复变函数总结

合集下载

复变函数总结完整版

复变函数总结完整版

复变函数总结完整版第一章 复数12i =-11-=i 欧拉公式z=x+iy实部Re z 虚部Im z2运算①2121Re Re z z z z =⇔≡21Im Im z z =②()()()()()2121212121Im Im Re Re Im Re z z z z z z z z z z++±=±+±=±③()()()()1221212121122121221121y x y x i y y x x y y y ix yix x x iy x iy x z z ++-=-++=++=⋅④()()()()222221212222212122222211222121y x y x x y iy x y y x x iy x iy x iy x iy x z z z z zz+-+++=-+-+==⑤iy x z -= 共轭复数()()22y x iy x iy x z z +=-+=⋅ 共轭技巧运算律 P1页3代数,几何表示iyx z += z 与平面点()y x ,一一对应,与向量一一对应辐角 当z ≠0时,向量z 和x 轴正向之间的夹角θ,记作θ=Arg z=πθk 20+ k=±1±2±3…把位于-π<0θ≤π的0θ叫做Arg z 辐角主值 记作0θ=0arg z4如何寻找arg z例:z=1-i4π-z=i 2π z=1+i 4π z=-1 π5极坐标: θcos r x =, θsin r y =()θθsin cos i r iy x z +=+=利用欧拉公式 θθθsin cos i e i += 可得到θi re z =()21212121212121θθθθθθ+=⋅=⋅=⋅i i i i i e r r e e r r e r e r z z6 高次幂及n 次方()θθθn i n r e r z z z z z n in n n sin cos +==⋅⋅⋅⋅⋅⋅⋅⋅=凡是满足方程zn=ω的ω值称为z 的n 次方根,记作 nz=ω ()nk i re z ωπθ==+2即nr ω=nr1=ωϕπθn k =+2nk πθϕ2+=第二章解析函数1极限 2函数极限① 复变函数对于任一D Z ∈都有E ∈W 与其对应()z f =ω 注:与实际情况相比,定义域,值域变化 例 ()z z f = ②()A =→z f z z 0limz z → 称()z f 当0z z →时以A 为极限 ☆当()0z f =A 时,连续例1 证明()z z f =在每一点都连续 证:()()00→-=-=-z z z z z f z f 0z z →所以()z z f =在每一点都连续3导数()()()()000limz z z z z z df z z z f z f z f =→=--='例2()Cz f = 时有 ()0'=C证:对z ∀有()()0lim lim 0=∆-=∆-∆+→∆→∆zCC z z f z z f z z 所以()0'=C例3证明()z z f =不可导 解:令0z z -=ω()()iyx iyx z z z z z z z z z z z f z f +-==--=--=--ωω000000当0→ω时,不存在,所以不可导。

复变函数重要知识点总结

复变函数重要知识点总结

复变函数重要知识点总结复变函数是数学中一个非常重要的分支,它在数学、物理、工程等领域都有着广泛的应用。

下面将对复变函数的一些重要知识点进行总结。

一、复数的基本概念复数是由实数和虚数组成的数,通常表示为$z = x + yi$,其中$x$ 称为实部,$y$ 称为虚部,$i$ 是虚数单位,满足$i^2 =-1$。

复数的模长定义为$|z| =\sqrt{x^2 + y^2}$,表示复数在复平面上的距离。

复数的辐角定义为$\theta =\arctan\frac{y}{x}$,表示复数与实轴正方向的夹角。

二、复变函数的定义复变函数是定义在复数域上的函数,通常表示为$w = f(z)$,其中$z$ 是自变量,$w$ 是因变量。

复变函数的导数定义与实函数类似,但需要满足柯西黎曼方程:$\frac{\partial u}{\partial x} =\frac{\partial v}{\partial y}$,$\frac{\partial u}{\partial y} =\frac{\partial v}{\partial x}$,其中$f(z) = u(x,y) + iv(x,y)$。

三、解析函数如果一个复变函数在某点及其邻域内可导,就称该点为函数的解析点。

如果函数在一个区域内处处解析,就称该函数为解析函数。

解析函数具有很多良好的性质,如柯西定理、柯西积分公式等。

四、复变函数的积分复变函数的积分定义为沿着一条曲线对函数进行积分。

柯西定理指出,如果函数在一个单连通区域内解析,那么沿着该区域内任何一条闭合曲线的积分都为零。

柯西积分公式则给出了函数在某点的值与沿着该点周围闭合曲线的积分之间的关系。

五、级数复级数包括幂级数和 Laurent 级数。

幂级数是形如$\sum_{n=0}^{\infty} a_n (z z_0)^n$ 的级数。

收敛半径可以通过比值法或根值法求得。

Laurent 级数是在圆环域内展开的级数,包括正则部分和主要部分。

(完整版)复变函数知识点总结

(完整版)复变函数知识点总结

(完整版)复变函数知识点总结复变函数知识点总结1. 复数与复变函数- 复数是实数和虚数的组合,可表示为a + bi的形式,其中a和b分别是实部和虚部。

- 复变函数是以复数为自变量和因变量的函数,例如f(z)。

2. 复变函数的运算规则- 复变函数的加法和减法:对应实部和虚部进行分别运算。

- 复变函数的乘法:使用分配律进行计算。

- 复变函数的除法:使用共轭形式并应用分配律和除法规则。

3. 复变函数的解析表示- 复变函数可以用级数形式表示,即幂级数或洛朗级数。

- 幂级数表示为f(z) = ∑(c_n * (z - z_0)^n),其中c_n是幂级数的系数,z_0是展开点。

- 洛朗级数表示为f(z) = ∑(c_n * (z - z_0)^n) + ∑(d_n * (z -z_0)^(-n))。

4. 复变函数的性质- 全纯性:如果一个函数在某个区域内都是解析的,则称其为全纯函数。

- 解析性:如果一个函数在某一点附近有解析表示,则称其为解析函数。

- 保角性:保持角度的变化,即函数对角度的保持。

- 映射性:函数之间的对应关系,实现从一个集合到另一个集合的映射。

5. 复变函数的应用- 物理学:用于描述电磁场、电路等问题。

- 工程学:用于信号处理、图像处理等领域。

- 统计学:用于数据分析、模型拟合等方面。

6. 复变函数的计算方法- 积分计算:使用路径积分或者柯西公式进行计算。

- 极限计算:使用洛朗级数展开或级数加和求解极限。

- 零点计算:使用代数方法或数值解法求解函数的零点。

以上是复变函数的知识点总结,希望对您有所帮助!。

复变函数总结

复变函数总结
l k i lk
n
复数数列收敛等价于 u 和 v 分别收敛 级数绝对收敛比值法 a=|zn+1/zn|,a<1 收 a>1 发 幂级数 收敛圆 Abel 第一定理
lim k ck 1 0 ck
(4)高阶导数公式
f (n) ( z) n! 2 i
(3)有界 Cauchy 积分公式
m 1
f ( k ) ( z0 ) 1 f ( )d s 是? ck k! 2i s ( z0 )k 1
bk
1 f ( )d 2i ( z 0 ) k 1 s
(8)留数 res f(z0)
b1 1 2 i
(9)留数定理

s
f ( z )dz
(7) Laurent 级数 R1<|z-z0|<R2
f ( z)
k
唯一性
b (z z
k

0
)k
唯一性 s 是?
收敛半径 R 1/ (12)极点 res f(z0)
1 d ( z z0 )m f ( z ) z z0 (m 1)! dz m 1 lim

m



f ( x)eipx dx 2 i res[ f ( z )eipz ]z z k
k 1
0
m
(1) 由 CR 条件和 Green 公式推得。对于任意解析区域都适用。 另一种方法,由于围道内没有奇点, 所以(9)式的右边为 0。 z z 积分与路径无关:定积分 F ( z )z0 f ( )d cz0 f ( )d F ( z )F ( z0 ). (2)复连通区域可划成单连通区域, 即得 (3) l 可化为绕 z 的无穷小围道,这时 f(ζ )趋于常数 f(z),提到积分外, 剩下部分的积分部分正好为 2πi 另一种方法,将 f(ζ )在 z 附近 Taylor 展开,f(z)正好是-1 次 项系数,而积分后其他幂次项为 0. (4) 将(3)式两边对 z 求导即得 (5) (3)式在无穷远点留数为 0 即得 (6) 对(3)式的 1/(ζ -z)用幂级数展开,结合(4)即得 它是(7)的 f(z)在 R1 内不含奇点的情形 S 是圆域内绕逆时针 z0 一周的闭合围道. (7) 对(3)式的 1/(ζ -z)在 R2 用幂级数展开,得正幂次项部分,在 R1 展开对 k 做替换得负幂次项部分,最后对它们的系数用(2)归 纳便可得到该结论 S 是圆环域内绕逆时针 z0 一周的闭合围道. (8) 令(7)的 k= -1 得 (9) (8)和(2)结合即得 (10) 这是定义 (11) 将(9)代入(10)即得 (12) 把 f(z)的 Laurent 展开式写出经式中的运算,结果正好是 b-1 (13) 用 1/z 替换(10)中的 z, 然后求 z=0 的留数即可,

复变函数总结

复变函数总结
u v , u v . x y y x
若函数 f (z) u( x, y) iv( x, y) 在点 z x yi 处 可导,则其导数公式:
定理2 函数 f (z) u( x, y) iv( x, y) 在其定义 域 D内解析的充要条件是: u( x, y)与 v( x, y) 在 D内可微, 并且满足柯西-黎曼方程.

w1 z
1 x iy
x iy x2 y2
1 ( x iy), 9
于是 w u iv 1 x 1 iy u 1 x, v 1 y
99
9
9
u2 v2 1 ( x2 y2) 1 表示 w 平面上的圆.
81
9
26
(2) x 2. 解 因为 z x iy 2 iy
1 (1 2
3i ),
z2
sin
3
i
cos
, 3

z1
z2

z1 z2
.

因为
z1
cos
3
i sin
3
,
z2
cos
6
i
sin
6
,
所以
z1
z2
cos
3
6
i sin
3
6
i,
z1 z2
cos
3
6
i
sin
3
6
3 1i. 22
19
例 计算 3 1 i 的值.
解 因为 n 1 所以 1 2 n1 1 n 0. 1
8


z1
5 5i,
z2
3 4i,
求 z1 z2

z1 z2

复变函数公式及常用方法总结

复变函数公式及常用方法总结

复变函数公式及常用方法总结复变函数是指在复平面上定义域为复数集的函数。

复变函数与实变函数不同,其定义域和值域都是复数集合,因此需要引入复数的运算和性质来研究这类函数。

复变函数在数学以及物理、工程学等领域有广泛的应用,如电路分析、信号处理、流体力学等。

1.复变函数的定义与性质:复变函数可以用以下形式表示:f(z) = u(x, y) + iv(x, y),其中z = x + iy;u(x, y)和v(x, y)为实变量x和y的实函数。

复变函数的一些性质如下:(1)复变函数可以进行加减、乘法和除法运算;(2)复变函数的连续性:若f(z)在特定点z0处连续,则其实部和虚部在该点均连续;(3)复变函数的解析性:若f(z)在特定点z0处可导,则其在该点解析;若f(z)在定义域内每一点都解析,则称其为全纯函数;(4)复变函数的实部和虚部都满足拉普拉斯方程式:∂^2u/∂x^2+∂^2u/∂y^2=0和∂^2v/∂x^2+∂^2v/∂y^2=0。

2.常用的复变函数:(1)幂函数:f(z)=z^n,其中n为整数;(2) 指数函数:f(z) = e^z = e^(x+iy) = e^x * e^(iy) = e^x * (cosy + isiny);(3) 对数函数:f(z) = ln(z);(4) 三角函数:正弦函数f(z) = sin(z),余弦函数f(z) = cos(z),正切函数f(z) = tan(z)等;(5) 双曲函数:双曲正弦函数f(z) = sinh(z),双曲余弦函数f(z)= cosh(z),双曲正切函数f(z) = tanh(z)等。

3.复变函数的常用方法:(1)极坐标表示法:将复数z表示为模长r和辐角θ的形式:z=r*e^(iθ)。

在极坐标下,复变函数的运算更加方便,例如可以用欧拉公式将指数函数表示为e^(iθ)的形式。

(2) 复变函数的导数:复变函数的导数可以用极限的形式表示,即f'(z) = lim(h→0) [f(z+h) - f(z)] / h。

复变函数知识点总结

复变函数知识点总结

复变函数知识点总结复变函数是数学中重要的概念,它在分析学、微分几何、数学物理等领域都有着广泛的应用。

本文将对复变函数的基本概念、性质和常见定理进行总结,希望能够帮助读者更好地理解和掌握复变函数的相关知识。

1. 复数与复变函数。

复数是由实部和虚部组成的数,通常表示为z=x+iy,其中x为实部,y为虚部,i为虚数单位,满足i^2=-1。

复数可以用平面上的点来表示,称为复平面,实部x对应横坐标,虚部y对应纵坐标。

复变函数是定义在复平面上的函数,通常表示为f(z),其中z为复数变量。

2. 复变函数的导数与解析函数。

与实变函数类似,复变函数也有导数的概念,称为复导数。

如果一个函数在某点处可导,并且在该点的邻域内处处可导,那么称该函数在该邻域内解析。

解析函数具有很多良好的性质,比如在其定义域内可以展开成幂级数。

3. 共轭与调和函数。

对于复数z=x+iy,其共轭复数定义为z的实部不变,虚部取相反数,记为z=x-iy。

对于复变函数f(z),如果它满足柯西-黎曼方程,即满足一阶偏导数存在且连续,并且满足偏导数的连续性条件,那么称f(z)为调和函数。

4. 柯西-黎曼方程与全纯函数。

柯西-黎曼方程是复变函数理论中的重要定理,它建立了解析函数与调和函数之间的联系。

柯西-黎曼方程指出,如果复变函数f(z)=u(x,y)+iv(x,y)在某点处可导,那么它满足柯西-黎曼方程,即u和v满足一阶偏导数的连续性条件。

满足柯西-黎曼方程的函数称为全纯函数,也称为解析函数。

5. 柯西积分定理与留数定理。

柯西积分定理是复变函数理论中的重要定理之一,它指出如果f(z)在闭合区域内解析,并且沿着闭合区域的边界进行积分,那么积分结果为0。

留数定理是计算闭合曲线积分的重要方法,它将积分结果与函数在奇点处的留数联系起来,从而简化了积分的计算。

6. 应用领域。

复变函数在物理学、工程学、经济学等领域都有着重要的应用,比如在电路分析中的传输线理论、振动理论中的阻尼比计算、流体力学中的势流与涡流等方面都需要用到复变函数的知识。

复变函数总结

复变函数总结

复变函数总结复变函数,又称为复数函数,是数学中重要的一个分支。

它在物理、工程、经济等领域具有广泛的应用。

复变函数的研究主要涉及复数、复平面、复数域的性质,以及复数函数的导数、积分等基本理论。

在本文中,我将对复变函数的基本概念、性质和常见应用进行总结。

一、复数的基本概念复数是由实数和虚数构成的数,通常表示为a+bi,其中a为实部,b为虚部,而i为虚数单位,满足i²=-1。

复数可以表示平面上的一个点,实部对应横坐标,虚部对应纵坐标。

复数的加法、减法、乘法和除法规则与实数的运算规则相似。

二、复平面与复函数复平面是由复数构成的平面,以复数的实部和虚部作为坐标轴。

复函数是定义在复数域上的函数,可以将复数作为自变量和因变量。

复函数在复平面上的图像通常是曲线、点或者区域。

三、复变函数的性质1. 解析性:复变函数在一个区域内解析,意味着它在该区域内具有连续性和光滑性,并且在该区域内无奇点。

2. 洛朗级数展开:复变函数可以用洛朗级数展开,即可以由一个主要部分和无穷个幂级数按次幂递减的项组成。

3. 共轭函数:对于复变函数f(z),其共轭函数为f*(z),实部相同,虚部取相反数。

4. 解析函数的判别:柯西-黎曼方程是判断一个函数在某一点是否解析的重要工具,同时也是复变函数的基本性质之一。

5. 调和函数:调和函数是一类特殊的复变函数,满足拉普拉斯方程。

四、复变函数的应用1. 电路分析:复变函数可以用来分析交流电路中的电流和电压,特别是在包含电感和电容的电路中,通过构造复变函数的拉普拉斯变换可以简化问题。

2. 流体力学:复变函数在描述流体的速度场、压力场和流线的分析中具有重要作用,特别是在无旋场和无散场的情况下。

3. 光学:复变函数可用于描述光波的传播和干涉现象,以及计算透镜的成像和衍射效应。

4. 统计学:复数也可应用于统计学中,如复数正态分布在处理随机变量时具有一定的优势。

5. 量子力学:复变函数是量子力学中运动状态和波函数的基础,通过复变函数可以描述粒子的行为以及能量的量子化。

复变函数总结

复变函数总结

复变函数总结复变函数,即复数域上的函数,是数学中重要的研究领域之一。

在复变函数的研究过程中,人们发现了许多有趣且重要的性质和定理。

本文将对复变函数的一些基本概念、性质以及常见定理进行总结,并探讨它们的应用。

一、复数的基本概念复数是由实部和虚部构成的,以形如a + bi的形式表示,其中a 为实部,b为虚部,i为虚数单位。

复数域上的运算包括加法、减法、乘法和除法。

二、复变函数的定义与性质复变函数可看作是以复数为定义域和值域的函数。

复变函数的导数概念在复数域上进行推广,被称为复导数。

复导数的定义如下:设f(z) = u(x, y) + iv(x, y)是定义在某区域上的复变函数,若当点z在该区域内变动时,极限f'(z_0)=lim(f(z)-f(z_0))/(z-z_0)在极限存在时,则称f(z)在z_0处可导。

复变函数的可导性与解析性密切相关。

如果一个函数在某区域上处处可导,则称该函数在该区域内解析。

解析函数具有许多重要的性质,如可导函数的连续性和可微性。

三、柯西-黎曼方程与调和函数柯西-黎曼方程是解析函数的一个重要条件,其表达式为:∂u/∂x = ∂v/∂y 和∂u/∂y = -∂v/∂x其中u(x, y)为解析函数的实部,v(x, y)为解析函数的虚部。

柯西-黎曼方程表明,解析函数的实部与虚部之间存在一定的关系。

调和函数是满足柯西-黎曼方程的实函数,它在物理学和工程学中应用广泛。

调和函数具有许多有趣的性质,如最大值原理和平均值性质。

四、复变函数的积分与实变函数类似,复变函数也存在积分的概念。

复积分常用路径积分表示,即沿着某条曲线对函数进行积分。

路径积分与路径有关,沿不同路径积分的结果可能不同。

当沿闭合路径进行积分时,根据柯西积分定理可知,对于解析函数来说,积分结果为0。

这是柯西积分定理的基本形式。

另外,在某些情况下,复积分可通过取局部极值来求解,这一方法称为留数法。

留数法是复变函数积分的一个重要工具,在计算复积分中发挥着重要的作用。

复变函数总结

复变函数总结

复变函数总结在数学领域中,复变函数是一种特殊的函数,其定义域和值域都是复数集。

它有许多独特的性质和应用,深受数学家和物理学家的喜爱和重视。

在本文中,我们将对复变函数的几个重要概念和应用进行总结和讨论。

第一部分:复数和复平面复变函数的基础是复数的概念。

复数可以表示为a+bi的形式,其中a和b分别是实数部分和虚数部分。

虚数单位i满足i^2=-1,使得复数集在数轴上获得了垂直的“第二个维度”。

复数还可以用极坐标形式r(cosθ+isinθ)表示,其中r是模长,θ是辐角。

复平面是将复数集映射到一个二维平面上的方法。

实部和虚部可以分别看作在坐标轴上的x轴和y轴坐标,使得复数的加减乘除运算可以在平面上直观地表示。

第二部分:复变函数的定义复数的加减乘除等运算都可以直接应用到复变函数中。

一般地,复变函数可以表示为f(z)=u(x,y)+iv(x,y),其中u和v是实函数,x 和y是复平面上的坐标。

如果f(z)满足柯西-黎曼方程u_x=v_y,u_y=-v_x,那么我们称这个函数为全纯函数。

全纯函数是复变函数的重要类别之一,有着许多重要的性质和应用。

第三部分:解析函数和调和函数解析函数是一个更严格的概念,它要求函数在其定义区域内处处可导。

而全纯函数只要求满足柯西-黎曼方程即可。

解析函数在数学和物理中有广泛的应用,如调和函数、特殊函数等。

调和函数是解析函数的一种特殊情况,它在某个区域内满足拉普拉斯方程△u=0。

调和函数在电势场、热传导等领域有着重要的物理意义。

第四部分:留数定理和复积分留数定理是复变函数理论中的一大亮点。

该定理通过计算函数在奇点处的留数,从而计算出复积分的值。

留数定理在数学分析和物理计算中有着重要的应用,如计算辐射场、傅里叶变换等。

复积分是沿着曲线路径对函数进行积分的一种方法,它在物理学和工程学中有着广泛的应用。

第五部分:解析延拓和边界值问题解析延拓是复变函数中的一个重要概念,它指的是将函数在某个已知区域的解析性质推广到更大区域的过程。

大一复变函数一知识点总结

大一复变函数一知识点总结

大一复变函数一知识点总结
1.复数的引入和初步运算:
复数可以表示为实部和虚部的和,记作z=a+bi,其中a为实部,b为虚部,i为虚数单位,i²=-1、复数有加法、减法、乘法和除法等运算规则。

复数的共轭是实部不变、虚部变号的复数。

2.复变函数的极限和连续性:
设f(z)在z₀附近有定义,如果对于任意给定的ε>0,存在δ>0,使得当z≠z₀且,z-z₀,<δ时,有,f(z)-f(z₀),<ε,则称f(z)在z₀处有极限,记作lim┬(z→z₀)⁡f(z)=A。

复变函数的极限和连续性的性质与实函数类似,可以通过极限的性质推导出复变函数的运算和连续性。

3.复变函数的导数与导函数:
复变函数f(z)在z₀处可导的充要条件是它在z₀处连续,且存在有限的复数A,使得lim┬(Δz→0)⁡(f(z₀+Δz)-f(z₀))/Δz=A。

复变函数的导数有和实函数类似的性质,例如导数是唯一的、导数存在的条件等。

4.全纯函数和调和函数:
在学习复变函数的过程中,还需要掌握一些基本的技巧和方法,例如利用导数和积分求解特定的问题、使用柯西-黎曼方程证明全纯函数的性质、使用拉普拉斯方程解决实际问题等等。

在实际应用中,复变函数在物理、工程、经济等领域发挥着重要作用,因此对复变函数的理解和掌握是十分必要的。

综上所述,大一复变函数一主要学习了复数的引入和初步运算、复变函数的极限和连续性、导数与导函数、全纯函数和调和函数等知识点,掌握了这些知识点可以帮助我们理解和运用复变函数在实际中的应用。

复变函数-总结

复变函数-总结
(sec z )′ = tan z sec z
18
例2 问 f (z) = x +2yi 是否可导?
f (z +∆z) − f (z) 解:这里 lim ∆z→0 ∆z ( x + ∆x) + 2( y + ∆y )i − x − 2 yi ∆x + 2∆yi = lim = lim ∆z → 0 ∆x + ∆yi ∆z → 0 ∆x + ∆yi
∂u ∂v ∂v ∂u = , =− ∂x ∂y ∂x ∂y
解析 ( 可导) ⇔ u , v 可微且满足C-R方程
若 推论 : u, v在( x, y )处一阶偏导数连续且满足C − R
方程,则f ( z ) = u + iv在 z = x + iy 处可导.
22
§2.2 解析函数与调和函数的关系
y
由 C − R 方程知:
u x = v y = − 2 y u y = − v x = −2 x
u( x 1 y ) =
0
( x, y )
(x,0)
x

( x, y)
∆x + 2∆yi ∆x = lim =1. 取∆z = ∆x → 0 , lim ∆z→0 ∆ +∆ x yi ∆z→0 ∆x ∆x + 2∆yi 2∆y 取∆z = i∆y → 0, lim = lim = 2. ∆z→0 ∆ +∆ x yi ∆z→0 ∆y 所以 f (z) = x + 2yi 的导数不存在.
设 f (z) = u(x,y) + iv(x,y) , A = u0+iv0 , z0 = x0+iy0 , 则
lim u(x, y) = u0 x→x0 y→y0 lim f (z) = A ⇔ . z→z0 lim x→x0 v(x, y) = v0 y→y0 运算性质:

《复变函数》总结

《复变函数》总结

复变小结1.幅角(不赞成死记,学会分析).2argtg 20,0,0,0,arctg 0,0,20,arctg arg πππππ<<-⎪⎪⎪⎩⎪⎪⎪⎨⎧=<≠<±≠=±>=x y y x y x x y y x x x y z 其中 -∏<arg z ≤∏Arg(z1z2)=Argz1+Argz2 Arg(z1/z2)=Argz1-Argz2 2. 求根:由z=θi e =r(cos θ+isin θ)得z n =e in θ=r n (cosn θ+isinn θ) 当r=1时,)sin (cos θθi n +=)sin (cos θθn i n + (*1) 当z w n =w= (*2) z arg =θ 例: 可直接利用(*1)式求解可令z=1+i,利用(*2)式求解 3.复函数:a. 一般情况下:w=f(z),直接将z=x+iy 代换求解但遇到特殊情况时:如课本P12例1.13(3)可考虑: z=θi e =r(cos θ+isin θ)代换。

()222cos sin 0,1,2,,1k k n n k i n n n n z rer i k n θπθπθπ+++==+=-L 求方根公式(牢记!):其中。

10(sin cos )55i ππ+41i+b.对于P12例题 1.11可理解为高中所学的平面上三点(A,B,C )共线所满足的公式:(向量) OC=tOA+(1-t )OB=OB+tBAc.对于P15例题1.14中可直接转换成X 和Y 的表达式后判断正负号来确定其图像。

d.判断函数f(z)在区域D 内是否连续可借助课本P17定义1.84.解析函数,指数,对数,幂、三角双曲函数的定义及表达式,能熟练计算,能熟练解初等函数方程a.在某个区域内可导与解析是等价的。

但在某一点解析一定可导,可导不一定解析。

b.柯西——黎曼条件,自己牢记:(注意那个加负那个不加)c.指数函数:复数转换成三角的定义。

复变函数知识点总结

复变函数知识点总结

复变函数知识点总结1. 复数及复平面- 复数由实部和虚部组成,形式为 `z = a + bi`,其中 `a` 为实部,`b` 为虚部,`i` 为虚数单位。

- 复平面将所有复数表示为二维平面上的点,实轴表示实部,虚轴表示虚部。

- 复数可用极坐标和指数形式表示。

2. 复变函数的定义与性质- 复变函数是将复数域映射到复数域的函数。

- 复变函数的导数称为复导数,由极限定义及柯西—黎曼方程求得。

- 复变函数的连续性与分析性与实变函数类似。

3. 元素函数- 复指数函数:`exp(z) = e^z`,其中 `e` 为自然对数的底数。

- 复对数函数:`Log(z) = ln|z| + i(arg(z) + 2πn)`,其中 `arg(z)` 是复数 `z` 的辐角。

- 复正弦函数:`sin(z) = (e^(iz) - e^(-iz))/(2i)`。

- 复余弦函数:`cos(z) = (e^(iz) + e^(-iz))/2`。

4. 复变函数的级数展开- 柯西—黎曼方程可推导出复变函数的泰勒级数展开。

- 复变函数的泰勒级数展开在某一区域内收敛于该函数。

5. 复积分- 路径积分:沿曲线的积分,路径可用参数方程表示。

- 狭义路径积分与宽义路径积分分别对应于可积与不可积的情况。

- 围道积分:路径围成的图形内积分。

6. 复变函数的解析性- 柯西—黎曼方程刻画了函数在一个区域内的解析性。

- 解析函数满足柯西—黎曼方程,其导函数也是解析函数。

7. 复变函数的应用- 复变函数在电路分析、流体力学、量子力学等领域具有广泛应用。

以上是对复变函数的一些知识点的总结,希望能为您提供参考。

复变函数知识点总结

复变函数知识点总结

复变函数知识点总结复变函数是数学中的一门重要学科,它涉及复数域上的函数理论及其应用。

复变函数的研究有助于解决许多实际问题,例如电磁学、流体力学和量子力学等领域中的问题。

本文将总结一些复变函数的基本知识点。

一、复数与复平面复数由实部和虚部组成,形如a + bi,其中a和b均为实数,i为虚数单位。

复数可以用复平面上的点表示,实轴表示实部,虚轴表示虚部。

复数的加法和乘法遵循相应的规则,即复数加法满足交换律和结合律,复数乘法满足交换律和分配律。

二、复变函数的定义复变函数可以看作是从复数集合到复数集合的映射。

若f(z) = u(x, y) + iv(x, y),其中z = x + iy为自变量,u(x, y)和v(x, y)为实函数,则f(z)为复变函数。

其中,u(x, y)称为f(z)的实部,v(x, y)称为f(z)的虚部。

三、解析函数解析函数是复变函数中的重要概念。

如果一个复变函数在某个域内处处可微,并且导数连续,那么它被称为解析函数。

根据小柯西—黎曼方程,解析函数必须满足一定的条件,如实部和虚部的一阶偏导数必须满足哈密顿方程。

四、柯西—黎曼条件柯西—黎曼条件是复变函数解析性的重要判据。

设f(z) = u(x, y) + iv(x, y),若f(z)在某个域内可导,则必须满足柯西—黎曼条件:∂u/∂x = ∂v/∂y∂u/∂y = -∂v/∂x五、共轭函数复变函数的共轭函数是指将函数的虚部取负得到的新函数。

共轭函数在许多问题的求解中起到重要的作用,例如求解共轭系数和计算实部虚部等。

六、积分与留数定理在复变函数中,积分的概念与实变函数存在差异。

复变函数的积分可以沿任意路径进行,且路径不同,积分结果可能不同。

留数定理是复变函数积分的重要定理之一,它将函数的留数与曲线上的积分联系在一起。

通过计算留数,我们可以简化复杂的积分运算。

七、级数展开在复变函数中,级数展开是一种常见的分析工具。

泰勒级数是最常用的级数展开形式,它可以将函数在某点展开为幂级数。

复变函数重点知识点总结

复变函数重点知识点总结

复变函数重点知识点总结复变函数是数学分析中的一门重要课程,主要研究复数域上的函数。

复变函数具有许多特殊性质和重要应用,在数学、物理学等领域有广泛的运用。

以下是复变函数的一些重点知识点总结。

1.复变函数的定义及运算法则:-复变函数是定义在复数域上的函数,可以表示为f(z)=u(x,y)+i*v(x,y),其中z=x+i*y为复数,u(x,y)和v(x,y)为实函数,分别称为f的实部和虚部。

-复变函数的加法、减法、乘法和除法运算法则与实数类似,可以进行复数的加减乘除运算。

-复变函数可以表示为级数形式,如幂级数、三角级数等。

2.复变函数的解析性:- 解析函数是指在其定义域内可导的函数,复变函数的解析性与其实部和虚部的连续性及Cauchy-Riemann条件密切相关。

- Cauchy-Riemann条件是解析函数必须满足的条件,即函数的实部和虚部的偏导数满足一定的关系。

-如果一个复变函数在其定义域内解析,则其在该域内无穷次可导,并且导数处处存在。

3.高阶导数及全纯函数:-复变函数的高阶导数可以通过对复变函数的导数进行重复求导得到。

-如果一个复变函数在其定义域内高阶导数均存在,则称该函数为全纯函数。

-全纯函数具有许多优良性质,如解析、无奇点等。

4. 路径积分及Cauchy定理:-路径积分是指沿着一条曲线对复变函数进行积分的操作,复变函数的路径积分与路径无关。

- Cauchy定理是复分析中的重要定理之一,它指出如果一个函数在一个简单连通区域内解析,那么它在该区域中的曲线积分等于零。

5.解析延拓及解析函数的唯一性定理:-解析延拓是指将一个函数的定义域扩展到更大的区域上,使得该函数在扩展后的区域内解析。

-解析函数的唯一性定理是指如果两个解析函数在一些区域内相等,那么它们在该区域内处处相等。

-解析函数的唯一性定理是复分析中的一个重要定理,它可以用于证明解析函数的存在性、奇点的性质等。

6.高阶亚纯函数及留数计算:-亚纯函数是指解析函数和有限阶极点函数的叠加,亚纯函数可以表示为f(z)=P(z)+Q(z),其中P(z)为解析函数,Q(z)为有限阶极点函数。

复变函数总结汇总

复变函数总结汇总

第一章复数与复变函数、复数几种表示(1)代数表示z =x • yi(2)几何表示:用复平面上点表示(复数z、点z、向量z视为同一概念)(3)三角式:z = r(cosv isi nr)(4)指数式:z = re iT1辐角Argz =arg z 2k 二|zh ,x2y2yarctan丄,x》0,xyarcta n丄+兀,x<0,y〉0xargz={ yarcta n± - x,x<0,yc0x兀/2, x = 0, y:>0-■: /2, x =0,y : 0z - z2i、乘幕与方根(1)乘幕:(2)方根:re i-____ 2k n/t argz.R'z=n:|z|e n , k= 0,1,2,…n—1第二章解析函数一、连续、导数与微分概念类似于一元实变函数求导法则与一元实变函数类似注:(1)点解析=点可导,点可导推不出点解析(2)区域内解析与可导等价二、定理1 W = f (z)=u • iv在Z o可导二u,v在Z o可微,满足C-R方程定理2 w二f⑵二u • iv在区域D内解析(可导)二u,v在区域D内可微,满足C-R方程讨论1 u,v在区域D内4个偏导数存在且连续,满足C-R方程=w = f (z)二u iv在区域D内解析(可导)三、解析函数和调和函数的关系1、定义1调和函数:满足拉普拉斯方程,且有二阶连续偏导数的函数。

定义2设(x,y)^ (x, y)是区域D内调和函数,且满足C-R方程, xx,则称是「的共轭调和函数。

2、定理1解析函数的虚部与实部都是调和函数。

定理2函数在D内解析二虚部是实部的共轭调和函数。

3、问题:已知解析函数的实部(或虚部),求虚部(或实部)理论依据:(1)虚部、实部是调和函数。

(2)实部与虚部满足C-R方程。

求解方法:(例如已知v)(1)偏积分法:先求u x,u y,再求u = udx (y),得出(y)(2)利用曲线积分:求u x,u y,du,再u = u x dx u y dy c(x o,y o)(3)直接凑全微分:求u x,u y,du,再du四、初等函数1、 指数函数 w=e z =e x e iy =e x (cosy i sin y )性质:(1) e z 是单值函数,(2) e z 除无穷远点外处处有定义(3) e z = 0(4) e z 处处解析,(e z )'eZ(5) e z1 Z2 =e Zl e Z2(6) e z 是周期函数,周期是2k 「:i2、 对数函数w =Lnz =ln |z| i argz i2k 二 (多值函数)主值(枝)ln z=l n | z| iargz (单值函数)性质:(1)定义域是z = 0,(2) 多值函数(3) 除去原点和负实轴的平面内连续(5) Ln(wz 2) = Lnz j Lnz 2 Ln 三二 Ln^ - Lnz 2J3、幕函数w = z ,e-Lnz (z = 0「是复常数)(1) 为正整数,函数单值、处处解析,(2) 〉为负整数,函数单值、除去z = 0及其负实轴处处解析,4、三角函数欧拉公式 e i = c 0'S i s i n(4)除去原点和负实轴的平面内解析,1 1(Lnz) (In z): z ,z或 eJe 乂cos , s i n 二 2 2iiz _iz iz _iz定义: e +e . e -e cosz , sin z 二 2 2itan z=sin z/cosz, cot z = cosz/sin zsecz =1/cosz, cscz =1/sin z性质: 周期性、可导性、奇偶性、零点、等于实函数一样各种三角公式、求导公式照搬注: sin z, cosz 的有界性 保护成立。

复变函数知识点总结

复变函数知识点总结

2、
2 i, 1 d z n (zz0) 0 , zz0 r
n1 , n1 (包括 n0 ).
处理积分的三大类方法 : 3、 A 、闭合曲线上积分:
判断函数在曲线上及曲 线所围成的区域内解析 否? 柯西积分定理 若解析, 0; 若不解析,挖掉奇点, 转化成小圈圈上积。 复合闭路定理(唯一可处理多个奇点)

1、孤立奇点的分类 2、三类孤立奇点的性质 3、极点与零点的关系 4、无穷远点的性质 5、留数的定义(有限点处是 c 1 ) 留数定理
C
i Re s [f (z ), z] f (z)dz 2
k 1 k n k 1
n
( C 里面的奇点 )
2 i Re s [f (z ), C 外面的奇点 ) . k] (
B 、牛顿 - 莱布尼茨公式: 分部积分、凑微分元 C 、处理闭合曲线上,分 母为 ( z z 0 ) n 1 形式的积分:
1 f (z ) f (z dz . 0) 2 i C zz 0
n ! f (z ) f (z dz (n 1 ,2 ,... ) 0) n 1 2 i C(zz 0)
n
2 3 n z z z z 1 z ( |z | ) 6、 e 2 !3 ! n !
n 2 ( 1 ) zn cos z ,(| z| ); 2 n )! n 0 (
偶函数,偶次
( 1 )z sin z ,(| z| ). 奇函数,奇次 2 n 1 )! n 0 (
6、计算留数的办法(m级极点)
m 1 1 d m Re s [ f ( z ), z ] lim {( z z ) ( z )} 0 0 f m 1 z z 0 ( m 1 )! dz

复变函数总结可修改文字

复变函数总结可修改文字
(6) sin z , cos z can be greater than 1
tan z sin z , cot z cos z ,
cos z
sin z
sec z 1 , csc z 1 ,
cos z
sin z
4. 双曲函数
ez ez
ez ez
sinhz
, cosh z
,
2
2
tanh z sinh z , coth z cosh z ,
k 0
称为以 b 为展开中心的幂级数。其中 ak 为复常数。
幂级数的收敛圆及其收敛半径
k
对于幂级数 ak (z b)k ,必定存在一以 b 为圆心,R 为
k 0
半径的圆,在圆内该级数绝对收敛(而且在较小的圆内 一致收敛),而在圆外发散。这个圆称为该幂级数的收敛 圆,R 称为它的收敛半径。
确定幂级数的收敛半径
z rei
(1.2.14)
复数的乘幂与方根
zn z z z
zn rn (cos n i sin n )
wk
n
i 2kπ
re n
n
r [cos(
2kπ ) i sin(
n
2kπ )], n
(k 0,1, 2,, n 1)
区域
z0的去心邻域 : 点集 z 0 z z0
复变函数总结
复数的表示
1.2.1 复数的几何表示
y
P y
r
x
o
图 1.1
x
y
0
x
2kπ 0
图 1.2
复数的指数表示
定义 1.2.6 复数的指数表示 利用欧拉(Euler)公式
ei cos i sin
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 复数的运算与复平面上的拓扑1.复数的定义一对有序实数(x,y )构成复数z x iy =+,其中()()Re ,Im x z y z ==.21i =-, X 称为复数的实部,y 称为复数的虚部。

复数的表示方法 1)模:z =2)幅角:在0z ≠时,矢量与x 轴正向的夹角,记为()Arg z (多值函数);主值()arg z 是位于(,]ππ-中的幅角。

3)()arg z 与arctanyx 之间的关系如下:当0,x >arg arctanyz x =;当0,arg arctan 0,0,arg arctan yy z x x y y z x ππ⎧≥=+⎪⎪<⎨⎪<=-⎪⎩4)三角表示:()cos sin z z i θθ=+,其中arg z θ=;注:中间一定是“+” 5)指数表示:i z z e θ=,其中arg z θ=2.复数的四则运算1).加减法:若111222,z x iy z x iy =+=+,则()()121212z z x x i y y ±=±+± 2).乘除法:3)若111222,z x iy z x iy =+=+,则()()1212122112z z x x y y i x y x y =-++;()()()()112211112121221222222222222222x iy x iy z x iy x x y y y x y x i z x iy x iy x iy x y x y +-++-===+++-++。

4)若121122,i i z z e z z e θθ==, 则()121212i z z z z e θθ+=;()121122i z z e z z θθ-=5.无穷远点得扩充与扩充复平面复平面对内任一点z , 用直线将z 与N 相连, 与球面相交于P 点, 则球面上除N 点外的所有点和复平面上的所有点有一一对应的关系,而N 点本身可代表无穷远点, 记作∞.这样的球面称作复球面 这样的球面称作复球面.扩充复平面---引进一个“理想点”: 无穷远点 ∞ 复平面的开集与闭集复平面中领域,内点,外点,边界点,聚点,闭集等概念 复数序列的极限和复数域的完备性 复数的极限,,柯西收敛定理,魏尔斯特拉斯定理,聚点定理等从实数域里的推广,可以结合实数域中的形式来理解。

第二章 复变量函数1.复变量函数的定义1)复变函数的反演变换(了解) 2)复变函数性质反函数 有界性 周期性, 3)极限与连续性 极限:连续性2.复变量函数的形式偏导1)复初等函数).( ),( , , , , . z f w z w iv u w z G iy x z G =+=+=记作复变函数简称的函数是复变数那末称复变数之对应与就有一个或几个复数每一个复数中的对于集合按这个法则个确定的法则存在如果有一的集合是一个复数设.)( )(,)0(0 )( ,0 , , 0)( 0000时的极限趋向于当为那末称有时使得当相应地必有一正数对于任意给定的存在如果有一确定的数内的去心邻域定义在设函数z z z f A A z f z z A z z z z f w ερδδεδερ<-≤<<-<><-<=. )( , )( .)( ),()(lim 000内连续在我们说内处处连续在区域如果处连续在那末我们就说如果D z f D z f z z f z f z f z z =→2)指数函数:()cos sin z x e e y i y =+,在z 平面处处可导,处处解析;且()zzee'=。

注:ze 是以2i π为周期的周期函数。

(注意与实函数不同) 3)对数函数: ln (arg 2)Lnz z i z k π=++(0,1,2)k =±± (多值函数);主值:ln ln arg z z i z=+。

(单值函数)Lnz 的每一个主值分支ln z 在除去原点及负实轴的z 平面内处处解析,且()1lnz z '=;注:负复数也有对数存在。

(与实函数不同)4)乘幂与幂函数:(0)b bLnaa e a =≠;(0)b bLnzz e z =≠注:在除去原点及负实轴的z 平面内处处解析,且()1bb z bz -'=。

5)三角函数:sin cos sin ,cos ,t ,22cos sin iz iz iz iz e e e e z z z z gz ctgz i z z ---+====sin ,cos z z 在z 平面内解析,且()()sin cos ,cos sin z z z z ''==-注:有界性sin 1,cos 1z z ≤≤不再成立;(与实函数不同)6)双曲函数,22z z z ze e e e shz chz ---+==; shz 奇函数,chz 是偶函数。

,shz chz 在z 平面内解析()(),shz chz chz shz ''==第三章 解析函数的定义1.复变量函数的导数复变量函数的解析性, , , )( 00的范围不出点点中的一为定义于区域设函数D z z D z D z f w ∆+= , )()(lim 000存在如果极限z z f z z f z ∆-∆+→∆,)( . )( 00的导数在这个极限值称为可导在那末就称z z f z z f .)( ,)(000解析在那末称导的邻域内处处可及在如果函数z z f z z z f2.函数可导与解析的充要条件 1)函数可导的充要条件:()()(),,f z u x y iv x y =+在z x iy =+可导⇔(),u x y 和(),v x y 在(),x y 可微,且在(),x y 处满足C D -条件:,u v u v x yy x ∂∂∂∂==-∂∂∂∂ 此时, 有()u v f z i x x ∂∂'=+∂∂。

2)函数解析的充要条件:()()(),,f z u x y iv x y =+在区域内解析⇔(),u x y 和(),v x y 在(),x y 在D 内可微,且满足C D -条件:,u vu vx yy x ∂∂∂∂==-∂∂∂∂; 此时()u v f z ix x ∂∂'=+∂∂。

注意: 若()(),,,u x y v x y 在区域D 具有一阶连续偏导数,则()(),,,u x y v x y 在区域D 内是可微的。

因此在使用充要条件证明时,只要能说明,u v 具有一阶连续偏导且满足C R -条件时,函数()f z u iv =+一定是可导或解析的。

解析映射的几何意义保角性:任何两条相交曲线的夹角(即在交点的切线的夹角)在解析映射下的夹角保持不变第四章 柯西定理和柯西公式1. 复变函数积分的性质1)()()1c c f z dz f z dz-=-⎰⎰ (1c -与c 的方向相反);2)()()()()[],,cccf zg z dz f z dz g z dz αβαβαβ+=+⎰⎰⎰是常数;3) 若曲线c 由1c 与2c 连接而成,则()()()12cc c f z dz f z dz f z dz=+⎰⎰⎰。

2.复变函数积分的一般计算法1)化为线积分:()cccf z dz udx vdy i vdx udy =-++⎰⎰⎰;(常用于理论证明)).( )( .)( ,)(全纯函数或正则函数个解析函数内的一区域是或称内解析区域在则称内每一点解析区域在如果函数D z f D z f D z f2)参数方法:设曲线c :()()z z t t αβ=≤≤,其中α对应曲线c 的起点,β对应曲线c 的终点,则 ()()[]()c f z dz f z t z t dtβα'=⎰⎰3.积分与路径无关的条件和原函数 1)条件:见书中定理(1.1)(1.2)命题(1.1)(1.2) 这几个定理及命题都只有理论上的意义。

柯西-古尔萨定理及其应用 4.柯西—古萨基本定理:设()f z 在单连域B 内解析,c 为B 内任一闭曲线,则()0cf z dz =⎰5.复合闭路定理: 设()f z 在多连域D 内解析,c 为D 内任意一条简单闭曲线,12,,n c c c 是c 内的简单闭曲线,它们互不包含互不相交,并且以12,,n c c c 为边界的区域全含于D 内,则①()cf z dz ⎰ ()1,knk c f z dz ==∑⎰其中c 与k c 均取正向;②()0f z dz Γ=⎰ ,其中Γ由c 及1(1,2,)c k n -= 所组成的复合闭路。

6.闭路变形原理 : 一个在区域D 内的解析函数()f z 沿闭曲线c 的积分,不因c 在D 内作连续变形而改变它的值,只要在变形过程中c 不经过使()f z 不解析的奇点。

7.解析函数沿非闭曲线的积分: 设()f z 在单连域B 内解析,()G z 为()f z在B内的一个原函数,则()()()212112(,)z z f z dz G z G z z z B =-∈⎰说明:解析函数()f z 沿非闭曲线的积分与积分路径无关,计算时只要求出原函数即可。

8. 柯西积分公式:设()f z 在区域D 内解析,c 为D 内任一正向简单闭曲线,c的内部完全属于D ,0z 为c 内任意一点,则()()002c f z dz if z z z π=-⎰ 9.高阶导数公式:解析函数()f z 的导数仍为解析函数,它的n 阶导数为()()()0102(1,2)()!n n c f z i dz f z n z z n π+==-⎰其中c 为()f z 的解析区域D 内围绕0z 的任何一条正向简单闭曲线,而且它的内部完全属于D 。

10重要结论:12,010,0()n ci n dz n z a π+=⎧=⎨≠-⎩⎰ 。

(c 是包含a 的任意正向简单闭曲线)8.复变函数积分的计算方法 1)若()f z 在区域D 内处处不解析,用一般积分法()()()[]cf z dz f z t z t dtβα'=⎰⎰2)设()f z 在区域D 内解析,● c 是D 内一条正向简单闭曲线,则由柯西—古萨定理,()0cf z dz =⎰● c 是D 内的一条非闭曲线,12,z z 对应曲线c 的起点和终点,则有()()()()2121z cz f z dz f z dz F z F z ==-⎰⎰3)设()f z 在区域D 内不解析● 曲线c 内仅有一个奇点:()()()()()0001022()!c n n c f z dz i f z z z f z i dz f z z z n ππ+⎧=⎪-⎪⎨⎪=⎪-⎩⎰⎰ (()f z 在c 内解析)● 曲线c 内有多于一个奇点:()cf z dz ⎰ ()1knk c f z dz ==∑⎰(i c 内只有一个奇点k z )或:()12Re [(),]nkk cf z dz i s f z z π==∑⎰ (留数基本定理)若被积函数不能表示成()1()n o f z z z +-,则须改用第五章留数定理来计算。

相关文档
最新文档