翅片蒸发器换热计算

合集下载

翅片管式换热器效率的计算

翅片管式换热器效率的计算
(2)部分湿工况下,翅片效率对片基温度与来流相对湿度十分敏感,翅片效率随片基温度的上升及来流相对湿度的增加而迅速增加。
(3)翅片效率模型均有工况的适应性,翅片效率计算应区分干、部分湿、全湿工况,并根据工况选用相应计算模型。
翅片管式换热器效率的计算
翅片管换热器广泛应用于制冷、空调及化工等领域。在制冷、空调工程中,当翅片管换热器作为蒸发器或者表冷器使用时,翅片表面温度往往低于来流空气露点温度,此时,翅片表面结露而形成水膜,空气与翅片间同时存在传热与传质,换热的驱动力为焓差。
湿翅片效率受翅片表面热质交换强度、换热器结构与材料、管内流体温度等多因数影响,计算比较复杂。在翅片管换热器优化设计中,要确定换热器的换热性能,则要先计算翅片效率,在分析湿工况下,若以温差为驱动力的干工情况的翅片效率计算湿翅片效率,则会产生较大误差。
目前,关于湿翅片效率的计算模型较多,其中得到广泛应用的有基于圆肋片,建立并求解了全湿工况下翅片表面传热控制微分方程,得出了全湿工况下的翅片效率计算公式;在一定假设的基础上简化了析湿工况下翅片换热控制方程,并推导出圆肋翅片翅片效率计算公式;通豪热能分析了以前湿翅片效率的计算公式的误差源,并开发了更为准确的全湿工况翅片效率计算公式,但对部分湿工况不适用,的基础上扩展了传热控制方程,使其可以描述部分湿工况,并推导得到适应部分湿工况的翅片效率计算公式。
上述翅片效率计算公式形式都很复杂且都需要迭代运算才能确定,且在不同工况下其计算精度不同,所以了解各种湿翅片效率计算公式的来历及应用场合,并清楚其中的影响因数,对工程设计及实验数据分析相当重要。
而且翅片管式换热器效率的计算过程中 Nhomakorabea要注意以下几点:
(1)全湿工况下,翅片效率对片基温度与来流相对湿度不敏感,翅片效率随片基温度的上升及来流相对湿度的增加而稍微减小。

翅片式蒸发器换热性能的数学模型

翅片式蒸发器换热性能的数学模型
文章编号: !""#$%%& ’ ($)% (*%%+) %* ’ %%+& ’ %&!
翅片式蒸发器换热性能的数学模型
席战利,曹小林,崔大光
( 中南大学能源科学与工程学院,长沙 ,$%%)- ) [摘要] 本文采用分布参数法对翅片式蒸发器建立了数学模型,通过计算局部换热系数和摩擦压降来 简 化 翅片式蒸发器内复杂的三维流动关系,总结了文献已有的换热系数和摩擦压降的关联式,并添加到模型 控 制方程中,基于此模型,可对制冷剂在翅片式蒸发器中应用的换热性能进行模拟研究。 [关键词] 蒸发器,数学模型,关联式 [中图分类号] ./%&$ 0 + 1 * ; ./%$) ; .2(*& [文献标识码] 3
%"$
31
4
[&] 提出的关 对气液两相区, 本 文 采 用 5/(6.47-
联式:
%": !, % " # ) , % " %; ) "( 8 % " %$9 2.6 31 ( ) ( ) ) (+ ) & !0 ] . / " [! 1 2( ! ’ !) !!,
目前公认的流过光管管束摩 擦因 数的可 靠数据
图!
试验台系统
从图 " 、 # 中 可 以 看 出,实 验 结 果 和 仿 真 结 果 基本 趋 势 吻 合, 蒸 发 器 压 降 平 均 误 差 为 $% & ! ’ , 蒸发器出口过 热 度 平 均 误 差 为 ( & ) ’ ,这 是 由 于 为 简化计算,模型建立时作了比较多的假设所致,忽 略了一些不利的因素,所以导致实验值与计算值有 一定的偏差。 综上所述,可以认为本文对汽车空调系统所建 立的模型基本成功,模拟程序可作为系统性能与测 试手段, 进而为系统优化和改进提供前期指导。

翅片管式热交换器的ε-NTU法换热量计算公式以及在空调机开发中的应用

翅片管式热交换器的ε-NTU法换热量计算公式以及在空调机开发中的应用

代 汁 " :
. { K ·△ ,
t3、
去 + + t+ 1 m0+ 鲁 t
77
Articles
论文
为了吏简单地表 示,人们引入传 热单元数NTU这个无
(5)
量 纲 量。 Ⅳ7' 。 /(G ·Cpa)
(9)
根据计算式 (1)、(2)、(3)的中的任何一个计算式 ,
一 )
(2)
(3)迥j==J: 的热迎过 ( 自 韬 9I、f g{!bl 攮 i:)
” 咎 , =().095mm、 ¨”71{r) =1.5ram、N ” ”数 565:
翘 "翻 “ ( =( ·d + ·I,=10 186mnl: 翘 ” ,J,=Ⅳ,Ss=508nl lll:
NTU的物理 意义为流体总热导和流体热容量 之比。将
均可 以进行热交换器的热交换量计算。根据能量守恒 定律, 式 (9)代入式 (8),得到:
在稳 定时,该三个计算 式得 到的Q、Q 是相等的。因此 ,如
s =l—exp[-NTU】
(1O)
果入口制冷剂状态 、 ,入 I SI空气温度 ,以及制冷剂流
Articles
论 文
翅 片 管 式 热 交 换 器 的 £一NTU法 换 热 量 计算 公 式 以及 在 空 调 机 开发 中 的 应 用
C alculation form ulas for heat exchange capacity of fin·tube heat exchanger by  ̄;-NTU m ethod and their application in air conditioner developm ent
(1)圳冷剂侧换热 1}i,J’以I{l F ̄-G5f :

铜管翅片蒸发器热力计算

铜管翅片蒸发器热力计算

2
Rq S1 2
m2
0.094 Rq di
m2
0.094 Rq di
pwm
z
(m1
m2 )
w
vw2 2
pw
pwf pwm 1000
pw
pwf pwm 1000
a
0
1000铜
w
)-1
KS F
1000 Gm c p
60 Gm cp
W cw
60 Gm cp
W cw
1exp[ (1 )]
E' g
1
exp[
(1 )]
Eg

t1 t2 t1 tw1
Eg E'g
Q Gm (h1 h2 )
Q Gm (h1 h2 )
60
W
w
fw
aw
w
1000 w
cw
0.021 w
0.37 w
aw0.43
w
(d i
v
0.8 w
1000) 0.2
E' 1- exp( a a N2 ) 1000 vy q cp
E' 1- exp( a a N2 ) 1000 vy q cp
T t 273.15
ln(
数值
单位
Q
0.000 kW
t2
0.000 ℃
ts2
0.000 ℃
tw2
0.000 ℃
h1
0.000 kJ/kg
h2
0.000 kJ/kg
τ
0.000
(8)肋表面全效率
(9)析湿系数 (10)空气侧换热系数 (11)流体侧换热系数 w(12)总换热系数 K(1s3)换热面积 (14)空气侧压降 p(1a5)流体侧压降 pw

翅片式换热器的设计及计算

翅片式换热器的设计及计算

制冷剂系统翅片式换热器设计及计算制冷剂系统的换热器的传热系数可以通过一系列实验关联式计算而得,这是因为在这类换热器中存在气液两相共存的换热过程,所以比较复杂,现在多用实验关联式进行计算。

之前的传热研究多对于之前常用的制冷剂,如R12,R22,R717,R134a等,而对于R404A和R410A的,现在还比较少。

按照传热过程,换热器传热量的计算公式为:Q=KoFΔtm (W)Q—单位传热量,WKo—传热系数,W/(m2.C)F—传热面积,m2Δtm—对数平均温差,CΔtmax—冷热流体间温差最大值,对于蒸发器,是入口空气温度—蒸发温度,对于冷凝器,是冷凝温度—入口空气温度。

Δtmin—冷热流体间温差最小值,对于蒸发器,是出口空气温度—蒸发温度,对于冷凝器,是冷凝温度—出口空气温度。

传热系数K值的计算公式为:K=1/(1/α1+δ/λ+1/α2)但换热器中用的都是圆管,而且现在都会带有肋片(无论是翅片式还是壳管式),换热器表面会有污垢,引入污垢系数,对于蒸发器还有析湿系数,在设计计算时,一般以换热器外表面为基准计算传热,所以对于翅片式蒸发器表述为:Kof--以外表面为计算基准的传热系数,W/(m2.C)αi—管内侧换热系数,W/(m2.C)γi—管内侧污垢系数,m2.C/kWδ,δu—管壁厚度,霜层或水膜厚度,mλ,λu—铜管,霜或水导热率,W/m.Cξ,ξτ—析湿系数,考虑霜或水膜使空气阻力增加系数,0.8-0.9(空调用亲水铝泊时可取1)αof—管外侧换热系数,W/(m2.C)Fof—外表面积,m2Fi—内表面积,m2Fr—铜管外表面积,m2Ff—肋片表面积,m2ηf—肋片效率,公式分析:从收集的数据(见后表)及计算的结果来看,空调工况的光滑铜管内侧换热系数在2000-4000 W/(m2.C)(R22取前段,R134a取后段,实验结果表明,R134a的换热性能比R22高)之间。

因为现在蒸发器多使用内螺纹管,因此还需乘以一个增强因子1.6-1.9。

翅片管换热器传热计算

翅片管换热器传热计算

翅片管换热器传热计算发表时间:2018-07-05T14:25:49.843Z 来源:《防护工程》2018年第5期作者:匡中昌[导读] 翅片侧流体通过管排的压力降与翅片管纵向管排数成正比,而当纵向管排数大于4排时,管排数量对传热系数没有明显影响。

佛山市创图机械有限公司广东佛山 528231 摘要:换热器传热壁两侧流体的传热膜系数相差较大时,换热器的总传热系数将主要取决于较小的流体的传热系数,为了提高换热器的传热能力,可在传热膜系数小的一侧加翅片管。

影响翅片管表面强化传热的主要因素是翅片高度、翅片节距以及翅片材料的导热系数等,而翅片管翅根直径、管束的纵向节距和横向节距对翅片侧流体的流动阻力的影响很大。

翅片侧流体通过管排的压力降与翅片管纵向管排数成正比,而当纵向管排数大于4排时,管排数量对传热系数没有明显影响。

关键词:翅片效率;努塞尔数;传热系数;压力降换热器传热壁两侧流体的传热膜系数相差较大时,换热器的总传热系数将主要取决于较小的流体的传热系数。

为了提高换热器的传热能力,可在传热膜系数小的一侧加翅片。

如一侧流体是传热膜系数较小的气体,另一侧是传热膜系数较大的液体,这时就可以在传热膜系数较小的气体一侧加装翅片。

1计算条件一台翅片管换热器,管程走导热油,设计温度278℃。

壳程走空气,温度从20℃升到180℃,空气的流量为60kg/s,壳程的压降控制在600Pa以下。

2计算方法2.1计算翅片管的传热面积和流动通道翅片的表面积翅片之间的管表面积翅片管总表面积A=AF+AW=5242.8589+359.68682=5602.5457 m2由于P<x,则穿过nt根管的最小流动面积为: Smin=2ntL(x-P3)=2×26×6.8×(0.1369356-0.0917878)=15.964262m2 2.2计算翅片管的传热系数Vmax=M/(Sminρ)=60/(15.964262×0.9)=4.1759944m/sRe=VmaxDrρ/μ=4.1759944×0.038×0.9/0.000022=6491.7731Pr=cpμ/λ=1021.6×0.000022/0.031=0.7250065由于l/Dr=0.018/0.038=0.47,翅片管为高翅管,则努塞尔数:管排平均传热系数2.3翅片管传热方程管壁温度与流体温度的温差:换热器需要的换热量:Q=MCp(T2-T1)=60×1021.6×(180-20)=9807360 J/sQ计>Q,换热器满足要求。

板翅式换热器计算公式

板翅式换热器计算公式

板翅式换热器计算公式1.换热功率的计算公式:Q = U × A × ΔTlm其中,Q为换热功率(单位为瓦特),U为传热系数(单位为瓦特/平方米·摄氏度),A为换热面积(单位为平方米),ΔTlm为对数平均温差(单位为摄氏度)。

2.对数平均温差的计算公式:ΔTlm = (ΔT1 - ΔT2)/ ln(ΔT1/ΔT2)其中,ΔT1为热流体的入口温度与冷流体的出口温度的温差(单位为摄氏度),ΔT2为热流体的出口温度与冷流体的入口温度的温差(单位为摄氏度)。

3.传热系数的计算公式:U = 1 / ((1 / hi) + (δ / λ) + (1 / ho))其中,U为传热系数(单位为瓦特/平方米·摄氏度),hi为内部流体的传热系数(单位为瓦特/平方米·摄氏度),ho为外部流体的传热系数(单位为瓦特/平方米·摄氏度),δ为金属板厚度(单位为米),λ为金属板的热导率(单位为瓦特/米·摄氏度)。

4.内部流体的传热系数的计算公式:hi = α ×(Pr / Prw)^0.33 × (μ / μw)^0.14其中,hi为内部流体的传热系数(单位为瓦特/平方米·摄氏度),α为内部流体的对流换热系数(单位为瓦特/平方米·摄氏度),Pr为内部流体的普朗特数,Prw为内部流体在壁温度下的普朗特数,μ为内部流体的动力黏度(单位为帕秒),μw为内部流体在壁温度下的动力黏度(单位为帕秒)。

5.外部流体的传热系数的计算公式:ho = α × (Nu / Nuw)× (μw / μ)^0.17其中,ho为外部流体的传热系数(单位为瓦特/平方米·摄氏度),α为外部流体的对流换热系数(单位为瓦特/平方米·摄氏度),Nu为外部流体的努塞尔数,Nuw为外部流体在壁温度下的努塞尔数,μw为外部流体在壁温度下的动力黏度(单位为帕秒),μ为外部流体的动力黏度(单位为帕秒)。

翅片式换热器的设计及计算

翅片式换热器的设计及计算

制冷剂系统翅片式换热器设计及计算制冷剂系统的换热器的传热系数可以通过一系列实验关联式计算而得,这是因为在这类换热器中存在气液两相共存的换热过程,所以比较复杂,现在多用实验关联式进行计算。

之前的传热研究多对于之前常用的制冷剂,如R12,R22,R717,R134a等,而对于R404A和R410A的,现在还比较少。

按照传热过程,换热器传热量的计算公式为:Q=KoFΔtm (W)Q—单位传热量,WKo—传热系数,W/(m2.C)F—传热面积,m2Δtm—对数平均温差,CΔtmax—冷热流体间温差最大值,对于蒸发器,是入口空气温度—蒸发温度,对于冷凝器,是冷凝温度—入口空气温度。

Δtmin—冷热流体间温差最小值,对于蒸发器,是出口空气温度—蒸发温度,对于冷凝器,是冷凝温度—出口空气温度。

传热系数K值的计算公式为:K=1/(1/α1+δ/λ+1/α2)但换热器中用的都是圆管,而且现在都会带有肋片(无论是翅片式还是壳管式),换热器表面会有污垢,引入污垢系数,对于蒸发器还有析湿系数,在设计计算时,一般以换热器外表面为基准计算传热,所以对于翅片式蒸发器表述为:Kof--以外表面为计算基准的传热系数,W/(m2.C)αi—管内侧换热系数,W/(m2.C)γi—管内侧污垢系数,m2.C/kWδ,δu—管壁厚度,霜层或水膜厚度,mλ,λu—铜管,霜或水导热率,W/m.Cξ,ξτ—析湿系数,考虑霜或水膜使空气阻力增加系数,0.8-0.9(空调用亲水铝泊时可取1)αof—管外侧换热系数,W/(m2.C)Fof—外表面积,m2Fi—内表面积,m2Fr—铜管外表面积,m2Ff—肋片表面积,m2ηf—肋片效率,公式分析:从收集的数据(见后表)及计算的结果来看,空调工况的光滑铜管内侧换热系数在2000-4000 W/(m2.C)(R22取前段,R134a取后段,实验结果表明,R134a的换热性能比R22高)之间。

因为现在蒸发器多使用内螺纹管,因此还需乘以一个增强因子1.6-1.9。

蒸发器热力计算

蒸发器热力计算

风冷式蒸发器换热计算一、设计计算流程图二、 设计计算(以HLR45S 为例)1、已知参数换热参数:冷凝负荷:Q e =31000W 蒸发温度:t k =-1℃回风干球温度:t a1=7℃,湿球温度t s1=6℃ 送风干球温度:t a1=4℃,湿球温度t s1=3.6℃ 工质质量流速:g =140 kg/(m 2*s) 冷凝器结构参数:铜管排列方式:正三角形叉排 翅片型式:开窗片,亲水膜 铜管型式:光管铜管竖直方向间距:S 1=25.4mm 铜管水平方向间距:S 2=22mm 紫铜光管外径:d 0=9.52mm 铜管厚度:δt =0.35mm 翅片厚度:δf =0.115mm 翅片间距:S f =1.8mm 冷凝器尺寸参数排数:N C =3排 每排管数:N B =52排2、计算过程1)冷凝器的几何参数计算翅片管外径:f b d d δ20+== 9.75 mm 铜管内径:t i d d δ-=0=8.82 mm 当量直径:)()(2))((4411f f b f f b eq S d S S d S U Ad δδ-+---===3.04 mm单位长度翅片面积:322110/)4(2-⨯-=f b f S d S S f π=0.537 m 2/m单位长度翅片间管外表面积:310/)(-⨯-=f f f b b s S d f δπ=0.0286 m 2/m 单位长度翅片管总面积:b f t f f f +==0.56666 m 2/m 翅片管肋化系数:it i t d ff f πβ===20.46 2)确定空气在蒸发器内的状态变化过程:进风点:h1=20.74kJ/kg ,d1=5.5g/kg 出风点:h2=16.01kJ/kg ,d2=4.8g/kg在湿空气焓湿图上连接状态点1和2,并延长与饱和空气线相交于饱和点4,如图:饱和点:h4=11.65kJ/kg ,d4=4.2g/kg ,t4=1.2℃ 在蒸发器中空气的平均焓:)42ln(2143h h h h h h --+==18.09 kJ/kgd3=5.1g/kg ,t3=5.3℃ 析湿系数:434346.21t t d d --+=ξ=1.5493) 空气侧换热系数迎面风速假定:f w =2.1 m/s最窄截面处风速:))(/(11max b f f f f d S S w S S w --=δ=3.64m/s 蒸发器空气入口干球温度为:t a1=7℃ 蒸发器空气出口干球温度为:t a2=4℃确定空气物性的温度为:2/)(21a a m t t t +==5.5℃ 在t m =5.5℃下,空气热物性:v f =13.75×10-6m 2/s ,λf =0.02477W/mK ,ρf =1.268kg/m 3,C Pa =1.005kJ/(kg*℃) 空气侧的雷诺数:f eq f v d w /Re max = =805.73由《制冷原理与设备》中公式(7-36),空气侧换热系数meq eq nf f O d d C ⎪⎪⎭⎫ ⎝⎛=γλαRe '=47.98 W/m 2K 其中:362)(103)(000425.0)(02315.0518.0eqeqeqd d d A γγγ-⨯-+-==0.1852⎥⎦⎤⎢⎣⎡⨯-=1000Re 24.036.1f A C =0.216 eq d n γ0066.045.0+==0.59311000Re 08.028.0f m +-==-0.2155铜管差排的修正系数为1.1,开窗片的修正系数为1.3,则空气侧换热系数为:(开窗片、波纹片的修正系数有待实验验证)'oo αα=×1.1×1.3=68.62 W/m 2K 对于叉排翅片管簇:fd s 1=ρ=25.4/9.75=2.6051 3.027.121'-=l l ρρ=2.7681 式中:21,l l 为正六边形对比距离,21l l =翅片当量高度:)'ln 35.01)(1'(5.0'ρρ+-=f d h =0.01169 mδλαa om 2==75.4 m -1翅片效率:')'(mh mh tgh f =η =0.802 表面效率:)1(1f tf s f f ηη--==0.812空气侧当量换热系数为:s o f ηξαα==85.81 W/m 2K 4)冷媒侧换热系数设R22进入蒸发器的干度x 1=0.16,出口蒸发器时x 2=1.0,则R22的总流量为:)(12x x r Q G er -== 0.17901 kg/sR22的总流通截面:gG A r==12.7866×10-4 每根管子的有效流通截面:42i i d A π==6.1067×10-5蒸发器的分路数:iA AZ ==20.9 取Z =21 每一分路的R22流量:ZG G rd ==0.008524 kg/s R22在管内蒸发时换热系数可按下式计算:343.02.02.0i 6.0g 7.2⎪⎪⎭⎫ ⎝⎛=cr c ii P P d q α=8.3766q i 0.6(如果是内螺纹管,换热系数则需乘以系数1.2)由于R22与润滑油能相互溶解,可忽略管内侧污垢。

翅片式蒸发器计算

翅片式蒸发器计算

已知条件进口空气干球温度27℃进口空气湿球温度19.5℃R22蒸发温度5℃出口空气干球温度17.5℃出口空气湿球温度14.6℃大气压力101.32Pa 制冷量11600W (1)结构参数直径10mm 紫铜管,正三角形叉排厚度0.7mm翅片厚0.2mm铝平直套片翅片热导率237W/(m*K)翅片间距 2.2mm垂直流动方向管间距25mm管排数4迎面风速 2.5m/s(2)几何参数管外径10.4mm内径8.6mm沿气流流动方向管间距21.65063509mm沿气流方向套片长度86.60254038mm每米管长翅片外表面面积0.414833829m^2/m每米管长翅片间管子表面面积0.029702331m^2/m每米管长总外表面面积0.44453616m^2/m每米光管长外表面面积0.032672564m^2/m每米管长内表面面积0.027017697m^2/m每米管长平均直径处表面面积0.02984513m^2/m(3)空气侧干表面传热系数空气平均温度22.25℃查此温度下空气物性空气密度 1.1966kg/m^3比定压热容1005J/(kg*K)普朗特数0.7026运动粘度0.00001588m^2/s最窄界面处空气流速4.70890411m/s空气雷诺数3083.917049传热因子0.008516558空气侧干表面传热系数61.02300331W/(m^2*K)(4)空气在蒸发器内的状态变化过程进口空气焓值55.6kJ/kg查焓湿图出口空气焓值40.7kJ/kg进口空气湿度11.1g/kg出口空气湿度9.2g/kg露点焓值29.5kJ/kg露点温度9℃露点湿度7.13g/kg空气平均比焓47.11184481kJ/kg平均温度21.4℃平均湿度10g/kg析湿系数 1.569370968(5)循环空气量循环空气量2802.684564kg/h空气比体积0.866080411m^3/kg空气体积流量2427.350198m^3/h(6)空气侧当量表面传热系数A25mmB25mmρ' 2.574338543肋片折合高度0.010895963m肋片参数63.56754266m^-1凝露工况下翅片效率0.865785468当量表面传热83.77312878W/(m^2*K)系数(7)管内R22蒸发时表面传热系数饱和液体比定1.198kJ/(kg*K)压热容饱和蒸气比定0.658kJ/(kg*K)压热容饱和液体密度1267.4kg/m^3饱和蒸气密度25.53kg/m^3汽化潜热201.16kJ/kg饱和压力583.78kPa表面张力0.0112N/m液体动力粘度0.000256Pa.s蒸气动力粘度0.00000842Pa.s液体热导率0.093W/(m*K)蒸气热导率0.0109W/(m*K)液体普朗特数 3.29蒸气普朗特数0.735进口干度0.16出口干度1热流密度11.8kW/m^2质量流速100kg/(m^2*s)R22总质量流247.138028kg/h量总流通截面积0.000686495m^2每根管子有效5.8088E-05m^2流通截面面积蒸发器分路数11.81817162分路数取整11每一分路R2222.46709346kg/h在管内实际流量每一分路R22107.4379238kg/(m^2*s)在管内实际流速B00.000545988C00.109629036Frl0.085263525雷诺数1515.881956hl140.3211061C1 1.136C2-0.9C3667.2C40.7C50.3Ffl 2.2管内R22蒸发时表面传热系数2533.880021W/(m^2*K)(8)传热温差的初步计算传热温差16.80482565℃不计R22阻力(9)传热系数翅片侧污垢热阻,管壁导热热阻,翅片与管壁接触热阻0.0048m^2*K/W传热系数43.04702256W/(m^2*K)(10)核算假设的热流密度值管外热流密度723.397709W/m^2管内热流密度11902.43719W/m^2偏差0.87%偏差足够小,假设有效(11)蒸发器结构尺寸所需内表面传热面积0.983050847m^2所需外表面传热面积16.03543923m^2所需传热管总长36.07229441m迎风面积0.269705578m^2蒸发器宽980mm蒸发器高275mm实际迎风面积0.2695m^2垂直于气流方向每排管数11换热管实际总长43.12m传热管实际内表面传热面积1.165003087m^2换热面积裕度18.51%传热管长度裕度19.54%接近20%的裕度(12)R22的流动阻力及其对传热温差的影响R22流动阻力9.765407654kPa R22饱和压力583.78kPa流动损失 1.67%流动损失引起蒸发温度的变化可忽略。

收藏!翅片式蒸发器如何最简单的进行计算和仿真??

收藏!翅片式蒸发器如何最简单的进行计算和仿真??

收藏!翅片式蒸发器如何最简单的进行计算和仿真??前言:翅片式换热器是制冷系统中最最常用的换热器之一,换热方式是强制式风冷换热器,尤其是家用空调中的蒸发器和冷凝器采用的都是翅片式换热器,而换热器其实又是制冷系统设计中最难的一部分,因为压缩机的匹配和节流阀的匹配可以采用选型软件来完成;而两器的设计需要一定的经验以及一定的计算,难度还是比较大的,我们就利用最简单的方法Excel来进行翅片式蒸发器的设计选型;在制冷系统的设计中,换热的设计是一件非常麻烦的事情,一大堆的计算公式让很多同行望而却步,最郁闷的就是按照这些公式来计算后,发现根本就是不对的或者肯定是跟实际有偏差的;所以很多同行最后都放弃了;也有不少计算软件,但是计算结果准确的肯定是收费的,免费的软件计算出来的还不如自己拿笔来计算,今天我们就简单给各位同行分项下笔者在实际设计中的方法。

笔者的设计一般按照40的传热系数来计算,因为一般的翅片是换热器在额定工况下基本上是这个数据,你按照教科书的算法,算到最后也差不多是这个数值了。

我们做如下关于翅片换热器的结构参数计算表格:我们假如有以下系统的蒸发器需要我们设计:环境工况为7/6℃时候,出风温度4℃/90%,设计一个制冷系统;要求:制冷剂为R22,冷凝温度50℃,过冷度5℃,蒸发温度-1℃,过热度7.9℃,制冷量约为11.5KW;我们选择压缩机为比泽尔4FES-5,,根据压缩机选型软件和系统设计需求,如下参数:我们来看看Excel的计算结果:这里有几个小细节我们讲解下,因为有了压缩机的实际运行功率,我们很容易计算出压缩机的等熵效率,本系统为66.91%,计算出来的排气温度为102.6℃,与压缩机选型软件计算出来的102.1℃偏差也不大。

空气侧的进风温度是7℃/6℃;出风为4℃/90%;蒸发器的换热量=压缩机的制冷量=11790W;有计算公式:Q=K*A*Tm;我们可以假定换热系数为40,我们能得到以下的计算表格:计算出来的换热面积为47.1867m2;通过调整管长、单排管数和排数,我们得到了上述的计算结果,分别为:管长度=1400mm;单排管数量=32排;排数=2;下面我们来利用NIST另外一个非常牛逼的神器:EVAP-COND;来做蒸发器的仿真计算;方法如下:选择制冷剂:R22;蒸发器结构参数的设定:制冷剂参数和空气侧参数的设定:简单的流路设计:风量参数的设计:点击仿真开始,得到如下的结果:得到的流量偏小,我们可以适当缩短单根换热管的长度来减少蒸发器的压力,来提高制冷剂的流量;换热管有1400调整到1100,得到如下的结果:我们查看仿真结果的很多数据:包括制冷剂的进出口温度和压力等数值,这个软件非常方便。

蒸发器热交换面积计算表(蒸发器热交换面积计算表)

蒸发器热交换面积计算表(蒸发器热交换面积计算表)

蒸发器热交换面积计算表(蒸发器热交换
面积计算表)
蒸发器热交换面积计算表
蒸发器的热交换面积是在设计和选择蒸发器时必须考虑的重要参数。

本文档将介绍蒸发器热交换面积的计算方法。

1. 初始参数
首先,需要确定以下初始参数:
- 蒸发器的进口温度 (T_in):单位为摄氏度(℃)
- 蒸发器的出口温度 (T_out):单位为摄氏度(℃)
- 被蒸发的流体的质量流率 (m_dot):单位为千克/秒(kg/s)
- 被蒸发的流体的蒸发潜热 (h_fg):单位为焦耳/千克(J/kg)
2. 计算蒸发器热交换面积
蒸发器热交换面积可以通过以下公式计算:
A = (m_dot * (h_in - h_out)) / (T_out - T_in)
其中,A 表示蒸发器的热交换面积,单位为平方米(m^2)。

3. 结果示例
以下是一个计算蒸发器热交换面积的示例:
假设蒸发器的进口温度为 30℃,出口温度为 10℃,被蒸发的流体的质量流率为 0.5 kg/s,蒸发潜热为 2500 J/kg。

根据上述的公式,可以计算出蒸发器的热交换面积:
A = (0.5 * 2500) / (10 - 30)
计算结果为:
A = 62.5 m^2
因此,根据初始参数计算,这个蒸发器的热交换面积为 62.5 平方米。

以上为蒸发器热交换面积计算表的内容。

请根据实际情况输入相应的初始参数以获得准确的计算结果。

翅片换热器 换热面积计算

翅片换热器 换热面积计算

翅片换热器换热面积计算
翅片换热器是一种常用的换热设备,其换热面积的大小决定了其换热效率的高低。

翅片换热器的换热面积可以通过以下公式进行计算:
换热面积=翅片长度×翅片密度×管道数×管道长度
其中,翅片长度指的是翅片的长度,翅片密度指的是单位长度上翅片的数量,管道数指的是翅片换热器中管道的数量,管道长度指的是每个管道的长度。

在实际应用中,需要根据具体的工程要求和设计参数来确定翅片换热器的换热面积,以满足换热需求。

同时,在使用过程中也需要注意维护和清洁翅片换热器,以保证其正常运行和换热效率。

- 1 -。

翅片式蒸发器的设计计算

翅片式蒸发器的设计计算

翅片式蒸发器的设计计算已知条件进口空气干球温度27℃进口空气湿球温度19.5℃R22蒸发温度5℃出口空气干球温度17.5℃出口空气湿球温度14.6℃大气压力101.32Pa 制冷量11600W (1)结构参数直径10mm 紫铜管,正三角形叉排厚度0.7mm翅片厚0.2mm铝平直套片翅片热导率237W/(m*K) 翅片间距 2.2mm垂直流动方向管间距25mm管排数4迎面风速 2.5m/s(2)几何参数管外径10.4mm内径8.6mm沿气流流动方向管间距21.65063509mm沿气流方向套片长度86.60254038mm每米管长翅片外表面面积0.414833829m^2/m每米管长翅片间管子表面面积0.029702331m^2/m每米管长总外表面面积0.44453616m^2/m每米光管长外表面面积0.032672564m^2/m每米管长内表面面积0.027017697m^2/m每米管长平均直径处表面面积0.02984513m^2/m(3)空气侧干表面传热系数空气平均温度22.25℃查此温度下空气物性空气密度 1.1966kg/m^3比定压热容1005J/(kg*K)普朗特数0.7026运动粘度0.00001588m^2/s最窄界面处空气流速4.70890411m/s空气雷诺数3083.917049传热因子0.008516558空气侧干表面传热系数61.02300331W/(m^2*K)(4)空气在蒸发器内的状态变化过程进口空气焓值55.6kJ/kg查焓湿图出口空气焓值40.7kJ/kg 进口空气湿度11.1g/kg出口空气湿度9.2g/kg露点焓值29.5kJ/kg露点温度9℃露点湿度7.13g/kg空气平均比焓47.11184481kJ/kg平均温度21.4℃平均湿度10g/kg析湿系数 1.569370968(5)循环空气量循环空气量2802.684564kg/h空气比体积0.866080411m^3/kg空气体积流量2427.350198m^3/h(6)空气侧当量表面传热系数A25mmB25mmρ' 2.574338543肋片折合高度0.010895963m肋片参数63.56754266m^-1凝露工况下翅片效率0.865785468当量表面传热83.77312878W/(m^2*K)系数(7)管内R22蒸发时表面传热系数饱和液体比定1.198kJ/(kg*K)压热容饱和蒸气比定0.658kJ/(kg*K)压热容饱和液体密度1267.4kg/m^3 饱和蒸气密度25.53kg/m^3 汽化潜热201.16kJ/kg饱和压力583.78kPa表面张力0.0112N/m液体动力粘度0.000256Pa.s 蒸气动力粘度0.00000842Pa.s 液体热导率0.093W/(m*K)蒸气热导率0.0109W/(m*K) 液体普朗特数 3.29蒸气普朗特数0.735进口干度0.16出口干度1热流密度11.8kW/m^2质量流速100kg/(m^2*s)R22总质量流247.138028kg/h量总流通截面积0.000686495m^2每根管子有效5.8088E-05m^2流通截面面积蒸发器分路数11.81817162分路数取整11每一分路R2222.46709346kg/h在管内实际流量每一分路R22107.4379238kg/(m^2*s)在管内实际流速B00.000545988C00.109629036Frl0.085263525雷诺数1515.881956hl140.3211061C1 1.136C2-0.9C3667.2C40.7C50.3Ffl 2.2管内R22蒸发时表面传热系数2533.880021W/(m^2*K)(8)传热温差的初步计算传热温差16.80482565℃不计R22阻力(9)传热系数翅片侧污垢热阻,管壁导热热阻,翅片与管壁接触热阻0.0048m^2*K/W传热系数43.04702256W/(m^2*K)(10)核算假设的热流密度值管外热流密度723.397709W/m^2管内热流密度11902.43719W/m^2偏差0.87%偏差足够小,假设有效(11)蒸发器结构尺寸所需内表面传热面积0.983050847m^2所需外表面传热面积16.03543923m^2所需传热管总长36.07229441m迎风面积0.269705578m^2蒸发器宽980mm蒸发器高275mm实际迎风面积0.2695m^2垂直于气流方向每排管数11换热管实际总长43.12m传热管实际内表面传热面积1.165003087m^2换热面积裕度18.51%传热管长度裕度19.54%接近20%的裕度(12)R22的流动阻力及其对传热温差的影响R22流动阻力9.765407654kPa R22饱和压力583.78kPa 流动损失 1.67%流动损失引起蒸发温度的变化可忽略。

翅片式换热器计算

翅片式换热器计算

设计基本参数冷凝温度50盘管基本参数管排数9每排管的管数量19每英寸的翅片数量13每根铜管的长度0.65换热器结构计算传热管直径do0.009525传热管壁厚δ0.00035流动方向管间距s10.0254排间距s20.02200片厚δ0.000115翅片间距Sf0.00195翅片根部外沿直径db0.009755每米翅片侧外表面积af0.495457975每米翅片间基管外表面积ab0.02882783每米翅片侧总表面积aof0.524285806铜管内径di0.008825每米长管内面积ai0.027724555每米长管外面积ao0.0306307每米管平均直径处的表面积0.0291706肋化系数τ18.91052215肋通系数α20.64117345迎风风速w 3.25净面比ε0.579691433最窄截面风速Wmax 5.606430964空气侧表面传热系数沿气流方向翅片长度b0.197973407当量直径de0.003290895雷诺系数Re1185.134493 b/de60.15792878 A0.010278544 c 1.075567722 n0.84704233 m-0.185189241α016.6048117521.91835151C 1.186 m-0.222ψ0.2225 n0.569λ0.0276α0472.2718053冷凝器进出口空气参数Q015系数φ0 1.318 Qk19.77室外干球温度ta135进出口温差19出风温度ta216空气平均温度25.5对数平均温差θm-23.22比热容Cpa 1.005运动粘度ν0.000015568热导率0.026295密度ρ 1.1465冷凝器外表面效率铝翅片热导率203肋片当量高度h0.010609833翅片特性参数m43.33332384翅片效率ηf0.935028419冷凝器外表面效率ηo0.938600879管内换热系数物性集合系数B1325.4传热系数3897.708063总传热系数r00.0034 rb0.0001铜管导热率393第一系数0.004851703第二系数 1.60066E-05第三系数0.048608381 Ko17.55122173传热面积Aof58.27436728换热量-23747.64186计算风速迎风面积0.31369翅片宽度b197.9734073假定风速 3.25 35度时空气密度ρa 1.1465最窄截面风速Wmax 5.606430964ρa*Wmax 6.4277731 (ρa*Wmax)1.723.64301807最窄截面当量直径0.003290895静压153.6100197单片盘管单元的风量 1.0194925风机风量3670.173校核气温差17.10596081222.6884456换热量的计算风侧换热量22.32-2.064002709 X-4-36-12-70100.844.6-0.5572根据下面的算出来采用公式计算法考虑使用叉排和波纹片的修正系数根据Re和b/de查表得出的考虑使用叉排和波纹片的修正系数假定根据进风温度查表得出的47.766.53893573248.543106910.78591376239.44728551948.854032内螺纹修正系数固定参数固定参数固定参数总的换热量假定222.68844562.038985求解tw根据平均温度查表得出的风侧换热量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档