成都市七年级上册数学期末试卷(带答案)-百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都市七年级上册数学期末试卷(带答案)-百度文库
一、选择题
1.下列判断正确的是( ) A .3a 2bc 与bca 2不是同类项
B .225
m n 的系数是2
C .单项式﹣x 3yz 的次数是5
D .3x 2﹣y +5xy 5是二次三项式
2.下列数或式:3
(2)-,6
1()3
-,25- ,0,21m +在数轴上所对应的点一定在原点右边
的个数是( ) A .1
B .2
C .3
D .4
3.如图,C 为射线AB 上一点,AB =30,AC 比BC 的
1
4
多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =
1
2
BQ 时,t =12,其中正确结论的个数是( )
A .0
B .1
C .2
D .3
4.某车间有26名工人,每人每天能生产螺栓12个或螺母18个.若要使每天生产的螺栓和螺母按1:2配套,则分配几人生产螺栓?设分配x 名工人生产螺栓,其他工人生产螺母,所列方程正确的是( ) A .()121826x x =- B .()181226x x =- C .()2181226x x ⨯=- D .()2121826x x ⨯=- 5.已知线段AB 的长为4,点C 为AB 的中点,则线段AC 的长为( )
A .1
B .2
C .3
D .4
6.如图,点A ,B 在数轴上,点O 为原点,OA OB =.按如图所示方法用圆规在数轴上截取
BC AB =,若点A 表示的数是a ,则点C 表示的数是( )
A .2a
B .3a -
C .3a
D .2a -
7.下列方程是一元一次方程的是( )
A .
2
1
3+x =5x B .x 2+1=3x C .
3
2y
=y+2 D .2x ﹣3y =1
8.下列分式中,与2x y
x y ---的值相等的是()
A .2x y y x
+-
B .2x y x y
+-
C .2x y x y
--
D .2x y y x
-+
9.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( ) A .160160
3045x x
-= B .1601601
452x x -= C .
1601601
542x x -= D .
160160
3045x x
+= 10.﹣3的相反数是( ) A .13
-
B .
13
C .3-
D .3
11.如果方程组223x y x y +=⎧⎨-=⎩的解为5
x y =⎧⎨=⎩
,那么“口”和“△”所表示的数分别是( )
A .14,4
B .11,1
C .9,-1
D .6,-4 12.一个几何体的表面展开图如图所示,则这个几何体是( )
A .四棱锥
B .四棱柱
C .三棱锥
D .三棱柱
13.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )
A .棱柱
B .圆锥
C .圆柱
D .棱锥
14.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上
的字是( )
A .设
B .和
C .中
D .山
15.已知105A ∠=︒,则A ∠的补角等于( ) A .105︒
B .75︒
C .115︒
D .95︒
二、填空题
16.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.
17.已知x=2是方程(a +1)x -4a =0的解,则a 的值是 _______.
18.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.
19.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________. 20.分解因式: 2
2xy
xy +=_ ___________
21.如图,是七(2)班全体学生的体有测试情况扇形统计图.若达到优秀的有25人,则不合格的学生有____人.
22.若1
2x y =⎧⎨=⎩
是方程组72ax by bx ay +=⎧⎨+=⎩的解,则+a b =_________.
23.如图,已知OC 是∠AOB 内部的一条射线,∠AOC =30°,OE 是∠COB 的平分线.当∠BOE =40°时,则∠AOB 的度数是_____.
24.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____. 25.化简:2x+1﹣(x+1)=_____. 26.计算7a 2b ﹣5ba 2=_____.
27.若
2a +1与212
a +互为相反数,则a =_____. 28.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.
29.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.
30.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.
三、压轴题
31.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;
②此时OQ 是否平分∠AOC ?请说明理由;
(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;
(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).
32.如图,已知数轴上有三点 A ,B ,C ,若用 AB 表示 A ,B 两点的距离,AC 表示 A ,C 两点的 距离,且 BC = 2 AB ,点 A 、点C 对应的数分别是a 、c ,且| a - 20 | + | c +10 |= 0 .
(1)若点 P ,Q 分别从 A ,C 两点同时出发向右运动,速度分别为 2 个单位长度/秒、5个单位长度/ 秒,则运动了多少秒时,Q 到 B 的距离与 P 到 B 的距离相等?
(2)若点 P ,Q 仍然以(1)中的速度分别从 A ,C 两点同时出发向右运动,2 秒后,动点 R 从 A 点出发向左运动,点 R 的速度为1个单位长度/秒,点 M 为线段 PR 的中点,点 N 为线段 RQ 的中点,点R 运动了x 秒时恰好满足 MN + AQ = 25,请直接写出x 的值. 33.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,
122
x x +,
123
3
x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的
最佳值.例如,对于数列2,-1,3,因为|2|=2,
()
21
2
+-
=
1
2
,
()
213
3
+-+
=
4
3
,所以
数列2,-1,3的最佳值为1
2
.
东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相
应的最佳值.如数列-1,2,3的最佳值为1
2
;数列3,-1,2的最佳值为1;….经过研
究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳
值的最小值为1
2
.根据以上材料,回答下列问题:
(1)数列-4,-3,1的最佳值为
(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为,取得最佳值最小值的数列为(写出一个即可);
(3)将2,-9,a(a>1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a的值.
34.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.
请根据上述规定回答下列问题:
(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;
(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;
(3)若点E在数轴上(不与A、B重合),满足BE=1
2
AE,且此时点E为点A、B的“n节
点”,求n的值.
35.已知有理数a,b,c在数轴上对应的点分别为A,B,C,且满足(a-1)2+|ab+3|=0,c=-2a+b.
(1)分别求a,b,c的值;
(2)若点A和点B分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t秒.
i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.
ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.
36.如图,数轴上有A , B 两点,分别表示的数为a ,b ,且()2
25350a b ++-=.点
P 从A 点出发以每秒13个单位长度的速度沿数轴向右匀速运动,当它到达B 点后立即以相同的速度返回往A 点运动,并持续在A ,B 两点间往返运动.在点P 出发的同时,点Q 从B 点出发以每秒2个单位长度向左匀速运动,当点Q 达到A 点时,点P ,Q 停止运动. (1)填空:a = ,b = ;
(2)求运动了多长时间后,点P ,Q 第一次相遇,以及相遇点所表示的数; (3)求当点P ,Q 停止运动时,点P 所在的位置表示的数;
(4)在整个运动过程中,点P 和点Q 一共相遇了几次.(直接写出答案)
37.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.
(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?
(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?
(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.
38.已知:如图数轴上两点A 、B 所对应的数分别为-3、1,点P 在数轴上从点A 出发以每秒钟2个单位长度的速度向右运动,点Q 在数轴上从点B 出发以每秒钟1个单位长度的速度向左运动,设点P 的运动时间为t 秒.
(1)若点P 和点Q 同时出发,求点P 和点Q 相遇时的位置所对应的数;
(2)若点P 比点Q 迟1秒钟出发,问点P 出发几秒后,点P 和点Q 刚好相距1个单位长度;
(3)在(2)的条件下,当点P 和点Q 刚好相距1个单位长度时,数轴上是否存在一个点C ,使其到点A 、点P 和点Q 这三点的距离和最小,若存在,直接写出点C 所对应的数,若不存在,试说明理由.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.C 解析:C 【解析】 【分析】
根据同类项的定义,单项式和多项式的定义解答. 【详解】
A .3d 2bc 与bca 2所含有的字母以及相同字母的指数相同,是同类项,故本选项错误.
B .225
m n
的系数是25,故本选项错误.
C .单项式﹣x 3yz 的次数是5,故本选项正确.
D .3x 2﹣y +5xy 5是六次三项式,故本选项错误. 故选C . 【点睛】
本题考查了同类项,多项式以及单项式的概念及性质.需要学生对概念的记忆,属于基础题.
2.B
解析:B 【解析】 【分析】
点在原点的右边,则这个数一定是正数,根据演要求判断几个数即可得到答案. 【详解】
()3
2-=-8,6
13⎛⎫- ⎪⎝⎭
=1719,25-=-25 ,0,21m +≥1 在原点右边的数有6
13⎛⎫- ⎪⎝⎭
和 21m +≥1 故选B 【点睛】
此题重点考察学生对数轴上的点的认识,抓住点在数轴的右边是解题的关键.
3.C
解析:C 【解析】【分析】
根据AC比BC的1
4
多5可分别求出AC与BC的长度,然后分别求出当P与Q重合时,此
时t=30s,当P到达B时,此时t=15s,最后分情况讨论点P与Q的位置.【详解】
解:设BC=x,
∴AC=1
4
x+5
∵AC+BC=AB
∴x+1
4
x+5=30,
解得:x=20,
∴BC=20,AC=10,
∴BC=2AC,故①成立,∵AP=2t,BQ=t,
当0≤t≤15时,
此时点P在线段AB上,∴BP=AB﹣AP=30﹣2t,∵M是BP的中点
∴MB=1
2
BP=15﹣t
∵QM=MB+BQ,
∴QM=15,
∵N为QM的中点,
∴NQ=1
2
QM=
15
2
,
∴AB=4NQ,
当15<t≤30时,
此时点P在线段AB外,且点P在Q的左侧,∴AP=2t,BQ=t,
∴BP=AP﹣AB=2t﹣30,
∵M是BP的中点
∴BM=1
2
BP=t﹣15
∵QM=BQ﹣BM=15,∵N为QM的中点,
∴NQ=1
2
QM=
15
2
,
∴AB=4NQ,
当t>30时,
此时点P在Q的右侧,∴AP=2t,BQ=t,
∴BP=AP﹣AB=2t﹣30,∵M是BP的中点
∴BM=1
2
BP=t﹣15
∵QM=BQ﹣BM=15,∵N为QM的中点,
∴NQ=1
2
QM=
15
2
,
∴AB=4NQ,
综上所述,AB=4NQ,故②正确,
当0<t≤15,PB=1
2
BQ时,此时点P在线段AB上,
∴AP=2t,BQ=t
∴PB=AB﹣AP=30﹣2t,
∴30﹣2t=1
2
t,
∴t=12,
当15<t≤30,PB=1
2
BQ时,此时点P在线段AB外,且点P在Q的左侧,
∴AP=2t,BQ=t,
∴PB=AP﹣AB=2t﹣30,
∴2t﹣30=1
2
t,
t=20,
当t>30时,此时点P在Q的右侧,∴AP=2t,BQ=t,
∴PB=AP﹣AB=2t﹣30,
∴2t﹣30=1
2
t,
t=20,不符合t>30,
综上所述,当PB=1
2
BQ时,t=12或20,故③错误;
故选:C.
【点睛】
本题考查两点间的距离,解题的关键是求出P到达B点时的时间,以及点P与Q重合时的时间,涉及分类讨论的思想.
4.D
解析:D
【解析】
【分析】
设分配x名工人生产螺栓,则(26-x)名生产螺母,根据每天生产的螺栓和螺母按1:2配套,可得出方程.
【详解】
解:设分配x名工人生产螺栓,则(26-x)名生产螺母,
∵要使每天生产的螺栓和螺母按1:2配套,每人每天能生产螺栓12个或螺母18个,
∴可得2×12x=18(26-x).
故选:D.
【点睛】
本题考查了根据实际问题抽象一元一次方程,要保证配套,则生产的螺母的数量是生产的螺栓数量的2倍,所以列方程的时候,应是螺栓数量的2倍=螺母数量.
5.B
解析:B
【解析】
【分析】
根据线段中点的性质,可得AC的长.
【详解】
解:由线段中点的性质,得
AC=1
2
AB=2.
故选B.
【点睛】
本题考查了两点间的距离,利用了线段中点的性质.
6.B
解析:B
【解析】
【分析】
根据题意和数轴可以用含a的式子表示出点B表示的数,从而得到点C表示的数.【详解】
解:由点O为原点,OA OB
,可知A、B表示的数互为相反数,
点A 表示的数是a ,所以B 表示的数为-a ,
又因为BC AB =,所以点C 表示的数为3a -.
故选B.
【点睛】
本题考查数轴,解答本题的关键是明确题意结合相反数,利用数形结合的思想解答.
7.A
解析:A
【解析】
【分析】
只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b =0(a ,b 是常数且a≠0).据此可得出正确答案.
【详解】
解:A 、2
13+x =5x 符合一元一次方程的定义; B 、x 2+1=3x 未知数x 的最高次数为2,不是一元一次方程;
C 、32y
=y+2中等号左边不是整式,不是一元一次方程; D 、2x ﹣3y =1含有2个未知数,不是一元一次方程;
故选:A .
【点睛】
解题的关键是根据一元一次方程的定义,未知数x 的次数是1这个条件.此类题目可严格按照定义解题.
8.A
解析:A
【解析】
【分析】
根据分式的基本性质即可求出答案.
【详解】 解:原式=22x y x y x y y x
++-
=--, 故选:A .
【点睛】
本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型. 9.B
解析:B
【解析】
【分析】
甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟,列出方程即可得.
甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,由题意得
160 4x -160
5x
=1
2
,
故选B.
【点睛】
本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
10.D
解析:D
【解析】
【分析】
相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.
【详解】
根据相反数的定义可得:-3的相反数是3.故选D.
【点睛】
本题考查相反数,题目简单,熟记定义是关键.
11.B
解析:B
【解析】
【分析】
把
5
x
y
=
⎧
⎨
=
⎩
x=5代入方程x-2y=3可求得y的值,然后把x、y的值代入2x+y=口即可求得答案.
【详解】
把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1,
把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11,
故选B.
【点睛】
本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.
12.A
解析:A
【解析】
试题分析:根据四棱锥的侧面展开图得出答案.
试题解析:如图所示:这个几何体是四棱锥.
故选A.
考点:几何体的展开图.
13.C
解析:C
【分析】
根据面动成体可得长方形ABCD绕CD边旋转所得的几何体.
【详解】
解:将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱,
故选:C.
【点睛】
此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.
14.A
解析:A
【解析】
【分析】
正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.
【详解】
解:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“美”与“设”是相对面,
“和”与“中”是相对面,
“建”与“山”是相对面.
故选:A.
【点睛】
本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
15.B
解析:B
【解析】
【分析】
由题意直接根据互补两角之和为180°求解即可.
【详解】
解:∵∠A=105°,
∴∠A的补角=180°-105°=75°.
故选:B.
【点睛】
本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.
二、填空题
16.【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,
共用去:(2a+3b)元
解析:(23)a b
【解析】
【分析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.
故选C.
【点睛】
此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系. 17.1
【解析】
【分析】
把x=2代入转换成含有a 的一元一次方程,求解即可得
【详解】
由题意可知2×(a+1)−4a=0
∴2a+2−4a=0
∴2a=2
∴a=1
故本题答案应为:1
【点睛】
解
解析:1
【解析】
【分析】
把x=2代入转换成含有a 的一元一次方程,求解即可得
【详解】
由题意可知2×(a+1)−4a=0
∴2a+2−4a=0
∴2a=2
∴a=1
故本题答案应为:1
【点睛】
解一元一次方程是本题的考点,熟练掌握其解法是解题的关键
18.-3
【解析】
【分析】
根据题意将代入方程即可得到关于a ,b 的代数式,变形即可得出答案.
【详解】
解:将代入方程得到,变形得到,所以=
故填-3.
【点睛】
本题考查利用方程的对代数式求值,将方
解析:-3
【解析】
【分析】
根据题意将1x =-代入方程即可得到关于a ,b 的代数式,变形即可得出答案.
【详解】
解:将1x =-代入方程得到220a b --+=,变形得到22a b -=-,所以
241a b -+=2(2)1 3.a b -+=-
故填-3.
【点睛】
本题考查利用方程的对代数式求值,将方程的解代入并对代数式变形整体代换即可.
19.三
【解析】
【分析】
由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.
【详解】
解:设原价为x ,
两次提价后方案一:;
方案二:;
方案三:.
综上可知三种方案提价最多的是方
解析:三
【解析】
【分析】
由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.
【详解】
解:设原价为x ,
两次提价后方案一:(110%)(130%) 1.43x x ++=;
方案二:(130%)(110%) 1.43x x ++=;
方案三:(120%)(120%) 1.44x x ++=.
综上可知三种方案提价最多的是方案三.
故填:三.
【点睛】
本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.
20.【解析】
【分析】
原式提取公因式xy ,即可得到结果.
【详解】
解:原式=xy (2y +1),
故答案为:xy (2y +1)
【点睛】
此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本 解析:xy(2y 1)+
【解析】
【分析】
原式提取公因式xy ,即可得到结果.
【详解】
解:原式=xy (2y +1),
故答案为:xy (2y +1)
【点睛】
此题考查了因式分解−提公因式法,熟练掌握提取公因式的方法是解本题的关键. 21.5
【解析】
【分析】
根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.
【详解】
解:∵学生总人数=25÷50%=50(人),
∴不合格的学生人数=50×(1-5
解析:5
【解析】
【分析】
根据达到优秀的人数和所占百分比求出总人数,然后用总人数乘以不合格所占的百分比即可.
【详解】
解:∵学生总人数=25÷50%=50(人),
∴不合格的学生人数=50×(1-50%-40%)=5(人),
故答案为:5.
【点睛】
本题考查了扇形统计图,熟知扇形统计图中各数据所表示的意义是解题关键.
22.3
【解析】
【分析】
把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.【详解】
解:把代入方程组得:,
①+②得:3(a+b)=9,
则a+b=3,
故答案为:3.
【
解析:3
【解析】
【分析】
把x与y的值代入方程组得到关于a和b的方程组,然后整体求出a+b的值即可.
【详解】
解:把
1
2
x
y
=
⎧
⎨
=
⎩
代入方程组得:
27
22
a b
b a
+=
⎧
⎨
+=
⎩
,
①+②得:3(a+b)=9,
则a+b=3,
故答案为:3.
【点睛】
此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.
23.110
【解析】
【分析】
由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.
【详解】
解:∵OE是∠COB的平分线,∠BOE=40°,
∴∠BOC=80°,
∴∠A
解析:110
【解析】
【分析】
由角平分线的定义求得∠BOC=80°,则∠AOB=∠BOC+∠AOC=110°.
【详解】
解:∵OE是∠COB的平分线,∠BOE=40°,
∴∠BOC=80°,
∴∠AOB=∠BOC+∠AOC=80°+30°=110°,
故答案为:110°.
【点睛】
此题主要考查角度的求解,解题的关键是熟知角平分线的性质.
24.3(x﹣2)=2x+9
【解析】
【分析】
根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.
【详解】
设有x辆车,则可列方程:
3(x﹣2)
解析:3(x﹣2)=2x+9
【解析】
【分析】
根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.
【详解】
设有x辆车,则可列方程:
3(x﹣2)=2x+9.
故答案是:3(x﹣2)=2x+9.
【点睛】
本题考查一元一次方程,解题的关键是读懂题意,掌握列一元一次方程.
25.x
【解析】
【分析】
首先去括号,然后再合并同类项即可.
【详解】
解:原式=2x+1﹣x﹣1=x,
故答案为:x.
【点睛】
此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.
解析:x
【解析】
【分析】
首先去括号,然后再合并同类项即可.
【详解】
解:原式=2x+1﹣x﹣1=x,
故答案为:x.
【点睛】
此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.
26.2a2b
【解析】
【分析】
根据合并同类项法则化简即可.
【详解】
故答案为:
【点睛】
本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.
解析:2a2b
【解析】
【分析】
根据合并同类项法则化简即可.
【详解】
()
2222
﹣﹣.
7a b5ba=75a b=2a b
2a b
故答案为:2
【点睛】
本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.27.﹣1
【解析】
【分析】
利用相反数的性质列出方程,求出方程的解即可得到a的值.
【详解】
根据题意得:
去分母得:a+2+2a+1=0,
移项合并得:3a=﹣3,
解得:a=﹣1,
故答案为:
解析:﹣1
【解析】
【分析】
利用相反数的性质列出方程,求出方程的解即可得到a的值.【详解】
根据题意得:a2a1
10 22
+
++=
去分母得:a+2+2a+1=0,
移项合并得:3a=﹣3,
解得:a=﹣1,
故答案为:﹣1
【点睛】
本题考查了解一元一次方程的应用、解一元一次方程,掌握解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1,是解题的关键,此外还需注意移项要变号.
28.6040
【解析】
【分析】
根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.
【详解】
第1个图案中有1+3=4个基础图案,
第2个图案中有1
解析:6040
【解析】
【分析】
根据前3个图,得出基础图形的个数规律,写出第n个图案中的基础图形个数表达式,代入2013即可得出答案.
【详解】
第1个图案中有1+3=4个基础图案,
第2个图案中有1+3+3=7个基础图案,
第3个图案中有1+3+3+3=10个基础图案,
……
第n个图案中有1+3+3+3+…3=(1+3n)个基础图案,
当n=2013时,1+3n=1+3×2013=6040,
故答案为:6040.
【点睛】
本题考查图形规律问题,由前3个图案得出规律,写出第n个图案中的基础图形个数表达式是解题的关键.
29.﹣3cm
【解析】
【分析】
首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.
【详解】
解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.
故答案为:﹣3
解析:﹣3cm
【解析】
【分析】
首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.
【详解】
解:因为上升记为+,所以下降记为﹣,所以水位下降3cm时水位变化记作﹣3cm.
故答案为:﹣3cm.
【点睛】
此题主要考查有理数的应用,解题的关键是熟知有理数的意义.
30.6
【解析】
如图,∵AB=2cm,BC=2AB,
∴BC=4cm,
∴AC=AB+BC=6cm.
故答案为:6.
解析:6
【解析】
如图,∵AB=2cm,BC=2AB,
∴BC=4cm,
∴AC=AB+BC=6cm.
故答案为:6.
三、压轴题
31.(1)①5;②OQ平分∠AOC,理由详见解析;(2)5秒或65秒时OC平分∠POQ;
(3)t=70
3
秒.
【解析】
【分析】
(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ和∠COQ度数比较判断即可;
(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.
【详解】
(1)①∵∠AOC=30°,
∴∠BOC=180°﹣30°=150°,
∵OP平分∠BOC,
∴∠COP=1
2
∠BOC=75°,
∴∠COQ=90°﹣75°=15°,
∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;
②是,理由如下:
∵∠COQ=15°,∠AOQ=15°,
∴OQ平分∠AOC;
(2)∵OC平分∠POQ,
∴∠COQ=1
2
∠POQ=45°.
设∠AOQ=3t,∠AOC=30°+6t,
由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,
当30+6t﹣3t=225,也符合条件,
解得:t=65,
∴5秒或65秒时,OC平分∠POQ;
(3)设经过t秒后OC平分∠POB,
∵OC平分∠POB,
∴∠BOC=1
2
∠BOP,
∵∠AOQ+∠BOP=90°,
∴∠BOP=90°﹣3t,
又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,
∴180﹣30﹣6t=1
2
(90﹣3t),
解得t=70 3
.
【点睛】
本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键.
32.(1)10
7
秒或10秒;(2)
14
13
或
114
13
.
【解析】
【分析】
(1)由绝对值的非负性可求出a,c的值,设点B对应的数为b,结合BC 2 AB,求出b 的值,当运动时间为t秒时,分别表示出点P、点Q对应的数,根据“Q到B的距离与P 到B的距离相等”列方程求解即可;
(2)当点R运动了x秒时,分别表示出点P、点Q、点R对应的数为,得出AQ的长,
由中点的定义表示出点M、点N对应的数,求出MN的长.根据MN+AQ=25列方程,分三种情况讨论即可.
【详解】
(1)∵|a-20|+|c+10|=0,
∴a-20=0,c+10=0,
∴a=20,c=﹣10.
设点B对应的数为b.
∵BC=2AB,∴b﹣(﹣10)=2(20﹣b).
解得:b=10.
当运动时间为t秒时,点P对应的数为20+2t,点Q对应的数为﹣10+5t.
∵Q到B的距离与P到B的距离相等,
∴|﹣10+5t﹣10|=|20+2t﹣10|,
即5t﹣20=10+2t或20﹣5t=10+2t,
解得:t=10或t=10
7
.
答:运动了10
7
秒或10秒时,Q到B的距离与P到B的距离相等.
(2)当点R运动了x秒时,点P对应的数为20+2(x+2)=2x+24,点Q对应的数为﹣10+5(x+2)=5x,点R对应的数为20﹣x,∴AQ=|5x﹣20|.
∵点M为线段PR的中点,点N为线段RQ的中点,
∴点M 对应的数为
224202x x ++-=442x +, 点N 对应的数为
2052x x -+=2x +10, ∴MN =|442
x +﹣(2x +10)|=|12﹣1.5x |. ∵MN +AQ =25,∴|12﹣1.5x |+|5x ﹣20|=25.
分三种情况讨论:
①当0<x <4时,12﹣1.5x +20﹣5x =25,
解得:x =1413
; 当4≤x ≤8时,12﹣1.5x +5x ﹣20=25,
解得:x =667
>8,不合题意,舍去; 当x >8时,1.5x ﹣12+5x ﹣20=25, 解得:x 3
1141=. 综上所述:x 的值为
1413或11413. 【点睛】
本题考查了一元一次方程的应用、数轴、绝对值的非负性以及两点间的距离,找准等量关系,正确列出一元一次方程是解题的关键.
33.(1)3;(2)
12;-3,2,-4或2,-3,-4.(3)a=11或4或10. 【解析】
【分析】
(1)根据上述材料给出的方法计算其相应的最佳值为即可;
(2)按照三个数不同的顺序排列算出最佳值,由计算可以看出,要求得这些数列的最佳值的最小值;只有当前两个数的和的绝对值最小,最小只能为|−3+2|=1,由此得出答案即可;
(3)分情况算出对应的数值,建立方程求得a 的数值即可.
【详解】
(1)因为|−4|=4,-4-3
2=3.5,-4-31
2+=3,
所以数列−4,−3,1的最佳值为3.
故答案为:3;
(2)对于数列−4,−3,2,因为|−4|=4,43
2--=72,432||2--+=52
,。