用MATLAB解插值和曲线拟合问题

合集下载

matlab插值法拟合曲线

matlab插值法拟合曲线

matlab插值法拟合曲线
在MATLAB中,一维插值函数为interp1(),其调用格式为:
Y1=interp1(X,Y,X1,method)。

其中,X、Y是两个等长的已知向量,分别表示采样点和采样值;X1是一个向量或标量,表示要插值的点;method参数用于指定插值方法,常用的取值有以下四种:
1. linear:线性插值,默认方法。

将与插值点靠近的两个数据点用直线连接,然后在直线上选取对应插值点的数据。

2. nearest:最近点插值。

选择最近样本点的值作为插值数据。

3. pchip:分段3次埃尔米特插值。

采用分段三次多项式,除满足插值条件,还需满足在若干节点处相邻段插值函数的一阶导数相等,使得曲线光滑的同时,还具有保形性。

4. spline:3次样条插值。

每个分段内构造一个三次多项式,使其插值函数除满足插值条件外,还要求在各节点处具有连续的一阶和二阶导数。

曲线拟合可以使用cftool工具,首先导入X和Y的数据,然后可以选择残差图和置信区间分布图。

(最新整理)matlab实现插值法和曲线拟合

(最新整理)matlab实现插值法和曲线拟合

matlab实现插值法和曲线拟合编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(matlab实现插值法和曲线拟合)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为matlab实现插值法和曲线拟合的全部内容。

插值法和曲线拟合电子科技大学摘要:理解拉格朗日多项式插值、分段线性插值、牛顿前插,曲线拟合,用matlab编程求解函数,用插值法和分段线性插值求解同一函数,比较插值余项;用牛顿前插公式计算函数,计算函数值;对于曲线拟合,用不同曲线拟合数据。

关键字:拉格朗日插值多项式;分段线性插值;牛顿前插;曲线拟合引言:在数学物理方程中,当给定数据是不同散点时,无法确定函数表达式,求解函数就需要很大的计算量,我们有多种方法对给定的表格函数进行求解,我们这里,利用插值法和曲线拟合对函数进行求解,进一步了解函数性质,两种方法各有利弊,适合我们进行不同的散点函数求解。

正文:一、插值法和分段线性插值1拉格朗日多项式原理对某个多项式函数,已知有给定的k + 1个取值点:其中对应着自变量的位置,而对应着函数在这个位置的取值。

假设任意两个不同的x j都互不相同,那么应用拉格朗日插值公式所得到的拉格朗日插值多项式为:其中每个为拉格朗日基本多项式(或称插值基函数),其表达式为:[3]拉格朗日基本多项式的特点是在上取值为1,在其它的点上取值为0。

2分段线性插值原理给定区间[a,b], 将其分割成a=x 0 <x 1 <…<x n =b , 已知函数y= f (x ) 在这些插值结点的函数值为y k =f (x k )(k=0,1,…,n)求一个分段函数I h (x), 使其满足:(1) I h (x k )=y k ,(k=0,1,…,n) ;(2) 在每个区间[x k ,x k+1 ] 上,I h (x )是个一次函数.易知,I h (x)是个折线函数, 在每个区间[x k ,x k+1 ]上,(k=0,1,…,n )k 1k k1k 1k k 1k k k ,1)()()(x x x x x f x x x x x f x L --+--=++++,于是, I h (x)在[a,b]上是连续的,但其一阶导数是不连续的。

Matlab中的数据拟合与曲线拟合技巧

Matlab中的数据拟合与曲线拟合技巧

Matlab中的数据拟合与曲线拟合技巧在科学研究和工程应用中,数据拟合和曲线拟合是常见的任务。

Matlab作为一种强大的数值计算和数据分析工具,提供了丰富的函数和工具箱来进行数据拟合和曲线拟合。

本文将介绍一些常用的数据拟合和曲线拟合技巧,让读者能够更好地利用Matlab来处理自己的数据。

首先,我们来看一下最常用的数据拟合技术之一——多项式拟合。

Matlab提供了polyfit函数来进行多项式拟合。

这个函数接受两个输入参数:x和y,分别为要拟合的数据点的横坐标和纵坐标。

我们可以根据实际需求选择合适的多项式阶数,然后调用polyfit函数,即可得到拟合后的多项式系数。

可以使用polyval函数来根据多项式系数计算拟合后的y值。

这样,我们就可以在Matlab中方便地进行数据拟合和预测了。

除了多项式拟合,Matlab还提供了其他常见的数据拟合方法,如指数拟合、对数拟合和幂函数拟合等。

这些方法在Matlab中的实现也非常简单,大部分都可以通过调用相关函数实现。

对于指数拟合,可以使用fit函数和exp2fit函数来进行拟合。

对于对数拟合,可以使用fit函数和log2fit函数来进行拟合。

对于幂函数拟合,可以使用fit函数和powerfit函数来进行拟合。

这些函数的使用方法大体相同,都需要提供拟合的数据点x和y,然后调用相应的函数即可得到拟合后的结果。

另外,Matlab还提供了一些高级的数据拟合和曲线拟合方法,如非线性最小二乘拟合和样条插值拟合。

非线性最小二乘拟合是一种非常灵活的拟合方法,可以拟合各种非线性函数。

Matlab提供了lsqcurvefit函数来实现非线性最小二乘拟合。

这个函数需要提供一个函数句柄,表示要拟合的函数模型,然后根据拟合的数据点进行拟合。

通过修改函数模型和参数的初始值,可以得到不同的拟合结果。

样条插值拟合是一种光滑曲线的拟合方法,可以更好地拟合离散数据点。

Matlab提供了spline函数来进行样条插值拟合。

(完整版)Matlab学习系列13.数据插值与拟合

(完整版)Matlab学习系列13.数据插值与拟合

13. 数据插值与拟合实际中,通常需要处理实验或测量得到的离散数据(点)。

插值与拟合方法就是要通过离散数据去确定一个近似函数(曲线或曲面),使其与已知数据有较高的拟合精度。

1.如果要求近似函数经过所已知的所有数据点,此时称为插值问题(不需要函数表达式)。

2.如果不要求近似函数经过所有数据点,而是要求它能较好地反映数据变化规律,称为数据拟合(必须有函数表达式)。

插值与拟合都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数。

区别是:【插值】不一定得到近似函数的表达形式,仅通过插值方法找到未知点对应的值。

【拟合】要求得到一个具体的近似函数的表达式。

因此,当数据量不够,但已知已有数据可信,需要补充数据,此时用【插值】。

当数据基本够用,需要寻找因果变量之间的数量关系(推断出表达式),进而对未知的情形作预测,此时用【拟合】。

一、数据插值根据选用不同类型的插值函数,逼近的效果就不同,一般有:(1)拉格朗日插值(lagrange插值)(2)分段线性插值(3)Hermite(4)三次样条插值Matlab 插值函数实现:(1)interp1( ) 一维插值(2)intep2( ) 二维插值(3)interp3( ) 三维插值(4)intern( ) n维插值1.一维插值(自变量是1维数据)语法:yi = interp1(x0, y0, xi, ‘method’)其中,x0, y0为原离散数据(x0为自变量,y0为因变量);xi为需要插值的节点,method为插值方法。

注:(1)要求x0是单调的,xi不超过x0的范围;(2)插值方法有‘nearest’——最邻近插值;‘linear’——线性插值;‘spline’——三次样条插值;‘cubic’——三次插值;默认为分段线性插值。

例1 从1点12点的11小时内,每隔1小时测量一次温度,测得的温度的数值依次为:5,8,9,15,25,29,31,30,22,25,27,24.试估计每隔1/10小时的温度值。

Matlab数据插值与拟合

Matlab数据插值与拟合

end
end
end
第16页,共49页。
例4-3 根据下表的数据点求出其拉格朗日 插值多项式,并计算当x=1.6时y的值。
x
1
y 0.8415
1.2
0.9320
1.8
2. 5
0.9738 0.5985
4
-0.7568
解:
>> x=[1 1.2 1.8 2.5 4]; >> y=[0.8415 0.9320 0.9738 0.5985 -0.7568]; >> f=language(x,y)
同‘pchip’,三次Hermite多项式插值
第5页,共49页。
1.Linear(分段线性插值)
它 在的区算间法[xi是,xi在+1]每上个的小子区插间值[多xi,x项i+式1]上为采:用简单的线性插值。
Fi
x xi1 xi xi1
f
(xi )
x xi xi1 xi
f (xi1)
由此整个区间[xi,xi+1]上的插值函数为:
邻近的已知点的线性函数插值计算该区间内插值点上的函数
值。
第11页,共49页。
例4-2 用其他一维插值方法对以下7个离散数据点 (1,3.5)、(2,2.1)、(3,1.3)、(4.0.8)、(5,2.9)、(6,4.2)、(7,5.7
进行一维插值方法。
解:在MATLAB命令窗口中输入以下命令:
>> x=[1 2 3 4 5 6 7];
end;
%计算拉格朗日基函数
f = f + l; simplify(f);
%计算拉格朗日插值函数 %化简
if(i==n)

MATLAB中的曲线拟合与插值

MATLAB中的曲线拟合与插值

MATLAB 中的曲线拟合和插值在大量的使用领域中,人们经常面临用一个分析函数描述数据(通常是测量值)的任务。

对这个问题有两种方法。

在插值法里,数据假定是正确的,要求以某种方法描述数据点之间所发生的情况。

这种方法在下一节讨论。

这里讨论的方法是曲线拟合或回归。

人们设法找出某条光滑曲线,它最佳地拟合数据,但不必要经过任何数据点。

图11.1说明了这两种方法。

标有'o'的是数据点;连接数据点的实线描绘了线性内插,虚线是数据的最佳拟合。

11.1 曲线拟合曲线拟合涉及回答两个基本问题:最佳拟合意味着什么?应该用什么样的曲线?可用许多不同的方法定义最佳拟合,并存在无穷数目的曲线。

所以,从这里开始,我们走向何方?正如它证实的那样,当最佳拟合被解释为在数据点的最小误差平方和,且所用的曲线限定为多项式时,那么曲线拟合是相当简捷的。

数学上,称为多项式的最小二乘曲线拟合。

如果这种描述使你混淆,再研究图11.1。

虚线和标志的数据点之间的垂直距离是在该点的误差。

对各数据点距离求平方,并把平方距离全加起来,就是误差平方和。

这条虚线是使误差平方和尽可能小的曲线,即是最佳拟合。

最小二乘这个术语仅仅是使误差平方和最小00.20.40.60.81-2024681012xy =f (x )Second O rder C urv e Fitting图11.1 2阶曲线拟合在MATLAB 中,函数polyfit 求解最小二乘曲线拟合问题。

为了阐述这个函数的用法,让我们以上面图11.1中的数据开始。

» x=[0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1]; » y=[-.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2];为了用polyfit ,我们必须给函数赋予上面的数据和我们希望最佳拟合数据的多项式的阶次或度。

如果我们选择n=1作为阶次,得到最简单的线性近似。

Matlab中的曲线拟合与插值技巧

Matlab中的曲线拟合与插值技巧

Matlab中的曲线拟合与插值技巧在数据科学和工程领域中,曲线拟合和插值技术是常用的数学方法。

在Matlab 中,有许多工具和函数可用于处理这些技术。

本文将讨论Matlab中的曲线拟合和插值技巧,并介绍一些实际应用案例。

一、曲线拟合技术曲线拟合是根据已知数据点来构造一个与这些点最匹配的曲线模型。

在Matlab 中,常用的曲线拟合函数包括polyfit和lsqcurvefit。

1. polyfit函数polyfit函数是Matlab中一个功能强大的多项式拟合函数。

它可以拟合多项式曲线模型,并通过最小二乘法找到最佳拟合系数。

例如,我们有一组数据点(x,y),我们想要拟合一个二次多项式曲线来描述这些数据。

可以使用polyfit函数:```matlabx = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];degree = 2;coefficients = polyfit(x, y, degree);```在上述例子中,degree参数设置为2,表示拟合一个二次多项式曲线。

polyfit 函数将返回一个包含拟合系数的向量,可以用来构造拟合曲线。

2. lsqcurvefit函数lsqcurvefit函数是Matlab中一个用于非线性最小二乘拟合的函数。

与polyfit函数不同,lsqcurvefit函数可以用于拟合任意曲线模型,不局限于多项式。

例如,我们想要拟合一个指数函数曲线来拟合数据:```matlabx = [1, 2, 3, 4, 5];y = [1.1, 2.2, 3.7, 6.5, 12.3];model = @(params, x) params(1)*exp(params(2)*x);params0 = [1, 0];estimated_params = lsqcurvefit(model, params0, x, y);```在上述例子中,model是一个函数句柄,表示要拟合的曲线模型。

插值与拟合的MATLAB实现

插值与拟合的MATLAB实现

插值与拟合的MATLAB实现插值和拟合是MATLAB中常用的数据处理方法。

插值是通过已知数据点之间的数值来估计未知位置的数值。

而拟合则是通过已知数据点来拟合一个曲线或者函数,以便于进行预测和分析。

插值方法:1.线性插值:使用MATLAB中的interp1函数可以进行线性插值。

interp1函数的基本语法为:yinterp = interp1(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。

函数将根据已知数据点的线性关系,在xinterp位置返回相应的yinterp值。

2.拉格朗日插值:MATLAB中的lagrangepoly函数可以使用拉格朗日插值方法。

lagrangepoly的基本语法为:yinterp = lagrangepoly(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。

函数将根据拉格朗日插值公式,在xinterp位置返回相应的yinterp值。

3.三次样条插值:使用MATLAB中的spline函数可以进行三次样条插值。

spline函数的基本语法为:yinterp = spline(x, y, xinterp),其中x和y为已知数据点的向量,xinterp为待插值的位置。

函数将根据已知数据点之间的曲线关系,在xinterp位置返回相应的yinterp值。

拟合方法:1.多项式拟合:MATLAB中的polyfit函数可以进行多项式拟合。

polyfit的基本语法为:p = polyfit(x, y, n),其中x和y为已知数据点的向量,n为要拟合的多项式的次数。

函数返回一个多项式的系数向量p,从高次到低次排列。

通过使用polyval函数,我们可以将系数向量p应用于其他数据点,得到拟合曲线的y值。

2.曲线拟合:MATLAB中的fit函数可以进行曲线拟合。

fit函数的基本语法为:[f, goodness] = fit(x, y, 'poly2'),其中x和y为已知数据点的向量,'poly2'表示要拟合的曲线类型为二次多项式。

Matlab 曲面插值和拟合

Matlab 曲面插值和拟合

Matlab 曲面插值和拟合插值和拟合都是数据优化的一种方法,当实验数据不够多时经常需要用到这种方法来画图。

在matlab中都有特定的函数来完成这些功能。

这两种方法的确别在于:当测量值是准确的,没有误差时,一般用插值;当测量值与真实值有误差时,一般用数据拟合。

插值:对于一维曲线的插值,一般用到的函数yi=interp1(X,Y,xi,method) ,其中method包括nearst,linear,spline,cubic。

对于二维曲面的插值,一般用到的函数zi=interp2(X,Y,Z,xi,yi,method),其中method也和上面一样,常用的是cubic。

拟合:对于一维曲线的拟合,一般用到的函数p=polyfit(x,y,n)和yi=polyval(p,xi),这个是最常用的最小二乘法的拟合方法。

对于二维曲面的拟合,有很多方法可以实现,但是我这里自己用的是Spline Toolbox里面的函数功能。

具体使用方法可以看后面的例子。

对于一维曲线的插值和拟合相对比较简单,这里就不多说了,对于二维曲面的插值和拟合还是比较有意思的,而且正好胖子有些数据想让我帮忙处理一下,就这个机会好好把二维曲面的插值和拟合总结归纳一下,下面给出实例和讲解。

原始数据x=[1:1:15];y=[1:1:5];z=[0.2 0.24 0.25 0.26 0.25 0.25 0.25 0.26 0.26 0.29 0.25 0.29;0.27 0.31 0.3 0.3 0.26 0.28 0.29 0.26 0.26 0.26 0.26 0.29;0.41 0.41 0.37 0.37 0.38 0.35 0.34 0.35 0.35 0.34 0.35 0.35;0.41 0.42 0.42 0.41 0.4 0.39 0.39 0.38 0.36 0.36 0.36 0.36;0.3 0.36 0.4 0.43 0.45 0.45 0.51 0.42 0.4 0.37 0.37 0.37];z是一个5乘12的矩阵。

插值拟合MATLAB实现

插值拟合MATLAB实现

3.3 插值与拟合的MATLAB实现简单的插值与拟合可以通过手工计算得出,但复杂的只能求助于计算机了。

3.3.1 线性插值在MATLAB 中,一维的线性插值可以用函数interpl 来实现。

函数interpl 的调用格式如下:yi = interpl ( x , y , xi ) ,其中yi 表示在插值向量xi 处的函数值,x 与y 是数据点。

这个函数还有如下两种形式:yi = interpl(y , xi),省略x,x 此时为l : N,其中N 为向量y 的长度。

yi = interpl(x , y , xi , method ) ,其中method 为指定的插值方法,可取以下凡种:nearest :最近插值。

linear :线性插值。

spline :三次样条插值。

cubic :三次插值。

注意:对于上述的所有的调用格式,都要求向量x 为单调。

例如:对以下数据点:( 2 * pi , 2 ) , ( 4 * pi , 3 ) , ( 6 * pi , 5 ) , ( 8 * pi , 7 ) , ( 10 * pi , 11 ) , ( 12 * pi , 13 ) , ( 14 * pi , 17) 进行插值,求x = pi , 6 的函数值。

>> x=linspace(0, 2 * pi, 8 );>> y=[2, 3, 5, 7, 11, 13, 17, 19 ];>> xl=[pi , 6 ];>> yl=interpl(x, y, xl)yl =90000 1836903.3.2 Lagrange 插值Lagrange 插值比较常用,是MATLAB 中相应的函数,但根据Lagrange 插值函数公式,可以用M 文件实现:Lagrange.mfunctions = Larange(x, y, x0 )% Lagrange 插值,x 与y 为已知的插值点及其函数值,x0 为需要求的插值点的值nx = length( x );ny = length( y );if nx ~=nywaming( ‘向量x 与y 的长度应该相同’)return;endm = length ( x0 ) ;%按照公式,对需要求的插值点向量x0 的元素进行计算for i = l: mt =0.0;for j = l : nxu = 1.0;for k = l : nxif k~=ju=j * ( x0( i )-x ( k ) ) / ( x( j )-( k ) ) ;endendt = t + u * y( j );ends( i ) = t ;endreturn例如:对(l , 2 ) , ( 2 , 4 ) , ( 3 , 6 ) , ( 4 , 8 ) , ( 5 , 10 ) 进行Lagrange 插值,求x = 23 , 3.7 的函数值。

matlab 软件拟合与插值运算实验报告

matlab 软件拟合与插值运算实验报告

实验6 数据拟合&插值一.实验目的学会MATLAB软件中软件拟合与插值运算的方法。

二.实验内容与要求在生产和科学实验中,自变量x与因变量y=f(x)的关系式有时不能直接写出表达式,而只能得到函数在若干个点的函数值或导数值。

当要求知道观测点之外的函数值时,需要估计函数值在该点的值。

要根据观测点的值,构造一个比较简单的函数y=t (x),使函数在观测点的值等于已知的数值或导数值,寻找这样的函数t(x),办法是很多的。

根据测量数据的类型有如下两种处理观测数据的方法。

(1)测量值是准确的,没有误差,一般用插值。

(2)测量值与真实值有误差,一般用曲线拟合。

MATLAB中提供了众多的数据处理命令,有插值命令,拟合命令。

1.曲线拟合>> x=[0.5,1.0,1.5,2.0,2.5,3.0];>> y=[1.75,2.45,3.81,4.80,7.00,8.60];>> p=polyfit (x,y,2);>> x1=0.5:0.05:3.0;>> y1=polyval(p,x1 );>> plot(x,y,'*r',x1,y1,'-b')2.一维插值>> year=[1900,1910,1920,1930,1940,1990,2000,2010];>> product = [75.995,91.972,105.711,123.203,131.669,249.633,256.344,267.893 ]; >> p2005=interp1(year,product,2005)p2005 =262.1185>> y= interp1(year,product,x, 'cubic');>> plot(year,product,'o',x,y)3.二维插值>> years=1950:10:1990;>> service=10:10:30;>>wage=[150.697,199.592,187.625;179.323,195.072,250.287;203.212,179.092,322.767;226.505,15 3.706,426.730;249.636,120.281,598.243];>> w=interp2(service,years,wage,15,1975)w =190.6288[例1.98]x=1:6;y=1:4;t=[12,10,11,11,13,15;16,22,28,35,27,20;18,21,26,32,28,25;20,25,30,33,32,30];subplot(1,2,1)mesh(x,y,t)x1=1:0.1:6;y1=1:0.1:4;[x2,y2]=meshgrid(x1,y1);t1=interp2(x,y,t,x2,y2,'cubic');subplot(1,2,2)mesh(x1,y1,t1)三,练习与思考1)已知x=[1.2,1.8,2.1,2.4,2.6,3.0,3.3],y=[4.85,5.2,5.6,6.2,6.5,7.0,7.5],求对x和y进行6阶多项式拟合的系数.x=[1.2,1.8,2.1,2.4,2.6,3.0,3.3];y=[4.85,5.2,5.6,6.2,6.5,7.0,7.5];>> p=polyfit(x,y,6)p =-2.0107 29.0005 -170.6763 523.2180 -878.3092 763.9307 -263.4667x1=0.5:0.05:3.0;>> y1=polyval(p,x1);>> plot(x,y,'*r',x1,y1,'-b')2)分别用2,3,4,5阶多项式来逼近[0,3]上的正弦函数sin x,并做出拟合曲线及sin x函数曲线图,了解多项式的逼近程度和有效拟合区间随多项式的阶数有何变化.(2)2阶:>> x=0:0.01:3;>> y=sin(x);>> p=polyfit(x,y,2);>> x1=0:0.01:3;>> y1=polyval(p,x1);>> plot(x,y,'*r',x1,y1,'-b')>>3阶:>> p=polyfit(x,y,3); >> x1=0:0.01:3;>> y1=polyval(p,x1); >> plot(x,y,'*r',x1,y1,'-b') >>4阶:>> p=polyfit(x,y,4); >> x1=0:0.01:3;>> y1=polyval(p,x1); >> plot(x,y,'*r',x1,y1,'-b') >>5阶:>> p=polyfit(x,y,5); >> x1=0:0.01:3;>> y1=polyval(p,x1); >> plot(x,y,'*r',x1,y1,'-b') >>3)已知x=[0.1,0.8,1.3,1.9,2.5,3.1],y=[1.2,1.6,2.7,2.0,1.3,0.5],用不同的方法求x=2点的插值,并分析所得结果有何不同.>> x=[0.1,0.8,1.3,1.9,2.5,3.1];y=[1.2,1.6,2.7,2.0,1.3,0.5];>> p=interp1(x,y,2)p =1.8833>> x=[0.1,0.8,1.3,1.9,2.5,3.1];y=[1.2,1.6,2.7,2.0,1.3,0.5];>> z=interp1(x,y,2,'cubic')z =1.8844四,提高内容1.三维数据插值[x,y,z,v]=flow(20);[xx,yy,zz]=meshgrid(0.1:0.25:10,-3:0.25:3,-3:0.25:3); vv=interp3(x,y,z,v,xx,yy,zz);slice(xx,yy,zz,vv,[6,9.5],[1,2],[-2,0.2]);shading interpcolormap cool3.三次样条数据插值x=[0 2 4 5 6 12 12.8 17.2 19.9 20];y=exp(x).*sin(x);xx=0:.25:20;yy=spline(x,y,xx);plot(x,y,'o',xx,yy)。

Matlab中的数据插值技术

Matlab中的数据插值技术

Matlab中的数据插值技术1. 引言在科学研究和工程应用中,我们常常遇到需要补全或者重构丢失的数据点的情况。

这时候数据插值技术就显得尤为重要了。

Matlab作为一种强大的数值计算软件,提供了多种数据插值的方法和函数,这篇文章将为大家介绍Matlab中常用的数据插值技术。

2. 线性插值线性插值是最直观和简单的插值方法之一。

它假设两个已知数据点之间的数据值是直线变化的,通过线性插值方法可以得到两个数据点之间任意位置的数据点值。

Matlab中的interp1函数就是用于线性插值的工具。

例如,我们有一组已知的数据点x和y,我们想要在两个相邻数据点之间插入10个数据点,可以使用以下代码实现:```matlabx = [1, 2, 3, 4];y = [5, 6, 8, 10];xi = linspace(1, 4, 10);yi = interp1(x, y, xi);```3. 插值曲线拟合除了线性插值外,插值曲线拟合是另一种常见的数据插值技术。

它在已知数据点之间通过拟合曲线来估计缺失数据点的值。

Matlab中的interp1函数还可以使用多项式拟合和样条插值方法来实现曲线拟合插值。

以下是一个使用样条插值的例子:```matlabx = [1, 2, 3, 4];y = [5, 6, 8, 10];xi = linspace(1, 4, 10);yi = interp1(x, y, xi, 'spline');```4. 最近邻插值最近邻插值是一种简单但有效的插值方法。

它假设新数据点的值与最近的已知数据点的值相同。

在Matlab中,可以使用interp1函数的`'nearest'`选项来进行最近邻插值。

以下是一个示例代码:```matlabx = [1, 2, 3, 4];y = [5, 6, 8, 10];xi = linspace(1, 4, 10);yi = interp1(x, y, xi, 'nearest');```5. 高级插值方法除了基本的插值方法外,Matlab还提供了一些高级的插值方法。

MATLAB中的插值与拟合方法详解

MATLAB中的插值与拟合方法详解

MATLAB中的插值与拟合方法详解篇一:介绍插值与拟合的概念及应用领域在科学研究和工程应用中,我们经常会遇到需要通过有限个已知数据点来推算出其它位置或数值的问题。

这种问题的解决方法通常可以分为两种:插值和拟合。

插值是指根据已知的离散数据点,在未知位置或数值上推算出一个函数值;而拟合则是根据已知的离散数据点,寻找一个函数模型来近似表示这些数据。

插值方法适用于数据点之间具有明显的数值关系的情况,如各种物理现象的测量数据、曲线绘制等。

拟合方法则适用于数据点之间存在较大离散度或复杂的关联关系的情况,例如统计分析、数据回归、信号处理等。

MATLAB作为一种强大的数值计算和可视化工具,提供了丰富的插值和拟合方法函数,使得我们能够更加高效地进行数据处理和分析。

接下来我们将详细介绍MATLAB中常用的插值和拟合方法。

篇二:插值方法详解插值方法在MATLAB中有多种实现方式,常用的有线性插值、多项式插值和样条插值。

1.线性插值线性插值是一种简单直接的插值方法,在已知的数据点间通过直线的插值来估计未知点的数值。

在MATLAB中,可以使用interp1函数来进行线性插值的计算。

该函数利用输入的数据点和未知点的坐标,返回未知点的插值结果。

2.多项式插值多项式插值是一种通过多项式函数来拟合数据点的插值方法。

MATLAB中的polyfit函数可以用来进行多项式的拟合计算。

这个函数通过最小二乘法来寻找一个多项式函数,使得该函数与给定的数据点最为接近。

3.样条插值样条插值是一种更加精确的插值方法,在MATLAB中可以使用interp1函数的'spline'选项来进行样条插值的计算。

样条插值通过分段函数形式来拟合数据,可以得到更加平滑和连续的插值结果。

篇三:拟合方法详解拟合方法主要有线性拟合、非线性拟合以及多项式拟合等。

1.线性拟合线性拟合是一种基于线性模型的拟合方法,它适用于数据点之间存在明确线性关系的情况。

在MATLAB中,可以使用polyfit函数来进行线性拟合计算。

MATLAB插值与拟合的几个函数整理

MATLAB插值与拟合的几个函数整理

MATLAB插值与拟合2015.4.19 19:21 【目录】1. 线性拟合函数:regress()2. 多项式曲线拟合函数:polyfit( )3. 多项式曲线求值函数:polyval( )4. 多项式曲线拟合的评价和置信区间函数:polyconf( )5. 稳健回归函数:robustfit( )§1曲线拟合实例:温度曲线问题气象部门观测到一天某些时刻的温度变化数据为:t 0 1 2 3 4 5 6 7 8 9 10T 13 15 17 14 16 19 26 24 26 27 29试描绘出温度变化曲线。

曲线拟合就是计算出两组数据之间的一种函数关系,由此可描绘其变化曲线及估计非采集数据对应的变量信息。

曲线拟合有多种方式,下面是一元函数采用最小二乘法对给定数据进行多项式曲线拟合,最后给出拟合的多项式系数。

1. 线性拟合函数:regress()调用格式:b=regress(y,X)[b,bint,r,rint,stats]= regress(y,X)[b,bint,r,rint,stats]= regress(y,X,alpha)说明:b=regress(y,X)返回X处y的最小二乘拟合值。

该函数求解线性模型:y=Xβ+ε;β是p´1的参数向量;ε是服从标准正态分布的随机干扰的n´1的向量;y为n´1的向量;X为n´p矩阵。

bint返回β的95%的置信区间。

r中为形状残差,rint中返回每一个残差的95%置信区间。

Stats向量包含R2统计量、回归的F值和p值。

例1:设y的值为给定的x的线性函数加服从标准正态分布的随机干扰值得到。

即y=10+x+ε;求线性拟合方程系数。

程序:x=[ones(10,1) (1:10)’]y=x*[10;1]+normrnd(0,0.1,10,1)[b,bint]=regress(y,x,0.05)结果:x =1 11 21 31 41 51 61 71 81 91 10y =10.956711.833413.012514.028814.885416.119117.118917.996219.032720.0175b =9.92131.0143bint =9.7889 10.05370.9930 1.0357 即回归方程为:y=9.9213+1.0143x2. 多项式曲线拟合函数:polyfit( )调用格式:p=polyfit(x,y,n)[p,s]= polyfit(x,y,n)说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。

数值分析插值与拟合实验

数值分析插值与拟合实验

数值分析插值与拟合实验数值分析是一门研究利用数字计算方法解决数学问题的学科。

插值与拟合是数值分析的重要内容之一,可以用于数据分析、信号处理以及数学建模等领域。

本实验将使用MATLAB软件进行插值与拟合的实验,主要包括插值多项式与拟合曲线的构造,以及评价拟合效果的方法。

实验一:插值多项式的构造1. Lagrange插值Lagrange插值是一种构造多项式来拟合已知数据点的方法。

给定n 个数据点(xi, yi),其中xi不相等,Lagrange插值多项式可以写成:P(x) = ∑(i=0 to n) yi * l_i(x)其中l_i(x)是Lagrange基函数,定义为:l_i(x) = ∏(j=0 to n,j!=i) (x-xj)/(xi-xj)通过计算l_i(x),然后将其乘以相应的数据点yi,最后相加就可以得到插值多项式P(x)。

2. Newton插值Newton插值使用差商的概念来构造插值多项式。

首先定义差商F[x0,x1,...,xn]如下:F[x0]=f(x0)F[x0,x1]=(f(x1)-f(x0))/(x1-x0)F[x0,x1,x2]=(F[x1,x2]-F[x0,x1])/(x2-x0)...F[x0,x1,...,xn] = (F[x1,x2,...,xn] - F[x0,x1,...,xn-1])/(xn-x0)其中f(x)是已知数据点的函数。

然后,利用差商来构造插值多项式:P(x) = ∑(i=0 to n) F[x0,x1,...,xi] * ∏(j=0 to i-1) (x-xj)通过计算差商F[x0,x1,...,xi]和对应的乘积∏(x-xj),最后相加得到插值多项式P(x)。

实验二:拟合曲线的构造1.多项式拟合多项式拟合是通过构造一个多项式函数来拟合已知数据点的方法。

假设给定n个数据点(xi, yi),可以使用多项式函数来表示拟合曲线:P(x) = a0 + a1*x + a2*x^2 + ... + an*x^n其中a0, a1, ..., an是待确定的系数。

曲线的插值与拟合matlab

曲线的插值与拟合matlab

在数学和统计学领域中,曲线的插值与拟合是一项重要的技术,它在数据分析、图像处理、工程计算等领域都有着广泛的应用。

曲线的插值与拟合可以帮助我们从有限的数据点中还原出连续的曲线,以便更好地理解数据的规律和特性。

1. 插值与拟合的概念在开始深入探讨曲线的插值与拟合之前,让我们先来了解一下这两个概念的含义。

插值是指通过已知数据点之间的连续函数,以得到介于已知数据点之间的数据点的值。

而拟合则是指通过已知数据点,找到拟合曲线以最好地逼近这些数据点。

2. 曲线插值的方法在实际操作中,我们可以使用不同的方法进行曲线的插值。

常见的方法包括线性插值、多项式插值、样条插值等。

在Matlab中,有丰富的函数库可以用来进行不同类型的曲线插值,例如interp1, interp2, interpn等,这些函数可以很方便地实现曲线的插值操作。

(1)线性插值线性插值是一种简单直接的插值方法,它通过已知的两个数据点之间的直线来逼近新的数据点。

虽然线性插值操作简单,但在一些情况下并不能很好地逼近数据的真实规律。

(2)多项式插值多项式插值是一种常用的插值方法,它通过已知数据点构造一个多项式函数来逼近数据。

在Matlab中,可以使用polyfit和polyval函数来实现多项式插值操作,通过调整多项式的阶数可以得到不同精度的逼近结果。

(3)样条插值样条插值是一种更加复杂但精确度更高的插值方法,它通过已知的数据点构造出一系列的局部插值函数来逼近数据。

在Matlab中,可以使用spline函数来进行样条插值操作,通过调整插值节点的数量和类型可以得到不同精度的逼近结果。

3. 曲线拟合的方法除了插值方法之外,曲线的拟合也是一种常用的数据处理方法。

在实际操作中,我们可以使用不同的方法来进行曲线的拟合。

常见的方法包括最小二乘法拟合、多项式拟合、非线性拟合等。

在Matlab中,有丰富的函数库可以用来进行不同类型的曲线拟合,例如polyfit, lsqcurvefit, nlinfit等,这些函数可以很方便地实现曲线拟合操作。

在Matlab中进行数据拟合与曲线拟合的基本方法

在Matlab中进行数据拟合与曲线拟合的基本方法

在Matlab中进行数据拟合与曲线拟合的基本方法数据拟合是一种通过数学函数描述和预测现有数据集的方法,而曲线拟合则是一种特定形式的数据拟合。

在实际应用中,数据拟合和曲线拟合广泛用于物理学、工程学、经济学等领域。

而Matlab是一个功能强大的数学计算软件,其中有许多用于数据拟合和曲线拟合的工具和函数。

一、数据拟合的基本方法1. 线性拟合线性拟合是最简单的数据拟合方法之一。

在Matlab中,可以使用polyfit函数进行线性拟合。

假设我们有一组数据点,可以使用polyfit函数拟合出一个一次多项式(直线),该多项式可以最小化与实际数据之间的距离。

2. 多项式拟合多项式拟合是数据拟合中常用的方法之一。

可以使用polyfit函数进行多项式拟合。

该函数可以拟合出一个n次多项式,n为用户设定的拟合阶数。

3. 曲线拟合曲线拟合是更一般的数据拟合方法。

它可以拟合各种形式的曲线,包括指数、对数等。

Matlab中提供了curvefit函数用于曲线拟合。

该函数可以使用非线性最小二乘法拟合各种形式的曲线。

二、曲线拟合的基本方法1. 直线拟合直线拟合是曲线拟合中最简单的方法之一。

在Matlab中,可以使用polyfit函数进行直线拟合。

和数据拟合中的线性拟合类似,直线拟合也可以求出最小二乘拟合的直线方程。

2. 非线性拟合非线性拟合可以拟合各种复杂的曲线。

在Matlab中,可以使用fit函数进行非线性拟合。

该函数可以拟合任意的自定义模型。

3. 傅里叶拟合傅里叶拟合是一种将信号分解为一系列基本谐波的方法,并根据基本谐波的振幅和相位进行拟合的方法。

在Matlab中,可以使用fft函数进行傅里叶拟合。

三、实例演示下面通过一个实例演示在Matlab中进行数据拟合与曲线拟合的基本方法。

假设我们有一组实际测量的温度数据,并希望拟合出一个合适的曲线来描述这组数据。

1. 首先,我们可以将实际数据点绘制在图上,以便观察数据的分布和趋势。

2. 接下来,我们可以使用polyfit函数进行线性拟合,拟合出一个最小二乘拟合的直线方程。

MATLAB中的数据插值与曲线拟合技术

MATLAB中的数据插值与曲线拟合技术

MATLAB中的数据插值与曲线拟合技术概述:数据插值和曲线拟合是在科学研究和工程实践中常用的技术手段。

在MATLAB中,有丰富的函数库和工具箱可用于实现各种插值和拟合算法。

本文将介绍MATLAB中的一些常见的数据插值和曲线拟合技术,并分析它们的原理和适用场景。

一、数据插值技术:1. 线性插值:线性插值是最简单且常用的数据插值技术之一,它通过在已知数据点之间的直线上进行插值。

MATLAB中的interp1函数可以实现线性插值,其基本原理是根据已知数据点的横纵坐标值,计算出待插值点的纵坐标值。

2. 拉格朗日插值:在拉格朗日插值中,我们通过一个多项式函数来描述已知数据点之间的曲线。

MATLAB中的polyfit和polyval函数可以帮助我们实现拉格朗日插值。

首先,polyfit函数用于拟合一个多项式函数,然后polyval函数可以根据拟合得到的多项式计算插值点的纵坐标值。

3. 样条插值:样条插值是一种光滑插值技术,通过使用多个低次多项式来拟合数据点之间的曲线。

MATLAB中的spline函数可以实现样条插值。

该函数将已知数据点的横纵坐标传入,然后自动计算出曲线段之间的控制点,并进行插值操作。

二、曲线拟合技术:1. 多项式拟合:多项式拟合是一种常用的曲线拟合技术,它通过拟合一个多项式函数来逼近已知数据点。

MATLAB中的polyfit和polyval函数同样可以应用于多项式拟合,我们可以选择合适的多项式阶次进行拟合。

2. 非线性拟合:有些数据集并不能用简单的多项式函数进行拟合,可能需要更复杂的非线性函数来逼近。

在MATLAB中,我们可以使用curve fitting工具箱中的fit函数来实现非线性拟合。

该函数可以根据给定的模型类型和数据集,自动拟合出最优的曲线。

3. 递归最小二乘拟合:递归最小二乘拟合是一种高级的数据拟合算法,可以有效地处理大型数据集。

MATLAB中的regress函数可以进行递归最小二乘拟合。

MATLAB作插值与拟合的方法比较

MATLAB作插值与拟合的方法比较
>> s l c s a p i ( x, y ) ; s 2 一s p a p i ( 5 , X , y );
MA T I A B是 由美 国 m a t h w o r k s 公 司 发布 的 主要 面对 科 学 计算、 可视 化 以及 交互 式程 序设 计 的高 科 技计 算环 境 。它将 数 值 分析 、 矩 阵计算 、 科 学数据 可视化 以及非线 性动态 系统 的建 模 和仿真等 诸多强 大功能 集 成在 一个 易 于使 用 的视 窗环 境 中 , 为 科 学研究 、 工程设 计以及 ห้องสมุดไป่ตู้须 进 行有 效数 值计 算 的众 多 科学 领 域提供了一种全面的解决方案 , 并在很大程度上摆脱 了传统非 交互式 程序设计 语言 ( 如C 、 F o r t r a n ) 的编辑 模式 , 代 表 了当今 国 际科学计 算软件 的先 进 水平 。M舡 I t A B有 不 同 函数 能 实现 数 学 方面 的插值 与拟合 , 下 面就此进 行介绍 和 比较 。
( x, Y , n ) 和 ② P—l s q c u r v e f i t ( f u n, x O, X, y ) 。
格式①中 X , Y分 别 表 示 数 据 点 的 横 、 纵坐 标序 列 , C X 为 需要 插值 的 横 坐 标 数 据 ( 或数组 ) 。me t h o d为 可 选 参 数 , 可 以选 默认 的 ’ l i n e a r ’ ( 线性插值 ) , ’ s p l i n e ’ ( 三 次 分 段 样 条
般建议使用三次样条插 值。格式② 、 ③ 用 作 三 次 样 条 插 值 和 B样 条 插 值 , 尤 其 对 稀 疏 数 据 效 果 更 优 。其 中 X , Y含 义 同上 , 两 函数 的插 值 结 果 需 要 结 合 函 数 y c =f n v a l ( S , e x ) 输 出或函数 f n p l t ( s ) 绘制 出来 。格 式 ③ 中 的 k为 用 户 选 定 的 B样 条 阶次 , k的 值 越 大 效 果 越 好 , 一 般 选 择 4或 5 . 例1 在 1 2 h内 , 每隔 1 h测 量 一 次 某 物 体 温 度 , 温 度 依次为 : 5 , 8 , 9 , 1 5 , 2 5 , 2 9 , 3 1 , 3 O , 2 2 , 2 5 , 2 7 , 2 4 。试 估 计 在 3 . 2 , 6 . 5 , 7 . 1 , 1 1 . 7 h的 温 度 值 。 >> h o u r s =1 : 1 2 ; t e mp s —E 5 8 9 1 5 2 5 2 9 3 1 3 0 2 2 2 5 2 7 2 4 ] : 、 >> c x 一[ 3 . 2 6 . 5 7 . 1 l 1 . 7 ] ; 需 要 插 值 的数 据 向量 >> t =i n t e r p l ( h o u r s , t e mp s , e x ) ; 线 性插 值 , 输出 C X 处 的插 值 结 果 > > T— i n t e r p l ( h o u r s , t e mp s , C X , ' s p l i n e ) ; 三 次 样 条 插值 , 输出C X处 的 插 值 结 果
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
functionf=curvefun4(x,t)
f=10-(10-x(1))*exp(-t/x(2));
t=[0.5 1 2 3 4 5 7 9];
v=[6.36 6.48 7.26 8.22 8.66 8.99 9.43 9.63];
x0=[0,0.05];
x=lsqcurvefit('curvefun4',x0,t,v)
Interp1(x,y,cx,’method’)
在MATLAB的线性最小二乘拟合中,用得较多的是多项式拟合,其命令为:
A=polyfit(x,y,m)
二.上机内容
1、在飞机的机翼加工时,由于机翼尺寸很大,通常在图纸上只能标出部分关键点的数据.某型号飞机的机翼上缘轮廓线的部分数据如下。用插值法求x每改变0.1时的y值,画出图形表示。
x 0 4.74 9.05 19 38 57 76 95 114 133152 171 190
y 0 5.23 8.1 11.97 16.15 17.1 16.34 14.63 12.16 6.697.03 3.99 0
2、已知观测数据点如表所示:
用3次多项式函数拟合这些数据点,画出图形。
3、教材习题1,用griddata插值函数,三次插值。
注:上机作业文件夹以自己的班级姓名学号命名,文件夹包括如下上机报告和Matlab程序。
上机报告模板如下:
佛山科学技术学院
上 机报 告
课程名称数学应用软件
上机项目用MATLAB解插值和曲线拟合问题
专业班级
一.上机目的
熟练掌握多种插值方法:线性插值,三次样条插值,三次插值和最近邻点插值(linear、spline、cubic、nearest)
f=curvefun4(x,t)
截图:
四.上机结果
第1题:
截图:
第2题:
A =
Columns 1 through 3
16.0758 -33.9245 29.3246
Column 4
-0.6104
截图:
第3题:
cK =
0.0724
截图:
第4题:
x =
5.5577 3.5002
f =
Columns 1 through 5
4、教材习题4 ,初始值为V0=0, =0.05
三.上机方法与步骤
第1题:要用插值法求x每改变0.1时的y值,可以选用程序y=interp1(xheng,yzhong,x,'spline');
xheng=[0 4.74 9.05 19 38 57 76 95 114 133 152 171 190];
xlabel('xhen'),ylabel('yzhon')
截图:
第2题:要用3次多项式函数拟合这些数据点,并画出图形,选用程序A=polyfit(x,y,3),z=polyval(A,x);plot(x,y,'k+',x,z,'r')编程求解即可。
x=0:0.1:1;
y=[-0.447 1.978 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.3 11.2];
K=[0.0848 0.0897 0.0762 0.0807 0.0696 0.0753 0.0611 0.0651];
cT=99;
cP=10.3;
cK=griddata(T,P,K,cT,cP,'cubic')
Байду номын сангаас截图:
第4题:要确定t,v ,选用x=lsqcurvefit('curvefun4',x0,t,v),f=curvefun4(x,t)
yzhong=[0 5.23 8.1 11.97 16.15 17.1 16.34 14.63 12.16 6.69 7.03 3.99 0];
x=0:0.1:190;
y=interp1(xheng,yzhong,x,'spline');
plot(xheng,yzhong,'+',x,y,xheng,yzhong,'r:')
6.1490 6.6616 7.4913 8.1147 8.5832
Columns 6 through 8
8.9353 9.3987 9.6604
截图:
A=polyfit(x,y,3)
z=polyval(A,x);
plot(x,y,'k+',x,z,'r')
截图:
第3题:用griddata插值函数,三次插值,选用cK=griddata(T,P,K,cT,cP,'cubic')编程。
T=[68 68 87 87 106 106 140 140];
P=[9.7981 13.324 9.0078 13.355 9.7918 14.277 9.6563 12.463];
相关文档
最新文档