第六章功能复合材料知识分享
第六章复合材料mme06
6.4.1 金属陶瓷
一、组成及分类
金属陶瓷是金属(通常为钛、镍、钴、铬等及其合金) 和陶瓷(通常为氧化物、碳化物、硼化物和氮化物 等)组成的非均质材料,是颗粒增强型的复合材料。 金属和陶瓷按不同配比组成工具材料(陶瓷为主)、 高温结构材料(金属为主)和特殊性能材料。 二、性能及应用 ●氧化物金属陶瓷 ---多以钴或镍作为粘接金属,热 稳定性和抗氧化能力较好,韧性高。
通常,复合材料的复合结果是密度大大减小,高的比 强度和比模量是复合材料的突出性能特点。 二、抗疲劳性能和抗断裂性能
1. 很好的抗疲劳性能
●复合材料中的纤维缺陷少,本身抗疲劳能力高;
●基体的塑性和韧性好,能够消除或减少应力集中,不易产生 微裂纹; ●塑性变形的存在又使微裂纹产生钝化而减缓了其扩展。
例如:碳纤维增强树脂的疲劳强度为拉伸强度的 70%~ 80%,一般金属材料却仅为30%~50%。 2. 抗断裂能力好 基体中有大量细小纤维,较大载荷下部分纤维断裂 时载荷由韧性好的基体重新分配到未断裂纤维上, 构件不会瞬间失去承载能力而断裂。
6.3.3 碳基复合材料
• 一、组成及特点---碳基复合材料是碳纤维及其制品(如
碳毡)增强的碳基复合材料。
●具有许多碳和石墨的特点,如密度小、导热性 高、膨胀系数低以及对热冲击不敏感; ●具有优越的机械性能:强度和冲击韧性比石墨高5 ~10倍,比强度非常高;随温度升高强度升高;断裂 韧性高、蠕变低; ●化学稳定性高,耐磨性极好, 是耐温最高的高温复合材料 (达2800℃)。
●自动控温开关
由温度膨胀系数不同的黄铜片和铁片复合而成的,如果单 用黄铜或铁片,不可能达到自动控温的目的。导电的铜片 两边加上两片隔热、隔电塑料,可实现一定方向导电、另 外方向绝缘及隔热的双重功能。
第六章复合材料表界面的分析表征
41
不同处理碳纤维增强复合材料冲击 载荷与冲击时间的对应关系
A. 接枝聚丙烯酰胺碳纤维; B. 接枝聚丙烯 酸碳纤维; C. 氧等离子处理碳纤维; D. 未 处理碳纤维
氧等离子处理(曲线C)碳纤维 复合丝试样的冲击载荷曲线主 要弹性承载能U1差不多比未处 理者增加近3倍,表明基体变形 更大,也有更多的纤维发生形 变。相反塑性承载能U2却小到 可略视的地步,几乎没有什么 纤维拔出和与基体的脱粘,充 分表明了强结合的界面特征。
25
碳纤维表面官能团的分析
还原剂,消除自由基,证明等 离子处理产生的大部分是游离
基,不是酚羟基
图6-25 等离子处理时间对自由基浓度的影响
在等离子处理初期,自由基浓度迅速增加,处 理5分钟后,自由基浓度增加渐趋平缓。
27
图6-26 UHMWPE纤维表面活性的衰减
经等离子处理后的UHMWPE纤维暴露在空气中,表 面自由基的浓度随时间而衰减,表面活性在逐渐减小
36
6.4.2 复合材料界面的动态力学分析
a-接枝玻纤 b-未接枝玻纤 涂敷聚苯乙烯树脂的玻璃纤维辫子的动态
力学扭辫曲线
曲线b在92℃处出现一个 尖锐的聚苯乙烯玻璃化转变 损耗峰,而曲线a上,在聚 苯乙烯玻璃化转变损耗峰高 温一侧还有一个小峰,一般 称为α’峰,也叫做界面峰。
界面粘结强,则试样承 受周期负荷时界面的能力损 耗大,α’峰越明显。
复合材料界面受到因 热膨胀系数不同引起 的热残余应力。热残 余应力的大小正比于 两者的热膨胀系数之 差Δα和温差ΔT, 也与基体和纤维的模 量有关。
29
❖ 6.4 界面力学性能的分析表征
复合材料 第六章 功能复合材料
48
如果把软磁材料(例如Fe--Si--A1合金) 制成粉末,表面被极薄的A12O3层或高聚物
分隔绝缘,然后热压或模压固化成块状软
磁体,则
49
从图A、B、D曲线看出,它的r值在相当宽的驱
动频率范围内不随交变场频率的升高而下降,从
而保持在一个较平稳的恒定值。
50
这种复合软磁材料的相对磁导率r值可 由下式描述:
20
因此,通常可以将一种具有两种性能相 互转换的功能材料X/Y和另一种换能材料Y/Z 复合起来,可用下列通式来表示,即:
X / Y .Y / Z X / Z
式中,X、Y、Z分别表示各种物理性能。 上式符合乘积表达式,所以称之为相 乘效应。
21
相乘效应的组合可以非常广泛,已
被用于设计功能复合材料。
18
相补效应和相抵效应常常是共同存在的。
显然,相补效应是希望得到的,而相抵
效应要尽量能够避免。 所有这些,可通过相应复合材料的设计 来加以实现。
19
相乘效应
两种具有转换效应的材料复合在一起, 即可发生相乘效应。
例如,把具有电磁效应的材料与具有
磁光效应的材料复合时,将可能产生具有
电光效应的复合材料。
合率来表示,则为
Ec EmVm E f V f
10
平行效应
显示这一效应的复合材料,它的各
组分材料在复合材料中,均保留本身 的作用,既无制约,也无补偿。
11
对于增强体(如纤维)与基体界 面结合很弱的复合材料,所显示的复 合效应,可以看作是平行效应。
12
相补效应
组成复合材料的基体与增强体,在性
23
诱导效应
在一定条件下,复合材料中的一个组分 材料可以通过诱导作用使另一个组分材料的
化学知识点初中复合材料
初中化学知识点:复合材料1.什么是复合材料?复合材料是由两种或更多种不同物质组合而成的材料。
它们的组合使得复合材料具有比单一物质更好的性能和特性。
2.复合材料的组成复合材料通常由两个主要组成部分构成:基体和增强材料。
基体是主要成分,起到固化增强材料的作用。
增强材料则提供了复合材料的特殊性能。
3.基体的种类基体可以是金属、陶瓷、聚合物等。
不同的基体材料具有不同的特性。
金属基体材料通常具有高强度和刚性,适用于需要承受高压和高温的应用。
陶瓷基体材料具有良好的耐磨性和耐腐蚀性,适用于高温和化学环境下的应用。
聚合物基体材料具有轻质和良好的绝缘性能,适用于需要轻质和绝缘的应用。
4.增强材料的种类增强材料可以是纤维、颗粒、颗粒等。
纤维增强材料是最常见的类型,如碳纤维、玻璃纤维等。
纤维增强材料具有高强度和刚性,能够增加复合材料的强度和耐用性。
颗粒增强材料可以改善复合材料的耐磨性和耐腐蚀性能。
5.复合材料的制备方法制备复合材料的方法有很多种,其中最常见的是层压法和浸渍法。
层压法是将基体和增强材料层层叠加,并通过压力和温度使其固化在一起。
浸渍法是将基体浸入增强材料的浆料中,使其吸附增强材料,并通过固化使其固定在基体上。
6.复合材料的应用复合材料具有广泛的应用领域。
在航空航天领域,复合材料被广泛应用于飞机和宇航器的结构件,以提高其强度和轻量化。
在汽车制造领域,复合材料可以用于制造车身和零部件,以提高汽车的燃油效率和碰撞安全性。
此外,复合材料还可以应用于建筑、体育用品、电子设备等领域。
7.复合材料的优点和挑战复合材料相比传统材料具有许多优点,如高强度、轻质、耐腐蚀等。
然而,复合材料的制备过程较为复杂,成本较高,并且在环境和可持续性方面面临挑战。
因此,如何平衡复合材料的性能和成本,以及如何解决其可持续性问题,是复合材料研究的重要课题。
总结:复合材料是由两种或更多种不同物质组合而成的材料。
它们的组合使得复合材料具有比单一物质更好的性能和特性。
--复合材料力学第六章细观力学基础
(二)纵向泊松比
21
RVE的纵向应变关系式:
2 f 2V f m2Vm
两边同时除以 1 ,可得:
21 f V f mVm
(三)纵横(面内)剪切模量
G12
在剪应力作用下,RVE的剪应变有如下 关系:
12 f V f mVm
以
12
12
G12
可在复合圆柱模型上施加不同的均匀应力边界条件,利用 弹性力学方法进行求解而得到有效模量,结果为:
2
2Gm
E
f
rf2
ln(
R rf
)
其中 Gm 为基体剪切模量,rf 为纤维半经,R为纤维间距,
l为纤维长度,R与纤维的排列方式和 V f 有关。
ET(短) ET (长)
2、Halpin-Tsai方程
EL Em
1
2
l d
LV
f
1 LV f
ET
1 2TV f
Em 1 TV f
此时,对L取:
RVE的要求: 1 、 RVE 的 尺 寸 << 整 体 尺 寸 , 则宏观可看成一点;
2、RVE的尺寸>纤维直径;
3、RVE的纤维体积分数=复合材料的纤维体积分数。
纤维体积分数:
Vf
vf v
v f —纤维总体积;
v —复合材料体积
注意:
只有当所讨论问题的最小尺寸远大于代表性体积单元时,
复合材料的应力应变等才有意义。
并可由RVE的解向邻近单元连续拓展到整体时,所得的有效 弹性模量才是严格的理论解。
则只有满足上述条件的复合材料的宏观弹性模量才能通过 体积平均应力、应变进行计算;或按应变能计算。
复合材料力学第六章2
变分符号
屈曲前平板保持平的,当外载荷达到某一临 界值时,层合板产生微弯状态,即小变形范围。 满足平衡方程。
像弯曲问题推导基本微分方程那样,将几何方程代入 物理方程,再代入平衡方程,就可得以下方程:
0 x Nx kx 0 Ny Aij y Bij ky 0 xy N xy k xy
D12 D22 D26
D16 k x D26 k y D66 k xy
u0, x w0, xx Bij v0, y Dij w0, yy u0, y v0, x 2w0, xy
B12 B22 B26
B16 k x B26 k y B66 k xy
u0, x w0, xx Aij v0, y Bij w0, yy u0, y v0, x 2w0, xy
D11 w, xxxx 4 D16 w, xxxy 2 D12 2 D66 w, xxyy 4 D26 w, xyyy D22 w, yyyy B11 u, xxx 3B16 u, xxy B12 2 B66 u, xyy B26 u, yyy B16 v, xxx B12 2 B66 v, xxy 3B26 v, xyy B22 v, yyy N x w, xx 2 N xy w, xy N y w, yy 0
A11u, xx 2 A16u, xy A66u, yy A16v, xx A12 A66 v, xy A26v, yy B11w, xxx 3B16 w, xxy B12 2 B66 w, xyy B26 w, yyy 0 A16u, xx A12 A66 u, xy A26u, yy A66v, xx 2 A26v, xy A22v, yy B16 w, xxx B12 2 B66 w, xxy 3B26 w, xyy B22 w, yyy 0
复合材料第六章功能复合材料
2.1.2 软磁复合材料
电器元件的小型化,导致磁路中追求更 高的驱动频率,为此应用的软磁材料,除在 静态磁场下经常要求的高饱和磁化强度和高 磁导率外,还要求它们具有低的交流损耗PL。
46
通常较大尺寸的金属软磁材料,其相对 磁导率 r 随驱动频率的增大而急速下降, 如下图所示:
47
Fe--Si---Al粉末颗粒复合体相对磁导率随驱动频率的变化 48
18
相补效应和相抵效应常常是共同存在的。 显然,相补效应是希望得到的,而相抵 效应要尽量能够避免。 所有这些,可通过相应复合材料的设计 来加以实现。
19
相乘效应
两种具有转换效应的材料复合在一起, 即可发生相乘效应。
例如,把具有电磁效应的材料与具有 磁光效应的材料复合时,将可能产生具有 电光效应的复合材料。
58
2.2 磁性材料
作为记录介质的强磁性材料,主要性能 指标是矫顽力Hc和剩余磁化强度Mr的大小。
这两个性能指标不仅受磁性材料种类的 影啊,也受颗粒的大小和形状的影响。
59
下表列出了目前使用的磁记录介质材料的磁
特性。
各种磁性粉末的特性
磁性材料
Mr/T
Hc/A.m-1
-Fe2O3
(1400~1800)*10-4
常用的物理乘积效应见下表所示:
22
复合材料的乘积效应
A相性质X/Y
压磁效应 压磁效应 压电效应 磁致伸缩效应 光导效应 闪烁效应 热致变形效应
B相性质Y/Z
复合后的乘积性质
(X/Y)(Y/Z)=X/Z
磁阻效应
压敏电阻效应
磁电效应
压电效应
场致发光效应
压力发光效应
压阻效应
磁阻效应
C-C复合材料
精品课件
6.3.1 C/C用碳纤维选择
1)碳纤维碱金属等杂质含量越低越好 C/C的一个重要用途是耐烧蚀材料,钠等碱金属是
碳的氧化催化剂; 当C/C用来制造飞行器烧蚀部件时,飞行器飞行过
程中由于热烧蚀而在尾部形成含钠离子流,易被 探测和跟踪,突防和生存能力受到威胁。 制造C/C的碳纤维碱金属含量要求<100mg/kg,目 前黏胶基碳纤维和PAV基碳纤维(特别是石墨纤维) 碱金属含量均满足要求。碱金属含量<50mg/kg的 超纯碳纤维的研制也正在进行中。
低压浸渍很难得到高致密度的C/C,其密度 一般为1.6~1.85,空隙率约为8~10%。
精品课件
3)高压浸渍
PIC工艺:浸渍和碳化都在高压下进行,利 用等静压技术使浸渍和碳化都在热等静压 炉内进行。可提高产碳率降低空隙率。
表6-5 PIC工艺压力对致密化的影响,当外 压增加到6.9MPa时产碳率显著增加,高密 度C/C复合材料需要51.7~103.4MPa的外压。
精品课件
1)等温法
工艺过程:将预制体放入等温感应炉中加 热,导入碳氢化合物和载气,碳氢化合物 分解后,碳沉积在预制体中。
工艺控制:为使碳均匀沉积,温度应该控 制得使碳氢化合物的扩散速度低于碳的沉 积速度。
特点:该法制得的C/C中碳沉积均匀,因而 性能也较均匀。但沉积时间较长,容易使 材料表面产生热裂纹。
表6-7 C/C在航天飞机上的应用 表6-8 C/C在战略导弹上的应用。
精品课件
图6-1 C/C在航天飞机上的应用部位
航天飞机表面温度
C/C在航天飞机上应用部位
图6-2 导弹鼻嘴
精品课件
6.5.2 刹车材料方面的应用
第六章复合材料结构设计
为了修正误差,有人建议在上述公式的基本模量上乘以 修正系数0.63,即
E f ( 0 . 63 E m ) v f 3 (1 v f )
X
c
2v f
(拉压型)
X
c
0 . 63 G m 1 v
f
(剪切型)
6.2.2单层性能的确定 设计的初步阶段,为了层合板设计、结构设计的需要,必须 提供必要的单层性能参数,特别是刚度和强度参数。为此,通常 是利用细观力学分析方法推得到预测公式确定的。而在最终设计 阶段,一般为了单层性能参数的真实可靠,使设计更为合理,单 层性能的确定需用试验的方法直接测定。 A.单层树脂含量的选择
Ⅱ
2、横向弹性模量
并联模型的横向弹性模量与串联模型的纵向弹性模量相同。故
ET E L E f v f E m vm
Ⅱ
复合材料单层基本强度的预测
1. 纵向拉伸强度Xt 单层在承受纵向拉伸应力时,假定(1)纤维与基体之间没有 滑移,具有相同的拉伸应变;(2)每根纤维具有相同的强度,且 不计初应力。则在工程上发生上述两种破坏模式: A 基体延伸率小于纤维延伸率时 在应变达到εmu时,基体将先于纤维而开裂,但是纤维尚 能继续承载,直至应变达到εfu时,纤维断裂,复合材料彻底 破坏。对此,可偏于安全地认为纵向拉伸强度只取决于纤维。
1、串联模型的弹性常数 A 纵向弹性模量ELΙ
由模型І取出代表性体积单元, 作用平均应力δ1,在平面应力状态 下,如右图所示。这如同材料力学 中由两种材料并联组成的杆受拉时 的分析。由材料力学知道,已知纤 维材料的弹性模量Ef和基体材料 的弹性模量Em,欲求单元应变
ε1或纵向弹性模量EL的问题是 一次超静定问题。
功能复合材料的主要类型及其应用
功能复合材料是指将不同类型的材料结合在一起,以发挥多种特定功能的材料。
以下是一些常见的功能复合材料类型及其应用:
1. 碳纤维复合材料(CFRP):
-特点:高强度、轻质、耐腐蚀、高刚性。
-应用:航空航天、汽车工业、体育器材、建筑结构等领域。
2. 碳纳米管复合材料:
-特点:高强度、优异导电性、热导性、机械性能。
-应用:电子器件、传感器、导电涂料、储能装置等领域。
3. 陶瓷基复合材料:
-特点:高温稳定性、硬度高、耐磨损、耐腐蚀。
-应用:热障涂层、高温结构部件、耐磨材料等领域。
4. 纳米复合材料:
-特点:具有纳米尺度的特殊性能,如增强力、导电性、光学性能等。
-应用:电子器件、光电子器件、医疗设备、环境传感器等领域。
5. 高分子复合材料:
-特点:轻质、可塑性好、耐化学腐蚀。
-应用:航空航天、汽车工业、建筑材料、包装材料等领域。
6. 金属基复合材料:
-特点:高强度、高硬度、耐磨损、导热性能好。
-应用:航空航天、汽车工业、电子器件、机械零部件等领域。
7. 智能复合材料:
-特点:具有响应和自适应性能,在外界刺激下产生特定的响应。
-应用:智能结构、传感器、医疗器械、防护材料等领域。
这只是一些功能复合材料的常见类型及其应用领域,实际应用中还会有更多不同类型的功能复合材料出现。
功能复合材料的广泛应用为各个领域带来了新的解决方案,提高了产品的性能、效率和可持续性。
高中化学复合材料知识点总结
高中化学复合材料知识点总结复合材料的结构通常是一个相为连续相,称为基体;基体的作用是将增强体粘合成整体并使复合材料具有一定的形状,传递外界作用力、保护增强体免受外界的各种侵蚀破坏作用。
当然也决定复合材料的某些性能和加工工艺。
高中学习网小编为您带来高中化学复合材料知识点,希望对大家有所帮助!高中化学复合材料知识点(一)1、复合材科的定义、组分功能和作用:定义:由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料。
复合后的产物为固体时才称为复合材料,为气体或液体不能称为复合材料。
组分:其组分相对独立,通常有一相连续相,称为基体,另一相分散相,称为增强相(增强体)。
功能和作用:复合材料既可以保持原材料的特点,又能发挥组合后的新特征,可以根据需要进行设计,从而最合理地达到使用所要求的性能。
2、复合材料的命名强调基体,以基体材料的名称为主,如树脂基复合材料,金属基复合材料,陶瓷基复合材料等;强调增强体,以增强体材料的名称为主,如玻璃纤维增强复合材料,碳纤维增强复合材料,陶瓷颗粒增强复合材料;基体材料与增强体材料名称并用,如玻璃纤维增强环氧树脂复合材料(玻璃钢)。
3、复合材料的分类方式按基体材料类型分:聚合物基复合材料,金属基复合材料,无机非金属基复合材料;按增强材料种类分:玻璃纤维复合材料,碳纤维复合材料,有机纤维复合材料,金属纤维复合材料,陶瓷纤维复合材料;按增强材料形态分:连续纤维复合材料,短纤维复合材料,粒状填料复合材料,编制复合材料;按用途分:结构复合材料,功能复合材料;4、常用的基体材料及各自的适用范围轻金属基体(主要包括铝基和镁基),用于450℃左右;钛合金及钛铝金属间化合物作基体的复合材料,适用温度650℃左右,镍、钴基复合材料可在1200℃使用。
5、常用热固性基体复合材料:环氧树脂,热固性聚酰亚胺树脂。
常用热塑性基体复合材料:聚醚醚酮,聚苯硫醚,聚醚砜,热塑性聚酰亚胺。
常用陶瓷基体复合材料:玻璃,氧化物陶瓷,非氧化物陶瓷,无机胶凝材料;6、玻璃和玻璃陶瓷的定义及不同玻璃是无机材料经高温熔融、冷却硬化而得到的一种非晶态固体;玻璃陶瓷是将特定组成的玻璃进行晶化热处理,在玻璃内部均匀析出大量微小晶体并进一步长大,形成致密的微晶相;玻璃相充填于晶界,得到的像陶瓷一样的多晶固体材料。
教学课件:第六章-复合材料层合板的湿热效应
复合材料层合板的湿热效应涉及到多个学科领域,如材料科学、物理学、化学和工程学等。因此,需要 加强跨学科合作,整合各学科的优势资源和技术手段,共同推进复合材料层合板湿热效应的研究进展。
THANKS FOR WATCHING
感谢您的观看
主要包括湿气的吸附、扩散和传 递,这些过程主要依赖于材料的 孔隙结构和湿度梯度。
化学过程
在某些情况下,湿气可能与复合 材料层合板中的组分发生化学反 应,导致材料的化学性质发生变 化。
04 复合材料层合板的湿热性 能测试
湿热性能测试的方法与标准
测试方法
采用标准ASTM D7379-17,通过在 湿热环境中对复合材料层合板进行周 期性温度和湿度循环,观察其性能变 化。
03 湿热效应的原理与影响
湿气的吸附与扩散
01
02
03
湿气吸附
当湿气与复合材料层合板 接触时,湿气分子会吸附 到材料的表面和孔隙中。
湿气扩散
吸附在材料中的湿气分子 会随着时间的推移,从高 湿度区域向低湿度区域扩 散。
湿度传递
湿气在复合材料层合板中 的传递是一个复杂的过程, 涉及到扩散、吸附和解吸 等物理和化学过程。
复合材料层合板的应用领域
• 总结词:复合材料层合板因其优异的性能和可定制的特点,在航空航天、 汽车、船舶、体育器材等领域得到了广泛应用。
• 详细描述:复合材料层合板因其高强度、高刚度、耐腐蚀、抗疲劳等优 异性能,在许多领域都有着广泛的应用。在航空航天领域,复合材料层 合板被用于制造飞机和卫星的结构件和蒙皮,以提高飞行器的性能和安 全性。在汽车领域,复合材料层合板被用于制造车身面板、车底板和发 动机罩等部件,以提高车辆的外观和性能。在船舶领域,复合材料层合 板被用于制造船体和甲板等部件,以提高船舶的耐腐蚀性和航行效率。 在体育器材领域,复合材料层合板被用于制造球拍、滑雪板、自行车等 运动器材,以提高运动员的成绩和安全性。
第六章 功能复合材料
压力-发光 电场-发光 (场致发光)
压电复合材料
• 压电陶瓷和聚合物基体按照一定的联接方 式、一定的体积比例和一定的空间几何分 布复合而成。
• 在电场的作用下,可以引起电介质中带电 粒子的相对位移而发生极化。但是,在某 些电介质晶体中,也可以通过纯粹的机械 作用(拉应力、压应力或切应力)而发生极化, 并导致介质两端表面内出现符号相反的束 缚电荷,其电荷密度与外力成比例。这种 由于机械力的作用而使电介质晶体产生极 化并形成表面荷电的效应,称为压电效应。 晶体的这一性质就叫压电性。
1-3型水泥基压电复合材料
• 1-3型水泥基压电复合材料是由一维的压电 陶瓷柱平行地排列于三维连通的水泥基体 中而构成的两相压电复合材料。这种复合 材料集中了各相材料的优点,互补了单相的 缺点,具有低声阻抗、高机电耦合系数和低 机械品质因数等优点,更重要的是通过调节 压电陶瓷柱的体积分数及形状参数便可使 复合材料的声阻抗与混凝土材料的声阻抗 相匹配,从而有效地解决智能材料在土木工 程中的相容性问题。
压电陶瓷弯曲变形器
压电陶瓷风扇和继电器
压电振动加速计
0-3型压电复合材料
• 由不连续的陶瓷颗粒分散于三维连通 的聚合体基体中形成的。 • 可以做成薄片、棒或线材。
• 浇注树脂是非常关键的步骤,为了使树脂与 PZT柱结合紧密,树脂与PZT柱的界面上不 能存在气孔,因为气孔的存在易使声波产生 全反射,而且会导致力的传递不连续。因此, 要求树脂的流动性好,固化时间长。
功能复合材料的主要类型
功能特征 磁功能 复合材料 主要类型 屏蔽复合材料 吸波复合材料 透波复合材料 聚合物基导电复合材料 本征导电聚合物材料 压电复合材料 陶瓷基导电复合材料 水泥基导电复合材料 金属基导电复合材料 导电纳米复合材料 超导复合材料 减少电磁波对信息 用途 系统的干扰、减弱 吸收或衰减入射的 柔韧磁体、磁记录 电磁波对人体健康 电磁波,使其因干 隐身材料 的损害。 涉而消失或将其电 雷达罩、天线罩 磁能转换为其他形 屏蔽 式的能量。 防静电、开关 压电传感器 高压绝缘 建筑物绝缘 高强、耐热导电材料 锂电池 医用核磁成像技术
功能性复合材料
目录一、功能复合材料的设计原则 (3)二、功能复合材料的设计特点 (4)1)具有提高材料优值的广泛途径和自由度 (4)2)可利用复合效应创造新型复合功能材料 (5)三、复合型功能材料种类介绍 (5)1、压电复合材料 (5)1.1压电效应 (6)1.2压电复合材料研究概况 (7)1.3压电复合材料的制造方法 (8)1.4压电材料应用 (11)1.4.1换能器 (11)1.4.2压电驱动器 (12)1.4.3传感器上的应用 (12)1.4.4在机器人接近觉中的应用 (13)1.5.压电材料新应用 (14)1.5.1“人群农场”为火车站供电 (14)1.5.2发电地板 (15)1.5.3发电背包为便携式电子设备供电 (16)2、导电复合材料 (17)2.1、导电复合材料的及分类用途 (19)2.2、制备方法 (19)2.2.1填充型导电聚合物复合材料 (20)2.2.2金属纤维填充型导电复合材料 (20)2.3抗静电和导电领域 (22)2.4压敏导电胶 (23)2.5.发展趋势 (23)3、磁性复合材料 (24)3.1复合型磁性复合材料 (25)3.2磁性复合材料的种类 (26)3.3磁性复合材料的应用 (28)4、摩擦功能复合材料 (29)4.1纳米陶瓷摩擦复合材料分类 (30)5、阻尼功能复合材料 (33)5.1 阻尼材料的发展历史 (34)5.2 阻尼机理 (34)5.3 分类 (35)5.4 复合阻尼材料的研究现状 (35)5.5 展望 (37)6、机敏复合材料与智能复合材料 (37)7、自诊断机敏复合材料 (38)8、自愈合或自修复机敏复合材料 (38)9、智能复合材料 (39)9.1、智能复合材料的制备工艺方法 (39)9.1.1 粒子复合 (39)9.1.2 薄膜复合 (39)9.1.3 纳米级及分子复合 (40)功能性复合材料摘要随着经济的迅速发展,人们对材料的需求日益增加。
为了满足这些现代技术对材料的需求,世界各国都非常重视功能材料的研究和开发。
第六章 复合材料 材料科学基础课件
纤维增强复合材料的机理:
1。微细的增强纤维因直径较小,产生裂纹的几率降低。
2。纤维在基体中,彼此隔离,纤维表面受到基体的保, 护,不易受到损伤,不易在承载中产生裂纹,增大承载力。
3。纤维在基体中,即使有些裂纹会断裂,但基体能阻止 裂纹扩展。
三.聚合基粒子复合材料
1. 粒子增强聚合物 (1).电绝缘材料 (2).钙塑材料 聚氯乙烯塑料.聚乙烯钙塑料和聚丙烯钙塑料 (3).耐磨材料 (4).粒子增强橡胶 主要的补强剂是炭黑 2. 粒子分散质增强机理 粒子分散质增强机理认为.填料粒子的活性表面能与若干高分子链 相结合形成一种交联结构.为了提高增强效果,可对填料粒子进行
与则,适合于 容易产生气泡 长纤维增强体系
B-Al,SiC-Al,C-Al,WAl,
温度低,纤维损伤小 基体有限制,容易 W-Ni,W-Cu, B-Al, 产生气泡,效率低
不损伤纤维
容易产生气泡,效 Be-Al, B-Al, C-Al 率低
纤维取向规则,浸润好, 时间较长 温度较低,界面反应不 严重
纤维增强金属基复合材料界面的类型 I。纤维与基体互不反应、互不溶解的界面。 II。纤维与基体不反应、但相互溶解的界面。 III。纤维与基体反应形成界面反应层。
界面结合的类型
I。机械结合:借助增强纤维表面凹凸不平的形态而产生的
机械铰合和基体与纤维之间的摩擦阻力形成。
II。溶解与侵润结合:液态金属对增强纤维的侵润,而
三.高性能纤维增强塑料
用各种高强度.高模量纤维来增强高强聚合物,可得到比强度高,刚 性好,抗蠕变的高性能复合材料. 1. 碳纤维增强聚合物复合材料
碳纤维增强环氧是强度,刚度,耐热性均好的复合材料.质轻而且 耐腐蚀,缺点是造价高 2. 芳香族聚酰胺纤维增强塑料 即芳纶纤维,与树脂基体相容性好,具有优异的性能且价格低于碳 纤维复合材料,具有发展前途