海岸动力学 内容汇总 (1)
海岸动力学 内容汇总 (1)
海岸动力学第一章概论1、海岸带宽度按从海岸线向内陆扩展10km,向外海延伸到-15~-20m水深计算。
2、海岸的类型:按照岸滩的物质组成可以把海岸分作基岩海岸、沙质海岸、淤泥质海岸和生物海岸等类型。
基岩海岸,特征是:岸线曲折、湾岬相间;岸坡陡峭、滩沙狭窄。
此类海岸水深较大,掩蔽较好,基础牢固,可以选作兴建深水泊位的港址。
沙质海岸:岸线平顺,岸滩较窄,坡度较陡,常伴有沿岸沙坝、潮汐通道和泻湖。
此类海岸常是发展旅游、渔港的良好场所。
淤泥质海岸:此类海岸岸线平直,一般位于大河河口两侧,岸坡坦缓、潮滩发育好、宽而分带,潮流、波浪作用显著,以潮流作用为主;潮滩冲淤变化频繁,潮沟周期性摆动明显。
淤泥质海岸滩涂资源丰富,有利于发展海洋水产养殖、发展海涂圈围成为陆用于发展农业与盐业或畜牧业等其他产业。
生物海岸:包括红树立海岸和珊瑚礁海岸。
海岸的基本概念:海岸是海洋和陆地相互接触和相互作用的地带,包括遭受海浪为主的海水动力作用的广阔范围,即从波浪所能作用到的海底,向陆延至暴风浪所能达到的地带。
外滩:指破波点到低潮线之间的滩地。
离岸区:破波带外侧延伸到大陆架边缘的区域。
淤泥质海岸从陆到海由三部分组成:潮上带,位于平均大潮高潮位以上;潮间带,为平均大潮高潮位到平均大潮低潮位之间的海水活动地带;和潮下带,在平均大潮低潮位向海一侧。
海岸侵蚀:指海水动力的冲击造成海岸线的后退和海滩的下蚀。
引起海岸侵蚀的原因主要有两种:一是由于自然原因:如河流改道或入海泥沙减少、海面上升或地面沉降、海洋动力作用增强等;二是由于为人原因,如拦河坝的建造、滩涂围垦、大量开采海滩沙、珊瑚礁,滥伐红树林,以及不适当的海岸工程设施等。
常见的海岸动力因素主要有:波浪的作用,波浪是引起海岸变化的主要原因;海岸波生流:斜向入射的波浪进入海滨地带后,在破波带引起一股与岸线平行的平均流,即沿岸流。
波浪在传向海岸的过程中会导致海岸水域出现流体质量的汇聚,这包括波浪由离岸水域传入破波带伴随着质量输移流向海岸汇集;方向相对的沿岸流在交汇点产生流体质量汇聚。
海岸动力学复习提纲
第一章1.▲按波浪形态可分为规则波和不规则波。
2.按波浪破碎与否波浪可分为:破碎波,未破碎波和破后波3.★根据波浪传播海域的水深分类:①h/L=0.5深水波与有限水深波界限②h/L=0.05有限水深波和浅水波的界限,0.5>h/L>0.05为有限水深;h/L≤0.05为浅水波。
4.波浪运动描述方法:欧拉法和拉格朗日法;描述理论:微幅波理论和斯托克斯理论5.微幅波理论的假设:①假设运动是缓慢的u远小于0,w远小于0②波动的振幅a远小于波长L或水深h,即H或a远小于L和h。
6.(1)基本参数:①空间尺度参数:波高H:波谷底至波峰顶的垂直距离;振幅a:波浪中心至波峰顶的垂直距离;波面η=η(x,t):波面至静水面的垂直位移;波长L:两个相邻波峰顶之间的水平距离;水深h:静水面至海底的垂直距离②时间尺度参数:波周期T:波浪推进一个波长所需的时间;波频率f:单位时间波动次数f=1/T;波速c:波浪传播速度c=L/T(2)复合参数:①波动角(圆)频率σ=2π/T②波数k=2π/L③波陡δ=H/L④相对水深h/L或kh7.(1)势波运动的控制方程(拉普拉斯方程):(2)伯努利方程:8.定解条件(边界条件):①在海底表面水质点垂直速度为零,②在波面z=η处,应满足两个边界条件:动力边界条件:自由水面水压力为0;运动边界条件:波面的上升速度与水质点上升速度相同。
自由水面运动边界条件:③波场上、下两端面边界条件:对于简单波动,常认为它在空间和时间上呈周期性。
9.①自由水面的波面曲线:η=cos(kx-σt)*H/2②弥散方程:σ2=gktanh(kh)③弥散方程推得的几个等价关系式:L=tanh(kh)*gT2/(2π),c=tanh(kh)*gT/(2π),c2=tanh(kh)*g/k10.★弥散(色散)现象:水深给定时,波周期愈长,波长愈长,波速愈大,这样使不同波长的波在传播过程中逐渐分离。
这种不同波长(或周期)的波以不同速度进行传播最后导致波的分散现象称为波的弥散(或色散)现象。
海岸动力学
中国海洋大学本科生课程大纲课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修一、课程介绍1.课程描述:海岸动力学是海岸工程和海岸带资源综合开发利用的理论基础,对于利用与开发海岸带、保护海岸工程至关重要,更是海港建设的关键。
本课程包括波浪理论、波浪传播和破碎、近岸水流运动特性、海岸波生流、泥沙基本特性、沙质海岸泥沙运动、沙质海岸形态和变形、淤泥质海岸泥沙运动和岸滩演变以及海岸防护等内容。
2.设计思路:本课程内容以海岸动力因素(主要为波浪与流)作为出发点,以该动力因素作用下的泥沙运动基本规律为基础,以海滩上的泥沙运动与冲淤规律作为归结。
在讲授中以“波浪、流→泥沙运动→海滩变形”为主线,内容具体编排如下:(1)第一章概论1)主要内容:海岸动力学的定义、研究内容、研究方法、发展简史及和专业的关系2)教学要求:了解海岸动力学的定义、研究内容、研究方法、发展简史及和专业的关系3)重点、难点:无- 3 -4)其它教学环节(如实验、习题课、讨论课、其它实践活动):无(2)第二章波浪理论1)主要内容:微幅波理论、有限振幅波理论、浅水非线性波理论、各种波浪理论的适用范围和随机波、波浪的统计特征和波谱概念、波浪在深水中弥散与传播2)教学要求:掌握微幅波理论、有限振幅波理论、浅水非线性波理论、各种波浪理论的适用范围和随机波、波浪的统计特征和波谱概念、波浪在深水中弥散与传播3)重点、难点:微幅波理论、有限振幅波理论;有限振幅波理论、浅水非线性波理论4)其它教学环节:实验3学时,内容是驻波形成试验(3)第三章波浪传播和破碎1)主要内容:波浪在浅水中变化、波浪的破碎等。
波浪在水流中的运动特性和底摩阻引起的波能衰减2)教学要求:掌握波浪在浅水中变化、波浪的破碎等。
了解波浪在水流中的运动特性和底摩阻引起的波能衰减3)重点、难点:波浪在浅水中变化、波浪的破碎等;波浪在水流中的运动特性和底摩阻引起的波能衰减4)其它教学环节(如实验、习题课、讨论课、其它实践活动):实验5学时,内容是波浪浅化效应试验(4)第四章近岸水流运动特性1)主要内容:潮波运动简介、速度垂向分布2)教学要求:掌握潮汐原理、了解海流速度垂向分布- 3 -3)重点、难点:潮汐原理;潮汐原理4)其它教学环节(如实验、习题课、讨论课、其它实践活动):无(5)第五章海岸波生流1)主要内容:水波中的辐射应力、波浪的增水与减水、近岸波浪流系、近岸流2)教学要求:掌握水波中的辐射应力、波浪的增水与减水、近岸波浪流系、近岸流3)重点、难点:辐射应力、波浪增减水;近岸波浪流系4)其它教学环节(如实验、习题课、讨论课、其它实践活动):无(6)第六章泥沙基本特性1)主要内容:单颗粒泥沙特性、泥沙的群体特性;粘性泥沙特性;粉砂特性;泥沙运动方式2)教学要求:单颗粒泥沙特性、泥沙的群体特性;粘性泥沙特性;粉砂特性;泥沙运动方式3)重点、难点:单颗粒泥沙特性、泥沙的群体特性;粘性泥沙特性;泥沙运动方式;粉砂特性4)其它教学环节(如实验、习题课、讨论课、其它实践活动):无(7)第七章沙质海岸泥沙运动1)主要内容:波浪作用下的泥沙运动、沙纹与沙纹上的泥沙运动;掌握推移质输沙率、悬移质输沙率、波流共同作用下的输沙率2)教学要求:波浪作用下的泥沙运动、沙纹与沙纹上的泥沙运动;掌握推移质输沙率、悬移质输沙率、波流共同作用下的输沙率3)重点、难点:重点:波浪作用下的泥沙运动、沙纹与沙纹上的泥沙运动;掌握推移质输沙率、- 3 -悬移质输沙率、波流共同作用下的输沙率难点:波浪作用下的泥沙运动、沙纹与沙纹上的泥沙运动;掌握推移质输沙率、悬移质输沙率、波流共同作用下的输沙率4)其它教学环节(如实验、习题课、讨论课、其它实践活动):无(8)第八章沙质海岸形态和变形1)主要内容:了解海滩剖面及泥沙的横向运动、沿岸输沙、岸线形状与变形、海岸变形计算、海岸防护等。
海岸动力学1-1-资料
水深h大于波长L的一半,或说kh>π时,可认为 已处于深水情况。这时,波浪弥散方程可以化简为
2 gk
gT 2
L0 2
gT
c0 2
在深水情况下波长和波速与波周期有关,而与水深无关
2
当水深与波长相比很小时,kh0 tankhh )(kh
Kh=π/10
0.3042 tankhh )(kh0.3142
z
或记作 2 0
定解条件 1) 在海底表面,水质点垂直速度应为零,即
w zh 0
0, z
z= -h
2) 在波面z=η处,应满足两个边界条件. 动力边界条件: 由假设自由水面压力为常数并令p=0, 根据 伯诺里方程有,
t z1 2 x2 z2zg0
非线性波
2
沿正x方向以波速c向前传播的二维运动的自由振荡推进波, x轴位于静水面上,z轴竖直向上为正。波浪在xz平面内运动。
简单波理论假设: 流体是均质和不可压缩的; 流体是无粘性的理想流体; 自由水面的压力是均匀的且为常数; 水流运动是无旋的; 海底水平、不透水; 流体上的质量力仅为重力; 波浪属于平面运动,即在xz平面内作二维运动。
4、按波浪运动状态分类 振荡波 (推进波, 立波) 推移波
5、按波浪破碎与否分类 破碎波,未破碎波和破后波
此外根据波浪运动的运动学和动力学处理方法,还 可以把波浪分为微小振幅波(线性波)和有限振幅波(非 线性波)
二、波浪运动的描述方法和控制方程
1、波浪运动的描述方法
欧拉法:亦称局部法,它是以空间某一固定点为研究 对象,研究任一质点流过固定点的运动特性欧氏法研究 的是某一流场的变化,它能给出某一固定时刻空间各点 的速度大小和方向,亦即给出流线(Stream line)。
港口航道与海岸工程-海岸动力学:第一章至第五章 详尽知识点整理 复习备考资料
第一章 波浪理论1.波浪分类(1)按波浪形态:分为规则波和不规则波(2)按波浪传播海域的水深:h/L ≥1/2 为深水波;1/2>h/L>1/20 为有限水深波;h/L ≤1/2 为浅水波(3)按波浪破碎与否:分为破碎波、未破碎波和破后波2.波浪运动控制方程 (1)描述一般水流运动方法有两种:一种叫欧拉法,亦称局部法,另一种叫拉格朗日法,亦称全面法(2)描述简单波浪运动的理论: 一个是艾利(Airy )提出的为微幅波理论,另一个是斯托克斯(Stokes )提出的有限振幅波理论3.参数(1)波高H :两个相邻波峰顶之间的水平距离(2)振幅a :波浪中心至波峰顶的垂直距离,H=2A (3)波周期T : 波浪推进一个波长所需的时间(4)波面升高 )t , x (ηη= :波面至静水面的垂直位移(5)函数表达式: )t -kx (Acos ση=(6)圆频率:T 2πσ= (7)波速c : 波形传播速度,即同相位点传播速度,又称相速度4.建立简单波理论的假设:流体是均质和不可压缩的,其密度为一常数;流体是无粘性的理想流体;自由水面的压力是均匀的且为常数;水流运动是无旋的;海底水平、不透水;流体上的质量力仅为重力,表面张力和柯氏力忽略不计;波浪属于平面运动,即在xz 平面内作二维运动。
5.速度φ的控制方程(拉普拉斯方程): 02222=∂∂+∂∂z x φφ 就是势运动的控制方程。
6.拉普拉斯方程的边界条件:(1)海底表面边界条件:海底水平不透水 0z=∂∂φ ,h z -= 处(2)自由水面动力学边界条件: 0])()[(21t 22=+∂∂+∂∂+∂∂==ηφφφηηg zx z z (3)自由水面的运动边界条件:自由水面上个点的运动速度等于位于水面上个水质点的运动速度0zx x t =∂∂-∂∂∂∂+∂∂φφηη ,η=z 处(4)二维推进波,流场上、下两端面边界条件可写为:)z ,ct -x ()t ,z ,x (φφ=7.微幅波理论假设:假设运动是缓慢的,波动的振幅A 远小于波长L 或水深h7.微幅波波面方程:)t -kx (cos 2σηH =弥散方程)kh (gktanh 2=σ 波长:)kh (tanh 2gT L 2π= 波速:)kh (tanh 2gT c π= 深水波长:π2gT L 2o = 深水波速:π2gT c o = 浅水波长:gh T L s = 浅水波速gh c s =8.色散(弥散)现象:不同波长(或周期)的波以不同速度进行传播最后导致波的分散现象称为波的色散现象。
海岸动力学
海岸动力学复习资料第一章1.海岸带宽度按从海岸线向内陆扩展10KM,向外海延伸到-15~-20m 水深计算。
2.海岸类型:基岩海岸,砂质海岸,淤泥质海岸,生物海岸。
3.海岸的基本概念:海岸是海洋和陆地相互接触和相互作用的地带,包括遭受波浪为主的海水动力作用的广阔范围,即从波浪所能作用到的海底,向陆延伸至暴风浪所能到达的地带。
4.海岸动力因素:波浪的作用、 海岸波生流、潮流的作用、径流的作用、海流的作用、风暴潮和海啸、风的作用、海平面上升。
5.波浪是引起海岸变化的主要因素。
6.近岸波生流——波浪传至近岸地区发生变形、折射与破碎,不仅其尺度改变了,同时还形成的一定水体流.7.沿岸流——斜向入射的波浪进入海滨地带后,在破波带引起一股与海岸平行的平均流。
8.裂流流速很高,会带动强烈的向外海输移的泥沙运动。
9.潮流对海岸的作用:影响海岸带波浪的作用范围及作用强度;影响海岸带地貌类型的发育;潮流流速影响海岸带的侵蚀与淤积。
10.河流径流挟带着大量的泥沙在河口外扩散和沉积,是海岸淤涨的主要物质来源之一,导致在河口外发育着河口三角洲或三角港。
第二章1.风浪的大小取决于风速、风时和风距的大小。
由于风速风向复杂多变,风所引起的海浪在形式上也极为复杂,波形极不规则,传播方向变化不定,不可能用简单的确定性数学公式来描述,所以经常把风浪称为不规则波。
2.波浪的分类:1)按形态分类:规则波和不规则波2)按传播海域的水深分类:深水波、有限水深波、潜水波(深水波与有限水深波界限为h/L=1/2,潜水波与有限水深波界限为h/L=1/20)。
3)按运动状态分类:震荡波、推进波、推移波 4)按破碎与否分类:破碎波、未破碎波、破后波 5)按运动学和动力学的处理方法:微幅波和有限振幅波 3.波浪运动控制方程0x 2222=∂∂+∂∂zφφ 4.定解条件:1)海底表面设为固壁,因此水质点垂直速度为零。
0z=∂∂φz=-h2)在波面 z=η处,应满足动力学边界条件 运动学边界条件。
海岸动力学1-240页PPT
二、随机波统计理论基础
对于不规则波形,如何定义波高、周期呢?
上跨零点法; 取平均水位为零线,把波面上升与零线相交的点作
为一个波的起点。波形不规则地振动降到零线以下, 接着又上升再次与零线相交,这一点作为该波的终点 (也是下一个波的起点)。如横坐标轴是时间,则两个 连续上跨零点的间距便是这个波的周期;把这两点间 的波峰最高点到波谷最低点的垂直距离定义为波高。
上跨零点法
如何描述这个波系的大小呢?一般有二种方法: 一是采用有某种统计特征值的波作为代表波的特征波法; 二是用谱表示。
特征波的定义,通常采用大约连续观测的100个波作为 一个标准段进行统计分析
(一) 按部分大波平均值定义的特征波
1 最大波:波列中波高最大的波浪
Hm ax THm ax
2 十分之一大波 H110 TH1 10
cn r,cor)s(
类似微幅波的浅水余弦波
当模数κ=1时, K(κ)→∞,
c(n r,1)seh(c r)
波面方程变为
Hsehc2
34H hh xcht
转化为孤立波
孤立波的 波长和波周周期都趋于无这穷大
二、孤立波理论简介
孤立波理论是一种在传播过程中波形保持不变的推移波 理论,它的波面全部在静水面以上
K(κ),E(κ) 为第1类和第2类完全椭圆积分
不同模数κ决定着不同的波面曲线形状, κ与波要素之间有如下 关系
16.K2 L2.H
给定L、H和h
求得κ
3
h h 或L/h与H/h
波面形状
当模数κ→0 波面方程变为
K()
2
d
0
2
,
Hcoskxt
2
港口航道与海岸工程-海岸动力学:海岸动力学 习题复习资料 知识点总结
一、填空题1.一列简单波浪进入浅水区后,在传播中随水深变化,其波速、波长、波高和波向都将发生变化,但是其波周期则始终保持不变,波浪这一性质为分析它从深水传播到浅水的变化提供方便2.近岸流包括向岸流、沿岸流和离岸流3.海岸可分为沙质海岸和淤泥质海岸4.拜落诺能量输沙型可表示为载沙量和流速的乘积5.近岸区泥沙运动按方向不同可分为横向运动和沿岸运动6.沿岸输沙率的波能流法把沿岸输沙和波功率沿岸分量联系起来7.以破波点为界,把水域分为近岸区和离岸区,近岸去进一步可以分为外滩、前滩、和后滩 8.波浪按形态可以分为规则波和不规则波9.描述简单波的理论主要有微幅波理论和斯托克斯波理论 10.一直波周期为5s ,其水深波长为38.99,波速为7.80米/秒 11.波谱)(σS 相当于波能密度相对于组成波频率的分布函数12.在海岬岬角处,波向线集中,这种现象称为辐聚,在海湾里,波向线分散,称为辐散 13.泥沙连续方程dzds s ss εω+中,s s ω为沉降率,dz ds s ε-表示紊动扩散引起的向上的泥沙通量,s ε为紊动扩散系数14.沿岸输沙是波浪和波导沿岸流共同作用引起的纵向泥沙运动,主要发生在破波内,其机理是波浪掀沙和沿岸流输沙15.辐射应力可定义为波浪运动引起的剩余动量留 16.一般将2L h =作为深水波和有限水深波的界限,将20L h =作为有限水深波和浅水波的界限 17.描述不规则波系的方法主要有特征波法和谱表示法18.方向谱是一种二维谱19.破碎波的类型主要有崩破波、卷破波和激散波20.在破波带外的浅水区,波高随水深减小而增大,因而辐射应力沿程增大,发生减水现象 21.泥沙活动参数Dg u M s m)(ρρρ-=,它表示促使泥沙起动的力和重力引起的稳定力之间的比值22.沿岸流量最大输沙率在破波线和沿岸流速最大值之间 23.沿岸沙坝和滩肩是沙质海岸的重要特性构造 24.卷破波是形成沿岸沙坝的主要原因25.海滩的一个重要特性就是它的动态变化特性名词解释:1. 波浪增减水:波动水面时均值与静水面偏离值2. 海滩平衡剖面:在一定条件下,海滩上任一点的泥沙均没有净位移,剖面形状维持不变的海滩形态。
海岸动力学复习资料.docx
1.微幅波波能流:波浪在传播过程中存在能量传递,通过单宽波峰线长度的平均的能量传递率称为波能流。
2.驻波:当两个波波向相反,波高周期相等的行进波相遇时,形成驻波。
3.海岸:海岸是海洋和陆地相互接触相互作用的地带,包括遭受波浪为主的海水动力作用的广阔范围,即从波浪所能作用到的海底,向陆沿至波风浪所能到达的地带。
4.海岸侵蚀:指海水动力作用的冲击造成海岸线的海岸线的后退和海滩的下蚀。
5.海岸波生流:波浪传至近岸地区发生变形,不仅其尺度改变了,同时还形成一定水体——近岸波生流。
6.微幅波理论:为了把水波问题线性化,假设运动是缓慢的,波动的振幅远小于波长或水深。
7.漂流:净水平位移造成一种水平流动,称为漂移或质量输移。
8.波频谱:波能密度相对于组成波频率的分布函数。
9.浅水变形:波浪进入浅水区后,波高会产生变化,这种变化称为浅水变形。
浅水变形系数ks=Hi/H0=,波高H在有限水深范围内随水深减小而略有减小,进入浅水区后,则随水深增大而迅速增大。
10.波浪折射:随着水深变浅,如果波向与海底等深线斜交,波向将发生变化,即产生折射。
①折射波向线变化,斯奈尔定律:sinα/c=sinα0/c0②折射引起波高变化,波浪折射系数kr=根号(conαo/conαi)11.波浪绕射:波浪在传播过程中遇到障碍物如防波堤,岛屿或大型墩柱时,除可能在障碍物前产生波浪反射外,还将绕过障碍物继续传播,并在掩避区内发生波浪扩散,这是由于掩避区内波能横向传播所引起的。
绕射系数kd12.波浪破碎的原因:1.运动学原因:波峰处流体质点水平速度大于波峰移动速度;2.动力学原因:波峰处质点离心力大于重力加速度。
13.极限波陡:深水波浪的最大波高受波形能保持稳定的最大波陡所限制,达到极限波陡时,波浪就行将破碎。
14.破波角:破碎点处的波向线与岸线的外法线间的夹角称为破碎角。
15.破波带:波浪破碎点至岸边这一地带称为破波带。
16.辐聚辐散:在海岬岬角处,波向线将集中,这种现象称为辐聚,kr>1,波高将因折射而增大。
海岸动力学复习要点
海岸动力学复习要点《海岸动力学》--复习要点第四版CQJTU1、海岸类型和海岸主要动力因素:按照岸滩的物质组成,海岸类型有(1)基岩海岸 (2)砂砾质海岸 (3)淤泥质海岸 (4)生物海岸(红树林海岸和珊瑚礁海岸) 主要动力因素有:波浪、潮汐及潮流、近岸流、台风、风暴潮、海啸、异重流;以及河流影响。
2、海岸线和海岸带的概念:海岸线是大潮平均高潮面与陆岸的交线。
海岸带是陆地与海洋相互作用、相互交界的一个地带,包括潮上带,潮间带,潮下带;潮间带指高潮时海岸线与低潮时海岸线之间的带状区域;潮上带是海岸线向陆扩展10km的区域;潮下带向海到-10m,-15m等深线。
1、波浪分类:按波浪形态分类,波浪可分为规则波和不规则波。
不规则波又称随机波。
按波浪传播海域的水深分类,波浪分为深水波、有限水深波和浅水波。
深水波时h/L?0.5浅水波时h/L?0.05(其中h为水深,L为波长),,,,akxtcos()2、谐振波波面表达式:波面表示为,则波长为,则波周期为,波速为Lk,2,T,2,,ck,,,传播方向为x方向。
3、描述规则波浪运动的理论:主要有微幅波理论、有限振幅Stokes波理论、椭圆余弦波理论,孤立波等。
4、势波理论:假定流体无粘无旋并且不可压缩,因而剪切应力为零,无摩阻损失,存在势函数,求解势波的控2制方程简化为;底部边界上,法向速度为零。
流速场和压力场可分开求解.求出速度势函数和流速场,,,,0后,由伯诺里方程求得压力场。
5(界面运动学边界条件:在流体界面上,不应有穿越界面的流动,否则界面就不能存在。
流体界面具有保持性,某一时刻位于界面上的流体质点将始终位于界面上,不能有相对法向位移,即界面上水质点运动法向速度等于界面运动法向速度。
6、线性波理论假定:波动的振幅相对于波长或水深是无限小的。
线性波水质点运动轨迹为一个封闭椭圆,其水平长半轴为a,垂直短半轴为b。
在水面处b,H/2,即为波浪的振幅,在水底处b,,,说明水质点沿水底只作水平运动。
海岸动力学复习要点
第一章 概论1-3.海岸环境动力因素(风、波浪和潮流等)对海岸变形的影响是什么?1-4.海洋水平面升高对海岸变形会产生哪些影响?补充:典型沙质海岸和淤泥质海岸的剖面组成。
第二章 波浪理论2-1.建立线性波浪理论时,一般作了哪些假设?2-2.试写出波浪运动基本方程和定解条件,并说明其意义。
2-3微幅波理论的基本方程和定解条件,并说明其意义及求解方法。
2-4 线性波的势函数证明上式也可写为2-5由线性波的势函数[]()cosh ()sin()2cosh k h z Hg kx t kh ϕσσ+=-证明水质点轨迹速度,,并试述相位()kx t σ-=0-2π时自由表面处的质点轨迹速度变化曲线以及相位等于0,π/2,π,3π/2,2π时质点轨迹速度沿水深的分布规律。
2-7 证明微幅波情况下,只有水深无限深时,水质点运动轨迹才是圆。
(或:微幅波的质点运动轨迹在深水和浅水中的特点。
在微幅波理论中,如何区分深水波和浅水波。
)2-8 证明线性波单位水柱体内的平均势能和平均动能为[一个波长范围内,单宽波峰线长度]:2116gH ρ。
2-9在水深为20m 处,波高H =1m ,周期T =5s ,用线性波理论计算深度z =–2m 、–5m 、–10m 处水质点轨迹直径。
2-10在水深为10m 处,波高H =1m ,周期T =6s ,用线性波理论计算深度z=–2m 、–5m 、–10m 处水质点轨迹直径。
2-11在某水深处的海底设置压力式波高仪,测得周期T =5s ,最大压力2max 85250P N m =(包括静水压力,但不包括大气压力),最小压力2min 76250P N m =,问当地水深、波高是多少?(海水w ρ=10253kg m )2-12 若波浪由深水正向传到岸边,深水波高0H =2m ,T =10s ,问传到1km 长的海岸上的波浪能量(以功率计)有多少?设波浪在传播中不损失能量。
(海水ρ=10253kg m )补充:微幅波波群的概念及其传播特征。
海岸动力学专业
海岸动力学专业
5. 海岸工程与管理:研究海岸工程建设和管理,包括海岸防护工程、海岸资源开发利用、 海岸环境保护等。海岸动力学的研究为海岸工程的规划和设计提供科学依据。
海岸动力学专业
海岸动力学专业是研究海岸地区的物理过程和动力学规律的学科。它涉及海洋学、地理学 、水文学、气象学等多个学科的知识,旨在理解和解释海岸地区的形态变化、潮汐、波浪、 海流等自然过程,并研究人类活动对海岸环境的影响。
以下是海岸动力学专业的一些主要内容:
1. 海岸地貌与演变:研究海岸地区的地貌特征、沉积物的分布和变化,以及海岸线的演变 过程。包括海岸侵蚀、沙丘形成、河口演变等。
海岸动力学专业
2. 波浪与潮汐:研究海岸地区的波浪和潮汐特征,包括波浪的生成、传播和变形,潮汐的形 成和变化规律。通过对波浪和潮汐的研究,可以预测海岸地区的波浪冲刷和海水涨落情况。
3. 海岸水动力学:研究海岸地区的海流和水动力学过程,包括海岸边界层的形成和演化、海 流的强度和方向变化等。海岸水动力学的研究对于理解海岸侵蚀、沙丘演变等具有重要意义。
海岸动力学复习资料
海岸动力学复习资料一、海岸动力学概述海岸动力学是研究海岸地带,特别是近岸浅水地带各种动力因素(如波浪、潮流、泥沙运移等)的运动规律及其与海岸工程设施相互作用的理论和实践的学科。
它是海洋工程、海岸工程、海洋地理、港口航道、环境保护等学科的重要基础。
二、海岸动力学的主要研究内容1、波浪与海岸的作用:研究波浪在近岸浅水地带的变形、破碎和传播规律,以及这些过程对海岸形态、近岸地貌、港口航道、海洋生态等的影响。
2、潮流与海岸的作用:研究潮流在近岸浅水地带的运动规律,以及潮流与海岸的相互作用,如潮汐通道的形成、维护和变化等。
3、泥沙运移与海岸的作用:研究泥沙在海岸地带的水流搬运、沉积和再悬浮规律,以及这些过程对海岸形态、河口航道、滩涂资源等的影响。
4、海岸防护与工程:研究海岸防护工程的设计、施工和维护技术,包括海堤、护岸、丁坝、潜堤等,以防止海岸侵蚀、保护岸滩资源、维护海洋生态等。
5、海洋环境评估与预测:通过对海岸地带各种动力因素和环境因素的观测、分析和模拟,对海洋环境进行评估和预测,为海洋工程、海岸工程等提供科学依据。
三、复习重点1、波浪与海岸的作用:掌握波浪在近岸浅水地带的变形和破碎规律,理解其对海岸形态和地貌的影响。
2、潮流与海岸的作用:掌握潮流在近岸浅水地带的运动规律,理解其对潮汐通道的形成和维护的影响。
3、泥沙运移与海岸的作用:掌握泥沙在海岸地带的水流搬运、沉积和再悬浮规律,理解其对海岸形态和河口航道的影响。
4、海岸防护与工程:掌握海岸防护工程的设计、施工和维护技术,理解其作用和意义。
5、海洋环境评估与预测:掌握海洋环境评估和预测的方法和流程,理解其对海洋工程和海岸工程的重要性。
四、复习难点1、波浪与海岸的作用:波浪在近岸浅水地带的变形和破碎是一个复杂的过程,需要理解和掌握其中的物理机制。
2、潮流与海岸的作用:潮流在近岸浅水地带的运动规律涉及到复杂的流体动力学问题,需要理解和掌握其中的数学模型和计算方法。
海岸动力学第一章知识点整理和答案
海岸动力学第一章第一章概论1-1分析世界上大部分海岸处于侵蚀状态的原因。
◆海平面上升◆滩涂围垦、海岸植被破坏(珊瑚礁、红树林等)、拦河坝的建造、不合理的海岸工程建设Note:海岸侵蚀原因从自然因素和人为因素两个角度作答。
1-2分析海岸地貌特征(沙坝、沙嘴、潟湖和岬角等)对海岸侵蚀和淤积的影响。
◆沙坝是由波浪将海岸泥沙通过海底回流在破碎点附近沉积形成,所以沙坝的形成是海岸被侵蚀的结果。
另外,沙坝使近岸波浪破碎更为严重,使更多岸线附近的泥沙启动,并被波浪携带入海,进一步加剧海岸侵蚀。
◆沙嘴和潟湖可以使削减波浪作用强度,有利于泥沙沉降形成海岸淤积。
◆岬角处由于波浪辐聚的作用,受到的波浪作用强度较大,海岸容易遭受侵蚀。
1-3海岸环境动力因素(风、波浪和潮流等)对海岸变形的影响是什么?◆波浪:波浪是引起海岸变化的主要作用,波浪作用较强时,容易导致海岸后退。
◆风:风对海岸变形的影响是间接的,风将能量传递给波浪,波浪再影响海岸变形。
不同的风向和风力强度,对海岸地貌发育有着重要影响。
向岸表面吹流引起相当的向海底部回流,造成向海输沙。
风对沙丘的应力,造成海滩细沙的向岸搬移和陆上沙丘的向海输送,使海岸发生向岸和向海的迁移变化。
◆潮流:潮汐影响海岸带波浪的作用强度和范围,影响海岸带地貌类型的发育,另外潮流流速也会影响海岸带的侵蚀和淤积。
◆径流:径流淡水和潮流盐水出界面形成楔形面,楔面处有絮凝作用,造成泥沙集中沉降,形成水底隆起的河口拦门沙。
◆波生流:对沿岸输沙和岸线演变具有重要影响。
◆海流:海流是海洋的大尺度流动,离岸线相对较远,影响一般较小。
◆风暴潮和海啸:海岸极端气象。
水位异常升高且波浪具有极大的破坏性。
短时间改变海岸的冲淤平衡。
◆海平面上升:海平面上升导致海岸后退。
海岸环境动力要素主要是自然要素,包括:波浪、风、潮流、径流、波生流、海流、风暴潮和海啸、海平面上升。
1-4海洋水平面升高对海岸变形会产生哪些影响?◆海平面上升:海平面上升导致海岸后退,沿海平原低地别淹没和沼泽化,河口和地下盐水入侵,海洋动力增强。
海岸动力学
海岸动力学复习提纲初始章 概论 1、基本概念{{、潮汐动力因素:风、浪、流岸线变化泥沙运动海滩剖面变化岸线变形海岸动力学→海岸带:以海岸线为准,向陆地10公里,向海到-10m 或-15m 等深线范畴内为海岸带。
海岸带又分为①潮上带②潮间带③潮下带 海岸线:沿海岸滩与平均大潮高潮面交线称为海岸线。
潮上带:平均高潮以上潮间带:平均高潮与平均低潮之间 潮下带:平均低潮以下 2、海岸类型 ①基岩海岸基岩海岸主要由岩石组成,地质条件比较好,是建港的良好地点。
②沙质海岸组成的泥沙粒径0.06mm<d<2mm ,海滩剖面陡一点,坡度>1:1000。
波浪对它的作用主要是迁移。
主要功能为旅游业。
③淤泥质海岸淤泥质海岸由淤泥构成,泥沙粒径<0.06mm 。
潮间带比较发育,剖面坡度很缓,坡度1:500~1:2000。
主要用途为围垦和养殖。
④生物海岸生物海岸包括1.红树林海岸和2.珊瑚礁海岸 1.红树林海岸:红树林是公认的“天然海岸卫士”。
我国的红树林海岸主要分布在海南,福建,台湾沿海。
红树林海岸的作用主要有消浪、滞流、促淤、保滩。
2.珊瑚礁海岸:是由珊瑚礁组成的海岸,是海防前哨。
可用于潜水及海底观光。
3、海岸动力因素变化长期因素:风、波浪、潮汐、波浪流、海平面短期因素:台风、海啸、风暴潮长期因素具有周期性,相对确定性;短期因素具有偶然性。
4、海岸开发现况①海岸港口建设②围垦,建海堤③海岸资源开发利用1.土地资源2.盐资源3.渔场4.油气资源④海岸环境保护5、海岸动力学研究方法①理论分析②实验室试验研究③现场原型观测研究④数学模拟研究第一章波浪理论第一节波浪的分类1、按波浪所受干扰力和周期分类:(1)表面张力波:周期最短,风是干扰力,恢复力是表面张力。
(2)重力波:周期1~30s,风是干扰力,恢复力是重力。
{风浪→涌浪(3)长周期波:周期5min~12h,由风暴或地震生成。
(4)潮波:周期10h或24h,由天体运功生成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
海岸动力学第一章概论1、海岸带宽度按从海岸线向内陆扩展10km,向外海延伸到-15~-20m水深计算。
2、海岸的类型:按照岸滩的物质组成可以把海岸分作基岩海岸、沙质海岸、淤泥质海岸和生物海岸等类型。
基岩海岸,特征是:岸线曲折、湾岬相间;岸坡陡峭、滩沙狭窄。
此类海岸水深较大,掩蔽较好,基础牢固,可以选作兴建深水泊位的港址。
沙质海岸:岸线平顺,岸滩较窄,坡度较陡,常伴有沿岸沙坝、潮汐通道和泻湖。
此类海岸常是发展旅游、渔港的良好场所。
淤泥质海岸:此类海岸岸线平直,一般位于大河河口两侧,岸坡坦缓、潮滩发育好、宽而分带,潮流、波浪作用显著,以潮流作用为主;潮滩冲淤变化频繁,潮沟周期性摆动明显。
淤泥质海岸滩涂资源丰富,有利于发展海洋水产养殖、发展海涂圈围成为陆用于发展农业与盐业或畜牧业等其他产业。
生物海岸:包括红树立海岸和珊瑚礁海岸。
海岸的基本概念:海岸是海洋和陆地相互接触和相互作用的地带,包括遭受海浪为主的海水动力作用的广阔范围,即从波浪所能作用到的海底,向陆延至暴风浪所能达到的地带。
外滩:指破波点到低潮线之间的滩地。
离岸区:破波带外侧延伸到大陆架边缘的区域。
淤泥质海岸从陆到海由三部分组成:潮上带,位于平均大潮高潮位以上;潮间带,为平均大潮高潮位到平均大潮低潮位之间的海水活动地带;和潮下带,在平均大潮低潮位向海一侧。
海岸侵蚀:指海水动力的冲击造成海岸线的后退和海滩的下蚀。
引起海岸侵蚀的原因主要有两种:一是由于自然原因:如河流改道或入海泥沙减少、海面上升或地面沉降、海洋动力作用增强等;二是由于为人原因,如拦河坝的建造、滩涂围垦、大量开采海滩沙、珊瑚礁,滥伐红树林,以及不适当的海岸工程设施等。
常见的海岸动力因素主要有:波浪的作用,波浪是引起海岸变化的主要原因;海岸波生流:斜向入射的波浪进入海滨地带后,在破波带引起一股与岸线平行的平均流,即沿岸流。
波浪在传向海岸的过程中会导致海岸水域出现流体质量的汇聚,这包括波浪由离岸水域传入破波带伴随着质量输移流向海岸汇集;方向相对的沿岸流在交汇点产生流体质量汇聚。
这些汇聚的流体质量集中起来可能以裂流的形式向外海回流。
由波浪运动引起的质量传输、沿岸流、裂流以及裂流头处的水体扩散等水流流动,构成了水平的近岸环流系统。
潮流的作用:潮汐是在太阳和月球引力作用下发生的海面周期性涨落现象。
潮汐作用主要表现在两个方面:一是潮汐的涨落,使海面发生周期性的垂直运动;二是使海面水体产生水平方向整体运动形成潮流。
径流的作用,海流的作用风暴潮和海啸的作用、风的作用等。
第一章思考题:1-3 海岸环境动力因素(风、波浪和潮流等)对海岸变形的影响是什么?第二章波浪理论第一节概述一、波浪分类规则波:在传播过程中波形规则,具有明显的波峰波谷,二维性质显著的波浪可以视为规则波。
离开风区后自由传播时候的涌浪接近于规则波不规则波:大洋中的风浪,波形杂乱,波高、波周期和波浪传播方向不定,空间上具有明显的三维性质,这种波成为不规则波或者随机波。
深水波、有限水深波、浅水波:一般按h/L=1/2作为划分深水波与有限水深波的界限,h/L=1/20作为划分有限水深和浅水波的界限。
振荡波:推进波及驻波推移波二、波浪运动的描述方法和控制方程用简谐波的形式来描述波动时候,波面余弦函数表示为:,其中k称为波数,表示长度上波动的个数。
圆频率建立线性波理论时,为了简化起见一般作如下假定:1)流体时均质和不可压缩的,其密度为一常数;2)流体时无粘性的理想流体;3)自由水面的压力是均匀且为常数;4)水流运动是无旋的;5)海底水平、不透水;6)质量力仅为重力,表面张力和柯氏力可忽略不计;7)波浪属于平面运动,即在xz平面内作二维运动。
水质点运动速度:,线性波理论的控制方程:,物理意义:流体是不可压缩流体,满足质量守恒原理,且流体运动是无旋有势运动。
边界条件:(1)海底处边界条件:P31 (2-10),物理意义:海底表面为固壁,水质点垂直速度为零。
(2)自由表面动力学边界条件:(2-11),物理意义:流体质量力仅为重力,满足能量守恒原理。
(3)自由表面运动学边界条件:(2-12),物理意义:流体界面具有保持性,界面上的流体质点始终位于界面上,自由水面流体质点运动无穿越。
(4)流场左右两端面的边界条件:(2-13),物理意义:流体运动在空间和时间上均呈周期性,为周期运动。
要精确解出二维波列的定解,将遇到两个困难:(1)自由水面边界条件是非线性的;(2)自由水面位移是未知的,即自由表面边界是不确定的。
第二节微幅波理论一、微幅波控制方程和定解条件公式2-18(a~e)及其物理意义。
二、微幅波理论解——微幅波势函数和色散方程速度势函数表达式:色散方程:色散现象:当水深给定时,波的周期越长,波长亦越长,波速也将愈大,这样使得不同波长的波在传播过程中逐渐分离开来。
这种不同波长(或周期)的波以不同的速度进行传播最后导致波的分散现象称为波的色散现象。
色散方程还表明,波浪的传播还与水深有关,水深变化时,波长和波速也将随之变化。
变化一:确定波长:变化二:确定波速:对于深水和浅水两种极端情况,色散方程还可以作不同的简化,得到深水波和浅水波的近似表达式:当水深h或者kh为无限大,根据双曲函数特性,(2-30)(2-31)(2-32),可以知道,在深水情况下,波长和波速只与波周期有关,而与水深无关。
(2-33)(2-34)(2-35),波浪在浅水中传播时其波速变化只与水深有关,且与水深的平方根成正比,而与波周期或波长大小无关。
因此任何周期(或波长)的波浪传播到浅水区后,波浪的传播速度指只由当地水深控制。
三、微幅波的速度场和加速度场波动水质点的水平速度和垂直速度相差个相位。
四、微幅波的质点运动轨迹微幅波水质点的运动轨迹方程:()(),为椭圆方程。
微幅波水质点运动轨迹为一个封闭椭圆。
在水面处b=A,即为波浪的振幅,在水底处b=0,说明水质点沿水底只坐水平运动。
在深水情况下,a=b,水质点运动轨迹为一个圆。
五、微幅波的压力场当时,得到最大压力值当时,得到最小压力值六、微幅波的波能和波能流在二维波浪中,单宽波峰线长度内一个波长范围中所存储的总波能由势能和动能两部分组成。
波浪势能是由于水质点偏离的平衡位置所致。
波浪动能是由于质点运动而产生。
微幅波单宽波峰线长度一个波长范围内平均的波浪动能和势能是相等的。
单位海面面积上的总波能为:,表示微幅波平均总波能与波高的平方成正比。
波能流:波浪在传播过程中存在能量传递,通过单宽波峰线长度的平均的能量传递率称为波能流。
,n为波能传递率,深水时,n=1/2;浅水时,n=1。
七、波群和波群速度两列简单波叠加后的波形还是一个周期波,但振幅是变化的,最大波幅为组成波振幅的2倍,波数和频率为两列正弦波的平均值。
八、驻波当两个波向相反、波高、周期相等的行进波相遇时,形成驻波。
波腹、波节图2-10立波的势能及动能均为行进波的2倍。
能量的转化是周期性地由动能变为势能,或是由势能转变为动能。
不完全立波:波浪反射系数。
第三节斯托克斯波理论波浪运动时,非线性作用的重要程度取决于波高H、波长L及水深h的相互关系。
具体来说取决于三个特征比值:波陡度,相对波高,和相对水深。
从波面特征、波动流体质点速度和质点的运动轨迹等方面比较微幅波和斯托克斯波的区别。
图2-12 图2-13,图2-14质量输移:由于流体波动水质点运动轨迹不封闭,造成一个周期过后有一个净水平位移,这种净水平位移造成水体的水平流动,称为漂流或质量输移。
第四节浅水非线性波理论椭圆余弦波:周期波动,波峰尖,波谷宽坦。
孤立波:在传播过程中波形保持不变的推移波,其波面全部在静水面之上。
第五节随机波浪理论十分之一大波波高和周期:波列中个波浪按波高大小排列后,取前面1/10个波的平均波高和平均周期。
有效波波高和周期:按波高大小次序排列后,取前面1/3个波的平均波高和平均周期。
波高的累积频率:波列中超过此波高的累积频率波高的累积频率函数为波浪波能密度:公式表示间隔内全部组成波的能量和,相当于单位频率间隔内的平均波能量,称之为波能密度,公式也相当于组成波频率对于组成波频率的分布函数,这一函数称为波频谱,通常简称为频谱。
波频谱的形状与形成波浪的生成机理有关,主要决定于风速、风距和风时三个要素。
波浪的方向谱:,表示频率在间隔范围内和方向在间隔范围内各组成波提供的能量的平均值,相当于波能密度对于组成波的频率和方向的分布,当频率给定时,该函数描述不同方向间隔的能量密度,因而反映海浪内部方向结构的能谱,称之为方向谱。
第二章思考题和习题2-1;2-2;2-3;2-4;2-5;2-6:2-11 :第三章波浪传播和破碎在深海中形成及发展的风浪,离开风区后在海洋中继续传播,传播中由于弥散和能量损失,其频率范围和能量不断变化,随着传播距离增大,风浪逐渐转化为涌浪,两者的主要区别是风浪的频谱范围广,而涌浪的频谱范围窄得多,其波形接近于简谐波。
涌浪传到近岸区以后,受海底地形、水深变浅、沿岸水流、港口及海岸建筑物等的影响,波浪产生变形、折射、绕射、反射等,因底部摩阻,产生波能衰减;当波浪变陡或者水深减少到一定限度后,产生破碎。
当波浪进入浅水区后,从波浪触底时起,波浪即开始损失能量,这些损失可能包括以下三个方面:摩阻损失,这是海底床面对于波浪水流的摩阻力引起的能量损失;渗透损失和泥面波阻力损失。
波浪运动中水质点作周期性的往复振荡运动,其边界层特征与单向水流不同。
明渠单向水流中边界层能得到充分的发展,而短周期的波浪水流中,水流在不大的时间内正负交变,边界层得不到充分发育,只有在床面附近很薄的一层受床面影响而存在剪切应力,形成近底边界层。
第二节波浪浅水变形、折射和绕射波浪守恒:一列规则波在变水深中传播,在传播中随着水深变化,波速、波长、波高和波向都将发生变化,但是波周期则始终保持不变的现象,称之为波浪守恒。
波浪守恒方程:,其物理意义为波数向量随时间的变化率必然为角频率的沿空间变化率所平衡。
在稳定的流场中,没有新的能量的输入,波数随着时间没有变化,因此波浪在传播过程中周期守恒。
波浪的浅水变形:波浪的浅水变形开始于波浪第一次触底的时候,这时的水深约为波长的一半。
随着水深的减小,波长和波速逐渐减小,而波高逐渐增大,当深度减小到一定程度时,出现各种形式的波浪破碎。
图3-4,波浪传播过程中潜水变形情况。
波浪折射:波浪斜向进入浅水区后,同一波峰线的不同位置将按照各自所在地点的水深决定其波速,处于水深较大位置的波峰线推进较快,处于水深较小位置的推进较慢,波峰线因此而弯曲并逐渐趋于与等深线平行,波向线则趋于垂直于岸线。
波峰线和波向线随水深变化而变化的现象称为波浪折射。
斯奈尔定律:辐聚和辐散:在海岬岬角处,波向线将集中,这种现象称为辐聚,此处,波高将因折射而增大。