒立摆的数学模型 (9)2.1 数学模型概述 (9)2.2 拉格朗日建模法 (9)2.3 倒立摆系统参数 (11)2.4 实际数学模型 (12)第3章MATLAB工具软件 (13)3.1 MATLAB简介 (13)3.2 SIMULINK仿真 (14)3.3 SIMULINK仿真建模方法 (15)第4章PID控制 (17)4.1 PID控制简述 (17)4.2 国内外的研究现状和发展趋势 (18)4.3 PID控制器设计 (20)4.4 PID控制器参数的整定 (21)第5章直线一级倒立摆的PID控制 (22)5.1 直线一级倒立摆的PID控制Simulink仿真 (22)5.2 直线一级倒立摆的PID仿真程序 (25)5.3 直线一级倒立摆的PID实时控制 (26)第6章直线一级倒立摆LQR控制 (29)6.1 线性二次最优控制LQR基本原理及分析 (29)6.2 LQR控制参数调节及仿真 (30)6.3 直线一级倒立摆LQR控制simulink仿真 (32)6.4 直线一级倒立摆LQR控制 (34)结论 (37)谢辞 (38)参考文献 (39)附录 (41)外文资料翻译 (45)MATLAB (45)MATLAB简介 (51)前言倒立摆是进行控制理论研究的典型实验平台。
由于倒立摆系统的控制策略和杂技运动员顶杆平衡表演的技巧有异曲同工之处,极富趣味性,而且许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等等,都可以通过倒立摆系统实验直观的表现出来,因此在欧美发达国家的高等院校,它已成为必备的控制理论教学实验设备]2[。
一级倒立摆实验报告
一级直线倒立摆极点配置控制实验一、实验目的1.运用经典控制理论控制直线一级倒立摆,包括实际系统模型的建立、根轨迹分析和控制器设计、PID 控制分析等内容。
2.熟悉利用极点配置方法来进行倒立摆实验的原理方法。
3.学习MATLAB工具软件在控制工程中的应用。
3.掌握对实际系统进行建模的方法,熟悉利用MATLAB 对系统模型进行仿真,利用学习的控制理论对系统进行控制器的设计,并对系统进行实际控制实验,对实验结果进行观察和分析,非常直观的感受控制器的控制作用。
二、实验设备计算机及MATLAB相关软件元创兴倒立摆系统的软件元创兴一级直线倒立摆系统,包括运动卡和倒立摆实物倒立摆相关安装工具三、倒立摆系统介绍倒立摆是进行控制理论研究的典型实验平台。
由于倒立摆系统的控制策略和杂技运动员顶杆平衡表演的技巧有异曲同工之处,极富趣味性,而且许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等等,都可以通过倒立摆系统实验直观的表现出来。
学习自动控制理论的学生通过倒立摆系统实验来验证所学的控制理论和算法,非常的直观、简便,在轻松的实验中对所学课程加深了理解。
倒立摆不仅仅是一种优秀的教学实验仪器,同时也是进行控制理论研究的理想实验平台。
由于倒立摆系统本身所具有的高阶次、不稳定、多变量、非线性和强耦合特性,许多现代控制理论的研究人员一直将它视为典型的研究对象,不断从中发掘出新的控制策略和控制方法,相关的科研成果在航天科技和机器人学方面获得了广阔的应用。
四、倒立摆工作原理和物理模型以及数学模型(简述)1、工作原理:数据采集卡(也称运动控制卡,安装于计算机机箱的PCI插槽上)采集到旋转编码器数据和电机尾部编码器数据,旋转编码器与摆杆同轴,电机与小车通过皮带连接,所以通过计算就可以得到摆杆的角位移以及小车位移,角位移差分得角速度,位移差分可得速度,然后根据自动控制中的各种理论转化的算法计算出控制量。
控制量由计算机通过运动控制卡下发给伺服驱动器,由驱动器实现对电机控制,电机尾部编码器连接到驱动器形成闭环,从而可以实现闭环控制。
一级倒立摆实验(状态反馈)
第1章倒立摆系统介绍1.1 倒立摆系统简介倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。
最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。
近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。
倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。
由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。
平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。
1.2 倒立摆分类倒立摆已经由原来的直线一级倒立摆扩展出很多种类,典型的有直线倒立摆,环形倒立摆,平面倒立摆和复合倒立摆等,倒立摆系统是在运动模块上装有倒立摆装置,由于在相同的运动模块上可以装载不同的倒立摆装置,倒立摆的种类由此而丰富很多,按倒立摆的结构来分,有以下类型的倒立摆:1) 直线倒立摆系列直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件,可以组成很多类别的倒立摆,直线柔性倒立摆和一般直线倒立摆的不同之处在于,柔性倒立摆有两个可以沿导轨滑动的小车,并且在主动小车和从动小车之间增加了一个弹簧,作为柔性关节。
直线倒立摆系列产品如图 1-1 所示。
直线一级倒立摆系统实验报告
直线一级倒立摆系统实验报告西北工业大学姓名:张云虎探测制导与控制技术学号:2013300925 1.实验参数介绍2.根据实验指导书给的受力分析结合newton定律得出动力学方程:分析水平方向的合力有:M=F-f-N (1)分析摆杆水平方向的受力得;N-Fs=m(x+lsinθ) ps:Fs=0即N=m+mlθcosθ-mlθsinθ(2)把(2)带入(1)得到:(M+m)+f+ mlθcosθ-mlθsinθ=F(3)对垂直方向的合力进行分析得到:-P+mg+Fh=m(l-lcosθ) ps:Fh=0即P-mg= mlθsinθ+mlθcosθ(4)力矩平衡方程:Plsinθ+Nlcosθ+Iθ=0 (5)把公式(2)(4)带进(5)得到:(I+m)θ+mglsinθ=-ml(6)近似化处理得到:(I+m)ф-mglф=ml(M+m)+f-mlф=u写出状态空间模型:=Ax+Buy=Cx+Du==+ф+ uф=фф= +ф+ u写成矩阵形式,带入参数化简如下:фф =ф= uy= ф = фф+ u3.MATLAB分析:>> A=[0 1 0 0;0 0 0 0;0 0 0 1;0 0 29.4 0]A =0 1.0000 0 0 0 0 0 0 0 0 0 1.0000 0 0 29.4000 0>> B=[0;1;0;3]B =13>> C1=[1 0 0 0]C1 =1 0 0 0>> C2=[0 0 1 0]C2 =0 0 1 0>> C=[C1;C2]C =1 0 0 00 0 1 0>> D=[0;0]D =D1 =>> D2=[0]D2 =状态空间模型如下:>> sys1=ss(A,B,C,D)sys1 =a =x1 x2 x3 x4x1 0 1 0 0x2 0 0 0 0x3 0 0 0 1x4 0 0 29.4 0b =u1x1 0x2 1x3 0x4 3c =x1 x2 x3 x4y1 1 0 0 0y2 0 0 1 0d =u1y1 0y2 0Continuous-time state-space model.4.利用MATLAB判断系统的能控性与观性:>> Qc=ctrb(A,B);>> Qo1=obsv(A,C1);>> Qo2=obsv(A,C2);>> rank(Qc)ans =4>> rank(Qo1)ans =2>> rank(Qo2)ans =2>> rank(obsv(A,C))ans =4因为rank(ctrb(A.B))=4,所以系统可控;因为rank(obsv(A,C1))=2,所以输出1不可观测;因为rank(obsv(A,C2))=2,所以输出2不可观测;因为rank(obsv(A,C)=4,所以由全部输出是可观测的。
倒立摆系统与自动控制实验实验指导书
倒立 ㌱㔕ф㠠 僂实验指导书(硕士研究生专用)广西大学机械工程学院 机械电子工程专业二〇〇七年十二月内容简介这是一本为工科高年级学生和研究生编写的实验与实践教科书,可以作为控制系统领域各门控制课程的配套实验教材。
本书是基于固高摆系统完成的。
在控制实践中,首先是关于控制对象的知识获取与表达,也就是控制对象模型结构的选取与建模。
因此本书第一部分安排了直线一级摆系统(第一章)、环形一级摆系统(第二章)和直线一级顺摆(第三章)的动力学建模与实验,同时分别采用了牛顿-欧拉方法和拉各朗日方法等两种方法。
关于控制器的知识获取与表达,也就是控制器的结构与参数设计,在经典控制论实验中将直线一级倒立摆当作简单的单输入单输出系统(忽略了小车位移的控制)采用了PID,根轨迹,频域响应三种控制器设计方法进行了控制器结构设计和参数设计;在现代控制论实验和最优控制实验中,考虑了小车位移的控制,将直线一级倒立摆当作单输入多输出系统,分别采用了极点配置法和线性二次型最优控制策略,进行控制器结构和参数设计。
这些实验内容都按照上面的顺序编排,是本书的第二部分,也是本书的主体。
第二部分的实验内容完全与《现代控制工程》的教学内容配套,所使用的实验软件平台也是MATLAB,适用了基础实验课程的需要。
本书的第三部分为智能控制实验和复杂系统控制器设计和调整,主要进行神经网络PID控制实验,能量控制策略起摆实验,环形串联两级倒立摆控制实验。
而直线三级倒立摆和环形并联两级倒立摆的控制器结构设计和参数调整非常复杂和困难,在第三部分中只是给出了系统的数学模型,以供控制理论的研究生和教师进行研究时参考。
第三部分所使用的软件平台为Borland C+3.1,主要目的是为研究者提供一个开放式的研究开发平台,方便研究者采用C语言来实现比较复杂的控制算法。
对于那些对实时控制编程感兴趣的学生和老师来说,第三部分也是值得仔细阅读的一章。
本书适合高年级本科生、研究生、工程技术人员及计算机控制系统开发人员使用。
倒立摆控制系统实验指导书
第六章 一级倒立摆实验 . . . . . . . . . . . . . . . . . . . . . . . 20
iv
6.1.3 6.1.4 6.1.5 6.1.6 6.1.7 6.2 6.2.1 6.2.2 6.2.3 6.2.4 6.2.5 6.2.6 6.2.7 6.3 6.3.1 6.3.2 6.3.3 6.3.4 6.3.5 6.3.6
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .
. iii . vi . vii . 1 . 2 . 5
5 7 7 8
一级倒立摆动力学方程的建立 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
第五章 实验软件操作指南 . . . . . . . . . . . . . . . . . . . . . . 15
一阶倒立摆实验报告(实验)
一、实验介绍:1、背景介绍 (3)2、倒立摆简介 (3)3、实验目的 (5)4.预备知识 (5)二、实验内容:1.自学掌握MATLAB软件的基本使用方法 (6)2.自学掌握倒立摆的基本知识 (6)3.在MATLAB编程环境下完成以下实验操作 (6)4.在proteus环境下,完成倒立摆电机控制算法的仿真 (6)三、实验步骤:1.直线一阶倒立摆数学模型的推导‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥6 2.一阶倒立摆的微分方程模型‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥7 3.一阶倒立摆的传递函数模型‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥9 4.一阶倒立摆的状态空间模型‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥10 5.实际系统的传递函数与状态方程‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥12 6.用MATLAB的Simulink进行仿真‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥13四、实验总结:1、实验结论 (18)2、实验收获 (19)五、参考文献:一、实验介绍:1、背景介绍倒立摆装置被公认为自动控制理论中的典型实验设备,也是控制理论教学和科研中不可多得的典型物理模型。
它深刻揭示了自然界一种基本规律,即一个自然不稳定的被控对象,运用控制手段可使之具有良好的稳定性。
通过对倒立摆系统的研究,不仅可以解决控制中的理论问题,还能将控制理论所涉及的三个基础学科:力学、数学和电学(含计算机)有机的结合起来,在倒立摆系统中进行综合应用。
在多种控制理论与方法的研究和应用中,特别是在工程实践中,也存在一种可行性的试验问题,将其理论和方法得到有效的经验,倒立摆为此提供一个从控制理论通往实践的桥梁。
2、直线一阶倒立摆简介:倒立摆是进行控制理论研究的典型实验平台,可以作为一个典型的控制对象对其进行研究。
最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。
近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。
(完整版)倒立摆实验报告(PID控制)
专业实验报告3. 实验装置直线单级倒立摆控制系统硬件结构框图如图1所示,包括计算机、I/O设备、伺服系统、倒立摆本体和光电码盘反馈测量元件等几大部分,组成了一个闭环系统。
图1 一级倒立摆实验硬件结构图对于倒立摆本体而言,可以根据光电码盘的反馈通过换算获得小车的位移,小车的速度信号可以通过差分法得到。
摆杆的角度由光电码盘检测并直接反馈到I/O设备,速度信号可以通过差分法得到。
计算机从I/O设备中实时读取数据,确定控制策略(实际上是电机的输出力矩),并发送给I/O设备,I/O设备产生相应的控制量,交与伺服驱动器处理,然后使电机转动,带动小车运动,保持摆杆平衡。
图2是一个典型的倒立摆装置。
铝制小车由6V的直流电机通过齿轮和齿条机构来驱动。
小车可以沿不锈钢导轨做往复运动。
小车位移通过一个额外的与电机齿轮啮合的齿轮测得。
小车上面通过轴关节安装一个摆杆,摆杆可以绕轴做旋转运动。
系统的参数可以改变以使用户能够研究运动特性变化的影响,同时结合系统详尽的参数说明和建模过程,我们能够方便地设计自己的控制系统。
图2 一级倒立摆实验装置图上面的倒立摆控制系统的主体包括摆杆、小车、便携支架、导轨、直流伺服电机等。
主图7 直线一级倒立摆PD控制仿真结果图从上图可以看出,系统在1.5秒后达到平衡,但是存在一定的稳态误差。
为消除稳态误差,我们增加积分参数Ki,令Kp=40,Ki=60,Kd=2,得到以下仿真结果:图8 直线一级倒立摆PID控制仿真结果图从上面仿真结果可以看出,系统可以较好的稳定,但由于积分因素的影响,稳定时间明显增大。
双击“Scope1”,得到小车的位置输出曲线为:图9 施加PID控制器后小车位置输出曲线图由于PID 控制器为单输入单输出系统,所以只能控制摆杆的角度,并不能控制小车的位置,所以小车会往一个方向运动,PID控制分析中的最后一段,若是想控制电机的位置,使得倒立摆系统稳定在固定位置附近,那么还需要设计位置PID闭环。
自动控制原理实验倒立摆
直线型倒立摆一、微分方程的建立倒立摆系统是直立双足机器人、火箭垂直姿态控制的研究基础,它涉及各个领域包括控制理论、机器人理论等,其被控系统本身有一个绝对不稳定、高阶次、多变量、强耦合的非线性系统。
本次实验分析一阶直线型倒立摆直线型倒立摆装置如下图所示系统受力分析示意图如下所示M 小车质量 1.096 Kg m 摆杆质量0.111 Kg b 小车摩擦系数0 .1N/m/secl 摆杆转动轴心到杆质心的长度 0.2 5m J 摆杆惯量0.0034 kg*m*x 小车位置θ 摆杆与垂直方向的夹角 应用牛顿定律剪力方程如下:水平方向:N bx F x --='''M由摆杆水平方向的受力情况得:22dt )θsin (N l x d m +=对摆杆垂直方向上的合力进行分析,可以得到如下方程22)cos (m mg -P dtl d θ= 综合可得力矩平衡方程为''cos sin θθθJ Nl Pl =--设θ=π+β,β远小于1,所以得线性化后的两个运动方程''lg ''m l J 2mlx m =-+ϕϕ)(F ml bx x m M =-++'''''ϕ)( 二、传递函数模型由上式化简得,以小车加速度为控制量,摆件角度为被控对象,不考虑其他因素得传递函数为G (s )=lg s 4343l2-,化简得G (s )=29.4-s 32三、采用PID 控制对于倒立摆系统输出量为摆杆的角度和小车的位移,它的平衡位置为垂直向上的情况。
PID 系统控制结构框图如下图所示其包括比例环节·积分环节·微分环节,其中Gc(s)是控制器的传递函数,G(s)是被控对象的传递函数其中sK K s K s G IP D c ++=)(,需要调节PID 控制器的参数,得到满意的控制效果。
本次实验中系统的控制量仅为摆杆的角度,不考虑小车的位移。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线一级倒立摆系统实验指导书—自动控制综合实验(2)基于固高科技生产的GLIP2001直线一级倒立摆北京邮电大学自动化学院林雪燕2015年5月1 实验目的和要求自动控制理论实验主要目的是通过实验进一步理解自动控制理论的基本概念,熟悉和掌握控制系统的分析方法和设计方法,掌握常用工程软件使用,如MATLAB、LabVIEW等。
本实验指导书以典型控制理论实验设备直线一级倒立摆为被控对象,通过控制摆杆角度和小车位移,使学生理解和掌握自动控制理论的基本原理和应用方法。
实验共覆盖了自动控制理论中的机理法建模、时域法分析和校正、根轨迹法分析和校正、频域法分析和校正、复合校正、状态空间分析、状态反馈、LQR控制等内容。
本实验指导书主要针对现代控制理论之用。
通过选择不同方法,确定不同参数,观察实验效果,可以深入理解控制方法之间的差异以及参数对控制系统性能指标的影响。
1.1 实验准备实验准备是顺利完成实验内容的必要条件。
实验准备的主要内容包括如下的几个方面: (1) 复习实验所涉及的MATLAB 软件和自动控制理论知识;(2) 熟悉实验的内容和步骤;(3) 根据实验要求,作必要的理论分析与推导,做好实验预习。
1.2 实验报告内容实验报告包含以下的内容。
可根据实验的具体情况和要求进行适当调整。
(1) 实验名称,目的,要求,设备等(2) 有软仿真结构图、结果及分析;(2) 实验数据及图表齐全;(3) 实验结果及分析;(4) 回答思考题;(5) 实验研究的体会和收获,对实验的意见或建议。
1.3 安全注意事项(1)实验之前一定要做好预习。
(2)一定要将摆杆牢固安装到位。
(3)为了避免设备失控时造成人身伤害,操作时人员应该与设备保持安全距离,不要站在摆的两端。
(4)实验前,确保倒立摆放置平稳;要检查摆杆的可能摆动范围,确保不会发生碰撞。
(5)如果发生异常,马上关闭电控箱电源。
(6)系统运行时禁止将手或身体的其他部位伸入小车运行轨道之间。
2 倒立摆实验平台介绍倒立摆是一个典型的不稳定系统,同时又具有多变量、非线性、强耦合的特性,是自动控制理论中的典型被控对象。
它深刻揭示了自然界一种基本规律,即一个自然不稳定的被控对象,运用控制手段可使之具有一定的稳定性和良好的性能。
许多抽象的控制概念如控制系统的稳定性、可控性、系统收敛速度和系统抗干扰能力等,都可以通过倒立摆系统直观的表现出来。
本实验以固高科技公司的单级直线倒立摆为研究对象。
倒立摆实验平台分为硬件和软件两大部分。
2.1 硬件组成倒立摆硬件系统由倒立摆本体、计算机(含运动控制卡)、电控箱(包括交流伺服机驱动器、运动控制卡的接口板、直流电源等)三大部分组成。
如图2-1 所示,倒立摆系统的本体由被控对象(小车和摆杆)、传感器(角度传感器)和执行机构(松下伺服电机及其传动装置)组成。
图2-1 GT系列运动控制器及由其组成的控制系统框图(1) 被控对象倒立摆的被控对象为摆杆和小车。
摆杆通过铰链连接在小车上,并可以围绕连接轴自由旋转。
通过给小车施加适当的力可以将摆杆直立起来并保持稳定的状态。
(2) 传感器倒立摆系统中的传感器为光电编码盘。
旋转编码器是一种角位移传感器,它分为光电式、接触式和电磁感应式三种,本系统用到的就是光电式增量编码器。
(3) 执行机构和控制器倒立摆系统的执行机构为松下伺服电机和与之连接的皮带轮。
电机的转矩和速度通过皮带轮传送到小车上,从而带动小车的运动。
电机的控制是通过固高公司的GT 系列运动控制器(见图2-2)实现的。
该控制器可以同步控制四个运动轴,实现多轴协调运动。
运动控制器以计算机为主机,提供标准的ISA 总线或PCI 总线接口,并且可以提供RS232 串行通讯和PC104 通讯接口。
运动控制器同时具有A/D 信号采集功能,从而能够将光电编码盘的信号传递到计算机。
图2-2 GT系列运动控制器及由其组成的控制系统框图(左:GT-400-SV 运动卡)倒立摆系统中的计算机、运动控制卡、伺服驱动器、倒立摆本体(包含摆杆、小车、伺服电机、光电码盘)几大部分组成了图2-3所示的一个闭环系统。
图2-3 倒立摆硬件组成框图光电码盘1 将小车的位移、速度信号反馈给伺服驱动器和运动控制卡,而光电码盘2 将摆杆的位置、速度信号反馈回控制卡。
计算机从运动控制卡中读取实时数据,确定控制决策(小车向哪个方向移动、移动速度、加速度等),并由运动控制卡来实现该控制决策,产生相应的控制量,使电机转动,带动小车运动,保持摆杆平衡。
2.2 软件结构倒立摆实验以 MathWorks 公司的MATLAB/Simulink 软件及其实时工具箱(Real-Time Workshop,简称RTW)为软件平台,实现倒立摆控制器的纯软件仿真和硬件在环(Hardware-in-the-Loop)的仿真实验。
MATLAB/Simulink 是目前最为广泛使用的控制系统分析与控制器设计的软件。
MATLAB 主要是以语句的形式实现仿真的功能,比较简洁,执行速度比较快;Simulink是以方框图的方式构建模型进行仿真,形象直观, 简单易学。
关于如何使用MATLAB/Simulink 进行控制系统的分析,请参考相关文献。
MATLAB/Simulink 主要是通过纯软件的方式实现系统的仿真。
这种仿真方式比较便捷,但由于一个系统的数学模型与真实的系统总存在一定的差异,特别是复杂的系统,所以纯软件的仿真(以下简称“软仿真”)往往精度不高。
近年来,硬件在环仿真逐步成为控制系统设计与仿真的主流,其在航空航天控制和汽车控制领域运用得尤为广泛。
硬件在环仿真(又称半实物仿真)是将软件和硬件以实时的方式连接在一起进行仿真实验,不仅实现方便,而且可靠性高。
以倒立摆硬件在环仿真为例,控制器的算法由Simulink 软件模块实现,而被控对象(倒立摆小车和摆杆)、传感器(编码盘)、执行机构(电机及其驱动)等是真实的硬件。
MATLAB/Simulink 仿真软件与硬件之间的连接是通过以RTW 实时工具箱为核心的软件组和它们所支持的数据采集卡等硬件实现的。
RTW 将MATLAB/Simulink 中的软件根据硬件系统的特点编译成可执行文件。
该文件运行在独立的另一台计算机、数字信号处理器或同一计算机CPU 优先级最高的区域,实时地将指令发送给数据采集卡,同时又将数据采集卡采集到的传感器的信息反馈给MATLAB/Simulink 的软模型。
硬件在环仿真有多种实现方式。
本实验采用Real-Time Windows Target的方式,即目标机(运行实时可执行文件的机器)和监控机(运行MATLAB/Simulink 软件实行监控的机器)为同一计算机的方式。
MATLAB/Simulink 运行在Windows 操作系统中,而编译的可执行文件运行在CPU 优先级最高的区域。
数据采集卡为固高公司的GT-400-SV 运动卡。
该卡不仅实现传感器信号的采集功能,而且能够依据倒立摆控制信号的要求,计算驱动电机需要的输入信号,经过功率箱放大,驱动伺服机。
硬件在环实验与传统的软仿真实验相比,需要对Simulink 模型进行编译(Build)和连接(Connect)操作。
3、实验一:倒立摆数学建模及稳定性分析被控对象模型的建立是控制器设计的基础。
建立模型的方法有两大类,即基于物理原理的方式和基于辨识的方式。
基于牛顿力学原理建立倒立摆的微分方程。
由于倒立摆是一个非线性系统,因此当采用线性方法进行控制器设计时,需要将非线性的模型在其工作点附近进行线性化,从而推导出倒立摆的传递函数和状态空间方程。
实验目的:1.学习建立一级倒立摆系统的数学模型,并进行Matlab仿真。
2. 了解系统状态空间表达式与传递函数相互转换的方法;通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数相互转换方法。
3. 利用MATLAB对线性定常系统进行动态分析。
4.利用MATLAB 分析线性定常及离散系统的可控性与可观性。
5.利用MATLAB进行线性定常及离散系统的李雅普诺夫稳定性判据。
实验内容: 1.写出系统传递函数和状态空间方程,用matlab进行仿真。
建立倒立摆在摆角为00和1800时的线性化状态空间表达式。
2.写出传递函数极点和系统状态矩阵A的特征值。
3.给出系统开环脉冲响应和阶跃响应的曲线。
4.判断系统的可控性,求解系统的变换矩阵Qc。
5.判断系统可观测性,求解系统的变换矩阵Qo。
6.判断系统稳定性。
3.1 倒立摆动力学方程在忽略了空气流动和各种摩擦之后,可将倒立摆系统抽象成导轨、小车和摆杆组成的系统,如图3-1 所示。
图3-1 直线一级倒立摆系统系统物理参数:小车质量M=1.096Kg摆杆质量m=0.109Kg小车摩擦系数f=0.1N/m/sec摆杆转动轴心到杆质心的长度l=0.25m摆杆惯量I=0.0023Kg*m*m作用在小车上的水平方向的力F小车的位移x摆杆与垂直向上方向的夹角为图3-2是倒立摆小车和摆杆的受力分析图,其中N 和P 为小车与摆杆相互作用力的水平和垂直分析的分量。
F s 是摆杆受到的水平方向的干扰力, F h 是摆杆受到的垂直方向的干扰力,合力是垂直方向夹角为α的干扰力F g 。
ααos c F F ;sin F F g h g s ==图3-2 小车(左)和摆杆(右)的受力分析图注意:在实际倒立摆系统中检测装置和执行装置的正负方向已确定,因而矢量方向定义如图所示,图示方向为矢量正方向。
分析小车水平方向所受的合力,可以得到以下方程:)(1-3f M N x F x --=∙∙∙摆杆可近似看作质量均匀分布的直杆,其质心在摆杆的中间。
对摆杆水平方向的受力进行分析可以得到下面等式:)(sin sin cos )()sin (sin 3-3F -x 2-3m F -N F -N g 222g s αθθθθθα++=+==∙∙∙∙∙ml ml m N l x dt d把式(3-3)代入式(3-1)中,就得到系统的第一个运动方程:)4-3(2F ml ml x f x m M =-+++∙∙∙∙∙∙θθθθsin cos )( 对摆杆垂直方向的受力进行分析可以得到下面等式:)()cos sin ()()cos (6-3-cos F mg P 5-3m F mg P 2g 22h θθθθαθ∙∙∙++==--ml l dtd由于摆杆作旋转运动,其力矩平衡方程如下:)(cos sin cos sin )(cos sin cos sin 8-3s F cos F 7-3F F g g s h ∙∙∙∙=+++=+++θθαθαθθθθθθθI in l l Nl Pl I l l Nl Pl 将式(3-3)和式(3-6)代入式(3-8),得到第二个运动方程:)(cos sin sin sin cos cos sin .....9-302mg )cos2ml (2F 2F 222g g =++++++θθθθθθθαθαx ml ml l I l l 显而易见,式(3-9)给出的微分方程是一个非线性模型。