等离子热喷涂用陶瓷粉体的制备技术现状及发展
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米陶瓷粉体的制备及等离子喷涂技术
现状及发展
喻瑾
(齐齐哈尔大学材料科学与工程学院,无机091班,学号2009015051)
摘要:从等离子喷涂设备、等离子喷涂过程中的测量技术及等离子喷涂技术的应用等几个方面综合分析了近年来等离子喷涂技术的研究现状和发展概况,指出了等离子喷涂技术的发展方向。
关键词:等离子喷涂技术;纳米陶瓷粉体的制备;应用;发展
等离子喷涂属于热喷涂技术,它是将粉末材料送入等离子体(射频放电)中或等离子射流(直流电弧)中,使颗粒在其粉末中加速、熔化或部分熔化后,在冲击力的作用下,在基底上铺展并凝固形成层片,进而通过层片叠层形成涂层的一类加工工艺。它具有生产效率高,制备的涂层质量好,喷涂的材料范围广,成本低等优点。因此,近几十年来,其技术进步和生产应用发展很快,己成为热喷涂技术的最重要组成部分。
1.等离子体和粉末之间的相互作用
等离子喷涂涂层的特征直接取决于到达基底的粉末颗粒的参数。因此,几年来,发展了许多不同的技术来测量颗粒尺寸、速度和温度分布。一般,粉末颗粒温度的确定基于测量粉末颗粒发射的双波长或多波长或色带的热辐射而获得。粉末颗粒速度用激光多谱勒测速仪(laser Doppler veloc imetry)或过境计时技术(transit timing technique)测得。在后一技术中,速度根据颗粒穿过两个光栏或聚焦的激光斑点之间的时间推得。粉末颗粒尺寸根据经绝对强度校核后的颗粒的热辐射强度推导得出,或根据穿过一聚焦激光束的一个颗粒散射并在与原始激光束不同的角度收集的两个或多个光信号之间的相位移推得。这些方法大部分是单颗粒法(single particle method),颗粒参数的分布和标准偏差是通过对大量单个颗粒的观察得到的。但是,有些方法可以认为是“颗粒群技术(ensemble techniques)”,因为这些技术同时测量大量颗粒的性能,并直接得到这些参数的平均值。到目前为止,这些颗粒群技术还只能提供粉末颗粒温度的信息,但最近已开发了一种可以测粉末颗粒速度的颗粒群技术。
成像技术也可以用来探测粉末颗粒喷涂射流心迹线的形状和位置,以及炽热颗粒的密度,或者根据光信号的强度确定粉末颗粒温度和尺寸,使用双曝光技术确定速度。该测量设备中激光的引入能够测定“冷”颗粒的数量以及尺寸和速度。
一些商业化的技术现在可以用于生产环境,进行喷涂工艺的在线控制。这些技术通常以颗粒的热辐射测量为基础,并不使用其他附加光源,可以测量颗粒的速度、温度及尺寸分布。
2等离子喷涂技术的应用
等离子喷涂技术在耐磨涂层、耐蚀涂层等传统领域的应用已经较为广泛,从上世纪50 年代至今,其应用领域由航空、航天扩展到了钢铁工业、汽车制造、石油化工、纺织机械、
船舶等领域。近年来等离子喷涂技术在高新技术领域如纳米涂层材料、梯度功能材料、超导涂层、生物功能涂层等方面的应用研究渐渐受到人们的重视。
纳米涂层材料:
Zhu等采用真空等离子喷涂制备了纳米WC/Co 涂层。发现涂层硬度、韧性和耐磨性较常规涂层都有较大的改善,在40~60 N 载荷下,纳米WC/ Co涂层磨损率仅为常规涂层的1/ 6。Connecticut 大学等对等离子喷涂纳米结构Al2O3-TiO2系涂层进行了系统的研究,包括纳米粉末喷雾干燥团聚重构、等离子喷涂工艺参数优化、工艺诊断、模拟以及涂层结构与性能的分析,表明涂层具有双态显微结构,表现出独特的优异性能。与对应的常规涂层相比,结合强度增强100 %,磨粒磨损抗力提高300 %,压痕开裂抗力、弯曲和杯突试验表现的剥落抗力要高得多。中国上海硅酸盐研究所祝迎春等人研究了等离子喷涂过程中纳米TiO2的结构变化和粒子注入特性。研究发现,TiO2纳米颗粒由无定型转化为锐钛矿结构和金红石结构。涂层表现出良好的Li + 注入电流和电化学稳定性。陈煌等利用大气等离子喷涂技术在不锈钢基体上制备了氧化锆纳米涂层。获得的涂层结构致密,孔隙率约为7%,涂层和基体间的结合强度为45 MPa,明显优于传统氧化锆涂层与基体的结合强度。
3.纳米陶瓷粉体
纳米陶瓷:指显微结构中的物相(包括晶粒尺寸、晶界宽度、第二相分布、气孔与尺寸缺陷等)都在纳米量级的水平上的陶瓷材料。现有陶瓷材料的晶粒尺寸一般是在微米级的水平。当其晶粒尺寸变小到纳米级的范围时,晶粒的表面积和晶界的体积会以相应的倍数增加,晶粒的表面能亦随之剧增。
由于颗粒的线度减少而引起表面效应和体积效应,使得材料的物理、化学性质发生一系列变化,而且甚至出现许多特殊的物理与化学性质。
纳米材料的制备:1.纳米粉体的合成;2.素坯的成型;3.产品的烧结
粉体合成按合成条件分类:
1、气相法:气相法是直接利用气体,或者通过各种手段将物质转变为气体,使之
在气体状态下发生物理变化或者化学反应,最后在冷却过程中凝聚长大形成纳
米粒子的方法。
优点:制得的纳米陶瓷粉体的纯度较高,团聚较少,烧结性能较好
缺点:产量低,设备昂贵
2、液相法:液相法则是选择一种或多种合适的可溶性金属盐类,按所制备的材料
组成计量配制成溶液,使各元素呈郭或分子态,再选择一种合适的沉淀剂或用
蒸发、升华、水解等操作,使金属离子均匀沉淀或者加热分解而得到纳米陶瓷
粉体
优点:设备较简单,粉体较纯,团聚少,易工业化生产
3、固相法:指纳米粉体是由固相原料制得,按其加工的工艺特点可分为机械粉碎
法和固相反应法两类。
优点:所用设备较简单,方便操作
缺点:纯度较低,料度分布较广
素坯成型:是将粉末转变成具有一定形状、体积和强度的坯体的过程,素坯的相对密度和显微结构的均匀性对陶瓷在烧结过程中的致密化有极大的影响。
素坯的成型方法:
传统方法:干压成型、离心注浆法、挤压法、注射法