焊接变形论文控制措施论文
材料成型及控制工程毕业论文
材料成型及控制工程毕业论文题目建筑钢结构焊接变形控制研究专业材料成型及控制工程摘要钢结构体系在现代建筑体系中,因其本身具有的自重轻、强度高, 施工快等独特优点,与钢筋混凝土结构相比,更具有在“高、大、轻”三个方面发展的独特优势,可以说钢结构已在建筑工程中发挥着独特且日益重要的作用。
论文通过借鉴国内工程设计实例,对建筑钢结构关键节点进行强度设计;选用Q420作为此建筑钢结构制造材料,对Q420进行技术分析,在满足计算所得强度要求的情况的前提下,对关键节点制定相应的焊接变形控制措施,一是从结构设计上控制,二是从工艺上控制。
通过结构设计和工艺设计,达到了对该钢结构建筑关键节点的焊接变形控制的目的。
关键词:建筑钢结构概念设计关键节点焊接变形控制ABSTRACTSteel Structure System in modern building systems, because of their inherent light weight, high strength and rapid construction of the unique advantages, compared with the reinforced concrete structure also has the "high, big, light," the development of three unique advantages can be said to have been in the construction of steel structure has played a unique and increasingly important role.Paper by drawing on domestic engineering design example, the key nodes of construction steel strength design; Selected Q420 As part of this material of construction steel structure, technical on Q420 in meeting the strength requirements of the calculated under the premise of key nodes formulate appropriate control measures for welding deformation, one from the control structure design, and second, to control from the process. Through structural design and process design to achieve the key nodes of the steel structure welding distortion control.Keywords: Steel structure; Concept Design; Key nodes; Welding distortioncontrol目录中文摘要 (Ⅰ)英文摘要 (II)1 绪论 (1)1.1钢结构建筑发展现状 (1)1.2研究本课题的意义 (1)1.3重点内容 (1)2商住钢结构建筑概念设计 (2)2.1设计思路 (2)2.2概念设计对象的基本数据 (2)2.2钢结构结构选型 (3)2.3荷载计算 (4)2.4结构内力计算 (6)3关键节点构件结构设计 (10)3.1连接螺栓 (11)3.2梁柱翼缘对接焊缝 (11)3.3柱腹板受压承载力验算 (11)3.4柱受拉翼缘验算 (11)4 材料分析及施工流程设计 (13)4.1Q420材料选择技术分析 (13)4.2制造工艺流程 (14)5 工字钢制造工艺设计及关键节点现场施工工艺设计 (17)5.1工字钢厂内制造工艺设计 (17)5.2节点构件的现场施工工艺设计 (18)5.3关键节点主要焊缝变形控制 (20)5.4针对A、B工作焊缝的焊接工艺优化 (21)5.5焊接材料选择 (23)5.6焊接工艺规程 (24)5.7斜Y坡口焊接实验 (25)5.8拉伸性能实验 (25)6 总结 (26)参考文献 (27)致谢 (28)1 绪论1.1 钢结构建筑发展现状随着国家经济建设的发展, 钢结构产品在大跨度空间结构、轻钢门式结构、多层及小高层住宅等领域的建筑日益增多, 应用领域不断扩大。
浅析钢结构焊接变形与残余应力控制方法
浅析钢结构焊接变形与残余应力控制方法摘要:在国内建筑工程中,钢结构作为建筑结构主体结构框架,具有绿色环保、空间大和强度高等特点,在网架结构和塔桅建筑、超高层建筑以及大型工业厂房中等建筑工程中得到广泛应用。
随着建筑结构超高层化和大跨度化,高性能钢材应用增多,分析和讨论建筑钢结构焊接生产效率,对于提高建筑工程质量和效率具有重要意义。
关键词:钢结构; 焊接变形; 残余应力; 控制方法引言在钢结构工程的焊接施工中难免会出现焊接应力和焊接变形的情况,这对于焊接接头的强度以及焊接结构尺寸的精度都会产生一定的影响,严重的话会导致构件报废。
此外,钢结构在日后使用中的承载力也与焊接应力与焊接变形有着很大的关联。
因此相关施工人员要切实把握好焊接技术,加强对焊接重难点的技术控制,采取有效措施提高钢结构的质量。
1焊接变形和残余应力(1)焊接变形是焊接过程中不可避免的,施焊电弧高温引起钢构件在焊接处发生缩短、弯曲及角度等变化,即焊接变形。
焊接变形可分为两种形式,一种是因高温导致的变形,该变形在温度冷却后可恢复,为瞬时变形;第二种是因焊接作业产生的永久性变形。
焊接变形对结构安装的精确度影响较大,产生焊接变形极易导致结构无法安装。
(2)残余应力产生于钢构件的焊接及热影响区域,其对钢构件最直接的影响是降低构件的承载能力和增大开裂的可能性,钢构件的开裂大多发生在焊接区域。
在焊接区域,当构件的残余应力和荷载共同作用效果超过焊缝的承载力时,焊缝处就开始产生裂纹,并逐渐扩大成裂缝,构件也就易从裂缝处产生断裂,而此时构件承受的荷载并未达到其极限承载力,却因焊缝的断裂导致整个构件的失效。
2造成导致钢结构发生焊接变形的原因(1)焊接工艺。
即使是材料相同、设备相同,不同工人在焊接过程中,由于焊接工艺会造成焊接变形的出现。
比如焊接过程中,预热时应该结合当地的实际温度、光照亮度等多种因素进行确定等。
由此可见,钢结构的焊接变形受到焊接工艺的影响比较大。
建筑钢结构焊接变形控制措施
浅谈建筑钢结构焊接变形的控制措施【摘要】本论文通过分析建筑钢结构焊接变形的原因,提出了建筑钢结构焊接变形相关控制措施。
钢铁工业的发展,使建筑钢结构得到了广泛应用,对焊接设备和焊接方法提出了更高的要求,如何提升现有的焊接技术成了一个重要的课题。
因此,分析焊接变形的各方面因素,采取适当措施控制焊接变形,对于保证建筑钢结构工程质量、提高生产效率具有重要意义。
【关键词】建筑钢结构焊接变形控制措施中图分类号:tu391 文献标识码:a 文章编号:一、建筑钢结构焊接变形的形式及变形因素1.焊接残余变形按其对整个结构影响程度不同,可分为整体变形和局部变形; 按其特征可分为: 收缩变形、角变形、弯曲变形、波浪变形、扭曲变形和错边变形等。
在这些焊接残余变形中,角变形和波浪变形属于结构局部变形,其它的属于结构整体变形。
而建筑钢结构最多发生的是结构整体焊接变形。
2.在建筑钢结构焊接生产中,只有全面分析影响焊接变形的各种因素,掌握其影响规律,才能采取合理的措施来控制建筑钢结构焊接变形。
影响建筑钢结构焊接变形的因素:①钢结构组成的基本构件应完全达到该构件的技术要求和形位公差,但有些构件制造就没有达到要求,形成钢结构各构件组装焊接后先天性的超差。
②钢结构各构件整体组装研配控制不严,如间隙过大,焊接时易引起较大的变形。
③焊缝若沿构件截面分布不对称,则会引起该构件焊接时产生弯曲变形。
④组装焊接施工中,焊缝坡口形式,焊接次序,焊接方法,焊接规范,焊缝的位置、尺寸及数量等选择不当,钢结构的热物理性能、自重、形状及尺寸等不同,都会引起钢结构焊接变形。
二、建筑钢结构焊接变形的控制措施1.在建筑钢结构焊接节点构造设计时,应注意以下几点:①焊缝位置应避开高应力区: 焊缝区的应力越大,则钢结构越容易产生焊接变形及焊缝裂纹。
②焊缝位置应对称于构件截面的中性轴:焊缝位置尽可能对称于构件截面的中性轴,或者尽量靠近中性轴,这对减少梁、柱等一类钢结构的挠曲变形有良好的效果。
刍议焊接变形的控制
刍议焊接变形的控制作者:常弘来源:《建材发展导向》2013年第04期摘要:因为焊接的时候瞬时高度集中的热输入会使工件上的变形与应力出现很大的改变,进而使焊接结构当中出现变形与残余应力,严重影响了结构性能以及制造过程。
因此掌握变形和焊接应力的影响、作用以及规律,实施有效地措施消除或者控制变形与焊接残余应力,对运行时的安全评定、选择制造工艺方法、焊接结构完整性的设计都非常重要。
关键词:焊接应力;变形控制;制造工艺1 变形与焊接应力的产生1.1 产生变形与焊接应力的机理焊接热输入造成了材料的局部加热不均匀,熔化焊缝区;毗邻熔池的高温区材料发生的热膨胀则因为到附近材料的限制会出现不均匀的压缩塑性变形;冷却的时候,材料已经压缩塑性变形的又因为周围条件的限制而无法自由地进行收缩;另外,金属冷却收缩、熔池凝固的时候也会出现相应的变形和应力,出现不协调的应变,由此产生变形与焊接应力。
1.2 变形与焊接应力的影响因素1.2.1 结构因素。
在影响焊接变形的因素当中最复杂、最关键的一个因素就是焊接结构的设计。
它的总体原则为焊接残余应力随着束度的增加而增加,焊接变形则是随着束度的增加而减少。
在焊接变形的时候,工件自身的拘束度会不断地发生变化,所以本身应当是变拘束结构,另外外加拘束也会产生相应的影响。
通常状况,在焊接时候发挥主导地位的是复杂结构本身的拘束作用,而在焊接的时候,随着结构复杂程度增加结构自身的拘束度变化状况也会相应增加。
所以,设计结构的时候应当结合加强筋或者筋板的数量位置以及结构板的厚度等来优化,有助于减少焊接变形的发生。
1.2.2 制造因素。
对于焊接变形,焊接工艺的发挥的影响有很多方面,例如焊接夹具与胎架的应用、焊接顺序、构件的固定方法或定位、焊接输入的电压电流量、焊接方法等。
在这些工艺因素当中,对焊接变形影响最为明显的是焊接顺序,通常状况下,焊接顺序的改变能够使残余应力的应力状态与分布也发生改变,进而使焊接变形减少。
焊工高级技师论文-电焊工技师论文
焊工高级技师论文-电焊工技师论文---------------------------------------------------------------范文最新推荐------------------------------------------------------ 焊工高级技师论文|电焊工技师论文钢结构焊接变形的火焰矫正施工方法目前,钢结构已在厂房建筑中得到广泛的应用。
而钢结构厂房的主要构件是焊接H型钢柱、梁、撑。
这些构件在制作过程中都存在焊接变形问题,如果焊接变形不予以矫正,则不仅影响结构整体安装,还会降低工程的安全可靠性。
焊接钢结构产生的变形超过技术设计允许变形范围,应设法进行矫正,使其达到符合产品质量要求。
实践证明,多数变形的构件是可以矫正的。
矫正的方法都是设法造成新的变形来达到抵消已经发生的变形。
在生产过程中普遍应用的矫正方法,主要有机械矫正、火焰矫正和综合矫正。
但火焰矫正是一门较难操作的工作,方法掌握、温度控制不当还会造成构件新的更大变形。
因此,火焰矫正要有丰富的实践经验。
本文对钢结构焊接变形的种类、矫正方法作了一个粗略的分析。
1 钢结构焊接变形的种类与火焰矫正六剑客职教园(最大的免费职教教学资源网站)钢结构的主要构件是焊接H型钢柱、梁、撑。
焊接变形经常采用以下三种火焰矫正方法:(1)线状加热法;(2)点状加热法;(3)三角形加热法。
下面介绍解决不同部位的施工方法。
以下为火焰矫正时的加热温度(材质为低碳钢)低温矫正 500度,600度冷却方式:水1 / 4---------------------------------------------------------------范文最新推荐------------------------------------------------------ 中温矫正 600度,700度冷却方式:空气和水高温矫正 700度,800度冷却方式:空气注意事项:火焰矫正时加热温度不宜过高,过高会引起金属变脆、影响冲击韧性。
2021年手工焊接技术论文集合3篇
【论文写作】焊接技术是利用焊接材料将两种或两种以上的母材在高温或高压下连接成一个整体。
以下是为大家整理的关于手工焊接技术论文的文章3篇 ,欢迎品鉴!第一篇: 手工焊接技术论文摘要关于对焊接变形的讨论和改进研究对大型的焊接结构件的制造,如轨道车辆转向架;钢、铝合金结构的车体等的制造具有十分重要的意义和价值。
关键词焊接结构;焊接变形;分析原因一、焊接结构件变形分类焊接结构件变形的原因有很多,其中就包括母材的材质导致的变形、填充材料导致的变形、焊接方法不娴熟或者方法不正确导致的变形、焊接参数(WPS文件参数)导致的变形、焊接顺序不正确导致的变形还有冷却时间及焊接过程中是否有约束等问题导致的焊接结构件变形等原因,但是这些原因归根结底是由于焊接残余应力造成的,而焊接结构变形又可以分为以下几类二收缩变形—其包括垂直于焊缝方向引起的横向收缩和焊缝方向引起的纵向收缩;弯曲变形—这个包括由于横向收缩引起的弯曲变形和由于纵向收缩引起的弯曲变形;扭曲变形—构件绕自身轴线的扭曲;波浪边形—波浪变形时由于薄板焊接产生残余压缩应力使得构件出现因为压缩而形成的。
二、焊接变形的形成及将导致的后果焊接热过程是一个十分复杂的问题,在实施焊接作业时,焊接工艺选择的合理性与否,可能导致工件整体受热不均匀问题突出,从而造成工件内部应力分布不均匀、工件变形严重,无法正常使用。
(1)焊接热过程的局部性或不均匀性。
多数焊接过程都是进行局部加热的,只有在热源直接作用下的区域受到加热,有热量输入,其他区域则存在热量损耗。
受热区域金属熔化,形成焊接熔池,这种局部加热正是引起焊接残余应力和焊接变形的根源。
(2)焊接热过程的瞬时性。
由于在金属材料中热量的传播速度很快,焊接时必须利用高度集中的热源。
这种热源可以在极短的时间内将大量的热量由热源传递给工件,这就造成了焊接热过程的时变性和非稳态特性。
(3)焊接热源的相对运动。
由于焊接热源相对于工件的位置不断发生变化,这就造成了焊接热源的不稳定性。
焊接工艺论文(5篇)
焊接工艺论文(5篇)焊接工艺论文(5篇)焊接工艺论文范文第1篇2205钢的焊接最主要的问题是如何保证焊接接头铁素体和奥氏体相组织的比例,进而保证接头的耐蚀性和力学性能。
因此焊接工艺的制定是围绕如何保证其双相组织比例进行的。
当铁素和奥氏体量合适时(最佳值铁素为45%),性能接近母材。
假如组织比例偏差比较大,2205钢焊接接头的耐蚀性能和力学性能(尤其是韧性)将下降。
过低的铁素体含量(<25%)将导致强度降低和抗应力腐蚀开裂力量下降;过高的铁素体含量(>75%)会降低耐蚀性和冲击韧性。
1.1合金元素的影响2205钢含有较多的合金元素,焊接过程中易形成金属相、碳氮化合物等,这些会影响接头力学性能和耐蚀性能。
氮在保证焊缝金属和焊后热影响区内形成足够量的奥氏体方面具有重要作用。
氮和镍一样是形成奥氏体和扩大奥氏体元素且力量远远大于镍。
在高温下,氮稳定奥氏体的力量也比镍大,可防止焊后消失单相铁素体,并能阻挡有害金属相的析出。
由于焊接热循环的作用,自熔焊或填充金属成分与母材相同时,焊缝金属的铁素体量急剧增加,甚至消失纯铁素体组织。
为了抑制焊缝中铁素体的过量增加,一般实行在焊接材料中提高镍或是加氮这两条途径。
通常镍的含量比母材高出2%~4%,如2205填充金属的镍含量就高达8%~10%。
用含氮的填充材料比只提高镍的填充材料效果更好,两种元素都可以增加奥氏体相的比例并使其稳定,但加氮不仅能延缓金属间相的析出,而且还可提高焊缝金属的强度和耐蚀性能。
目前,填充材料一般都是在提高镍的基础上,再加入与母材含量相当的氮。
1.2热循环的影响双相不锈钢焊接的最大特点是焊接热循环对焊接接头组织比例有较大的影响,无论焊缝还是热影响区都会有相变发生,这对焊接接头的性能有很大影响。
双相钢含量与冷却速度(t8/5)之间的关系;从图中可见,在t8/5的冷却速度在合适的范围内才能得到合适比例的双相组织。
因后续焊道对前层焊道有热处理作用,多层多道焊对焊缝相比例是有益的。
板板对接焊接变形分析研究
板板对接焊接变形分析研究摘要:在实际生产中,焊接变形造成焊件和结构焊接后在形状和尺寸的改变,也会给结构的组装及焊接造成困难,焊接变形较大时,可能产生裂纹和降低焊后机械加工的精度。
所以防止焊接变形是焊接生产的一个非常重要的方面。
实践证明,构件焊接后总会不可避免地产生焊接变形。
本论文通过对板板(10mm)平对接变形控制的讨论,了解以及掌握一定的防止焊接变形的方法。
关键词:板板对接;焊接变形引言在焊接过程中有多种因素共同影响着变形的变化,如焊接方法、接头形式、坡口形式、坡口角度、焊件的装配间隙、对口质量、焊接速度、焊件的自重都会对焊接变形造成影响,特别是装配和焊接顺序对焊接变形有较大的影响。
1 板板对接焊接变形焊接变形在焊接结构中的分布是很复杂的。
按焊接变形对整个焊接结构的影响程度可将焊接变形分为局部变形和整体变形;按变形的外观形态分为五种基本变形形式:收缩变形、角变形、弯曲变形、波浪变形和扭曲变形。
10mm对接在焊接过程中容易产生的焊接变形主要是收缩变形和角变形。
(1)收缩变形。
焊件尺寸比焊前缩短的现象称为收缩变形。
它分为纵向收缩变形和横向收缩变形。
1)纵向收缩变形,纵向收缩变形即沿焊缝轴线方向尺寸的缩短。
产生原因:加热时,如果板条的高温区与低温区是可分离的,高温区将伸长,低温区不变,但实际板条时一个整体,所以板条将整体伸长,此时高温区内产生较大的压缩塑性变形和压缩弹性变形,冷却时,由于压缩塑性变形不可恢复,所以,如果高温区与低温区是可分离的,高温区应缩短,低温区应恢复原长,但实际上板条是一个整体,所以板条将整体缩短,要比焊接前缩短,这就是板条的残余变形。
也就是焊缝及其附近区域在焊缝高温的作用下产生纵向的压缩塑性变形,焊后这个区域要收缩,便引起了焊件的纵向收缩变。
影响纵向收缩变形量的因素:变形量取决于焊缝长度、焊件的截面积、材料的弹性模量、压缩塑性变形区的面积以及压缩塑性变形率等。
焊件的截面积越大,焊件的纵向收缩量越小。
模块化大型钢结构焊接变形控制
关 键 词 :焊接变形;变形控制;变形矫正
中 图 分 类 号 : T 4 G4
文献标 识 码 :A
0 引 言
模块 化Koimb 镍矿 项 目是 中国海 洋 石油 工程 股份 有 限公 司 ( na o 简称 海油 工程 )第一 次承担 的世 界首例 大 型模 块化矿 冶工 厂E CT程项 目。业 主 为K na o ceS 公司 ,由海油 工程 负责 设计加 P oi mb kl AS Ni 工 、采 办 、预 制和 建造 、称重 、清 洗 、装船 固 定等工 作 。本项 目共 计 l个模块 ,总重近4 。所有 结 7 万t 构均采 用 新型 工字 梁 ( 简称 柱梁 )替代传 统 圆柱 形 的结构 形式 。结构 复杂 ,焊 接量 极大 ,焊 接 变形难 于控 制 。为确保 焊接 质量 满足业 主 的要求 ,对 钢结 构在 焊接 过程 中 的变形进 行严 格 的控制 显得 尤其 重
要。
1 焊接变形原 因及类型
1 . 焊接 变形 产生 的原 因 1
在焊 接过 程 中 ,不 均匀 的局 部加 热使焊 缝 产生 内、外应 力使 得钢 构件产 生 变形 。导致 焊接 过程 发 生各种变 形 的主要 原 因归纳 如下 :
( )焊 件不 均匀 受热 和冷 却 ; 1
( )焊缝金 属 在熔化 时热 胀 ,在冷 却 时凝 固收缩 ; 2 ( )材料产 生 塑性变 形后 金属 的再 结 晶使 得 内部结构 组织 不均 匀地 变化 ; 3
在 设计焊 接 结构 时 ,合理地 选择 筋板 的 型式和 筋 板安装 位 置 ,减 少焊 缝数 量 ,从 而避 免不必 要 的
焊缝 ,减 少焊 接变 形 。
( )合 理安 排焊缝 位 置 3
焊工技师论文11
焊工技师论文浅谈钢结构焊接变形的火焰矫正施工方法以及焊接过程的规范问题摘要:根据多年经验,结合国内外相关焊接资料,阐述钢制产品焊接变形的主要种类,以及本人对焊接变形的火焰矫正施工方法的粗浅看法以及在焊接方法中需要注意的规范问题。
关键词:火焰矫正焊接变形目前,钢制产品在日常生活和大型建设工程中得到了广泛的应用。
而钢结构厂房的生产工艺的诞生,为现代建设工程增添了一道亮丽的琵琶。
然而钢结构厂房的主要构件是焊接H型钢柱、梁、撑。
这些构件在制作过程中都存在焊接变形问题,如果焊接变形不予以矫正,则不仅影响结构整体安装,还会降低工程的安全可靠性。
焊接钢结构产生的变形超过技术设计允许变形范围,就应设法进行矫正,使其达到符合产品质量的要求。
实践证明,多数变形的构件是可以矫正的。
矫正的方法都是设法造成新的变形来达到抵消已经发生的变形。
在生产过程中普遍应用的矫正方法,主要有机械矫正、火焰矫正和综合矫正。
但火焰矫正是一门较难操作的工作,方法掌握、温度控制不当还会造成构件新的更大变形。
因此,火焰矫正要有丰富的实践经验。
本文对钢结构焊接变形的种类、矫正方法作了一个粗浅的分析。
1. 钢结构焊接变形的种类和火焰矫正方法火焰矫正法利用火焰加热时产生的局部压缩塑性变形,使较长的金属在冷却后缩短来消除变形。
此方法简单, 机动灵活, 适用面广。
在使用时应控制温度和加热位置。
对低碳钢和普通低合金钢常采600~800℃的加热温度。
由于需再次加热, 对合金钢等慎用。
以下为火焰矫正时的加热温度(材质为低碳钢)低温矫正500℃~600℃冷却方式:水中温矫正600℃~700℃冷却方式:空气和水高温矫正700℃~800℃冷却方式:空气注意事项:火焰矫正时加热温度不宜过高,过高会引起金属变脆、影响冲击韧性。
16Mn在高温矫正时不可用水冷却,包括厚度或淬硬倾向较大的钢材。
钢结构焊接变形的种类与火焰矫正钢结构的主要构件是焊接H型钢柱、梁、撑。
焊接变形经常采用以下三种火焰矫正方法:(1)线状加热法;(2)点状加热法;(3)三角形加热法。
焊工高级工论文_技师论文(精选五篇)
焊工高级工论文_技师论文(精选五篇)第一篇:焊工高级工论文_技师论文焊工电弧焊基本技能操作一、安全操作规程1、金属焊接作业人员,必须经专业安全技术培训,取得劳动安全监察管理部门颁发的“特种作业操作证”方可上岗独立操作。
操作前,应先检查焊机和工具、焊钳和焊接的绝缘、焊机外壳保护接地和焊机的各接线点等,确认安全合格方可作业。
操作时,应穿电焊工作服、绝缘鞋、电焊手套、防护面罩等安全防护用品。
电焊周围10米范围内不得堆放易燃、易爆物品。
2、雨、雪、风力六级及以上的天气不得露天作业,雨、雪后应清除积水、积雪后方可作业。
焊接曾存储过易燃、易爆物品的容器时,应根据介质进行多次置换和清洗,并打开所有孔口,经检验确认安全后方可施焊。
在密封容器内施焊时,应采取通风措施。
容器内照明电压不得超过12V,焊工身体应用绝缘材料与焊件隔离。
3、操作时,改变电焊机接头、转移工作地点搬动焊机时、焊机发生故障需进行检修时、工作完毕或临时离操作现场时,必须切断电源。
高处作业时,必须使用标准的防火安全带,下方5m外设置护栏,必须戴盔式面罩,必须站在稳固的操作平台上,焊机必须放置平稳、牢固,设有良好的接地保护装置。
焊接电缆通过道路时,必须架高或采取其他保护措施。
清除焊渣时应佩带防护眼镜或面罩,焊条头应集中堆放。
二、基本知识1、焊接就是通过加热和加压的方法,使两个分离的物体之间借助于内部原子之间的扩散与结合作用,使其连接成一个整体的工艺过程。
(1)熔化焊:是将焊件接头加热到熔化状态,一般都需加入填充金属,经冷却结晶后形成牢固的接头,使焊件成为一个整体。
根据热源的形式不同,熔化焊接方法分为电弧焊、电阻焊、电渣焊。
(2)压力焊:是将两块金属的接头处加压,不论进行加热或不加热,在压力的作用下使之焊接起来。
(3)钎焊:是利用比金属焊件熔点低的钎料与焊件一同加热,使钎料熔化后填满焊件连接处的间隙,待钎料凝固后,将两快焊件彼此连接起来。
2、焊条的选择:根据国家标准规定,焊条分为九类:低碳钢和低合金高强度钢焊条、钼和铬钼耐热钢焊条、不锈钢焊条、堆焊焊条、低温钢焊条、铸铁焊条、镍及镍合金焊条、铜及铜合金焊条、铝及铝合金焊条等。
焊接技术论文(5篇)
焊接技术论文(5篇)焊接技术论文(5篇)焊接技术论文范文第1篇纳米科学技术指的是在肯定的尺度空间内(通常是0.1nm~100nm),观测分子、原子、电子3者的运动轨迹,进而揭示其运动规律和特性的学科。
纳米科学技术的讨论目的,是人类盼望通过把握分子、原子、电子等微粒的特性,能根据自己的意志操纵他们,结合计算机、微电子、核分析和扫描隧道显微镜等现代科技,从而制造出新的产品并运用到多个领域,并派生出一系列的新学科新技术,如纳米机械学、纳米材料学、纳米电子学等等。
2纳米技术在焊接领域的应用2.1在焊接材料中的应用2.1.1在焊丝涂层中的应用。
为了让焊丝暴露在空气环境下不至于生锈氧化,人们往往会对焊丝表面进行一些处理,如最常见的就是在焊丝表面镀上一层铜粉,用以爱护焊丝和延长焊丝的使用寿命。
但这样做的副作用却是使表面常常会消失点蚀现象。
随着科技的进展,对原材料的强度提出了越来越高的要求,而焊缝中的Cu元素对焊缝强度无益,反而被指会减弱焊缝的性能和材料强度。
因此,在现阶段实际应用中,高强度钢焊丝则不再镀铜,而这样就对焊丝材料的表面处理工艺提出了新的要求,需要运用一种新的材料去做焊丝涂层。
而近来,国内闻名学府天津高校,就运用了纳米技术和现代金属表面工程技术相结合的方法,采纳特别工艺对焊丝表面进行了处理,形成了一层特别薄的爱护膜,从根本上解决了焊丝制造业传统镀铜防锈带来的问题,对焊丝爱护起到了特别好的作用。
2.1.2在焊条药皮中添加纳米材料。
在焊接工艺里,焊条药皮的制造是至关重要的一环,它担负着造渣、稳弧、脱氧、造气等多重使命,更要向焊缝过渡合金元素。
为了保证焊条有良好的性能和精良的制作工艺,通常要在药皮中要加入共计十多种材料糅合而成各种组成物。
现今在制作原料中加入纳米材料,而纳米材料本身有着较强的体积效应和表面效应,能使熔滴和焊条药皮的接触面积大大增大,并使相互的化学反应速度加快,在焊接冶金等反应过程中,有助于反应过渡有益合金元素,同时削减杂质。
箱型梁焊接变形控制论文
箱型梁的焊接变形控制摘要:本文阐述了箱型梁在焊接过程中产生变形的原因,并针对原因实施了有效的控制措施,以达到保证箱型梁焊接质量的目的。
关键词:箱型梁焊接变形控制措施箱型梁主要是指其截面形状与普通箱子截面无异,因而称之为箱型梁。
箱型梁通常由几个部分组合在一起形成的,如盖板和腹板、隔板、底板这四个方面组合而成。
箱型梁具有一定的先进性和优越性,其属于力学性能方面的经济断面组合结构,常会应用在龙门吊机、起重船等较为大型的承重结构。
1、箱型梁焊接变形的原因1.1焊接在热应力中的变形大多数工件的焊接指的是工件金属材料受到不均称热力的加热过程,或是受到不均称力度的冷却过程。
在焊接过程中,热力主要来源于可移动的高温电弧,而箱型梁在焊接时会产生一定的焊缝,其焊缝的温度以及受到热力影响的金属温度均比较高,金属受热后会出现热膨胀现象,但由于受到常温状态下的金属抑制与阻碍,导致箱型梁发生了压缩性和塑性的变形[1]。
1.2焊接受到外力影响而变形所谓的外力影响指的是箱型梁在组装或是焊接过程中受到碰撞或是过度承载的影响而产生异常的变形。
2、箱型梁焊接变形的控制方法2.1箱型梁组对顺序的合理化依照箱型梁的具体形态和结构特点,对其组装顺序进行合理的安排,主要步骤如下:①应先将下底板完全铺设好后,方可在处于下底板上划处的上腹板和其相连接,做合线的腊线工作。
②弹出的隔板和另一块板面相连接做接合线工作。
③隔板和下地板相互组合后装好。
④腹板和下地板相互组合后装好。
⑤仔细检查隔板的组装质量并核对组装顺序。
⑥焊接完成后,合理处理隔板和腹板、底板这三者连接的焊缝。
⑦盖板实施严密覆盖,组装即成形。
如图1所示。
2.2坡口尺寸的选择按照工艺的需求以及设计要求,在工件等待焊接的部位进行合理的加工,同时组装配置成一个合理的几何形状沟槽,形成坡口。
开破口有利于焊接工作的实施,在具有一定厚度的焊件上,可以将焊缝完全性焊透。
i形、v形、u形以及x形等坡口是较长应用到的坡口形式,这坡口均带有钝边。
焊接变形论文控制措施论文
焊接变形论文控制措施论文:焊接应力与焊接变形的产生原因与控制措施[摘要] 近年来,现代焊接向着大型化、高精度的方向发展,如何采取措施减小金属构件在焊接工序中发生的应力与应变,从而提高焊接工序的精度。
有着十分重要的现实意义。
[关键词] 焊接变形焊接应力产生原因控制措施在焊接过程中,由于焊件局部的温度发生变化,产生应力变形。
进而导致了构件产生变形。
因此,通过对焊接结构及焊接变形的分析,通过对焊接工艺焊件结构设计等方面采取有效措施,从而提高焊接质量。
一、焊接应力与焊接变形的产生原因焊接应力,是焊接构件由于焊接而产生的应力。
焊接过程中焊件中产生的内应力和焊接热过程引起的形状和尺寸变化。
焊接过程的不均匀温度场以及由它引起的局部塑性变形和比容不同的组织是产生焊接应力和变形的根本原因。
焊接应力和变形在一定条件下会影响焊件的功能和外观,因此是设计和制造中必须考虑的问题。
1、焊件的不均匀受热(1)对构件进行不均匀加热,在加热过程中,只要温度高于材料屈服点的温度,构件就会产生压缩塑性变形。
冷却后,构件就会有残余应力。
(2)焊接过程中焊件的变形方向与焊后焊件的变形方向相反。
(3)焊接加热时,焊缝及其附近区域将产生压缩塑性变形,冷却时压缩塑性变形区要收缩。
(4)焊接过程中及焊接结束后,焊件中的应力分布是不均匀的。
焊接结束后,焊缝及其附近区域的残余应力通常是拉应力2、焊缝金属的收缩焊缝金属冷却时,当它由液态转为固态时,其体积要收缩。
由于焊缝金属与母材是紧密联系的。
因此,焊缝金属并不能自由收缩,这将引起整个焊件的变形,同时在焊缝中引起残余应力。
另外,一条焊缝是逐步形成的,焊缝中先结晶的部分要阻止后结晶部分的收缩,由此也会产生焊接应力与变形。
3、金属组织的变化金属在加热及冷却过程中发生相变,可得到不同的组织,这些组织的比容不同,由此也会造成焊缝应力与变形。
4、焊缝的刚性和拘束焊缝的刚性和拘束,对焊件应力和变形也有较大的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焊接变形论文控制措施论文
焊接应力与焊接变形的产生原因与
控制措施
[摘要] 近年来,现代焊接向着大型化、高精度的方向发展,如何采取措施减小金属构件在焊接工序中发生的应力与应变,从而提高焊接工序的精度。
有着十分重要的现实意义。
[关键词] 焊接变形焊接应力产生原因控制措施
在焊接过程中,由于焊件局部的温度发生变化,产生应力变形。
进而导致了构件产生变形。
因此,通过对焊接结构及焊接变形的分析,通过对焊接工艺焊件结构设计等方面采取有效措施,从而提高焊接质量。
一、焊接应力与焊接变形的产生原因
焊接应力,是焊接构件由于焊接而产生的应力。
焊接过程中焊件中产生的内应力和焊接热过程引起的形状和尺寸变化。
焊接过程的不均匀温度场以及由它引起的局部塑性变形和比容不同的组织是产生焊接应力和变形的根本原因。
焊接应力和变形在一定条件下会影响焊件的功能和外观,因此是设计和制造中必须考虑的问题。
1、焊件的不均匀受热
(1)对构件进行不均匀加热,在加热过程中,只要温度高
于材料屈服点的温度,构件就会产生压缩塑性变形。
冷却后,构件就会有残余应力。
(2)焊接过程中焊件的变形方向与焊后焊件的变形方向相反。
(3)焊接加热时,焊缝及其附近区域将产生压缩塑性变形,冷却时压缩塑性变形区要收缩。
(4)焊接过程中及焊接结束后,焊件中的应力分布是不均匀的。
焊接结束后,焊缝及其附近区域的残余应力通常是拉应力
2、焊缝金属的收缩
焊缝金属冷却时,当它由液态转为固态时,其体积要收缩。
由于焊缝金属与母材是紧密联系的。
因此,焊缝金属并不能自由收缩,这将引起整个焊件的变形,同时在焊缝中引起残余应力。
另外,一条焊缝是逐步形成的,焊缝中先结晶的部分要阻止后结晶部分的收缩,由此也会产生焊接应力与变形。
3、金属组织的变化
金属在加热及冷却过程中发生相变,可得到不同的组织,这些组织的比容不同,由此也会造成焊缝应力与变形。
4、焊缝的刚性和拘束
焊缝的刚性和拘束,对焊件应力和变形也有较大的影响。
刚性是指焊件抵抗变形的能力。
而拘束是焊件周围物体对焊件变形的约束。
刚性是焊件本身的性能,它与焊件材质,焊件截面形状和尺寸有关,而拘束是一种外部条件,焊件自身的刚性及受周围
的拘束程度越小,则焊接变形越大,而焊接应力越小。
焊接变形的控制措施及消除方法
二、控制焊接应力与变形的措施
焊接以后留下一定的残余应力是不可避免的,但是可以通过恰当的工艺措施给予一定程度的控制。
使之危害尽可能减小。
控制内应力的方法有多种,但其基本原则只有一个,就是缓和对焊缝收缩的制约,通常采用的工艺措施有:一、采用合理的焊接次序。
是尽量使焊缝能比较自由的收缩,尤其是对那些收缩比较大,残余应力比较大的焊缝。
二、预热法。
由于被焊工件各部位的温差越大,焊缝的冷却速度越快。
则焊接接头的残余应力就越大。
预热既能减小工件各部位的温差,又能减缓冷却速度。
它是降低焊接残余应力的有力措施之一。
三、消除焊接应力的方法
消除焊接应力的方法有:热处理法、机械法和振动法
1、热处理方法包括:整体热处理和局部热处理。
将整个构件放在炉中加热到一定温度,然后保温一段时间再冷却。
通过整体高温回火可以将构件中80%--90%的残余应力消除掉,这是生产中应用最广泛、效果最好的一种消除残余应力的方法。
2、机械法,锤击焊缝法在焊缝的冷却过程中,用圆头小锤均匀迅速地锤击焊缝,使金属产生塑性延伸变形,抵消一部分焊接收缩变形,从而减小焊接应力和变形。
3、振动法,构件承受变载荷应力达到一定数值,经过多次
循环加载后,结构中的残余应力逐渐降低,即利用振动的方法可以消除部分焊接残余应力。
振动法的优点是设备简单、成本低。
时间比较短,没有高温回火时的氧化问题,已在生产上得到一定应用。
四、矫正焊接变形的方法,
当前矫正焊接变形的方法有两种:一是机械矫正法即根据理论计算和实践经验,预先估计结构焊接变形的方向和大小,然后在焊接装配时给予一个方向相反、大小相等的预置变形,以抵消焊后产生的变形。
二是火焰矫正法即通过火焰局部加热方法来造成塑性变形已达到矫正的目的。
焊接构件采用哪种方法控制应力及变形,要进行具体分析。
根据不同状况,选择一种或多种控制措施。
从而达到既保证安全又经济实用的目的。
2011年12月15日星期四。