九年级上册 二次函数中考真题汇编[解析版]
九年级上册二次函数经典精选题(含答案解析)
二次函数精选大题三.解答题(共17小题)14.已知抛物线C1的解析式是y=2x2﹣4x+5,抛物线C2与抛物线C1关于x轴对称,求抛物线C2的解析式.15.将抛物线C1:y=(x+1)2﹣2绕点P(t,2)旋转180゜得到抛物线C2,若抛物线C1的顶点在抛物线C2上,同时抛物线C2的顶点在抛物线C1上,求抛物线C2的解析式.16.如图,抛物线y1=﹣x2+2向右平移1个单位得到抛物线y2,回答下列问题:(1)抛物线y2的顶点坐标_________;(2)阴影部分的面积S=_________;(3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,求抛物线y3的解析式.17.已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是,与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.(1)请直接写出抛物线y=2x2﹣4x+1的伴随抛物线和伴随直线的解析式:伴随抛物线的解析式_________,伴随直线的解析式_________;(2)若一条抛物线的伴随抛物线和伴随直线分别是y=﹣x2﹣3和y=﹣x﹣3,则这条抛物线的解析式是_________;(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件.18.设抛物线y=x2+2ax+b与x轴有两个不同的交点(1)将抛物线沿y轴平移,使所得抛物线在x轴上截得的线段的长是原来的2倍,求平移所得抛物线的解析式;(2)通过(1)中所得抛物线与x轴的两个交点及原抛物线的顶点作一条新的抛物线,求新抛物线的表达式.19.已知抛物线C:y=ax2+bx+c(a<0)过原点,与x轴的另一个交点为B(4,0),A为抛物线C的顶点.(1)如图1,若∠AOB=60°,求抛物线C的解析式;(2)如图2,若直线OA的解析式为y=x,将抛物线C绕原点O旋转180°得到抛物线C′,求抛物线C、C′的解析式;(3)在(2)的条件下,设A′为抛物线C′的顶点,求抛物线C或C′上使得PB=PA′的点P的坐标.20.如图,已知抛物线y=ax2+bx+交x轴正半轴于A,B两点,交y轴于点C,且∠CBO=60°,∠CAO=45°,求抛物线的解析式和直线BC的解析式.21.已知:如图,抛物线y=﹣x2+bx+c经过直线y=﹣x+3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)点M为抛物线上的一个动点,求使得∠ABM的面积与∠ABD的面积相等的点M的坐标.22.已知抛物线的顶点为P,与x轴正半轴交于点B,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式.23.如图,抛物线y=x2+bx﹣c经过直线y=x﹣3与坐标轴的两个交点A,B,此抛物线与x 轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)点P为抛物线上的一个动点,求使S∠APC:S∠ACD=5:4的点P的坐标.24.已知一抛物线经过O(0,0),B(1,1)两点,且解析式的二次项系数为﹣(a>0).(∠)当a=1时,求该抛物线的解析式,并用配方法求出该抛物线的顶点坐标;(∠)已知点A(0,1),若抛物线与射线AB相交于点M,与x轴相交于点N(异于原点),当a在什么范围内取值时,ON+BM的值为常数?当a在什么范围内取值时,ON﹣BM的值为常数?(∠)若点P(t,t)在抛物线上,则称点P为抛物线的不动点.将这条抛物线进行平移,使其只有一个不动点,此时抛物线的顶点是否在直线y=x﹣上,请说明理由.25.如图,已知抛物线C1:y=a(x+2)2﹣5的顶点为P,与x轴相交于A、B两点(点A 在点B的左侧),点B的横坐标是1;(1)求a的值;(2)如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,抛物线C3的顶点为M,当点P、M关于点O成中心对称时,求抛物线C3的解析式.26.如图,抛物线y=ax2+bx+3经过A(﹣3,0),B(﹣1,0)两点.(1)求抛物线的解析式;(2)设抛物线的顶点为M,直线y=﹣2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围.27.如图,抛物线y=a(x+1)2的顶点为A,与y轴的负半轴交于点B,且OB=OA.(1)求抛物线的解析式;(2)若点C(﹣3,b)在该抛物线上,求S∠ABC的值.28.如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标及c的值;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断∠ABD 的形状.29.如果抛物线m的顶点在抛物线n上,同时抛物线n的顶点在抛物线m上,那么我们就称抛物线m与n为交融抛物线.(1)已知抛物线a:y=x2﹣2x+1.判断下列抛物线b:y=x2﹣2x+2,c:y=﹣x2+4x﹣3与已知抛物线a是否为交融抛物线?并说明理由;(2)在直线y=2上有一动点P(t,2),将抛物线a:y=x2﹣2x+1绕点P(t,2)旋转180°得到抛物线l,若抛物线a与l为交融抛物线,求抛物线l的解析式;(3)M为抛物线a;y=x2﹣2x+1的顶点,Q为抛物线a的交融抛物线的顶点,是否存在以MQ为斜边的等腰直角三角形MQS,使其直角顶点S在y轴上?若存在,求出点S的坐标;若不存在,请说明理由;(4)通过以上问题的探究解决,相信你对交融抛物线的概念及性质有了一定的认识,请你提出一个有关交融抛物线的问题.30.如图1所示,已知直线y=kx+m与x轴、y轴分别交于点A、C两点,抛物线y=﹣x2+bx+c经过A、C两点,点B是抛物线与x轴的另一个交点,当x=﹣时,y取最大值.(1)求抛物线和直线的解析式;(2)设点P是直线AC上一点,且S∠ABP:S∠BPC=1:3,求点P的坐标;(3)直线y=x+a与(1)中所求的抛物线交于点M、N,两点,问:①是否存在a的值,使得∠MON=90°?若存在,求出a的值;若不存在,请说明理由.②猜想当∠MON>90°时,a的取值范围.(不写过程,直接写结论)(参考公式:在平面直角坐标系中,若M(x1,y1),N(x2,y2),则M、N两点之间的距离为|MN|=)二次函数精选大题答案解析三.解答题(共17小题)14.已知抛物线C1的解析式是y=2x2﹣4x+5,抛物线C2与抛物线C1关于x轴对称,求抛物线C2的解析式.考点:二次函数图象与几何变换.分析:利用关于x轴对称的点的坐标为横坐标不变,纵坐标互为相反数解答即可.解答:解:抛物线C2与抛物线C1关于x轴对称,横坐标不变,纵坐标互为相反数,即﹣y=2x2﹣4x+5,因此所求抛物线C2的解析式是y=﹣2x2+4x﹣5.点评:利用轴对称变换的特点可以解答.15.将抛物线C1:y=(x+1)2﹣2绕点P(t,2)旋转180゜得到抛物线C2,若抛物线C1的顶点在抛物线C2上,同时抛物线C2的顶点在抛物线C1上,求抛物线C2的解析式.考点:二次函数图象与几何变换.分析:先求出抛物线C1的顶点坐标,再根据对称性求出抛物线C2的顶点坐标,然后根据旋转的性质写出抛物线C2的顶点式形式解析式,再把抛物线C1的顶点坐标代入进行即可得解.解答:解:∠y=(x+1)2﹣2的顶点坐标为(﹣1,﹣2),∠绕点P(t,2)旋转180゜得到抛物线C2的顶点坐标为(2t+1,6),∠抛物线C2的解析式为y=﹣(x﹣2t﹣1)2+6,∠抛物线C1的顶点在抛物线C2上,∠﹣(﹣1﹣2t﹣1)2+6=﹣2,解得t1=3,t2=﹣5,∠抛物线C2的解析式为y=﹣(x﹣7)2+6或y=﹣(x+9)2+6.点评:本题考查了二次函数图象与几何变换,难度较大,求出旋转后的抛物线C2的顶点坐标是解题的关键,也是本题的难点.16.如图,抛物线y1=﹣x2+2向右平移1个单位得到抛物线y2,回答下列问题:(1)抛物线y2的顶点坐标(1,2);(2)阴影部分的面积S=2;(3)若再将抛物线y2绕原点O旋转180°得到抛物线y3,求抛物线y3的解析式.考点:二次函数图象与几何变换.分析:直接应用二次函数的知识解决问题.解答:解:(1)读图找到最高点的坐标即可.故抛物线y2的顶点坐标为(1,2);(2分)(2)把阴影部分进行平移,可得到阴影部分的面积即为图中两个方格的面积=1×2=2;(6分)(3)由题意可得:抛物线y3的顶点与抛物线y2的顶点关于原点O成中心对称.所以抛物线y3的顶点坐标为(﹣1,﹣2),于是可设抛物线y3的解析式为:y=a(x+1)2﹣2.由对称性得a=1,所以y3=(x+1)2﹣2.(10分)点评:考查二次函数的相关知识,考查学生基础知识的同时还考查了识图能力.17.已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是,与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.(1)请直接写出抛物线y=2x2﹣4x+1的伴随抛物线和伴随直线的解析式:伴随抛物线的解析式y=﹣2x2+1,伴随直线的解析式y=﹣2x+1;(2)若一条抛物线的伴随抛物线和伴随直线分别是y=﹣x2﹣3和y=﹣x﹣3,则这条抛物线的解析式是y=x2﹣2x﹣3;(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件.考点:二次函数综合题.专题:压轴题;新定义.分析:(1)先根据抛物线的解析式求出其顶点P和抛物线与y轴的交点M的坐标.然后根据M的坐标用顶点式二次函数通式设伴随抛物线的解析式然后将P点的坐标代入抛物线的解析式中即可求出伴随抛物线的解析式.根据M,P两点的坐标即可求出直线PM的解析式;(2)由题意可知:伴随抛物线的顶点坐标是抛物线与y轴交点坐标,伴随抛物线与伴随直线的交点(与y轴交点除外)是抛物线的顶点,据此可求出抛物线的解析式;(3)方法同(1);(4)本题要考虑的a、b、c满足的条件有:抛物线和伴随抛物线都与x轴有两个交点,因此∠>0,①由于抛物线L中,x2>x1>0,因此抛物线的对称轴x>0,两根的积大于0.②根据两抛物线的解析式分别求出AB、CD的长,根据AB=CD可得出另一个需满足的条件…③综合这三种情况即可得出所求的a、b、c需满足的条件.解答:解:(1)y=﹣2x2+1,y=﹣2x+1;(2)将y=﹣x2﹣3和y=﹣x﹣3组成方程组得,,解得,或.则原抛物线的顶点坐标为(1,﹣4),与y轴的交点坐标为(0,﹣3).设原函数解析式为y=n(x﹣1)2﹣4,将(0,﹣3)代入y=n(x﹣1)2﹣4得,﹣3=n (0﹣1)2﹣4,解得,n=1,则原函数解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3.(3)∠伴随抛物线的顶点是(0,c),∠设它的解析式为y=m(x﹣0)2+c(m≠0),∠此抛物线过P(﹣,),∠=m•(﹣)2+c,解得m=﹣a,∠伴随抛物线解析式为y=﹣ax2+c;设伴随直线解析式为y=kx+c(k≠0),P(﹣,)在此直线上,∠,∠k=,∠伴随直线解析式为y=x+c;(4)∠抛物线L与x轴有两交点,∠∠1=b2﹣4ac>0,∠b2>4ac;∠x2>x1>0,∠x2+x1=﹣>0,x1•x2=>0,∠ab<0,ac>0.对于伴随抛物线有y=﹣ax2+c,有∠2=0﹣(﹣4ac)=4ac>0,由﹣ax2+c=0,得x=±.∠C(﹣,0),D(,0),CD=2,又AB=x2﹣x1====,∠AB=CD,则有:2=,即b2=8ac,综合b2=8ac,b2﹣4ac>0,ab<0,ac>0可得a、b、c需满足的条件为:b2=8ac且ab<0(或b2=8ac且bc<0).本题主要考查了二次函数与一元二次方程的关系以及一元二次方程根与系数的关系.点评:18.设抛物线y=x2+2ax+b与x轴有两个不同的交点(1)将抛物线沿y轴平移,使所得抛物线在x轴上截得的线段的长是原来的2倍,求平移所得抛物线的解析式;(2)通过(1)中所得抛物线与x轴的两个交点及原抛物线的顶点作一条新的抛物线,求新抛物线的表达式.考点:抛物线与x轴的交点;二次函数图象与几何变换.专题:计算题.分析:(1)设平移所得抛物线的解析式为y=x2+2ax+b+m,根据抛物线与x轴的交点的距离公式得到=2,解得m=3b﹣3a2,则平移所得抛物线的解析式为y=x2+2ax+4b﹣3a2;(2)先确定y=x2+2ax+b的顶点坐标为(﹣a,b﹣a2),由于通过(1)中所得抛物线与x轴的两个交点,则可设新抛物线解析式为y=t(x2+2ax+4b﹣3a2),然后把(﹣a,b﹣a2)代入可求出t=.解答:解:(1)设平移所得抛物线的解析式为y=x2+2ax+b+m,根据题意得=2,解得m=3b﹣3a2,所以平移所得抛物线的解析式为y=x2+2ax+b+3b﹣3a2=x2+2ax+4b﹣3a2;(2)y=x2+2ax+b=(x+a)2+b﹣a2,其顶点坐标为(﹣a,b﹣a2),∠新抛物线的表达式过抛物线y=x2+2ax+4b﹣3a2与x轴两交点,∠可设新抛物线解析式为y=t(x2+2ax+4b﹣3a2),把(﹣a,b﹣a2)代入得b﹣a2=t(a2﹣2a2+4b﹣3a2),解得t=,所以新抛物线的表达式过抛物线y=x2+ax+b﹣a2.点评:本题考查了抛物线与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的交点与一元二次方程ax2+bx+c=0根之间的关系:∠=b2﹣4ac决定抛物线与x轴的交点个数;∠=b2﹣4ac>0时,抛物线与x轴有2个交点;∠=b2﹣4ac=0时,抛物线与x轴有1个交点;∠=b2﹣4ac<0时,抛物线与x轴没有交点.19.已知抛物线C:y=ax2+bx+c(a<0)过原点,与x轴的另一个交点为B(4,0),A为抛物线C的顶点.(1)如图1,若∠AOB=60°,求抛物线C的解析式;(2)如图2,若直线OA的解析式为y=x,将抛物线C绕原点O旋转180°得到抛物线C′,求抛物线C、C′的解析式;(3)在(2)的条件下,设A′为抛物线C′的顶点,求抛物线C或C′上使得PB=PA′的点P的坐标.考点:二次函数综合题;点的坐标;待定系数法求二次函数解析式;旋转的性质;相似三角形的判定与性质.专题:压轴题.分析:(1)先连接AB,根据A点是抛物线C的顶点,且C交x轴于O、B,得出AO=AB,再根据∠AOB=60°,得出∠ABO是等边三角形,再过A作AE∠x轴于E,在Rt∠OAE 中,求出OD、AE的值,即可求出顶点A的坐标,最后设抛物线C的解析式,求出a的值,从而得出抛物线C的解析式;(2)先过A作AE∠OB于E,根据题意得出OE=OB=2,再根据直线OA的解析式为y=x,得出AE=OE=2,求出点A的坐标,再将A、B、O的坐标代入y=ax2+bx+c (a<0)中,求出a的值,得出抛物线C的解析式,再根据抛物线C、C′关于原点对称,从而得出抛物线C′的解析式;(3)先作A′B的垂直平分线l,分别交A′B、x轴于M、N(n,0),由(2)知,抛物线C′的顶点为A′(﹣2,﹣2),得出A′B的中点M的坐标,再作MH∠x轴于H,得出∠MHN∠∠BHM,则MH2=HN•HB,求出N点的坐标,再根据直线l过点M(1,﹣1)、N(,0),得出直线l的解析式,求出x的值,再根据抛物线C上存在两点使得PB=PA',从而得出P1,P2坐标,再根据抛物线C′上也存在两点使得PB=PA',得出P3,P4的坐标,即可求出答案.解答:解:(1)连接AB.∠A点是抛物线C的顶点,且抛物线C交x轴于O、B,∠AO=AB,又∠∠AOB=60°,∠∠ABO是等边三角形,过A作AD∠x轴于D,在Rt∠OAD中,∠OD=2,AD=,∠顶点A的坐标为(2,)设抛物线C的解析式为(a≠0),将O(0,0)的坐标代入,求得:a=,∠抛物线C的解析式为.(2)过A作AE∠OB于E,∠抛物线C:y=ax2+bx+c(a<0)过原点和B(4,0),顶点为A,∠OE=OB=2,又∠直线OA的解析式为y=x,∠AE=OE=2,∠点A的坐标为(2,2),将A、B、O的坐标代入y=ax2+bx+c(a<0)中,∠a=,∠抛物线C的解析式为,又∠抛物线C、C′关于原点对称,∠抛物线C′的解析式为;(3)作A′B的垂直平分线l,分别交A′B、x轴于M、N(n,0),由前可知,抛物线C′的顶点为A′(﹣2,﹣2),故A′B的中点M的坐标为(1,﹣1).作MH∠x轴于H,∠∠MHN∠∠BHM,则MH2=HN•HB,即12=(1﹣n)(4﹣1),∠,即N点的坐标为(,0).∠直线l过点M(1,﹣1)、N(,0),∠直线l的解析式为y=﹣3x+2,,解得.∠在抛物线C上存在两点使得PB=PA',其坐标分别为P1(,),P2(,);解得,.∠在抛物线C′上也存在两点使得PB=PA',其坐标分别为P3(﹣5+,17﹣3),P4(﹣5﹣,17+3).∠点P的坐标是:P1(,),P2(,),P3(﹣5+,17﹣3),P4(﹣5﹣,17+3).点评:本题是二次函数的综合,其中涉及到的知识点有旋转的性质,点的坐标,待定系数法求二次函数等知识点,难度较大,综合性较强.20.(1999•烟台)如图,已知抛物线y=ax2+bx+交x轴正半轴于A,B两点,交y轴于点C,且∠CBO=60°,∠CAO=45°,求抛物线的解析式和直线BC的解析式.考点:待定系数法求二次函数解析式;待定系数法求一次函数解析式.分析:根据抛物线的解析式,易求得C点的坐标,即可得到OC的长;可分别在Rt∠OBC和Rt∠OAC中,通过解直角三角形求出OB、OA的长,即可得到A、B的坐标,进而可运用待定系数法求得抛物线和直线的解析式.解答:解:由题意得C(0,)在Rt∠COB中,∠∠CBO=60°,∠OB=OC•cot60°=1∠B点的坐标是(1,0);(1分)在Rt∠COA中,∠∠CAO=45°,∠OA=OC=∠A点坐标(,0)由抛物线过A、B两点,得解得∠抛物线解析式为y=x2﹣()x+(4分)设直线BC的解析式为y=mx+n,得n=,m=﹣∠直线BC解析式为y=﹣x+.(6分)点评:此题主要考查的是用待定系数法求一次函数及二次函数解析式的方法.21.已知:如图,抛物线y=﹣x2+bx+c经过直线y=﹣x+3与坐标轴的两个交点A、B,此抛物线与x轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)点M为抛物线上的一个动点,求使得∠ABM的面积与∠ABD的面积相等的点M的坐标.考点:二次函数综合题.分析:(1)先根据直线y=﹣x+3求出A、B两点的坐标,然后将它们代入抛物线中即可求出待定系数的值.(2)根据(1)中抛物线的解析式可求出C,D两点的坐标,由于∠ABM和∠ABD同底,因此面积比等于高的比,即M点纵坐标的绝对值:D点纵坐标的绝对值=5:4.据此可求出P点的纵坐标,然后将其代入抛物线的解析式中,即可求出M点的坐标.解答:解:(1)直线y=﹣x+3与坐标轴的两个交点坐标分别是A(3,0),B(0,3),抛物线y=﹣x2+bx+c经过A、B两点,c=3﹣9+3b+c=0,得到b=2,c=3,∠抛物线的解析式y=﹣x2+2x+3.(2)①作经过点D与直线y=﹣x+3平行的直线交抛物线于点M.则S∠ABM=S∠ABD,直线DM的解析式为y=﹣x+t.由抛物线解析式y=﹣x2+2x+3=﹣(x﹣1)2+4,得D(1,4),∠t=5.设M(m,﹣m+5),则有﹣m+5=﹣m2+2m+3,解得m=1(舍去),m=2.∠M(2,3).②易求直线DM关于直线y=﹣x+3对称的直线l的解析式为y=﹣x+1,l交抛物线于M.设M(m,﹣m+1).由于点M在抛物线y=﹣x2+2x+3上,∠﹣m+1=﹣m2+2m+3.解得m=,m=∠M(,﹣)或M(,)∠使∠ABM的面积与∠ABD的面积相等的点M的坐标分别是(2,3),(,﹣),(,).点评:本题主要考查了二次函数解析式的确定、函数图象交点的求法、图形面积的求法等知识点.考查了学生数形结合的数学思想方法.22.已知抛物线的顶点为P,与x轴正半轴交于点B,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式.考点:二次函数图象与几何变换.分析:先求出点P的坐标,再令y=0,解方程求出点B的坐标,然后根据中心对称求出点M 的坐标,然后根据对称性利用顶点式形式写出C3的解析式即可.解答:解:点P的坐标为(﹣2,﹣5),令y=0,则(x+2)2﹣5=0,解得x1=1,x2=﹣5,所以,点B的坐标为(1,0),∠点P、M关于点B对称,∠点M的坐标为(4,5),∠抛物线C2与抛物线C1关于x轴对称,抛物线C2向右平移得到C3,∠抛物线C3的解析式为y=﹣(x﹣4)2+5.点评:本题考查了二次函数图象与几何变换,此类题目利用定点的变换确定解析式的变化更简便,难点在于确定出平移后的抛物线的顶点坐标.23.如图,抛物线y=x2+bx﹣c经过直线y=x﹣3与坐标轴的两个交点A,B,此抛物线与x 轴的另一个交点为C,抛物线的顶点为D.(1)求此抛物线的解析式;(2)点P为抛物线上的一个动点,求使S∠APC:S∠ACD=5:4的点P的坐标.考点:二次函数综合题.专题:压轴题;动点型.分析:(1)先根据直线y=x﹣3求出A、B两点的坐标,然后将它们代入抛物线中即可求出待定系数的值.(2)根据(1)中抛物线的解析式可求出C,D两点的坐标,由于∠APC和∠ACD同底,因此面积比等于高的比,即P点纵坐标的绝对值:D点纵坐标的绝对值=5:4.据此可求出P点的纵坐标,然后将其代入抛物线的解析式中,即可求出P点的坐标.解答:解:(1)直线y=x﹣3与坐标轴的交点A(3,0),B(0,﹣3).则,解得,∠此抛物线的解析式y=x2﹣2x﹣3.(2)抛物线的顶点D(1,﹣4),与x轴的另一个交点C(﹣1,0).设P(a,a2﹣2a﹣3),则(×4×|a2﹣2a﹣3|):(×4×4)=5:4.化简得|a2﹣2a﹣3|=5.当a2﹣2a﹣3=5,得a=4或a=﹣2.∠P(4,5)或P(﹣2,5),当a2﹣2a﹣3<0时,即a2﹣2a+2=0,此方程无解.综上所述,满足条件的点的坐标为(4,5)或(﹣2,5).点评:本题主要考查了二次函数解析式的确定、函数图象交点的求法、图形面积的求法等知识点.考查了学生数形结合的数学思想方法.24.已知一抛物线经过O(0,0),B(1,1)两点,且解析式的二次项系数为﹣(a>0).(∠)当a=1时,求该抛物线的解析式,并用配方法求出该抛物线的顶点坐标;(∠)已知点A(0,1),若抛物线与射线AB相交于点M,与x轴相交于点N(异于原点),当a在什么范围内取值时,ON+BM的值为常数?当a在什么范围内取值时,ON﹣BM的值为常数?(∠)若点P(t,t)在抛物线上,则称点P为抛物线的不动点.将这条抛物线进行平移,使其只有一个不动点,此时抛物线的顶点是否在直线y=x﹣上,请说明理由.考点:二次函数综合题.专题:压轴题.分析:(∠)首先利用抛物线经过O(0,0),B(1,1)两点,且解析式的二次项系数为﹣求出抛物线解析式,再利用a=1求出抛物线的顶点坐标即可;(∠)利用当y=0时,有,求出x的值,进而得出点N的坐标,再利用若点M在点B右侧,此时a>1,BM=a﹣1;若点M在点B左侧,此时0<a <1,BM=1﹣a得出答案即可;(∠)利用平移后的抛物线只有一个不动点,故此方程有两个相等的实数根,得出判别式∠=(a﹣2h)2﹣4(h2﹣ak)=0,进而求出k与h,a的关系即可得出顶点(h,k)在直线上.解答:解:设该抛物线的解析式为,∠抛物线经过(0,0)、(1,1)两点,∠,解得.∠该抛物线的解析式为(∠)当a=1时,该抛物线的解析式为y=﹣x2+2x,y=﹣x2+2x=﹣(x2﹣2x+1)+1=﹣(x﹣1)2+1.该抛物线的顶点坐标为(1,1);(∠)∠点N在x轴上,∠点N的纵坐标为0.当y=0时,有,解得x1=0,x2=a+1.∠点N异于原点,∠点N的坐标为(a+1,0).∠ON=a+1,∠点M在射线AB上,∠点M的纵坐标为1.当y=1时,有,整理得出,解得x1=1,x2=a.点M的坐标为(1,1)或(a,1).当点M的坐标为(1,1)时,M与B重合,此时a=1,BM=0,ON=2.ON+BM与ON﹣BM的值都是常数2.当点M的坐标为(a,1)时,若点M在点B右侧,此时a>1,BM=a﹣1.∠ON+BM=(a+1)+(a﹣1)=2a,ON﹣BM=(a+1)﹣(a﹣1)=2.若点M在点B左侧,此时0<a<1,BM=1﹣a.∠ON+BM=(a+1)+(1﹣a)=2,ON﹣BM=(a+1)﹣(1﹣a)=2a.∠当0<a≤1时,ON+BM的值是常数2,当a≥1时,ON﹣BM的值是常数2.(∠)设平移后的抛物线的解析式为,由不动点的定义,得方程:,即t2+(a﹣2h)t+h2﹣ak=0.∠平移后的抛物线只有一个不动点,∠此方程有两个相等的实数根.∠判别式∠=(a﹣2h)2﹣4(h2﹣ak)=0,有a﹣4h+4k=0,即.∠顶点(h,k)在直线上.点评:此题主要考查了二次函数的综合应用以及根的判别式的性质等知识,利用分类讨论的思想得出M与B的不同位置关系得出答案是解题关键.25.如图,已知抛物线C1:y=a(x+2)2﹣5的顶点为P,与x轴相交于A、B两点(点A 在点B的左侧),点B的横坐标是1;(1)求a的值;(2)如图,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,抛物线C3的顶点为M,当点P、M关于点O成中心对称时,求抛物线C3的解析式.考点:二次函数综合题.专题:综合题.分析:(1)将B点坐标代入抛物线C1的解析式中,即可求得待定系数a的值.(2)在抛物线平移过程中,抛物线的开口大小没有发现变化,变化的只是抛物线的位置和开口方向,所以C3的二次项系数与C1的互为相反数,而C3的顶点M与C1的顶点P关于原点对称,P点坐标易求得,即可得到M点坐标,从而求出抛物线C3的解析式.解答:解:(1)∠点B是抛物线与x轴的交点,横坐标是1,∠点B的坐标为(1,0),∠当x=1时,0=a(1+2)2﹣5,∠.(2)设抛物线C3解析式为y=a′(x﹣h)2+k,∠抛物线C2与C1关于x轴对称,且C3为C2向右平移得到,∠,∠点P、M关于点O对称,且点P的坐标为(﹣2,﹣5),∠点M的坐标为(2,5),∠抛物线C3的解析式为y=﹣(x﹣2)2+5=﹣x2+x+.点评:此题主要考查的是二次函数解析式的确定、二次函数图象的几何变化以及系数与函数图象的关系,需要熟练掌握.26.如图,抛物线y=ax2+bx+3经过A(﹣3,0),B(﹣1,0)两点.(1)求抛物线的解析式;(2)设抛物线的顶点为M,直线y=﹣2x+9与y轴交于点C,与直线OM交于点D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围.考点:二次函数综合题.分析:(1)直接用待定系数法就可以求出抛物线的解析式;(2)由(1)的解析式求出抛物线的顶点坐标,根据抛物线的顶点坐标求出直线OD 的解析式,设平移后的抛物线的顶点坐标为(h,h),就可以表示出平移后的解析式,当抛物线经过点C时就可以求出h值,抛物线与直线CD只有一个公共点时可以得出,得x2+(﹣2h+2)x+h2+h﹣9=0,从而得出∠=(﹣2h+2)2﹣4(h2+h﹣9)=0求出h=4,从而得出结论.解答:解:(1)抛物线解析式y=ax2+bx+3经过A(﹣3,0),B(﹣1,0)两点,∠,解得,∠抛物线的解析式为y=x2+4x+3.(2)由(1)配方得y=(x+2)2﹣1,∠抛物线的顶点坐标为M(﹣2,﹣1),∠直线OD的解析式为y=x,于是可设平移后的抛物线的顶点坐标为(h,h),∠平移后的抛物线的解析式为y=(x﹣h)2+h,当抛物线经过点C时,∠C(0,9),∠h2+h=9.解得h=,∠当≤h<时,平移后的抛物线与射线CD只有一个公共点;当抛物线与直线CD只有一个公共点时,由方程组,得x2+(﹣2h+2)x+h2+h﹣9=0,∠∠=(﹣2h+2)2﹣4(h2+h﹣9)=0,解得h=4,此时抛物线y=(x﹣4)2+2与直线CD唯一的公共点为(3,3),点(3,3)在射线CD上,符合题意.故平移后抛物线与射线CD只有一个公共点时,顶点横坐标的取值范围是≤h<或h=4.点评:本题考查了待定系数法求抛物线的解析式,二次函数图象与几何变换及方程组与交点坐标的运用,利用根的判别式判断得出是解题关键.27.如图,抛物线y=a(x+1)2的顶点为A,与y轴的负半轴交于点B,且OB=OA.(1)求抛物线的解析式;(2)若点C(﹣3,b)在该抛物线上,求S∠ABC的值.考点:待定系数法求二次函数解析式;二次函数图象上点的坐标特征.专题:计算题.分析:(1)由抛物线解析式确定出顶点A坐标,根据OA=OB确定出B坐标,将B坐标代入解析式求出a的值,即可确定出解析式;(2)将C坐标代入抛物线解析式求出b的值,确定出C坐标,过C作CD垂直于x 轴,三角形ABC面积=梯形OBCD面积﹣三角形ACD面积﹣三角形AOB面积,求出即可.解答:解:(1)由投影仪得:A(﹣1,0),B(0,﹣1),将x=0,y=﹣1代入抛物线解析式得:a=﹣1,则抛物线解析式为y=﹣(x+1)2=﹣x2﹣2x﹣1;(2)过C作CD∠x轴,将C(﹣3,b)代入抛物线解析式得:b=﹣4,即C(﹣3,﹣4),则S∠ABC=S梯形OBCD﹣S∠ACD﹣S∠AOB=×3×(4+1)﹣×4×2﹣×1×1=3.点评:此题考查了待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键.28.如图,抛物线y=x2﹣2x+c的顶点A在直线l:y=x﹣5上.(1)求抛物线顶点A的坐标及c的值;(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断∠ABD 的形状.考点:二次函数综合题.分析:(1)先根据抛物线的解析式得出其对称轴,由此得到顶点A的横坐标,然后代入直线l的解析式中求出点A的坐标,再将点A的坐标代入抛物线的解析式y=x2﹣2x+c 中,运用待定系数法即可求出c的值;(2)先由抛物线的解析式得到点B的坐标,再求出AB、AD、BD三边的长,然后根据勾股定理的逆定理即可确定∠ABD是直角三角形.解答:解:(1)∠y=x2﹣2x+c,∠顶点A的横坐标为x=﹣=1,又∠顶点A在直线y=x﹣5上,∠当x=1时,y=1﹣5=﹣4,∠点A的坐标为(1,﹣4).将A(1,﹣4)代入y=x2﹣2x+c,得﹣4=12﹣2×1+c,解得c=﹣3.故抛物线顶点A的坐标为(1,﹣4),c的值为﹣3;(2)∠ABD是直角三角形.理由如下:∠抛物线y=x2﹣2x﹣3与y轴交于点B,∠B(0,﹣3).当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,∠C(﹣1,0),D(3,0).∠BD2=OB2+OD2=18,AB2=(4﹣3)2+12=2,AD2=(3﹣1)2+42=20,∠BD2+AB2=AD2,∠∠ABD=90°,即∠ABD是直角三角形.。
(完整版)初三中考复习二次函数专题练习题含答案
二次函数专题练习题一、选择题1 抛物线y=x2+2x+3的对称轴是( )A.直线x=1 B.直线x=-1 C.直线x=-2 D.直线x=22.在平面直角坐标系中,将抛物线y=x2-x-6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则|m|的最小值为( )A.1 B.2 C.3 D.63.如图,在平面直角坐标系中,抛物线y=12x2经过平移得到抛物线y=12x2-2x,其对称轴与两段抛物线所围成的阴影部分的面积为( )A.2 B.4 C.8 D.164. 如图,已知顶点为(-3,-6)的抛物线y=ax2+bx+c经过点(-1,-4),则下列结论中错误的是( )A.b2>4acB.ax2+bx+c≥-6C.若点(-2,m),(-5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=-4的两根为-5和-15. 如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0;②2a+b>0;③b2-4ac>0;④ac>0.其中正确的是( )A.①② B.①④ C.②③ D.③④6. 如图,一次函数y1=x与二次函数y2=ax2+bx+c的图象相交于P,Q两点,则函数y=ax2+(b-1)x+c的图象可能是( )7. 如图,在正方形ABCD中,AB=8 cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以 1 cm/s的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为( )二、填空题8.若y=(2-m)xm2-3是二次函数,且开口向上,则m的值为.9.已知点A(x1,y1),B(x2,y2)在二次函数y=(x-1)2+1的图象上,若x1>x2>1,则y1____y2.(填或“=”)“>”“<”10.已知二次函数y=-2x2-4x+1,当-3≤x≤0时,它的最大值是____,最小值是____.11.一个足球被从地面向上踢出,它距地面的高度h(m)与足球被踢出后经过的时间t(s)之间具有函数关系h=at2+19.6t,已知足球被踢出后经过 4 s落地,则足球距地面的最大高度是____m.12. 如图,抛物线y=-x2+2x+3与y轴交于点C,点D(0,1),点P是抛物线上的动点.若△PCD是以CD为底的等腰三角形,则点P的坐标为.三、解答题13.如果抛物线y=ax2+bx+c过定点M(1,1),则称此抛物线为定点抛物线.(1)张老师在投影屏幕上出示了一个题目:请你写出一条定点抛物线的一个解析式.小敏写出了一个答案:y=2x2+3x-4,请你写出一个不同于小敏的答案;(2)张老师又在投影屏幕上出示了一个思考题:已知定点抛物线y=-x2+2bx+c+1,求该抛物线顶点纵坐标的值最小时的解析式,请你解答.14.用铝合金材料做一个形状如图①所示的矩形窗框,设窗框的一边为x m,窗户的透光面积为y m2,y与x的函数图象如图②所示.(1)观察图象,当x为何值时,窗户的透光面积最大?最大透光面积是多少?(2)要使窗户的透光面积不小于 1 m2,则窗框的一边长x应该在什么范围内取值?15. 某农庄计划在30亩空地上全部种植蔬菜和水果,菜农小张和果农小李分别承包了种植蔬菜和水果的任务.小张种植每亩蔬菜的工资y(元)与种植面积m(亩)之间的函数关系如图①所示,小李种植水果所得报酬z(元)与种植面积n(亩)之间的函数关系如图②所示.(1)如果种植蔬菜20亩,则小张种植每亩蔬菜的工资是____元,小张应得的工资总额是____元;此时,小李种植水果____亩,小李应得的报酬是____元;(2)当10<n≤30时,求z与n之间的函数关系式;(3)设农庄支付给小张和小李的总费用为W(元),当10<m≤30时,求W与m之间的函数关系式.16. 如图,抛物线y=-12x2+bx+c与x轴分别交于点A(-2,0),B(4,0),与y轴交于点C,顶点为点P.(1)求抛物线的解析式;(2)动点M,N从点O同时出发,都以每秒1个单位长度的速度分别在线段OB,OC上向点B,C方向运动,过点M作x轴的垂线交BC于点F,交抛物线于点H,当四边形OMHN为矩形时,求点H的坐标.答案:一、1. B2. B3. B4. C5. C6. A7. B二、8. -59. >10. 3 -511. 19.612. (1+2,2)或(1-2,2)三、13. 解:(1)答案不唯一,如y=x2-2x+2(2)∵定点抛物线的顶点坐标为(b,b2+c+1),且-1+2b+c+1=1,∴c=1-2b,∵顶点纵坐标c+b2+1=2-2b+b2=(b-1)2+1,∴当b=1时,c+b2+1最小,抛物线顶点纵坐标的值最小,此时c=-1,∴抛物线的解析式为y=-x2+2x14. 解:(1)由图象可知当x=1时,窗户的透光面积最大,最大透光面积是 1.5 m2(2)由题意可设二次函数解析式为y=a(x-1)2+1.5,将(0,0)代入可求a=-1.5,∴解析式为y=-1.5(x-1)2+1.5,令y=1,则-1.5(x-1)2+1.5=1,解得x1=1-33,x2=1+33,由图象可知,当1-33≤x≤1+33时,透光面积不小于 1 m215. (1) 140 2800 10 1500(2) z=120n+300(10<n≤30)(3)当10<m≤30时,y=-2m+180,∵m+n=30,又∵当0≤n<10时,z=150n;当10≤n<20时,z=120n+300,∴当10<m≤20时,10≤n<20,∴W=m(-2m+180)+120n+300=m(-2m+180)+120(30-m)+300=-2m2+60m+3900;当20<m≤30时,0≤n<10,∴W=m(-2m+180)+150n=m(-2m+180)+150(30-m)=-2m2+30m+4500,∴W=-2m2+60m+3900(10<m≤20)-2m2+30m+4500(20<m≤30)16. 解:(1)y=-12x2+x+4(2)根据题意可设ON=OM=t,则MH=-12t2+t+4,∵ON∥MH,∴当ON=MH时,四边形OMHN为矩形,即t=-12t2+t+4,解得t=22或t=-22(不合题意,舍去),把t=22代入y=-12t2+t+4得y=22,∴H(22,22)。
沪科版九年级数学上册二次函数的图象和性质中考题汇编二(含答案)
沪科版九年级数学上册二次函数的图象和性质中考题汇编二(含答案)一、 选择题1. (2018·岳阳)抛物线y =3(x -2)2+5的顶点坐标是( ) A. (-2,5) B. (-2,-5) C. (2,5) D. (2,-5)2. (2018·山西)用配方法将二次函数y =x 2-8x -9化为y =a (x +h )2+k 的形式为( )A. y =(x -4)2+7B. y =(x -4)2-25C. y =(x +4)2+7D. y =(x +4)2-253. (2018·攀枝花)抛物线y =x 2-2x +2的顶点坐标为( ) A. (1,1) B. (-1,1) C. (1,3) D. (-1,3)4. (2018·陕西)对于抛物线y =ax 2+(2a -1)x +a -3,当x =1时,y >0,则这条抛物线的顶点一定在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. (2018·上海)下列对二次函数y =x 2-x 的图象的描述,正确的是( ) A. 开口向下 B. 对称轴是y 轴C. 经过原点D. 对称轴右侧部分是下降的6. (2018·成都)关于二次函数y =2x 2+4x -1,下列说法正确的是( ) A. 图象与y 轴的交点坐标为(0,1) B. 图象的对称轴在y 轴的右侧C. 当x <0时,y 的值随x 值的增大而减小D. y 的最小值为-37. (2018·莱芜)函数y =ax 2+2ax +m (a <0)的图象过点(2,0),则使函数值y <0成立的x 的取值范围是( )A. x <-4或x >2B. -4<x <2C. x <0或x >2D. 0<x <28. (2018·襄阳)已知二次函数y =x 2-x +14m -1的图象与x 轴有公共点,则m 的取值范围是( )A. m ≤5B. m ≥2C. m <5D. m >2 9. (2018·河北)对于题目“一段抛物线L :y =-x (x -3)+c (0≤x ≤3)与直线l :y =x +2有唯一公共点,若c 为整数,确定所有c 的值.”甲的结果是c =1,乙的结果是c =3或4,则( ) A. 甲的结果正确 B. 乙的结果正确C. 甲、乙的结果合在一起才正确D. 甲、乙的结果合在一起也不正确10. (2018·黄冈)当a ≤x ≤a +1时,函数y =x 2-2x +1的最小值为1,则a 的值为( ) A. -1 B. 2 C. 0或2 D. -1或211. (2018·潍坊)已知二次函数y =-(x -h )2(h 为常数),当自变量x 的值满足2≤x ≤5时,与其对应的函数值y 的最大值为-1,则h 的值为( ) A. 3或6 B. 1或6 C. 1或3 D. 4或612. (2018·泸州)已知二次函数y =ax 2+2ax +3a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而增大,且当-2≤x ≤1时,y 的最大值为9,则a 的值为( ) A. 1或-2 B. -2或 2 C. 2 D. 113. (2018·广安)抛物线y =(x -2)2-1可以由抛物线y =x 2平移而得到,下列平移正确的是( ) A. 先向左平移2个单位长度,再向上平移1个单位长度 B. 先向左平移2个单位长度,再向下平移1个单位长度 C. 先向右平移2个单位长度,再向上平移1个单位长度 D. 先向右平移2个单位长度,再向下平移1个单位长度14. (2018·哈尔滨)将抛物线y =-5x 2+1先向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线为( )A. y =-5(x +1)2-1B. y =-5(x -1)2-1C. y =-5(x +1)2+3D. y =-5(x -1)2+315. (2018·南宁)将抛物线y =12x 2-6x +21向左平移2个单位长度后,得到新抛物线对应的函数解析式为( )A. y =12(x -8)2+5B. y =12(x -4)2+5C. y =12(x -8)2+3D. y =12(x -4)2+316. (2018·绍兴)若抛物线y =x 2+ax +b 与x 轴的两个交点间的距离为2,则称此抛物线为定弦抛物线.已知某定弦抛物线的对称轴为直线x =1,将此抛物线先向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线过点( )A. (-3,-6)B. (-3,0)C. (-3,-5)D. (-3,-1)17. (2018·永州)在同一平面直角坐标系中,反比例函数y =bx(b ≠0)与二次函数y =ax 2+bx (a ≠0)的图象大致是( )A B C D18. (2018·青岛)一次函数y =bax +c 的图象如图所示,则二次函数y =ax 2+bx +c 在平面直角坐标系中的图象可能是( )A B C D第18题第19题19. (2018·泰安)二次函数y =ax 2+bx +c 的图象如图所示,则反比例函数y =a x与一次函数y =ax +b 在同一坐标系内的大致图象是( )A B C D20. (2018·通辽)已知抛物线y =x 2+2x +k +1与x 轴有两个不同的交点,则一次函数y =kx -k 与反比例函数y =kx在同一坐标系内的大致图象是( )A B CD21. (2018·德州)如图,函数y =ax 2-2x +1和y =ax -a (a 是常数,且a ≠0)在同一平面直角坐标系中的图象可能是( )A B C D22. (2018·宁波)如图,二次函数y =ax 2+bx 的图象开口向下,且经过第三象限的点P .若点P 的横坐标为-1,则一次函数y =(a -b )x +b 的图象大致是( )A B C D第22题第23题23. (2018·菏泽)二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =bx +a 与反比例函数y =a +b +cx在同一平面直角坐标系中的图象大致是( ) A B CD24. (2018·枣庄)如图是二次函数y =ax 2+bx +c 图象的一部分,且过点A (3,0),二次函数图象的对称轴是直线x =1,下列结论正确的是( )A. b 2<4ac B. ac >0 C. 2a -b =0 D. a -b +c =0第24题 第25题25. (2018·遂宁)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则以下结论同时成立的是( )A. ⎩⎪⎨⎪⎧abc >0,b 2-4ac <0B. ⎩⎪⎨⎪⎧abc <0,2a +b >0C. ⎩⎪⎨⎪⎧abc >0,a +b +c <0D. ⎩⎪⎨⎪⎧abc <0,b 2-4ac >0 26. (2018·抚顺)已知抛物线y =ax 2+bx +c (0<2a ≤b )与x 轴最多有一个交点.以下四个结论:① abc>0;② 该抛物线的对称轴在直线x =-1的右侧;③ 关于x 的方程ax 2+bx +c +1=0无实数根;④a +b +cb≥2.其中正确的结论有( ) A. 1个 B. 2个 C. 3个 D. 4个27. (2018·烟台)如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A (-1,0),B (3,0).下列结论:① 2a -b =0;② (a +c )2<b 2;③ 当-1<x <3时,y <0;④ 当a =1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y =(x -2)2-2.其中正确的是( ) A. ①③ B. ②③ C. ②④ D. ③④第27题 第28题28. (2018·衡阳)如图,抛物线y =ax 2+bx +c 与x 轴交于点A (-1,0),顶点坐标为(1,n ),与y 轴的交点在(0,2),(0,3)之间(包含端点).下列结论:① 3a +b <0;② -1≤a ≤-23;③ 对于任意实数m ,a +b ≥am 2+bm 总成立;④ 关于x 的方程ax 2+bx +c =n -1有两个不相等的实数根.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个29. (2018·安顺)二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,分析下列四个结论:① abc <0;② b2-4ac >0;③ 3a +c >0;④ (a +c )2<b 2.其中正确的结论有( ) A. 1个 B. 2个 C. 3个 D. 4个第29题第30题30. (2018·资阳)二次函数y =ax 2+bx +c 的图象如图所示,OA =OC ,则由抛物线的特征写出如下含有a ,b ,c 三个字母的等式或不等式:① 4ac -b 24a =-1;② ac +b +1=0;③ abc >0;④ a -b +c >0.其中正确的个数是( )A. 4B. 3C. 2D. 131. (2018·达州)如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A (-1,0),与y 轴的交点B 在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x =2.下列结论:① abc <0;② 9a +3b +c >0;③ 若点M (12,y 1),N (52,y 2)是函数图象上的两点,则y 1<y 2;④ -35<a <-25.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个第31题第32题32. (2018·荆门)二次函数y =ax 2+bx +c(a≠0)的大致图象如图所示,顶点坐标为(-2,-9a),下列结论:① 4a+2b +c >0;② 5a-b +c =0;③ 若方程a(x +5)(x -1)=-1有两个根x 1和x 2,且x 1<x 2,则-5<x 1<x 2<1;④ 若方程|ax 2+bx +c|=1有四个根,则这四个根的和为-4.其中正确的结论有( ) A. 1个 B. 2个 C. 3个 D. 4个33. (2018·乐山)二次函数y =x 2+(a -2)x +3的图象与一次函数y =x (1≤x ≤2)的图象有且仅有一个交点,则实数a 的取值范围是( )A. a =3±2 3B. -1≤a <2C. a =3+23或-12≤a <2D. a =3-23或-1≤a <-1234. (2018·呼和浩特)若满足12<x ≤1的任意实数x ,都能使不等式2x 3-x 2-mx >2成立,则实数m 的取值范围是( )A. m <-1B. m ≥-5C. m <-4D. m ≤-435. (2018·湖州)在平面直角坐标系xOy 中,已知点M ,N 的坐标分别为(-1,2),(2,1).若抛物线y =ax 2-x +2(a≠0)与线段MN 有两个不同的交点,则a 的取值范围是( ) A. a ≤-1或14≤a <13 B. 14≤a <13C. a ≤14或a >13D. a ≤-1或a ≥1436. (2018·桂林)如图,在平面直角坐标系中,M ,N ,C 三点的坐标分别为(12,1),(3,1),(3,0),A 为线段MN 上的一个动点,连接AC ,过点A 作AB⊥AC 交y 轴于点B.当点A 从点M 运动到点N 时,点B 随之运动.设点B 的坐标为(0,b),则b 的取值范围是( )第36题A. -14≤b ≤1B. -54≤b ≤1C. -94≤b ≤12D. -94≤b ≤1二、 填空题37. (2018·哈尔滨)抛物线y =2(x +2)2+4的顶点坐标为________.38. (1) (2018·淮安)将二次函数y =x 2-1的图象向上平移3个单位长度,得到的图象所对应的函数解析式是__________;(2) (2018·乌鲁木齐)把拋物线y =2x 2-4x +3沿x 轴向左平移1个单位长度,得到的抛物线的对应的函数解析式为__________.39. (2018·黔南州)已知二次函数y =ax 2+bx +c 图象上部分点的横坐标x 与纵坐标y 的对应值如下表,那么它的图象与x 轴的另一个交点坐标是________.40. (2018·湖州)已知抛物线=+-3(≠0)经过点(-1,0),(3,0),那么a 的值为______,b 的值为______.41. (2018·孝感)如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A (-2,4),B (1,1),则关于x 的方程ax 2=bx +c 的解为______________.第41题 第44题42. (2018·自贡)若函数y =x 2+2x -m 的图象与x 轴有且只有一个公共点,则m 的值为________.43. (2018·镇江)已知二次函数y =x 2-4x +k 的图象的顶点在x 轴下方,则实数k 的取值范围是________.44. (2018·新疆)如图,已知抛物线y 1=-x 2+4x 和直线y 2=2x .我们规定:当x 取任意一个值时,x 对应的函数值分别为y 1和y 2.若y 1≠y 2,取y 1和y 2中较小值为M ;若y 1=y 2,记M =y 1=y 2.下列结论:① 当x >2时,M =y 2;② 当x <0时,M 随x 的增大而增大;③ 使得M 大于4的x 的值不存在;④ 若M =2,则x =1.其中正确的结论是________.(填序号)45. (2018·湖州)如图,在平面直角坐标系xOy 中,抛物线y =ax 2+bx (a >0)的顶点为C ,与x 轴的正半轴交于点A ,它的对称轴与抛物线y =ax 2(a >0)交于点B .若四边形ABOC 是正方形,则b 的值是________.第45题第46题46. (2018·长春)如图,在平面直角坐标系中,抛物线y =x 2+mx 交x 轴的负半轴于点A .B 是y 轴正半轴上一点,点A 关于点B 的对称点A ′恰好落在抛物线上.过点A ′作x 轴的平行线交抛物线于另一点C .若点A ′的横坐标为1,则A ′C 的长为________.47. (2018·遵义)如图,抛物线y =x 2+2x -3与x 轴交于A ,B 两点,与y 轴交于点C ,P 是抛物线对称轴上任意一点.若D ,E ,F 分别是BC ,BP ,PC 的中点,连接DE ,DF ,则DE +DF 的最小值为________.第47题 第49题48. (2018·淄博)已知抛物线y =x 2+2x -3与x 轴交于A ,B 两点(点A 在点B 的左侧),将这条抛物线向右平移m (m >0)个单位长度,平移后的抛物线与x 轴交于C ,D 两点(点C 在点D 的左侧).若B ,C 是线段AD 的三等分点,则m 的值为________.49. (2018·遂宁)如图,抛物线y =ax 2-4x +c (a ≠0)与反比例函数y =9x的图象相交于点B ,且点B 的横坐标为3,抛物线与y 轴交于点C (0,6),A 是抛物线y =ax 2-4x +c 的顶点,P 是x 轴上一动点.当PA +PB 最小时,点P 的坐标为________.50.(2018·恩施州)抛物线y =ax 2+bx +c 的对称轴为直线x =-1,部分图象如图所示,下列判断:① abc>0;② b 2-4ac >0;③ 9a-3b +c =0;④ 若点(-0.5,y 1),(-2,y 2)均在抛物线上,则y 1>y 2;⑤ 5a -2b +c <0.其中正确的判断是________.(填序号)第50题 第51题51. (2018·大庆)如图,二次函数y =ax 2+bx +c 的图象经过点A(-1,0),B(3,0),C(4,y 1).若D(x 2,y 2)是抛物线上任意一点,有下列结论:① 二次函数y =ax 2+bx +c 的最小值为-4a ;② 若-1≤x 2≤4,则0≤y 2≤5a;③ 若y 2>y 1,则x 2>4;④ 一元二次方程cx 2+bx +a =0的两个根为-1和13.其中正确的结论是________.(填序号) 三、 解答题52. (2018·绍兴)学校拓展小组研制了如图①所示的绘图智能机器人,顺次输入点P 1,P 2,P 3的坐标,机器人能根据图②,绘制图形.若图形是线段,求出线段的长度;若图形是抛物线,求出抛物线的函数解析式.请根据以下点的坐标,求出线段的长度或抛物线的函数解析式.(1)`P 1(4,0),P 2(0,0),P 3(6,6);(2)`P 1(0,0),P 2(4,0),P 3(6,6).53. (2018·云南)已知二次函数y =-316x 2+bx +c 的图象经过A(0,3),B(-4,-92)两点.(1) 求b ,c 的值.(2) 二次函数y =-316x 2+bx +c 的图象与x 轴是否有公共点?若有,求公共点的坐标;若没有,请说明情况.54. (2018·南京)已知二次函数y =2(x -1)(x -m -3)(m 为常数). (1) 求证:不论m 为何值,该函数的图象与x 轴总有公共点; (2) 当m 取什么值时,该函数的图象与y 轴的交点在x 轴的上方?55. (2018·杭州)设二次函数的解析式为y =ax 2+bx -(a +b)(a ,b 是常数,a≠0). (1) 判断该二次函数的图象与x 轴的交点的个数,并说明理由;(2) 若该二次函数的图象经过A(-1,4),B(0,-1),C(1,1)三个点中的两个,求该二次函数的解析式; (3) 若a +b <0,点P(2,m)(m >0)在该二次函数的图象上,求证:a >0.56. (2018·宁波)已知抛物线y =-12x 2+bx +c 经过点(1,0),(0,32).(1) 求该抛物线对应的函数解析式;(2) 将抛物线y =-12x 2+bx +c 平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数解析式.57. (2018·苏州)如图,抛物线y=x2-4与x轴交于点A,B(点A位于点B的左侧),C为顶点,直线y=x+m经过点A,与y轴交于点D.(1) 求线段AD的长.(2) 平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数解析式.第57题58. (2018·陕西)已知抛物线l:y=x2+x-6与x轴相交于A,B两点(点A在点B的左侧),并与y轴相交于点C.(1) 求A,B,C三点的坐标及△ABC的面积;(2) 将抛物线l向左或向右平移,得到抛物线l′,且l′与x轴相交于A′,B′两点(点A′在点B′的左侧),并与y轴相交于点C′,要使△A′B′C′和△ABC的面积相等,求所有满足条件的抛物线的函数解析式.59. (2018·温州)如图,抛物线y =ax 2+bx(a≠0)交x 轴正半轴于点A ,直线y =2x 经过抛物线的顶点M.已知该抛物线的对称轴为直线x =2,交x 轴于点B. (1) 求a ,b 的值.(2) P 是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP ,BP.设点P 的横坐标为m ,△OBP 的面积为S ,记K =Sm,求K 关于m 的函数解析式及K 的取值范围.第59题60. (2018·北京)在平面直角坐标系xOy 中,直线y =4x +4与x 轴,y 轴分别交于点A ,B ,抛物线y =ax 2+bx -3a 经过点A ,将点B 向右平移5个单位长度,得到点C. (1) 求点C 的坐标; (2) 求抛物线的对称轴;(3) 若抛物线与线段BC 恰有一个公共点,结合函数图象,求a 的取值范围.61. (2018·泰州)在平面直角坐标系xOy中,二次函数y=x2-2mx+m2+2m+2的图象与x轴有两个交点.(1) 当m=-2时,求二次函数的图象与x轴交点的坐标;(2) 过点P(0,m-1)作直线l⊥y轴,二次函数图象的顶点A在直线l与x轴之间(不包含点A在直线l 上),求m的取值范围;(3) 在(2)的条件下,设二次函数图象的对称轴与直线l相交于点B,求△ABO的面积最大时m的值.第61题62. (2018·金华)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设点A的坐标为(t,0),当t=2时,AD=4.(1) 求抛物线的函数解析式.(2) 当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3) 保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.第62题63. (2018·昆明)如图,抛物线y=ax2+bx过点B(1,-3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.(1) 求抛物线对应的函数解析式,并根据图象直接写出当y≤0时,自变量x的取值范围;(2) 在第二象限内的抛物线上有一点P,当PA⊥BA时,求△PAB的面积.第63题64. (2018·菏泽)如图,在平面直角坐标系中,抛物线y=ax2+bx-5交y轴于点A,交x轴于点B(-5,0)和点C(1,0),过点A作AD∥x轴交抛物线于点D.(1) 求此抛物线的解析式;(2) E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD的面积;(3) 若P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP的面积最大,求出此时点P 的坐标和△ABP的最大面积.第64题65. (2018·贵港)如图,二次函数y=ax2+bx+c的图象与x轴相交于A(-1,0),B(3,0)两点,与y轴相交于点C(0,-3).(1) 求这个二次函数的解析式.(2) 若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.① 求线段PM的最大值;② 当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.第65题66. (2018·海南)如图①,抛物线y=ax2+bx+3交x轴于点A(-1,0)和点B(3,0).(1) 求该抛物线所对应的函数解析式.(2) 如图②,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.① 求四边形ACFD的面积;② P是线段AB上的动点(点P不与点A,B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ,DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.第66题67. (2018·郴州)如图①,抛物线y=-x2+bx+c与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C,P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.(1) 求抛物线的解析式.(2) 设抛物线的对称轴为直线l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.(3) 如图②,连接BC,PB,PC,设△PBC的面积为S.① 求S关于t的函数解析式;② 求点P到直线BC的距离的最大值,并求出此时点P的坐标.第67题68. (2018·德州)如图①,在平面直角坐标系中,直线y=x-1与抛物线y=-x2+bx+c交于A(m,0),B(4,n)两点,该抛物线与y轴交于点C,与x轴交于另一点D.(1) 求m,n的值及该抛物线的解析式.(2) 如图②,若P为线段AD上的一动点(不与点A,D重合),分别以AP,DP为斜边,在直线AD的同侧作等腰直角三角形APM和等腰直角三角形DPN,连接MN,试确定△MPN面积最大时点P的坐标.(3) 如图③,连接BD,CD,在线段CD上是否存在点Q,使得以A,D,Q为顶点的三角形与△ABD相似?若存在,请直接写出点Q的坐标;若不存在,请说明理由.第68题69. (2018·达州)如图,抛物线经过原点O(0,0),点A 的坐标为(1,1),点B 的坐标为(72,0).(1) 求抛物线的解析式.(2) 连接OA ,过点A 作AC⊥OA 交抛物线于点C ,连接OC ,求△AOC 的面积.(3) M 是y 轴右侧抛物线上一动点,连接OM ,过点M 作MN⊥OM 交x 轴于点N.问:是否存在点M ,使以O ,M ,N 为顶点的三角形与(2)中的△AOC 相似?若存在,求出点M 的坐标;若不存在,说明理由.第69题参考答案一、1.C 2.B 3.A 4.C 5.C 6.D 7.A 8.A 9.D点拨:c =1,3,4,5. 10.D 11.B 12.D 13.D 14.A 15.D 16.B 17.D 18.A 19.C 20.D 21.B 22.D 23.B 24.D 25.C 26.C 27.D 28.D 29.B 30.A 31.D32.B 33.D 34.D 点拨:∵12<x ≤1,∴x ≠0.在2x 3-x 2-mx >2两边同时除以x ,得2x 2-x -m >2x .不妨令y 1=2x 2-x -m ,y 2=2x ,则y 1>y 2.易得抛物线y 1=2x 2-x -m 的对称轴为直线x =14,且与y 轴交于点(0,-m ).在y 2=2x 中,令x =12,则y =4.当抛物线过点(12,4)时,易得-m =4.要使y 1>y 2,必须有-m ≥4,即m ≤-4. 35.A 36.B二、37. (-2,4) 38. (1) y =x 2+2 (2) y =2x 2+1 39. (3,0) 40.1 -2 41.x 1=-2,x 2=142.-1 43.k <4 44.②③ 45.-2 点拨:根据抛物线y =ax 2+bx 与正方形的性质,可设点B 的坐标为(-b 2a ,-b 2a ),代入抛物线y =ax 2,可得b 1=0(舍去),b 2=-2. 46.3 47.322 48.2或8 49. (125,0) 50.②③⑤ 51.①④三、52. (1) ∵P 1(4,0),4-0=4>0,∴绘制线段P 1P 2,此时P 1P 2=4 (2) ∵P 1(0,0),0-0=0,∴绘制抛物线.由题意,可设抛物线的函数解析式为y =ax(x -4),把(6,6)代入,得6=12a ,解得a =12,∴y=12x(x -4),即y =12x 2-2x 53. (1) 把A(0,3),B(-4,-92)分别代入y =-316x 2+bx +c ,得⎩⎪⎨⎪⎧c =3,-316×(-4)2-4b +c =-92,解得⎩⎪⎨⎪⎧b =98,c =3(2) 由(1),得该二次函数解析式为y =-316x 2+98x +3.∵ (98)2-4×(-316)×3=22564>0,∴二次函数y =-316x 2+bx +c 的图象与x 轴有公共点.解-316x 2+98x +3=0,得x 1=-2,x 2=8,∴公共点的坐标是(-2,0),(8,0)54. (1) 当y =0时,2(x -1)(x -m -3)=0,解得x 1=1,x 2=m +3.当m +3=1,即m =-2时,方程有两个相等的实数根;当m +3≠1,即m≠-2时,方程有两个不相等的实数根.∴不论m 为何值,该函数的图象与x 轴总有公共点 (2) 当x =0时,y =2m +6,即该函数的图象与y 轴交点的纵坐标为2m +6.因此当2m +6>0,即m >-3时,该函数的图象与y 轴的交点在x 轴的上方55. (1) 交点个数为1或2 理由如下:在y =ax 2+bx -(a +b)中,令y =0,得ax 2+bx -(a +b)=0.∵Δ=b 2-4·a·[-(a +b)]=b 2+4ab +4a 2=(2a +b)2,∴当2a +b =0,即Δ=0时,二次函数的图象与x 轴有1个交点;当2a +b≠0,即Δ>0时,二次函数的图象与x 轴有2个交点. (2) 当x =1时,y =a +b -(a +b)=0,∴函数图象不可能经过点C.∴函数图象经过A ,B 两点.把A(-1,4),B(0,-1)分别代入y =ax 2+bx -(a +b),得⎩⎪⎨⎪⎧4=a -b -(a +b ),-1=-(a +b ),解得⎩⎪⎨⎪⎧a =3,b =-2.∴该二次函数的解析式为y =3x 2-2x -1 (3)∵点P(2,m)(m >0)在该二次函数的图象上,∴m=4a +2b -(a +b)=3a +b >0.∵a+b <0,∴-(a +b)>0.∴3a+b -(a +b)>0,即2a>0.∴a>056. (1) 把(1,0),(0,32)代入y =-12x 2+bx +c ,得⎩⎪⎨⎪⎧-12+b +c =0,c =32,解得⎩⎪⎨⎪⎧b =-1,c =32.∴该抛物线对应的函数解析式为y =-12x 2-x +32 (2) ∵y=-12x 2-x +32=-12(x +1)2+2,∴原抛物线的顶点坐标为(-1,2).∴将抛物线y =-12x 2-x +32平移,使其顶点恰好落在原点的一种平移方法(答案不唯一):先将抛物线y =-12x 2-x +32向右平移1个单位长度,再向下平移2个单位长度,可得顶点恰好落在原点的抛物线y =-12x 257. (1) 在y =x 2-4中,令y =0,得x 2-4=0,解得x 1=-2,x 2=2.∵点A 位于点B 的左侧,∴点A 的坐标为(-2,0),OA =2.∵直线y =x +m 经过点A ,∴-2+m =0,即m =2.∴y=x +2.令x =0,得y =2.∴点D 的坐标为(0,2),OD =2.∴AD=OA 2+OD 2=2 2 (2) 由(1),易得直线AD 的解析式为y =x +2.在y=x 2-4中,令x =0,得y =-4.∴点C 的坐标为(0,-4).根据平移的性质及新抛物线过点D(0,2),可设新抛物线对应的函数解析式为y =x 2+bx +2.配方,得y =(x +b 2)2+2-b 24,则顶点C′的坐标为(-b2,2-b24).∵CC′平行于直线AD ,且经过点C(0,-4),∴易得直线CC′的函数解析式为y =x -4.把点C′的坐标代入y =x -4,得2-b 24=-b 2-4,整理,得b 2-2b -24=0,解得b 1=-4,b 2=6,∴新抛物线对应的函数解析式为y =x 2-4x +2或y =x 2+6x +258. (1) 在y =x 2+x -6中,令y =0,得x 2+x -6=0,解得x 1=-3,x 2=2,∴点A 的坐标为(-3,0),点B 的坐标为(2,0).此时AB =|-3-2|=5.令x =0,得y =-6,∴点C 的坐标为(0,-6).此时OC =6.∴△ABC 的面积为12·AB·OC=12×5×6=15 (2) y =x 2+x -6=(x +12)2-254.不妨设抛物线l 向右平移m 个单位长度,则抛物线l′的函数解析式为y =(x +12-m)2-254.由平移特征,得A′B′=AB =5.∵△A′B′C′和△ABC 的面积相等,∴12×5·OC′=15,即OC′=6.∴点C′的坐标为(0,6)或(0,-6).①把C′(0,6)代入y =(x +12-m)2-254,得(12-m)2-254=6,解得m 1=-3,m 2=4,此时抛物线的函数解析式为y =x 2+7x +6或y =x 2-7x +6;②把C′(0,-6)代入y =(x +12-m)2-254,得(12-m)2-254=-6,解得m 1=0(与抛物线l 重合,舍去),m 2=1,此时抛物线的函数解析式为y =x 2-x -6.综上所述,满足条件的抛物线的函数解析式为y =x 2+7x +6或y =x 2-7x +6或y =x 2-x -659. (1) 由题意,得抛物线顶点M 的横坐标为2,代入直线y =2x 中,得y =4,即点M 的坐标为(2,4).∵抛物线经过点O ,A ,且该抛物线的对称轴为直线x =2,∴易得点A 的坐标为(4,0).把A(4,0),M(2,4)代入y =ax 2+bx ,得⎩⎪⎨⎪⎧16a +4b =0,4a +2b =4,解得⎩⎪⎨⎪⎧a =-1,b =4 (2) 由(1),得抛物线对应的函数解析式为y =-x 2+4x.过点P 作PH⊥x 轴,垂足为H.将x P =m 代入y =-x 2+4x ,得y P =-m 2+4m ,∴点P 的坐标为(m ,-m 2+4m).∴PH=-m 2+4m.∵抛物线的对称轴为直线x =2,∴点B 的坐标为(2,0),即OB =2.∴S=12OB·PH=12×2·(-m 2+4m)=-m 2+4m.∴K=S m =-m 2+4m m =-m +4.由(1),得点A 的坐标为(4,0),点M 的坐标为(2,4).∵P 是对称轴的右侧第一象限内的一点,∴2<m <4.∵K=-m +4,即m =4-K ,∴2<4-K <4,解得0<K <260. (1) 在y =4x +4中,令x =0,得y =4,∴点B 的坐标为(0,4).∵点B 向右平移5个单位长度,得到点C ,∴点C 的坐标为(5,4) (2) 在y =4x +4中,令y =0,得x =-1,∴点A 的坐标为(-1,0).将A(-1,0)代入抛物线y =ax 2+bx -3a 中,得0=a -b -3a ,即b =-2a ,∴-b 2a =--2a 2a =1.∴抛物线的对称轴为直线x =1 (3) 抛物线y =ax 2+bx -3a =ax 2-2ax -3a.如图,情况1:当a>0时,将x =0代入y =ax 2-2ax -3a ,得y =-3a.将x =5代入y =ax 2-2ax -3a ,得y =12a.∵抛物线与线段BC 恰有一个公共点,对称轴为直线x =1,∴-3a<4,12a≥4.∴a>-43,a≥13.∴a≥13.情况2:当a<0时,类似情况1,得-3a>4.∴a<-43.情况3:当抛物线的顶点在线段BC 上时,易得顶点坐标为(1,4).∴4=a -2a -3a.∴a=-1.综上所述,a 的取值范围是a≥13或a<-43或a =-1第60题 第61题61. (1) 当m =-2时,二次函数的解析式为y =x 2+4x +2,令y =0,则x 2+4x +2=0,解得x 1=-2+2,x 2=-2-2,∴抛物线与x 轴交点的坐标为(-2+2,0),(-2-2,0) (2) 如图,∵y=x 2-2mx +m 2+2m +2=(x -m)2+2m +2,∴顶点A 的坐标为(m ,2m +2).∵抛物线与x 轴有两个交点,且开口向上,∴点A 在x 轴下方.又∵点A 在直线l 与x 轴之间(不包含点A 在直线l 上),∴⎩⎪⎨⎪⎧2m +2<0,2m +2>m -1,解得-3<m <-1 (3) 如图,由(2),知抛物线的对称轴为直线x =m ,顶点为A(m ,2m +2).∵-3<m <-1,∴点A 在第三象限.∵点B 为抛物线对称轴与直线l 的交点,∴点B 的坐标为(m ,m -1).易得点B 在点A 下方,∴AB=2m +2-(m -1)=m +3.∴S △ABO =12(m +3)(-m)=-12(m +32)2+98.∴当m =-32时,S △ABO 有最大值,为98.∴△ABO 的面积最大时m 的值为-3262. (1) ∵当t =2时,AD =4,∴点D 的坐标为(2,4).将E(10,0),D(2,4)代入y =ax 2+bx ,得⎩⎪⎨⎪⎧100a +10b =0,4a +2b =4,解得⎩⎪⎨⎪⎧a =-14,b =52,∴抛物线的函数解析式为y =-14x 2+52x (2) 由抛物线及矩形的对称性得BE =OA =t ,∵E(10,0),∴O E =10.∴AB=10-2t.当x =t 时,AD =-14t 2+52t ,∴矩形ABCD 的周长C=2·(AB+AD)=2·[(10-2t)+(-14t 2+52t)] =-12t 2+t +20=-12(t -1)2+412.∵-12<0,∴当t =1时,矩形ABCD 的周长有最大值,最大值为412 (3) 如图,当t =2时,易得点A ,B ,C ,D 的坐标分别为(2,0),(8,0),(8,4),(2,4),∴矩形ABCD 对角线的交点P 的坐标为(5,2),OB =8.当平移后的抛物线过点A(点A ,G 重合)时,点H 的坐标为(4,4),此时GH 不能将矩形的面积平分;当平移后的抛物线过点C(点C ,H 重合)时,点G 的坐标为(6,0),此时GH 也不能将矩形的面积平分;当G ,H 中有一点落在线段AD 或BC 上时,直线GH 不可能将矩形的面积平分;当点G ,H 分别落在线段AB ,DC 上时,直线GH 过点P 时必平分矩形ABCD 的面积.连接DO ,设其中点为Q.∵在矩形ABCD 中,AB∥CD ,∴线段OD 平移后得到线段GH.∴线段OD 的中点Q 平移后的对应点是P.∴在△OBD 中,PQ 是中位线.∴PQ=12OB =4.∴抛物线向右平移的距离是4个单位长度第62题 第63题63. (1) ∵抛物线y =ax 2+bx 过点B(1,-3),对称轴是直线x =2,∴⎩⎪⎨⎪⎧a +b =-3,-b 2a =2,解得⎩⎪⎨⎪⎧a =1,b =-4.∴抛物线对应的函数解析式为y =x 2-4x.令y =0,得x 2-4x =0,解得x 1=0,x 2=4.结合题中图象知,点A 的坐标为(4,0),抛物线开口向上,∴当y≤0时,自变量x 的取值范围是0≤x≤4 (2) 设点P 的坐标为(t ,t 2-4t).如图,先过点A 作x 轴的垂线CD ,再分别过点P ,B 作PC⊥CD,BD⊥CD.∵点B 的坐标为(1,-3),点A 的坐标为(4,0),∴AD=BD =3,PC =4-t ,AC =t 2-4t.∴在Rt△ADB 中,∠BAD =45°.∵PA ⊥BA ,∴∠PAC =180°-90°-45°=45°.又∵∠C =90°,∴∠APC =45°=∠PAC .∴PC =AC ,即4-t =t 2-4t .解得t 1=4(不合题意,舍去),t 2=-1,此时点P 的坐标为(-1,5),∴PC =5,CD =8,AC =5.∴S △PAB =12(PC +BD )·CD -12PC ·AC -12BD ·AD =12×(5+3)×8-12×5×5-12×3×3=15 64. (1) ∵抛物线y =ax 2+bx -5经过点B(-5,0)和点C(1,0),∴⎩⎪⎨⎪⎧25a -5b -5=0,a +b -5=0,解得⎩⎪⎨⎪⎧a =1,b =4.∴抛物线的解析式是y =x 2+4x -5 (2) ∵抛物线y =x 2+4x -5交y 轴于点A ,∴易得点A 的坐标为(0,-5).∵AD∥x 轴,点E 关于x 轴的对称点在直线AD 上,∴点E 的纵坐标为5,点D 的纵坐标为-5.∴点E到直线AD 的距离为5+|-5|=10.设点D 的坐标为(t ,-5),则-5=t 2+4t -5,解得t 1=0,t 2=-4,∴点D 的坐标为(-4,-5).∴AD=4.∴S △EAD =12×4×10=20 (3) 设过点A(0,-5),B(-5,0)的直线AB 的函数解析式为y =mx +n.∴⎩⎪⎨⎪⎧n =-5,-5m +n =0,解得⎩⎪⎨⎪⎧m =-1,n =-5.∴直线AB 的函数解析式为y =-x -5.如图,过点P 作PN ⊥x 轴,垂足为N ,交直线AB 于点M.设点P 的坐标为(p ,p 2+4p -5),则点M 的坐标为(p ,-p -5).易得-5<p<0.∴S △ABP =S △AMP +S △BMP =12MP·(x A -x M )+12MP·(x M -x B )=12MP·(x A -x B )=12[(-p -5)-(p 2+4p -5)] ×5=-52(p 2+5p)=-52(p +52)2+1258.∴当p =-52时,S △ABP 最大,最大值为1258.∵当p =-52时,p 2+4p -5=-354,∴此时点P 的坐标为(-52,-354)第64题65. (1) ∵抛物线与x 轴相交于A(-1,0),B(3,0)两点,∴可设y =a(x +1)(x -3).将C(0,-3)代入,得-3=a·1×(-3),解得a =1,∴这个二次函数的解析式为y =(x +1)(x -3),即y =x 2-2x -3 (2)①设直线BC 的函数解析式为y BC =kx +m ,代入B(3,0),C(0,-3),得⎩⎪⎨⎪⎧3k +m =0,m =-3,解得⎩⎪⎨⎪⎧k =1,m =-3.∴y BC =x -3.设点M 的坐标为(n ,n -3),则点P 的坐标为(n ,n 2-2n -3),易得0<n<3.∴PM=(n -3)-(n 2-2n -3)=-n 2+3n =-(n -32)2+94.∴当n =32时,线段PM 取得最大值,为94 ②当PM =PC 时,∠PMC=∠PCM.∵点B 的坐标为(3,0),点C 的坐标为(0,-3),∴OB=OC.∴在Rt△BOC 中,∠OBC =∠OCB =45°.∴在Rt△BHM 中,∠HMB =45°=∠HBM .∴∠PCM =∠PMC =∠HMB =45°.∴∠PCO =90°,即PC ⊥y 轴.由(2)①得PC =n ,此时n =-n 2+3n ,解得n 1=0(舍去),n 2=2,∴点P 的坐标为(2,-3).当PM =CM 时,过点M 作MD ⊥y 轴交y 轴于点D ,由∠DCM =45°,易得△MDC 为等腰直角三角形,∴CM =2MD =2n .此时2n =-n 2+3n ,解得n 1=0(舍去),n 2=3-2,∴点P 的坐标为(3-2,2-42).综上所述,点P 的坐标为(2,-3)或(3-2,2-42)66. (1) 把A(-1,0),B(3,0)代入y =ax 2+bx +3,得⎩⎪⎨⎪⎧a -b +3=0,9a +3b +3=0,解得⎩⎪⎨⎪⎧a =-1,b =2.∴该抛物线对应的函数解析式为y =-x 2+2x +3 (2) ①连接CD.在y =-x 2+2x +3中,令x =0,得y =3,∴点C 的坐标为(0,3).∵y=-x 2+2x +3=-(x -1)2+4,∴点F 的坐标为(1,4).∵点C 的坐标为(0,3),点D 的坐标为(2,3),∴CD=2,且CD∥x 轴.∵点A 的坐标为(-1,0),∴S 四边形ACFD =S △ACD +S △FCD =12×2×3+12×2×(4-3)=4 ②∵点P 在线段AB 上,∴∠DAQ<∠CAO<90°.∴∠DAQ 不可能为直角.∴当△AQD 为直角三角形时,有∠ADQ =90°或∠AQD =90°.设点Q 的坐标为(t ,-t 2+2t +3).情况1:当∠ADQ =90°时,如图①(简图),过点D 作DH ⊥x 轴,过点Q 作QE ⊥DH ,垂足分别为H ,E .∵点A 的坐标为(-1,0),点D 的坐标为(2,3),∴AH =DH =3.∴∠ADH =∠DAH =45°.∴∠QDE =180°-90°-45°=45°.∴∠DQE=45°=∠QDE .∴QE =DE .∴2-t =-t 2+2t +3-3,即t 2-3t +2=0.解得t 1=1,t 2=2(此时点Q ,D 重合,舍去).∴点Q 的坐标为(1,4).情况2:当∠AQD =90°时,如图②(简图),过点Q 作QH ⊥x 轴,过点D 作DE ⊥QH ,垂足分别为H ,E (此时点H 在点P 处).易证△DEQ ∽△QHA ,∴DE QH =EQHA.∵点A 的坐标为(-1,0),点D 的坐标为(2,3),∴t -2-t 2+2t +3=3-(-t 2+2t +3)t +1,即1-t +3=t 1.∴t 2-3t +1=0,解得t 1=3+52,t 2=3-52.∴点Q 的坐标为(3+52,5-52)或(3-52,5+52).综上,所有满足条件的点Q 的坐标为(1,4),(3+52,5-52),(3-52,5+52)第66题67. (1) 将A(-1,0),B(3,0)代入y =-x 2+bx +c ,得⎩⎪⎨⎪⎧-1-b +c =0,-9+3b +c =0,解得⎩⎪⎨⎪⎧b =2,c =3.∴抛物线的解析式为y =-x 2+2x +3 (2) 在题图①中,连接PC.∵A(-1,0),B(3,0)是抛物线与x 轴的两个交点,∴抛物线的对称轴为直线x =1,即点D ,M 的横坐标都是1.假设在直线l 上存在点M ,使得四边形CDPM 是平行四边形,则CP ,DM 互相平分,设CP ,DM 交于点E.易得点C 的坐标为(0,3),点P 的坐标为(t ,-t 2+2t +3),∴CP 的中点E 的坐标为(t 2,-t 2+2t +62).由t2=1,得t =2,此时点E 的坐标为(1,3).∵点D的坐标为(1,0),DM 的中点也为E ,∴易得点M 的坐标为(1,6).∴假设成立,此时点M 的坐标为(1,6)(3) ①在题图②中,过点P 作PF∥y 轴,交BC 于点F.设直线BC 的函数解析式为y =mx +n ,将B(3,0),C(0,3)代入,得⎩⎪⎨⎪⎧3m +n =0,n =3,解得⎩⎪⎨⎪⎧m =-1,n =3.∴y=-x +3.∵点P 的坐标为(t ,-t 2+2t +3),∴点F 的坐标为(t ,-t +3).∴PF=-t 2+2t +3-(-t +3)=-t 2+3t.∴S=S △CPF +S △BPF =12PF·(x P -x C )+12PF·(x B-x P )=12PF·(x B -x C )=12·(-t 2+3t)·3=-32t 2+92t ②∵点B 的坐标为(3,0),点C 的坐标为(0,3),∴线段BC =32+32=32,为一定值.根据三角形的面积公式可知,要使点P 到直线BC 的距离最大,只要△PBC 的面积最大即可.在S =-32t 2+92t =-32(t -32)2+278中,∵-32<0,易得0<t<3,∴当t =32时,S取最大值,最大值为278.∴点P 到直线BC 的距离的最大值为278×232=928,此时点P 的坐标为(32,154)68. (1) 把A(m ,0),B(4,n)分别代入y =x -1中,得m =1,n =3,∴点A 的坐标为(1,0),点B 的坐标为(4,3).∵抛物线y =-x 2+bx +c 经过点A 与点B ,∴⎩⎪⎨⎪⎧-1+b +c =0,-16+4b +c =3,解得⎩⎪⎨⎪⎧b =6,c =-5.∴该抛物线的解析式为y =-x 2+6x -5 (2) ∵△APM 与△DPN 都为等腰直角三角形,∴∠APM=∠DPN=45°.∴∠MPN =90°.∴△MPN 为直角三角形.在y =-x 2+6x -5中,令y =0,得x 1=1,x 2=5,∴点D 的坐标为(5,0),即AD =5-1=4.设AP =m ,则DP =4-m .易得0<m <4.∴易得PM =m 2,PN =4-m 2.∴S △MPN =12PM ·PN =12×m2×4-m 2=-14m 2+m =-14(m -2)2+1.∴当m =2,即AP =2时,S △MPN 最大.此时OP =3,即点P 的坐标为(3,0) (3) 存在,点Q 的坐标为(73,-83)或(2,-3) 点拨:在y =-x 2+6x-5中,令x =0,则y =-5.∴点C 的坐标为(0,-5).又∵点D 的坐标为(5,0),∴易得y CD =x -5.又∵点A 的坐标为(1,0),点B 的坐标为(4,3),∴直线AB :y =x -1,AB =32,DA =4,BD =10.易得直线AB ∥CD .∴∠BAD =∠ADQ ,即点A 与点D 对应.设点Q 的坐标为(x ,x -5),易得0<x <5.当△ABD ∽△DAQ 时,AB DA =BD AQ ,即324=10AQ,解得AQ =453.过点Q 作QH ⊥x 轴,垂足为H ,在Rt△AHQ 中,(x -1)2+(x -5)2=(453)2,解得x 1=73,x 2=113.当x =113时,不满足△ABD ∽△DAQ ,舍去.∴x =73.此时点Q 的坐标为(73,-83).当△ABD ∽△DQA 时,BD QA =AD DA =1,即AQ =10,同理可得(x -1)2+(x -5)2=(10)2,解得x 1=2,x 2=4.当x =4时,不满足△ABD ∽△DQA ,舍去.∴x =2.此时点Q 的坐标为(2,-3).69. (1) 由题意,可设抛物线的解析式为y =ax(x -72),把A(1,1)代入,得a·1×(1-72)=1,解得a =-25,∴抛物线的解析式为y =-25x(x -72),即y =-25x 2+75x (2) 如图,过点C 作CD⊥x 轴于点D ,延长CA 交y 轴于点E ,设AC 与x 轴交于点H.∵点A 的坐标为(1,1),∴易得OA =2,∠EOA=90°-45°=45°.∵AC ⊥OA ,∴易得△AOE 为等腰直角三角形.∴OE =2OA =2.∴点E 的坐标为(0,2).设直线AC 的解析式为y =kx +b ,则⎩⎪⎨⎪⎧1=k +b ,2=b ,解得⎩⎪⎨⎪⎧k =-1,b =2.∴y =-x +2.联立直线AC 与抛物线的解析式,得⎩⎪⎨⎪⎧y =-x +2,y =-25x 2+75x ,解得⎩⎪⎨⎪⎧x =1,y =1或⎩⎪⎨⎪⎧x =5,y =-3.∴点C 的坐标为(5,-3).∴S △AOC =S △COE -S △AOE =12·OE ·x C -12·OE ·x A =12OE ·(x C -x A )=12×2×(5-1)=4(注:本小题也可以利用S △AOC =S △AOH +S △COH 求解) (3) 假设存在点M 满足条件.设点M 的坐标为(m ,-25m 2+75m ).过点M 作MF ⊥x 轴于点F ,∴∠OMN =∠OFM =90°.又∵∠MON =∠FOM ,∴△MNO ∽△FMO .情况1:当点M 在x 轴上方时,由题意,易得∠MOB <∠AOC .∴△MNO ∽△AOC .∴△FMO ∽△AOC .∴FM AO =FO AC.∵点A 的坐标为(1,1),点C 的坐标为(5,-3),∴AO =2,AC =42.∴-25m 2+75m 2=m 42.易得m >0,∴-25m +75=14,解得m =238.此时-25m 2+75m =2332,∴点M 的坐标为(238,2332).情况2:当点M 在x 轴下方时,①若△MNO ∽△AOC ,同上可得25m 2-75m 2=m 42,易得m >0,∴25m -75=14,解得m =338.此时-25m 2+75m =-3332,∴点M 的坐标为(338,-3332).②若△MNO ∽△ACO ,则△FMO ∽△ACO ,∴FM AC =FO AO .∴25m 2-75m 42=m 2.易得m >0,∴25m -75=4,解得m =272.此时-25m 2+75m =-54,∴点M 的坐标为(272,-54).综上所述,假设成立,满足条件的点M 的坐标为(238,2332)或(338,-3332)或(272,。
初三数学二次函数分类题型及解析[整理版]-12页文档资料
初三数学二次函数分类题型及解析一.解答题(共10小题)1.如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.2.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.3.如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.4.如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E(1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.5.已知二次函数y=x2+bx+c的图象与y轴交于点C(0,﹣6),与x轴的一个交点坐标是A(﹣2,0).(1)求二次函数的解析式,并写出顶点D的坐标;(2)将二次函数的图象沿x轴向左平移个单位长度,当 y<0时,求x的取值范围.6.某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?7.某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?8.2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x ≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?9.草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y(千克)与销售单价x(元)符合一次函数关系,如图是y 与x的函数关系图象.(1)求y与x的函数解析式(也称关系式);(2)设该水果销售店试销草莓获得的利润为W元,求W的最大值.10.襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数解析式为:y=.(1)若企业销售该产品获得的年利润为W(万元),请直接写出年利润W(万元)关于售价x(元/件)的函数解析式;(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价x(元/件)的取值范围.2016年12月09日天津优胜教育二次函数组卷参考答案与试题解析一.解答题(共10小题)1.(2016•宁波)如图,已知抛物线y=﹣x2+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0)(1)求m的值及抛物线的顶点坐标.(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.【解答】解:(1)把点B的坐标为(3,0)代入抛物线y=﹣x2+mx+3得:0=﹣32+3m+3,解得:m=2,∴y=﹣x 2+2x+3=﹣(x ﹣1)2+4,∴顶点坐标为:(1,4).(2)连接BC 交抛物线对称轴l 于点P ,则此时PA+PC 的值最小,设直线BC 的解析式为:y=kx+b ,∵点C (0,3),点B (3,0), 解得:, ∴直线BC 的解析式为:y=﹣x+3,当x=1时,y=﹣1+3=2,∴当PA+PC 的值最小时,点P 的坐标为:(1,2).2.(2016•菏泽)在平面直角坐标系xOy 中,抛物线y=ax 2+bx+2过B (﹣2,6),C (2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D ,求△BCD 的面积;(3)若直线y=﹣x 向上平移b 个单位所得的直线与抛物线段BDC (包括端点B 、C )部分有两个交点,求b 的取值范围.【解答】解:(1)由题意解得,∴抛物线解析式为y=x 2﹣x+2.(2)∵y=x 2﹣x+2=(x ﹣1)2+.∴顶点坐标(1,),∵直线BC 为y=﹣x+4,∴对称轴与BC 的交点H (1,3),∴S △BDC =S △BDH +S △DHC =•3+•1=3.(3)由消去y得到x2﹣x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b=,当直线y=﹣x+b经过点C时,b=3,当直线y=﹣x+b经过点B时,b=5,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴<b≤3.3.(2016•淄博)如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.【解答】解:(1)∵抛物线y=ax2+2ax+1与x轴仅有一个公共点A,∴△=4a2﹣4a=0,解得a1=0(舍去),a2=1,∴抛物线解析式为y=x2+2x+1;(2)∵y=(x+1)2,∴顶点A的坐标为(﹣1,0),∵点C是线段AB的中点,即点A与点B关于C点对称,∴B点的横坐标为1,当x=1时,y=x2+2x+1=1+2+1=4,则B(1,4),设直线AB的解析式为y=kx+b,把A(﹣1,0),B(1,4)代入得,解得,∴直线AB的解析式为y=2x+2.4.(2016•大连)如图,抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,点D是直线BC下方抛物线上一点,过点D作y轴的平行线,与直线BC相交于点E (1)求直线BC的解析式;(2)当线段DE的长度最大时,求点D的坐标.【解答】解:(1)∵抛物线y=x2﹣3x+与x轴相交于A、B两点,与y轴相交于点C,∴令y=0,可得x=或x=,∴A(,0),B(,0);令x=0,则y=,∴C点坐标为(0,),设直线BC的解析式为:y=kx+b,则有,解得:,∴直线BC的解析式为:y=x;(2)设点D的横坐标为m,则坐标为(m,),∴E点的坐标为(m,m),设DE的长度为d,∵点D是直线BC下方抛物线上一点,则d=m+﹣(m2﹣3m+),整理得,d=﹣m2+m,∵a=﹣1<0,∴当m==时,d 最大===,∴D 点的坐标为(,). 5.(2016•黔南州)已知二次函数y=x 2+bx+c 的图象与y 轴交于点C (0,﹣6),与x 轴的一个交点坐标是A (﹣2,0).(1)求二次函数的解析式,并写出顶点D 的坐标;(2)将二次函数的图象沿x 轴向左平移个单位长度,当 y <0时,求x 的取值范围.【解答】解:(1)∵把C (0,﹣6)代入抛物线的解析式得:C=﹣6,把A (﹣2,0)代入y=x 2+bx ﹣6得:b=﹣1,∴抛物线的解析式为y=x 2﹣x ﹣6.∴y=(x ﹣)2﹣.∴抛物线的顶点坐标D (,﹣).(2)二次函数的图形沿x 轴向左平移个单位长度得:y=(x+2)2﹣. 令y=0得:(x+2)2﹣=0,解得:x 1=,x 2=﹣.∵a >0,∴当y <0时,x 的取值范围是﹣<x <. 6.(2016•咸宁)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x 元,每星期的销售量为y 件.(1)求y 与x 之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?(3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?【解答】解:(1)y=300+30(60﹣x)=﹣30x+2100.(2)设每星期利润为W元,W=(x﹣40)(﹣30x+2100)=﹣30(x﹣55)2+6750.∴x=55时,W最大值=6750.∴每件售价定为55元时,每星期的销售利润最大,最大利润6750元.(3)由题意(x﹣40)(﹣30x+2100)≥6480,解得52≤x≤58,当x=52时,销售300+30×8=540,当x=58时,销售300+30×2=360,∴该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装360件.7.(2016•成都)某果园有100颗橙子树,平均每颗树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子,假设果园多种了x棵橙子树.(1)直接写出平均每棵树结的橙子个数y(个)与x之间的关系;(2)果园多种多少棵橙子树时,可使橙子的总产量最大?最大为多少个?【解答】解:(1)平均每棵树结的橙子个数y(个)与x之间的关系为:y=600﹣5x(0≤x<120);(2)设果园多种x棵橙子树时,可使橙子的总产量为w,则w=(600﹣5x)(100+x)=﹣5x2+100x+60000=﹣5(x﹣10)2+60500,则果园多种10棵橙子树时,可使橙子的总产量最大,最大为60500个.8.(2016•铜仁市)2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y (个)与售价x (元)之间的函数关系(12≤x ≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?【解答】解:(1)设蝙蝠型风筝售价为x 元时,销售量为y 个,根据题意可知:y=180﹣10(x ﹣12)=﹣10x+300(12≤x ≤30).(2)设王大伯获得的利润为W ,则W=(x ﹣10)y=﹣10x 2+400x ﹣3000,令W=840,则﹣10x 2+400x ﹣3000=840,解得:x 1=16,x 2=24,答:王大伯为了让利给顾客,并同时获得840元利润,售价应定为16元.(3)∵W=﹣10x 2+400x ﹣3000=﹣10(x ﹣20)2+1000,∵a=﹣10<0,∴当x=20时,W 取最大值,最大值为1000.答:当售价定为20元时,王大伯获得利润最大,最大利润是1000元.9.(2016•云南)草莓是云南多地盛产的一种水果,今年某水果销售店在草莓销售旺季,试销售成本为每千克20元的草莓,规定试销期间销售单价不低于成本单价,也不高于每千克40元,经试销发现,销售量y (千克)与销售单价x (元)符合一次函数关系,如图是y 与x 的函数关系图象.(1)求y 与x 的函数解析式(也称关系式);(2)设该水果销售店试销草莓获得的利润为W 元,求W 的最大值.【解答】解:(1)设y与x的函数关系式为y=kx+b,根据题意,得:,解得:,∴y与x的函数解析式为y=﹣2x+340,(20≤x≤40).(2)由已知得:W=(x﹣20)(﹣2x+340)=﹣2x2+380x﹣6800=﹣2(x﹣95)2+11250,∵﹣2<0,∴当x≤95时,W随x的增大而增大,∵20≤x≤40,∴当x=40时,W最大,最大值为﹣2(40﹣95)2+11250=5200元.10.(2016•湖北襄阳)襄阳市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种产品的成本为30元/件,且年销售量y(万件)关于售价x(元/件)的函数解析式为:y=.(1)若企业销售该产品获得的年利润为W(万元),请直接写出年利润W(万元)关于售价x(元/件)的函数解析式;(2)当该产品的售价x(元/件)为多少时,企业销售该产品获得的年利润最大?最大年利润是多少?(3)若企业销售该产品的年利润不少于750万元,试确定该产品的售价x(元/件)的取值范围.【解答】解:(1)当40≤x<60时,W=(x﹣30)(﹣2x+140)=﹣2x2+200x﹣4200,当60≤x≤70时,W=(x﹣30)(﹣x+80)=﹣x2+110x﹣2400;(2)当40≤x<60时,W=﹣2x2+200x﹣4200=﹣2(x﹣50)2+800,∴当x=50时,W取得最大值,最大值为800万元;当60≤x≤70时,W=﹣x2+110x﹣2400=﹣(x﹣55)2+625,∴当x>55时,W随x的增大而减小,∴当x=60时,W取得最大值,最大值为:﹣(60﹣55)2+625=600,∵800>600,∴当x=50时,W取得最大值800,答:该产品的售价x为50元/件时,企业销售该产品获得的年利润最大,最大年利润是800万元;(3)当40≤x<60时,由W≥750得:﹣2(x﹣50)2+800≥750,解得:45≤x≤55,当60≤x≤70时,W的最大值为600<750,∴要使企业销售该产品的年利润不少于750万元,该产品的售价x(元/件)的取值范围为45≤x≤55.希望以上资料对你有所帮助,附励志名言3条:1、常自认为是福薄的人,任何不好的事情发生都合情合理,有这样平常心态,将会战胜很多困难。
九年级数学二次函数专题训练含答案解析-精选5份
九年级数学上册《二次函数》专题测试题(附答案)一.选择题(共8小题,满分32分)1.若y=(a+1)x|a+3|﹣x+3是关于x的二次函数,则a的值是()A.1B.﹣5C.﹣1D.﹣5或﹣12.下列关于二次函数y=﹣(x﹣m)2+m2+1(m为常数)的结论错误的是()A.当x>0时,y随x的增大而减小B.该函数的图象一定经过点(0,1)C.该函数图象的顶点在函数y=x2+1的图象上D.该函数图象与函数y=﹣x2的图象形状相同3.已知:抛物线的解析式为y=﹣3(x﹣2)2+1,则抛物线的对称轴是直线()A.x=﹣1B.x=1C.x=2D.x=﹣24.将二次函数y=2x2向左平移5个单位,再向上平移3个单位,所得新抛物线表达式为()A.y=2(x+5)2﹣3B.y=2(x+5)2+3C.y=2(x﹣5)2﹣3D.y=2(x﹣5)2+35.二次函数y=ax2+bx+c的图象如图所示,下列结论:(1)4ac<b2;(2)abc<0;(3)2a+b<0;(4)(a+c)2<b2其中正确的个数是()A.1B.2C.3D.46.已知抛物线y=ax2+4ax﹣8与直线y=n相交于A,B两点(点A在点B左侧),AB=4,且抛物线与x轴只有一个交点,则n的值为()A.﹣8B.﹣4C.4D.87.已知二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,关于x的方程ax2+bx+c+m =0(m>0)有两个整数根,其中一个根是3,则另一个根是()A.﹣5B.﹣3C.﹣1D.38.物理课上我们学习了竖直上抛运动,若从地面竖直向上抛一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示,下列结论:①小球在空中经过的路程是40m②小球抛出3s后,速度越来越快③小球抛出3s时速度为0④小球的高度h=30m时,t=1.5s其中正确的是()A.①②③B.①②C.②③④D.②③二.填空题(共8小题,满分32分)9.已知抛物线y=x2+bx+c关于直线x=2对称,设x=1,2,4时对应的函数值依次为y1,y2,y4,那么y1,y2,y4的大小关系是.(用“<”连接)10.已知抛物线y=ax2﹣2ax﹣1(a<0)(I)抛物线的对称轴为;(2)若当﹣2≤x≤2时,y的最大值是1,求当﹣2≤x≤2时,y的最小值是.11.已知二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),则关于x 的一元二次方程ax2﹣2ax+c=0的两根之积是.12.已知二次函数y=﹣x2+4x+5及一次函数y=﹣x+b,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线y=﹣x+b与新图象有4个交点时,b的取值范围是.13.将抛物线y=﹣(x﹣3)2﹣1向右平移5个单位,再向上平移2个单位,所得的抛物线的解析式为.14.如图,抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),则方程ax2﹣bx﹣c=0的解是.15.抛物线y=ax2+bx+tc(a<0)交x轴于点A、B,交y轴于点C(0,3),其中点B坐标为(1,0),同时抛物线还经过点(2,﹣5).(1)抛物线的解析式为;(2)设抛物线的对称轴与抛物线交于点E,与x轴交于点H,连接EC、EO,将抛物线向下平移n(n>0)个单位,当EO平分∠CEH时,则n的值为.16.某食品零售店新上架一款冷饮产品,每个成本为8元,在销售过程中,每天的销售量y (个)与销售价格x(元/个)的关系如图所示,当10≤x≤20时,其图象是线段AB,则该食品零售店每天销售这款冷饮产品的最大利润为元(利润=总销售额﹣总成本).三.解答题(共6小题,满分56分)17.已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P(2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.18.对于向上抛的物体,如果空气阻力忽略不计,有下面的关系式:h=v0t﹣gt2(h是物体离起点的高度,v0是初速度,g是重力系数,取10m/s2,t是抛出后经过的时间).杂技演员抛球表演时,以10m/s的初速度把球向上抛出.(1)球抛出后经多少秒回到起点?(2)几秒后球离起点的高度达到1.8m?(3)球离起点的高度能达到6m吗?请说明理由.19.在平面直角坐标系中,已知二次函数y=ax2+(a﹣1)x﹣1.(1)若该函数的图象经过点(1,2),求该二次函数图象的顶点坐标.(2)若(x1,y1),(x1,y2)为此函数图象上两个不同点,当x1+x2=﹣2时,恒有y1=y2,试求此函数的最值.(3)当a<0且a≠﹣1时,判断该二次函数图象的顶点所在象限,并说明理由.20.某商场新进一批拼装玩具,进价为每个10元,在销售过程中发现,日销售量y(个)与销售单价x(元)之间满足如图所示的一次函数关系.(1)求y与x的函数关系式(不要求写出自变量x的取值范围);(2)若该玩具某天的销售利润是600元,则当天玩具的销售单价是多少元?(3)设该玩具日销售利润为w元,当玩具的销售单价定为多少元时,日销售利润最大?最大利润是多少元?21.如图,抛物线y=﹣x2+bx+c过点A(4,0),B(0,2).M(m,0)为线段OA上一个动点(点M与点A不重合),过点M作垂直于x轴的直线与直线AB和抛物线分别交于点D、N.(1)求直线AB的表达式和抛物线的表达式;(2)若DN=3DM,求此时点N的坐标;(3)若点P为直线AB上方的抛物线上一个动点,当∠ABP=2∠BAC时,求点P的坐标.22.如图,已知二次函数y=x2+bx+c(b,c为常数)的图象经过点A(3,﹣2),点C(0,﹣5),顶点为点M,过点A作AB∥x轴,交y轴于点D,交二次函数y=x2+bx+c的图象于点B,连接BC.(1)求该二次函数的表达式及点M的坐标;(2)若将该二次函数图象向上平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围;(3)若E为线段AB上一点,且BE:EA=3:1,P为直线AC上一点,在抛物线上是否存在一点Q,使以B、P、E、Q为顶点的四边形是平行四边形?若存在,请直接写出点Q的横坐标;若不存在,请说明理由.参考答案一.选择题(共8小题,满分32分)1.解:∵函数y=(a+1)x|a+3|﹣x+3是关于x的二次函数,∴|a+3|=2且a+1≠0,解得a=﹣5,故选:B.2.解:A.∵y=﹣(x﹣m)2+m2+1(m为常数),∴抛物线开口向下,对称轴为直线x=m,∴x>m时,y随x增大而减小,故A错误,符合题意;∵当x=0时,y=1,∴该函数的图象一定经过点(0,1),故B正确,不合题意;∵y=﹣(x﹣m)2+m2+1,∴抛物线顶点坐标为(m,m2+1),∴抛物线顶点在抛物线y=x2+1上,故C正确,不合题意;∵y=﹣(x﹣m)2+m2+1与y=﹣x2的二次项系数都为﹣1,∴两函数图象形状相同,故D正确,不合题意.故选:A.3.解:∵y=﹣3(x﹣2)2+1,∴抛物线对称轴为直线x=2.故选:C.4.解:将二次函数y=2x2向左平移5个单位,再向上平移3个单位,所得新抛物线表达式为y=2(x+5)2+3,故选:B.5.解:根据图象知道抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac<b2,故(1)正确.∵抛物线开口朝下,∴a<0,∵对称轴在y轴右侧,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c>0,∴abc<0,故(2)正确;∵对称轴x=﹣>1,∴2a+b>0,故(3)错误;根据图象知道当x=1时,y=a+b+c>0,根据图象知道当x=﹣1时,y=a﹣b+c<0,∴(a+c)2﹣b2=(a+c+b)(a+c﹣b)<0,故(4)正确;故选:C.6.解:∵抛物线与x轴只有一个交点,∴a≠0且Δ=16a2﹣4a×(﹣8)=0,∴a=﹣2,∴抛物线解析式为y=﹣2x2﹣8x﹣8,∵抛物线的对称轴为直线x=﹣=﹣2,而AB平行x轴,AB=4,∴A点的横坐标为﹣4,B点的横坐标为0,当x=0时,y=﹣8,∴n的值为﹣8.故选:A.7.解:∵二次函数y=ax2+bx+c的图象经过(﹣3,0)与(1,0)两点,∴函数y=ax2+bx+c的对称轴是直线x=﹣1,又∵关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3.∴二次函数y=ax2+bx+c的图象与直线y=﹣m的一个交点的横坐标为3,∵对称轴是直线x=﹣1,∴二次函数y=ax2+bx+c的图象与直线y=﹣m的另一个交点的横坐标为﹣5,∴关于x的方程ax2+bx+c+m=0(m>0)的另一个根是﹣5,故选:A.8.解:①由图象知小球在空中达到的最大高度是40m;故①错误;②小球抛出3秒后,速度越来越快;故②正确;③小球抛出3秒时达到最高点即速度为0;故③正确;④设函数解析式为:h=a(t﹣3)2+40,把O(0,0)代入得0=a(0﹣3)2+40,解得,∴函数解析式为,把h=30代入解析式得,,解得:t=4.5或t=1.5,∴小球的高度h=30m时,t=1.5s或4.5s,故④错误;故选D.二.填空题(共8小题,满分32分)9.解:∵抛物线y=x2+bx+c的开口向上,对称轴是直线x=2,∴当x=2时取最小值,又|1﹣2|<|4﹣2|,∴y1<y4,故答案为:y2<y1<y4.10.解:(1)抛物线的对称轴为:直线x=﹣=1,故答案为:直线x=1;(2)∵抛物线y=ax2﹣2ax﹣1=a(x﹣1)2﹣a﹣1(a<0),∴该函数图象的开口向下,对称轴是直线x=1,当x=1时,取得最大值﹣a﹣1,∵当﹣2≤x≤2时,y的最大值是1,∴x=1时,y=﹣a﹣1=1,得a=﹣2,∴y=﹣2(x﹣1)2+1,∵﹣2≤x≤2,∴x=﹣2时,取得最小值,此时y=﹣2(﹣2﹣1)2+1=﹣17,故答案为:﹣17.11.解:∵二次函数y=ax2﹣2ax+c(a≠0)的图象与x轴的一个交点为(﹣1,0),∴该函数的对称轴是直线x=﹣=1,∴该函数图象与x轴的另一个交点坐标为(3,0),∴关于x的一元二次方程ax2﹣2ax+c=0的两实数根是x1=﹣1,x2=3,∴两根之积为﹣3,故答案为:﹣3.12.解:如图,当y=0时,﹣x2+4x+5=0,解得x1=﹣1,x2=5,则A(﹣1,0),B(5,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为y=(x+1)(x﹣5),即y=x2﹣4x﹣5(﹣1≤x≤5),当直线y=﹣x+b经过点A(﹣1,0)时,1+b=0,解得b=﹣1;当直线y=﹣x+b与抛物线y=x2﹣4x﹣5(﹣1≤x≤5)有唯一公共点时,方程x2﹣4x﹣5=﹣x+b有相等的实数解,解得b=﹣,所以当直线y=﹣x+b与新图象有4个交点时,b的取值范围为﹣<b<﹣1.故答案为:﹣<b<﹣1.13.解:将抛物线y=﹣(x﹣3)2﹣1向右平移5个单位,再向上平移2个单位,所得的抛物线的解析式为y=﹣(x﹣3﹣5)2﹣1+2,即y=﹣(x﹣8)2+1,故答案为:y=﹣(x﹣8)2+1.14.解:∵抛物线y=ax2与直线y=bx+c的两个交点坐标分别为A(﹣3,9),B(1,1),∴方程ax2=bx+c的解为x1=﹣3,x2=1,∴ax2﹣bx﹣c=0的解是x1=﹣3,x2=1,故答案为:x1=﹣3,x2=1.15.解:(1)将点C(0,3)、B(1,0)、(2,﹣5)代入抛物线y=ax2+bx+tc中,得:a+b+c=0,c=3,4a+2b+c=﹣5;解得:a=﹣1,b=﹣2,c=3,∴抛物线的解析式为y=﹣x2﹣2x+3.(2)抛物线向下平移n个单位后,E为(﹣1,4﹣n),C为(0,3﹣n),∴EC=,∵CO∥EH,∴当CO=CE=时,∠CEO=∠COE=∠OCH,∴3﹣n=或n﹣3=,即n=3﹣或3+.16.解:当10≤x≤20时,设y=kx+b,把(10,20),(20,10)代入可得:,解得,∴每天的销售量y(个)与销售价格x(元/个)的函数解析式为y=﹣x+30,设该食品零售店每天销售这款冷饮产品的利润为w元,w=(x﹣8)y=(x﹣8)(﹣x+30)=﹣x2+38x﹣240=﹣(x﹣19)2+121,∵﹣1<0,∴当x=19时,w有最大值为121,故答案为:121.三.解答题(共6小题,满分56分)17.解:(1)将(2,4)代入y=x2+mx+m2﹣3得4=4+2m+m2﹣3,解得m1=1,m2=﹣3,又∵m>0,∴m=1.(2)∵m=1,∴y=x2+x﹣2,∵Δ=b2﹣4ac=12+8=9>0,∴二次函数图象与x轴有2个交点.18.解:∵初速度为10m/s,g取10m/s2,∴h=10t﹣×10t2=10t﹣5t2,(1)当h=0时,10t﹣5t2=0,解得t=0或t=2,∴球抛出后经2秒回到起点;(2)当h=1.8时,10t﹣5t2=1.8,解得t=0.2或t=1.8,∴0.2秒或1.8秒后球离起点的高度达到1.8m;(3)球离起点的高度不能达到6m,理由如下:若h=6,则10t﹣5t2=6,整理得5t2﹣10t+6=0,Δ=(﹣10)2﹣4×5×6=﹣20<0,∴原方程无实数解,∴球离起点的高度不能达到6m.19.解:(1)∵函数图象过点(1,2),∴将点代入y=ax2+(a﹣1)x﹣1,解得a=2,∴二次函数的解析式为y=2x2+x﹣1,∴x=﹣=﹣,∴y=2×﹣﹣1=﹣,∴该二次函数的顶点坐标为(﹣,﹣);(2)函数y=ax2+(a﹣1)x﹣1的对称轴是直线x=﹣,∵(x1,y1),(x2,y2)为此二次函数图象上的两个不同点,且x1+x2=﹣2,则y1=y2,∴﹣===﹣1,∴a=﹣1,∴y=﹣x2﹣2x﹣1=﹣(x+1)2≤0,∴当x=﹣1时,函数有最大值0;(3)∵y=ax2+(a﹣1)x﹣1,∴由顶点公式得:x=﹣=﹣+,y==﹣,∵a<0且a≠﹣1,∴x<0,y>0,∴该二次函数图象的顶点在第二象限.20.解:(1)设一次函数的关系式为y=kx+b,由题图可知,函数图象过点(25,50)和点(35,30).把这两点的坐标代入一次函数y=kx+b,得,解得,∴一次函数的关系式为y=﹣2x+100;(2)根据题意,设当天玩具的销售单价是x元,由题意得,(x﹣10)×(﹣2x+100)=600,解得:x1=40,x2=20,∴当天玩具的销售单价是40元或20元;(3)根据题意,则w=(x﹣10)×(﹣2x+100),整理得:w=﹣2(x﹣30)2+800;∵﹣2<0,∴当x=30时,w有最大值,最大值为800;∴当玩具的销售单价定为30元时,日销售利润最大;最大利润是800元.21.解:(1)设直线AB的解析式为y=px+q,把A(4,0),B(0,2)代入得,,解得,∴直线AB的解析式为y=﹣x+2;把A(4,0),B(0,2)代入y=﹣x2+bx+c得,,解得;∴抛物线解析式为y=﹣x2+x+2;(2)∵MN⊥x轴,M(m,0),点D在直线AB上,点N在抛物线上,∴N(m,﹣m2+m+2),D(m,﹣m+2),∴DN=﹣m2+2m,DM=﹣m+2,∵DN=3DM,∴﹣m2+2m=3(﹣m+2),解得m=3或m=4(舍),∴N(3,2).(3)如图,作点B关于x轴的对称点B′,∴OB=OB′,B′(0,﹣2),∵∠AOB=∠AOB′=90°,OA=OA,∴△AOB≌△AOB′,∴∠OAB′=∠OAB,∴∠BAB′=2∠BAC,∵A(4,0),B′(0,﹣2),∴直线AB′的解析式为:y=x﹣2,过点B作BP∥AB′交抛物线于点P,则∠ABP=∠BAB′=2∠BAC,即点P即为所求,∴直线BP的解析式为:y=x+2,令x+2=﹣x2+x+2,解得x=2或x=0(舍),∴P(2,3).22.解:(1)将点A(3,﹣2),点C(0,﹣5)代入y=x2+bx+c,∴,解得,∴y=x2﹣2x﹣5,∴M(1,﹣6);(2)平移后的函数解析式为y=(x﹣1)2﹣6+m,∴平移后的顶点坐标为(1,m﹣6),∴抛物线的顶点在x=1的直线上,设直线CA的解析式为y=kx+b,∴,∴,∴y=x﹣5,当x=1时,y=﹣4,∴﹣4<m﹣6<﹣2,解得2<m<4;(3)存在一点Q,使以B、P、E、Q为顶点的四边形是平行四边形,理由如下:当y=﹣2时,x2﹣2x﹣5=﹣2,解得x=﹣1或x=3,∴B(﹣1,﹣2),∴AB=4,∵BE:EA=3:1,∴AE=1,∴E(2,﹣2),设P(t,t﹣5),Q(x,x2﹣2x﹣5),①当BE为平行四边形的对角线时,,解得或,∴Q(,)或(,);②当BP为平行四边形的对角线时,,解得或,∴Q(,)或(,);③当BQ为平行四边形的对角线时,,此时无解;综上所述:Q点坐标为(,)或(,)或(,)或(,).九年级数学上册二次函数的图象与性质练习题(附答案)一.选择题1.如果在二次函数的表达式y=ax2+bx+c中,a>0,b<0,c<0,那么这个二次函数的图象可能是()A.B.C.D.2.已知y=(m+2)x|m|+2是关于x的二次函数,那么m的值为()A.﹣2B.2C.±2D.03.已知A(,y1),B(2,y2),C(﹣,y3)是二次函数y=3(x﹣1)2+k图象上三点,则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y2>y1D.y2>y3>y1 4.二次函数的部分图象如图所示,对称轴是直线x=﹣1,则这个二次函数的表达式为()A.y=﹣x2+2x+3B.y=x2+2x+3C.y=﹣x2+2x﹣3D.y=﹣x2﹣2x+35.在同一平面直角坐标系中,一次函数y=ax+b和二次函数y=ax2+bx+c的图象可能为()A.B.C.D.6.关于抛物线y=﹣x2+2x﹣3的判断,下列说法正确的是()A.抛物线的开口方向向上B.抛物线的对称轴是直线x=﹣1C.抛物线对称轴左侧部分是下降的D.抛物线顶点到x轴的距离是27.已知二次函数y=x2﹣4x+5(0≤x≤3),则它的最大值是()A.1B.2C.3D.58.如图为二次函数y=ax2+bx+c的图象,给出下列说法:①ab<0;②方程ax2+bx+c=0的根为x1=﹣1,x2=3;③a+b+c>0;④当x<1时,y随x值的增大而增大;⑤当y>0时,x<﹣1或x>3.其中,正确的说法有()A.①②④B.①②⑤C.①③⑤D.②④⑤9.已知函数y=2(x+1)2+1,则()A.当x<1 时,y随x的增大而增大B.当x<1 时,y随x的增大而减小C.当x<﹣1 时,y随x的增大而增大D.当x<﹣1 时,y随x的增大而减小10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中不正确的有()个.①abc>0;②2a+b=0;③9a+3b+c<0;④4ac﹣b2<0;⑤a+b≥m(am+b)(m为任意实数).A.3B.2C.1D.0二.填空题11.已知四个二次函数的图象如图所示,那么a1,a2,a3,a4的大小关系是.(请用“>”连接排序)12.抛物线y=3x2+6x+11的顶点坐标为.13.二次函数y=3(x﹣1)2+5的最小值为.14.已知二次函数y=2x2+bx+4顶点在x轴上,则b=.15.二次函数y=x2﹣2x+1在2≤x≤5范围内的最小值为.16.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①2a+b=0;②a+c>b;③抛物线与x轴的另一个交点为(3,0);④abc>0.其中正确的结论是(填写序号).三.解答题17.已知二次函数的顶点坐标为A(1,﹣4),且经过点B(3,0).(1)求该二次函数的解析式;(2)判断点C(2,﹣3)是否在该函数图象上,并说明理由.18.如图,已知直线l过点A(4,0),B(0,4)两点,它与二次函数y=ax2的图象在第一象限内交于点P,若S△AOP=4,试求二次函数的表达式.19.如图,直线L1:y=bx+c与抛物线L2:y=ax2的两个交点坐标分别为A(m,4),B (1,1).(1)求m的值;(2)过动点P(n,0)且垂直于x轴的直线与L1,L2的交点分别为C,D,当点C 位于点D上方时,请直接写出n的取值范围.20.已知二次函数y=a(x+a)(x+a﹣1).(1)当a=2时,求该二次函数图象的对称轴.(2)当a<0时,判断该二次函数图象的顶点所在的象限,并说明理由.(3)当0<x<3时,y随着x增大而增大,求a的取值范围.21.已知二次函数y=ax2(a≠0)与一次函数y=kx﹣2的图象相交于A、B两点,如图所示,其中A(﹣1,﹣1),求△OAB的面积.22.抛物线y=﹣x2+bx+c经过点A(3,0)和点B(0,3),且这个抛物线的对称轴为直线l,顶点为C.(1)求抛物线的解析式;(2)连接AB、AC、BC,求△ABC的面积.23.如图,在平面直角坐标系中,直线AB与抛物线y=﹣x2+bx+c交于A(﹣1,0)和B(2,3)两点,抛物线与y轴交于点C.(1)求一次函数和二次函数的解析式;(2)求△ABC的面积.参考答案一.选择题1.解:∵a>0,b<0,c<0,∴﹣>0,∴抛物线的图象开口向上,对称轴在y轴的右边,交y轴于负半轴,故选:C.2.解:∵y=(m+2)x|m|+2是y关于x的二次函数,∴|m|=2且m+2≠0.解得m=2.故选:B.3.解:∵二次函数y=3(x﹣1)2+k图象的对称轴为直线x=1,而A(,y1)到直线x=1的距离最近,C(﹣,y3)到直线x=1的距离最远,∴y3>y2>y1.故选:C.4.解:由图象知抛物线的对称轴为直线x=﹣1,设抛物线解析式为y=a(x+1)2+k,将(﹣3,0)、(0,3)代入,得:,解得:,则抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,故选:D.5.解:A、由抛物线可知,a<0,x=﹣<0,得b<0,由直线可知,a<0,b<0,故本选项正确;B、由抛物线可知,a>0,由直线可知,a<0,故本选项错误;C、由抛物线可知,a>0,x=﹣>0,得b<0,由直线可知,a>0,b>0,故本选项错误;D、由抛物线可知,a>0,由直线可知,a<0,故本选项错误.故选:A.6.解:∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线开口向下,对称轴为x=1,顶点坐标为(1,﹣2),在对称轴左侧,y随x的增大而增大,∴A、B、C不正确;∵抛物线顶点到x轴的距离是|﹣2|=2,∴D正确,故选:D.7.解:y=x2﹣4x+5=(x﹣2)2+1,由于0≤x≤3,所以当x=2时,y有最小值1,当x=0时,y有最大值5.故选:D.8.解:根据图象可知:①对称轴﹣>0,故ab<0,正确;②方程ax2+bx+c=0的根为x1=﹣1,x2=3,正确;③x=1时,y=a+b+c<0,错误;④当x<1时,y随x值的增大而减小,错误;⑤当y>0时,x<﹣1或x>3,正确.正确的有①②⑤.故选:B.9.解:∵y=2(x+1)2+1,∴当x>﹣1时,y随x的增大而增大,故选项A错误,当x<﹣1时,y随x的增大而减小,故选项B错误、选项C错误、选项D正确;故选:D.10.解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点坐标在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵x=3时,y<0,∴9a+3b+c<0,所以③正确.∵抛物线与x轴有2个交点,∴Δ=b2﹣4ac>0,即4ac﹣b2<0,所以④正确;∵抛物线的对称轴为直线x=1,∴函数的最大值为a+b+c,∴a+b+c≥am2+bm+c(m为任意实数),即a+b≥m(am+b),所以⑤正确.故选:C.二.填空题11.解:如图所示:①y=a1x2的开口小于②y=a2x2的开口,则a1>a2>0,③y=a3x2的开口大于④y=a4x2的开口,开口向下,则a4<a3<0,故a1>a2>a3>a4.故答案为:a1>a2>a3>a412.解:∵y=3x2+6x+11=3(x+1)2+8,∴抛物线y=3x2+6x+11的顶点坐标为(﹣1,8),故答案为(﹣1,8).13.解:由于二次函数y=3(x﹣1)2+5中,a=3>0,所以当x=1时,函数取得最小值为5,故答案为5.14.解:∵二次函数y=2x2+bx+4顶点在x轴上,∴=0,解得b=,故答案为:±4.15.解:∵二次函数y=x2﹣2x+1=(x﹣1)2,∴当x>1时,y随x的增大而增大,∴在2≤x≤5范围内,当x=2时,y取得最小值,此时y=(2﹣1)2=1,故答案为:1.16.解:∵抛物线的对称轴为直线x=﹣=1,∴2a+b=0,所以①正确;∵x=﹣1时,y<0,∴a﹣b+c<0,即a+c<b,所以②错误;∵抛物线与x轴的一个交点为(﹣2,0)而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(4,0),所以③错误;∵抛物线开口向上,∴a>0,∴b=﹣2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以④正确.故答案为①④.三.解答题17.解:(1)设二次函数的解析式是y=a(x﹣h)2+k,∵二次函数的顶点坐标为A(1,﹣4),∴y=a(x﹣1)2﹣4,∵经过点B(3,0),∴代入得:0=a(3﹣1)2﹣4,解得:a=1,∴y=(x﹣1)2﹣4,即二次函数的解析式为y=x2﹣2x﹣3;(2)点C(2,﹣3)在该函数图象上,理由是:把C(2,﹣3)代入y=x2﹣2x﹣3得:左边=﹣3,右边=4﹣4﹣3=﹣3,即左边=右边,所以点C在该函数的图象上.18.解:设直线l的解析式为y=kx+b,把A(4,0),B(0,4)分别代入得,解得,∴直线l的关系式为y=﹣x+4,设P(t,﹣t+4),∵S△AOP=4,∴×4×(﹣t+4)=4,解得t=2,∴P(2,2),把P(2,2)代入y=ax2得4a=2,解得a=,∴二次函数的表达式为y=x2.19.解:(1)把B(1,1)代入y=ax2得:a=1,∴抛物线解析式为y=x2.把A(m,4)代入y=x2得:4=m2,∴m=±2.∵点A在二象限,∴m=﹣2.(2)观察函数图象可知:当﹣2<x<1时,直线在抛物线的上方,∴n的取值范围为:﹣2<n<1.20.解:(1)当a=2时,y=2(x+2)(x+1),∴二次函数的对称轴为x=.(2)由题知二次函数与x轴的交点坐标为(﹣a,0),(1﹣a,0);∵a<0,∴二次函数的开口方向向下;又﹣a>0,1﹣a>0,所以对称轴所在直线为x==>0,当x=时,y=﹣>0,所以顶点坐标(,﹣)在第一象限.(3)由(2)知,二次函数的对称轴为直线x=,∵当0<x<3时,y随着x增大而增大,∴当a>0时,≤0,解得a≥;当a<0,≥3,解得a≤﹣.∴a的取值范围为a≥或a≤﹣.21.解:∵一次函数y=kx﹣2的图象相过点A(﹣1,﹣1),∴﹣1=﹣k﹣2,解得k=﹣1,∴一次函数表达式为y=﹣x﹣2,∴令x=0,得y=﹣2,∴G(0,﹣2),∵y=ax2过点A(﹣1,﹣1),∴﹣1=a×1,解得a=﹣1,∴二次函数表达式为y=﹣x2,由一次函数与二次函数联立可得,解得,,∴S△OAB=OG•|A的横坐标|+OG•点B的横坐标=×2×1+×2×2=1+2=3.22.解:(1)∵抛物线经过A、B(0,3)∴由上两式解得∴抛物线的解析式为:;(2)由(1)抛物线对称轴为直线x=把x=代入,得y=4则点C坐标为(,4)设线段AB所在直线为:y=kx+b,则有,解得∴AB解析式为:∵线段AB所在直线经过点A、B(0,3)抛物线的对称轴l于直线AB交于点D∴设点D的坐标为D将点D代入,解得m=2∴点D坐标为,∴CD=CE﹣DE=2过点B 作BF ⊥l 于点F ∴BF =OE =∵BF +AE =OE +AE =OA =∴S △ABC =S △BCD +S △ACD =CD •BF +CD •AE ∴S △ABC =CD (BF +AE )=×2×=23.解:(1)∵抛物线y =﹣x 2+bx +c 交于A (﹣1,0)和B (2,3)两点 ∴,解得:, ∴抛物线解析式为y =﹣x 2+2x +3,设直线AB 的解析式为y =mx +n (m ≠0),则,解得,∴直线AB 的解析式为y =x +1; (2)令x =0,则y =﹣x 2+2x +3=3, ∴C (0,3),则OC =3,BC =2,BC ∥x 轴, ∴S △ABC =×BC ×OC ==3.九年级数学二次函数专题精练含答案一、单选题1.关于二次函数22(4)6y x =-+的最大值或最小值,下列说法正确的是( ) A .有最大值4B .有最小值4C .有最大值6D .有最小值62.已知抛物线24y x x c =-++经过点(4,3),那么下列各点中,该抛物线必经过的点是( ) A .(0,2)B .(0,3)C .(0,4)D .(0,5)3.在平面直角坐标系中,已知抛物线245y x x =-+,将该抛物线沿y 轴翻折所得的抛物线的表达式为( ) A .245y x x =--+B .245y x x =++C .245y x x =-+-D .245y x x =---4.正方形的边长为4,若边长增加x ,那么面积增加y ,则y 关于x 的函数表达式为( ) A .216y x =+B .2(4)y x =+C .28y x x =+D .2164y x =-5.把抛物线22y x =向右平移2个单位,然后向下平移1个单位,则平移后得到的抛物线解析式是( ) A .22(2)1y x =-+- B .22(2)1y x =--+ C .22(2)1y x =++D .22(2)1y x =--6.如图,二次函数2y ax bx c =++的图象关于直线1x =对称,与x 轴交于1(,0)A x ,2(,0)B x 两点,若121x -<<-,则下列四个结论:①234x <<,②320a b +>,③24b a c ac >++,④a c b >>.正确结论的个数为( ) A .1个B .2个C .3个D .4个7.对于抛物线23(1)2y x =-+-,下列说法正确的是( ) A .抛物线开口向上B .当1x >-时,y 随x 增大而减小C .函数最小值为﹣2D .顶点坐标为(1,﹣2)8.关于二次函数()215y x =-+,下列说法正确的是( )A .函数图象的开口向下B .函数图象的顶点坐标是()1,5-C .该函数有最大值,是大值是5D .当1x >时,y 随x 的增大而增大9.已知A (−3,−2) ,B (1,−2),抛物线y =ax 2+bx +c (a >0)顶点在线段AB 上运动,形状保持不变,与x 轴交于C ,D 两点(C 在D 的右侧),下列结论: ①c ≥−2 ;②当x >0时,一定有y 随x 的增大而增大;③若点D 横坐标的最小值为−5,点C 横坐标的最大值为3; ④当四边形ABCD 为平行四边形时,a =12.其中正确的是( ) A .①③B .②③C .①④D .①③④10.已知二次函数2243y mx m x =--(m 为常数,0m ≠),点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,则m 的取值范围是( ) A .m 1≥或0m < B .m 1≥ C .1m ≤-或0m >D .1m ≤-11.已知函数()211y ax a x =-++,则下列说法不正确的个数是( )①若该函数图像与x 轴只有一个交点,则1a =②方程()2110ax a x -++=至少有一个整数根③若11x a<<,则()211y ax a x =-++的函数值都是负数 ④不存在实数a ,使得()2110ax a x -++≤对任意实数x 都成立A .0B .1C .2D .312.如图,在正方形ABCD 中,4AB =,点P 从点A 出发沿路径A B C →→向终点C 运动,连接DP ,作DP 的垂直平分线MN 与正方形ABCD 的边交于M ,N 两点,设点P 的运动路程为x ,PMN 的面积为y ,则下列图象能大致反映y 与x 函数关系的是( )A .B .C .D .二、填空题13.已知点(3,a )在抛物线y =-2x 2+2x 上,则=a ______.14.如图是二次函数21y ax bx c =++ 和一次函数y 2=kx +t 的图象,当y 1≥y 2时,x 的取值范围是_____.15.小亮同学在探究一元二次方程2ax bx c 0++=的近似解时,填好了下面的表格:根据以上信息请你确定方程2ax bx c 0++=的一个解的范围是________. 16.已知二次函数223y x x =--+,当12a x 时,函数值y 的最小值为1,则a 的值为_______. 17.已知抛物线2122y x bx =+-与x 轴交于A ,B 两点,与y 轴交于C 点. (1)若(1,0)A -,则b =______. (2)若(1,0)M -,(1,0)N ,抛物线2122y x bx =+-与线段MN 没有交点,则b 的取值范围为______. 三、解答题18.已知抛物线经过点()1,0A -,()5,0B ,()0,5C ,求该抛物线的函数关系式19.如图,抛物线212y x bx c =++与直线132y x =+分别相交于A 、B 两点,其中点A 在y 轴上,且此抛物线与x 轴的一个交点为()3,0C -.(1)求抛物线的解析式(2)在抛物线对称轴l 上找一点M ,使MBC ∆的周长最小,请求出这个周长的最小值.20.如图,一次函数y =A 、B ,二次函数2y bx c ++图象过A 、B 两点.(1)求二次函数解析式;(2)点B 关于抛物线对称轴的对称点为点C ,点P 是对称轴上一动点,在抛物线上是否存在点Q ,使得以B 、C 、P 、Q 为顶点的四边形是菱形?若存在,求出Q 点坐标;若不存在,请说明理由.21.如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A (﹣2,0)和点B (8,0),与y 轴交于点C (0,﹣8),连接AC ,D 是抛物线对称轴上一动点,连接AD ,CD ,得到△ACD .(1)求该抛物线的函数解析式.(2)△ACD 周长能否取得最小值,如果能,请求出D 点的坐标;如果不能,请说明理由.(3)在(2)的条件下,在抛物线上是否存在点E ,使得△ACE 与△ACD 面积相等,如果存在,请求出点的坐标;如果不存在,请说明理由.参考答案1--10DBCCD BBDDA 11--12CA13.-1214.﹣1≤x ≤215.3.24x 3.25<<16.1-17. 32- 3322b -<< 18.解:△抛物线经过点()1,0A -,()5,0B ,()0,5C ,△设抛物线的表达式为()()15y a x x =+-,将点()0,5C 代入得:55a =-,解得:1a =-,△()()21545y x x x x =-+-=-++.△该抛物线的函数关系式为245y x x =-++.19..解:(1)抛物线212y x bx c =++与直线132y x =+交于y 轴上一点A , 令0,x = 则3,y =∴ 点()0,3A把()0,3A ,()3,0C -代入212y x bx c =++得: 39302c b c =⎧⎪⎨-+=⎪⎩, 解得:523b c ⎧=⎪⎨⎪=⎩, ∴抛物线的解析式是215322y x x =++; (2)将直线132y x =+与二次函数215322y x x =++联立得方程组: 213215322y x y x x ⎧=+⎪⎪⎨⎪=++⎪⎩ 215133,222x x x ∴++=+ 240,x x ∴-=解得:0x =或4x =-,04,,31x x y y ==-⎧⎧∴⎨⎨==⎩⎩()0,3A ,()4,1B ∴-BC ∴==如图,要使MBC △的周长最小,则MB MC +最小,设二次函数215322y x x=++与x 轴的另一交点为D , 抛物线的对称轴为:552,1222x =-=-⨯ ()3,0C -∴ 点()2,0D -,连接,BD 交对称轴于,MMD MC ∴=,此时,MB MC MB MD BD +=+=最小,此时:BD =MBC ∴20.解:(1)对于y =x =0时,y =当y =0时,03x -=,妥得,x =3 △A (3,0),B (0,把A (3,0),B (0,2y bx c++得:+=0b c c ⎧⎪⎨=⎪⎩解得,b c ⎧=⎪⎨⎪=⎩△抛物线的解析式为:2y =(2)抛物线的对称轴为直线12b x a =-== 故设P (1,p ),Q (m ,n )①当BC 为菱形对角线时,如图,△B ,C 关于对称没对称,且对称轴与x 轴垂直,△△BC 与对称轴垂直,且BC //x 轴△在菱形BQCP 中,BC △PQ△PQ △x 轴△点P 在x =1上,△点Q 也在x =1上,当x =1时,211y△Q (1,); ②当BC 为菱形一边时,若点Q 在点P 右侧时,如图,△BC //PQ ,且BC =PQ△BC //x 轴,△令y =2y 解得,120,2x x ==△(2,C△PQ=BC=22=△PB=BC=2△迠P在x轴上,△P(1,0)△Q(3,0);若点Q在点P的左侧,如图,同理可得,Q(-1,0)综上所述,Q点坐标为(1,)或(3,0)或(-1,0)21.解:(1)由题意可得:0=4206488a b ca b cc-+⎧⎪=++⎨⎪=-⎩,解得:1238abc⎧=⎪⎪=-⎨⎪=-⎪⎩,△抛物线的解析式为:y=12x2﹣3x﹣8;(2)△ACD周长能取得最小值,△点A(﹣2,0),点B(8,0),△对称轴为直线x=3,△△ACD周长=AD+AC+CD,AC是定值,△当AD+CD取最小值时,△ACD周长能取得最小值,△点A,点B关于对称轴直线x=3对称,△连接BC交对称轴直线x=3于点D,此时AD+CD有最小值,设直线BC 解析式为:y =kx ﹣8,△0=8k ﹣8,△k =1,△直线BC 解析式为:y =x ﹣8,当x =3,y =﹣5,△点D (3,﹣5);(3)存在,△点A (﹣2,0),点C (0,﹣8),△直线AC 解析式为y =﹣4x ﹣8,如图,△△ACE 与△ACD 面积相等,△DE △AC ,△设DE 解析式为:y =﹣4x +n ,△﹣5=﹣4×3+n ,△n =7,△DE 解析式为:y =﹣4x +7, 联立方程组可得:2471382y x y x x =-+⎧⎪⎨=--⎪⎩,解得:12111x y ⎧=⎪⎨=-⎪⎩,22111x y ⎧=⎪⎨=⎪⎩, △点E1,﹣1,).九年级上册数学二次函数同步练习一、单选题1.下列函数中,是二次函数的是( )A .y =(2x ﹣1)2B .y =(x +1)2﹣x 2C .y =ax 2D .y =2x +3 2.若抛物线258(3)23mm y m x x -+=-+-是关于x 的二次函数,那么m 的值是( ) A .3 B .2-C .2D .2或3 3.若抛物线y =x 2-x -2经过点A (3,a ),则a 的值是( )A .2B .4C .6D .84.已知二次函数2135y x x =-+,则其二次项系数a ,一次项系数b ,常数项c 分别是( )A .1,3,5a b c ==-=B .1,3,5a b c ===C .5,3,1a b c ===D .5,3,1a b c ==-= 5.如果函数2(2)25y a x x =-+-是二次函数,则a 的取值范围是( )A .2a ≠B .a≥0C .a=2D .a>0 6.下列函数中①31y x ;②243y x x =-;③1y x =;④225=-+y x ,是二次函数的有()A .①②B .②④C .②③D .①④ 7.若抛物线2y x bx c =-++经过点()2,3-,则247c b --的值是( )A .6B .7C .8D .208.函数y=ax2+bx+c(a ,b ,c 是常数)是二次函数的条件是( )A .a≠0,b≠0,c≠0B .a<0,b≠0,c≠0C .a>0,b≠0,c≠0D .a≠0 二、填空题9.若()2321mm y m x --=+是二次函数,则m 的值为______. 10.若22a y x -=是二次函数,则=a ________.11.在二次函数21y x =-+中,二次项系数、一次项系数、常数项的和为_____. 12.下列函数一定是二次函数的是__________.①2y ax bx c =++;②3y x=-;③2431y x x =-+;④2(1)y m x bx c =-++;⑤y =(x -3)2-x 213.当常数m ≠______时,函数y =(m 2﹣2m ﹣8)x 2+(m +2)x +2是二次函数;当常数m =___时,这个函数是一次函数.14.已知函数2135m y x -=-① 当m = _________时,y 是关于x 的一次函数;② 当m =_________时,y 是关于x 的二次函数 .15.二次函数()22339y m x x m =+++-的图象经过原点,则m =__________.16.已知二次函数2y x bx 3=-++,当x 2=时,y 3=.则这个二次函数的表达式是________.三、解答题17.下列函数中(x ,t 是自变量),哪些是二次函数?22322113,25,22,1522y x y x x y x s t t =-+=-+=+=++.18.已知函数y =(m 2-2)x 2+(m )x +8.(1)若这个函数是一次函数,求m 的值;(2)若这个函数是二次函数,求m 的取值范围.19.若函数y=(a -1)x b+1+x 2+1是二次函数,试讨论a 、b 的取值范围.20.篱笆墙长30m ,靠墙围成一个矩形花坛,写出花坛面积y(m 2)与长x 之间的函数关系式,并指出自变量的取值范围.参考答案:1.A2.C3.B4.D5.A6.B7.B8.D9.410.2±11.012.③13. 4,-2 414. 13215.316.2y x 2x 3=-++17.2132y x =-+和215s t t =++是二次函数 18.(1)m =(2)m ≠m ≠19.①a≠0;②b=0或-1,a 取全体实数③当a=1,b 为全体实数时,y=x 2+1是二次函数 20.y= 21152x x -+, x 的取值范围为0<x<30.九年级数学上册二次函数单元综合测试卷一.选择题(共10小题)1.下列各式中,是y 关于x 的二次函数的是( )A .y =4xB .y =3x ﹣5C .y =D .y =2x 2+12.已知:a >b >c ,且a +b +c =0,则二次函数y =ax 2+bx +c 的图象可能是下列图象中的( )A.B.C.D.3.二次函数y=(x﹣2)(x﹣4)+6的顶点坐标是()A.(2,6)B.(4,6)C.(3,﹣5)D.(3,5)4.将二次函数y=x2+2x﹣1转化为y=a(x﹣h)2+k的形式,结果为()A.y=(x﹣1)2B.y=(x+1)2C.y=(x+1)2﹣1D.y=(x+1)2﹣2 5.已知0≤x≤,则函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣66.顶点坐标为(3,1),形状与函数y=的图象相同且开口方向相反的抛物线的解析式为()A.y=+1B.y=+1C.y=﹣+1D.y=﹣+17.已知点A(﹣1,y1),B(1,y2),C(2,y3)都在二次函数y=(x﹣1)2的图象上,则y1,y2,y3的大小关系正确的是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y1 8.抛物线y=ax2+bx+c纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…则下列说法中正确的个数是()①方程ax2+bx+c=0,有两根为x1=﹣2,x2=3;②抛物线与y轴的交点为(0,6);③抛物线的对称轴是直线x=1;④抛物线开口向上.A.1B.2C.3D.49.如图,在正方形ABCD中,AB=4,AC与BD交于点O,E,F分别为边BC,CD上的点(点E,F不与线段BC,CD的端点重合),BE=CF,连接OE,OF,EF.关于以下三个结论,下列判断正确的是()结论Ⅰ:∠BOF始终是90°;结论Ⅱ:△OEF面积的最小值是2;结论Ⅲ:四边形OECF的面积始终是8.A.结论Ⅰ和Ⅱ都对,结论Ⅲ错B.结论Ⅰ和Ⅱ都对,结论Ⅱ错C.结论Ⅱ和Ⅲ都对,结论Ⅰ错D.三个结论都对10.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0<x≤90)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用燃气灶烧开同一壶水的旋钮角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮角度约为()A.37.5°B.40°C.42.5°D.45°二.填空题(共6小题)11.函数是二次函数,则m的值为.12.已知抛物线y=x2﹣4x+c.与直线y=m相交于A,B两点,若点A的横坐标;x A=﹣1,。
中考数学真题分项汇编(四川专用)专题10 二次函数(解析版)
专题10二次函数一、选择题1.(2023·四川绵阳·统考中考真题)将二次函数2y x =的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是()A .b >8B .b >﹣8C .b ≥8D .b ≥﹣8【答案】D【分析】先根据平移原则:上加下减,左加右减写出解析式,再列方程组,有公共点则△≥0,则可求出b 的取值.【详解】解:由题意得:平移后得到的二次函数的解析式为:2=(3)1y x --,则2(3)12y x y x b⎧=--⎨=+⎩,2(3)12--=+x x b ,2880-+-=x x b ,△=(﹣8)2﹣4×1×(8﹣b )≥0,b ≥﹣8,故选:D .【点睛】主要考查的是二次函数图象的平移和两函数的交点问题,二次函数与一次函数图象有公共点.2.(2023·四川眉山·统考中考真题)如图,二次函数()20y ax bx c a =++≠的图象与x 轴的一个交点坐标为()1,0,对称轴为直线=1x -,下列四个结论:①<0abc ;②420a b c -+<;③30a c +=;④当31x -<<时,20ax bx c ++<;其中正确结论的个数为()A .1个B .2个C .3个D .4个【答案】D 【分析】根据二次函数开口向上,与y 轴交于y 轴负半轴,00a c ><,,根据对称轴为直线=1x -可得20b a =>,由此即可判断①;求出二次函数与x 轴的另一个交点坐标为()3,0-,进而得到当2x =-时,0y <,由此即可判断②;根据1x =时,0y =,即可判断③;利用图象法即可判断④.A.4个B【答案】B【分析】由抛物线的开口方向、与正确;由抛物线的对称轴为判断③正确;由图知x=A .1个B .【答案】B 【分析】根据二次函数图像的性质、二次函数图像与系数的关系以及与可.【详解】解:由图可知,二次函数开口方向向下,与 图象与x 轴交于点(3,0A -10420a b c ∴-+=.5a ∴- 12b a-=-,2b a ∴=.当30a c ∴+=,3c a ∴=-,∴A .1个B .2【答案】C 【分析】开口方向,对称轴,与④即可.【详解】∵抛物线的开口向下,对称轴为直线0,0,0a b c <<<∴()11,A x y 和点()22,B x y 关于对称轴对称,∴abc B.A.<0【答案】C【分析】根据开口方向,与即可判断A;根据对称性可得当线开口向上,对称轴为直线【详解】解:∵抛物线开口向上,与A.抛物线的对称轴为直线C.A,B两点之间的距离为【答案】C【分析】待定系数法求得二次函数解析式,进而逐项分析判断即可求解.【详解】解:∵二次函数∴二次函数解析式为y故A,B选项不正确,不符合题意;a=>,抛物线开口向上,当∵10y=时,2x x+意;当0A .()55,B .246,5⎛⎫ ⎪⎝⎭C .3224,5⎛ ⎝【答案】C 【分析】如图所示,过点C 作CD AB ⊥于D ,连接CP 三角形,即90C ∠=︒,进而利用等面积法求出24CD =【点睛】本题主要考查了勾股定理和勾股定理的逆定理,矩形的性质与判断,垂线段最短,坐标与图形等等,正确作出辅助线是解题的关键.11.(2023·四川雅安·统考中考真题)如图,二次函数A.①②【答案】C【分析】根据抛物线开口方向可得函数的对称性可得∴-【点睛】本题考查圆的的性质,二次函数图象的性质,19.(2022·四川广元·统考中考真题)二次函数1,0),对称轴为直线x=2,下列结论:2,y1)、点B(﹣12,y2)、点C(72,为常数).其中正确的结论有()【详解】解:A 、根据抛物线y =ax 2+bx +c (a ≠0)经过点(1,0)和点(0,-3),且对称轴在y 轴的左侧可知0a >,该说法正确,故该选项不符合题意;B 、由抛物线y =ax 2+bx +c (a ≠0)经过点(1,0)和点(0,-3)可知03a b c c ++=⎧⎨=-⎩,解得3a b +=,该说法正确,故该选项不符合题意;C 、由抛物线y =ax 2+bx +c (a ≠0)经过点(1,0),对称轴在y 轴的左侧,则抛物线不经过(-1,0),该说法错误,故该选项符合题意;D 、关于x 的一元二次方程ax 2+bx +c =-1根的情况,可以转化为抛物线y =ax 2+bx +c (a ≠0)与直线1y =-的交点情况,根据抛物线y =ax 2+bx +c (a ≠0)经过点(1,0)和点(0,-3),310-<-<,结合抛物线开口向上,且对称轴在y 轴的左侧可知抛物线y =ax 2+bx +c (a ≠0)与直线1y =-的有两个不同的交点,该说法正确,故该选项不符合题意;故选:C .【点睛】本题考查二次函数的图像与性质,涉及到开口方向的判定、二次函数系数之间的关系、方程的根与函数图像交点的关系等知识点,根据题中条件得到抛物线草图是解决问题的关键.21.(2022·四川成都·统考中考真题)如图,二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,下列说法正确的是()A .0a >B .当1x >-时,y 的值随x 值的增大而增大C .点B 的坐标为()4,0D .420a b c ++>【答案】D 【分析】结合二次函数图像与性质,根据条件与图像,逐项判定即可.【详解】解:A 、根据图像可知抛物线开口向下,即a<0,故该选项不符合题意;B 、根据图像开口向下,对称轴为1x =,当1x >,y 随x 的增大而减小;当1x <,y 随x 的增大而增大,故当11x -<<时,y 随x 的增大而增大;当1x >,y 随x 的增大而减小,故该选项不符合题意;C 、根据二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,可得对8A.4B.92∵P 与OB 、AB 均相切,∴△OBP 边OB 上的高为∵P (m ,-m +6);∴△AOP 边OA 上的高为-m +6,∵AOB AOP APB BOP S S S S =++ ,∴1168622⨯⨯=⨯⨯2y ax =过点P ,∴5a =.故选D .二、填空题①当31x -≤≤时,1y ≤;AOB 内存在唯一点P ,使得其中正确的结论是___________【答案】②③【分析】根据条件可求抛物线与∴12ABM AMF BMF S S S MF =+=⨯V V V 把()0,3B a -,()30A -,代入得:当=1x -是,2y a =-,∴(F -∵点B 是抛物线与y 轴的交点,∴当则'AOA ,'POP 为等边三角形,∴∵'AOA 为等边三角形,(A -当320,2B ⎛⎫- ⎪ ⎪⎝⎭时,∵'2A B 骣琪=琪琪桫当()0,3B -时,2'232A B 骣骣琪琪琪=+琪琪琪琪桫桫【答案】149/519【分析】根据已知得出直角坐标系,通过代入x =4代入抛物线解析式得出下降高度,即可得出答案.【详解】解:建立平面直角坐标系,设横轴通过以上条件可设顶点式y =ax 2+2,把点A 点坐标(∴920a +=,∴29a =-,∴抛物线解析式为:当水面下降,水面宽为8米时,有把4x =代入解析式,得∴水面下降149米;故答案为:149;【点睛】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题【答案】8【分析】由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,则当喷头高设y=ax2+bx+2.5,将(2.5,0)代入解析式得出0)代入解析式得9a+3b+4=0,联立可求出时的解析式为y=ax2+bx+h,将(4,0)代入可求出【详解】解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,【答案】17【分析】根据题意可知,当直线经过点(线只有一个交点时,(x-5)2+8=kx-3,可得出【详解】解:当直线经过点(1,12)时,当直线与抛物线只有一个交点时,(x-5)∴10+k=±12,解得k=2或k=-22(舍去),∴∴k的最大值与最小值的和为15+2=17.故答案为:【答案】1【分析】根据抛物线22y x x k =++与x 轴只有一个交点可知方程22x x k ++=0根的判别式△=0,解方程求出k 值即可得答案.【详解】∵抛物线22y x x k =++与x 轴只有一个交点,∴方程22x x k ++=0根的判别式△=0,即22-4k =0,解得:k =1,故答案为:1【点睛】本题考查二次函数与x 轴的交点问题,对于二次函数2y ax bx c =++(k≠0),当判别式△>0时,抛物线与x 轴有两个交点;当k=0时,抛物线与x 轴有一个交点;当x <0时,抛物线与x 轴没有交点;熟练掌握相关知识是解题关键.三、解答题支付专利费y 元,y (元)与每日产销x (件)满足关系式 2.800.01y x =+(1)若产销A ,B 两种产品的日利润分别为1w 元,2w 元,请分别写出1w ,2w 与x 的函数关系式,并写出x 的取值范围;(2)分别求出产销A ,B 两种产品的最大日利润.(A 产品的最大日利润用含m 的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.【利润=(售价-成本)⨯产销数量-专利费】【答案】(1)()()18300500w m x x =--<≤,()220.018800300w x x x =-+-<≤(2)()15003970w m =-+最大元,1420w =2最大(3)当4 5.1m ≤<时,该工厂应该选择产销A 产品能获得最大日利润;当 5.1m =时,该工厂应该选择产销任一产品都能获得最大日利润;当5.16m <≤时,该工厂应该选择产销B 产品能获得最大日利润,理由见解析【分析】(1)根据题木所给的利润计算公式求解即可;(2)根据(1)所求利用一次函数和二次函数的性质求解即可;(3)比较(2)中所求A 、B 两种产品的最大利润即可得到答案.【详解】(1)解:由题意得,()()18300500w m x x =--<≤,()()()2222012800.010.018800300w x x x x x =--+=-+-<≤(2)解:∵46m ≤≤,∴80m ->,∴1w 随x 增大而增大,∴当500x =时,1w 最大,最大为()()8500305003970m m -⨯-=-+元;()2220.018800.014001520w x x x =-+-=--+,∵0.010-<,∴当400x <时,2w 随x 增大而增大,∴当300x =时,2w 最大,最大为()20.0130040015201420-⨯-+=元;(3)解:当50039701420m -+>,即4 5.1m ≤<时,该工厂应该选择产销A 产品能获得最大日利润;(1)求抛物线的解析式;(2)设点P 是直线BC 上方抛物线上一点,求出坐标;(3)若点M 是抛物线对称轴上一动点,点N 为坐标平面内一点,是否存在以B C M N 、、、为顶点的四边形是菱形,若存在,请直接写出点【答案】(1)223y x x =-++(2)PBC 的最大面积为278,32P ⎛ ⎝(3)存在,()4,17或()4,17-或()2,143-+,(2,143--+【分析】(1)利用待定系数法代入求解即可;(2)利用待定系数法先确定直线BC 的解析式为3y x =-+作PD x ⊥轴于点D ,交BC 于点E ,得出23PE x x =-+,然后得出三角形面积的函数即可得出结果;(3)分两种情况进行分析:若BC 为菱形的边长,利用菱形的性质求解即可.【详解】(1)解:将点()()()1,0,3,,00,3A B C -代入解析式得:0930a b c a b c -+=⎧⎪12a b =-⎧⎪∴(),3E x x -+,∴2PE x =-+∴(1122PBCS PE OB ∆=⨯⨯=⨯-∴当32x =时,PBC 的最大面积为(3)存在,()2,2N 或(4,17∵()()3,0,0,3B C ,∵抛物线的解析式为设点()()1,,M t N x y ,,若BC 则22BC CM =,即(2181t =+∵31003x t y +=+⎧⎨+=+⎩,∴4,x y t ==-【答案】(1)21262y x x =-++(2)①【分析】(1)根据抛物线对称轴为待定系数法求得c ,即可解答;(设CD a =,则()0,6D a -,求得即可求出CD 的长;②过,E F1322S S S += ,2AD EF ∴+=设21,262F h h h ⎛⎫-++ ⎪⎝⎭,则AH ,EG AB FH AB ⊥⊥ ,EG ∴∥DI EG ⊥ ,90DIE ∴∠=︒,∴112333DI AB h ∴==+,即点D(1)求抛物线的表达式.(2)若直线值时,使得AN MN +有最大值,并求出最大值.一动点,将抛物线向左平移点M ,是否能与A 、P 、Q 【答案】(1)223y x x =-++(2)①当以AM 为对角线时,22Q P A M x x x x ++∴=,即-Q 在抛物线24y x =-+上AQ(1)求抛物线的解析式;(2)如图1,当:3:5BM MQ =时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线1l 下方的抛物线上一动点,连接PQ 、PO ,其中于点E ,设OQE 的面积为1S ,PQE 的面积为2S .求21S S 的最大值.【答案】(1)214y x x =-(2)()6,3N (3)1【分析】(1)待定系数法求解析式即可求解;(2),过点M 作2MD x ⊥=,垂足为D 根据已知条件得出:BD CD =:3:5BM MQ =,进而列出方程,解方程,即可求解;1⎛⎫⎛设21,4M m m m ⎛⎫- ⎪⎝⎭,则212,4D m m ⎛⎫- ⎪⎝⎭,∵MD QC ∥,∴:BD CD =:3:BM MQ =∵()2,2C -,∴()2210341524m m m m ⎛⎫-- ⎪⎝⎭=---,解得:∵其中点MQ 在抛物线对称轴的左侧.∴k b ⎧+⎪(1)求该运动员从跳出到着陆垂直下降了多少(2)以A为坐标原点建立直角坐标系,求该抛物线表达式;(3)若该运动员在空中共飞行了4s【答案】(1)该运动员从跳出到着陆垂直下降了过点B 作BD y ⊥轴于点D .在Rt OBD △中,sin 37OD AB =⋅︒=答:该运动员从跳出到着陆垂直下降了(2)解:在Rt OBD △中,BD =【分析】(1)设每盒猪肉粽的进价为x 元,每盒豆沙粽的进价为y 元,根据猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽进价为100元列出方程组,解出即可.(2)根据当50a =时,每天可售出100盒,每盒猪肉粽售价为a 元时,每天可售出猪肉粽()100250a --⎡⎤⎣⎦盒,列出二次函数关系式,再化成顶点式即可得解.【详解】(1)设每盒猪肉粽的进价为x 元,每盒豆沙粽的进价为y 元,由题意得:102100x y x y -=⎧⎨+=⎩解得:4030x y =⎧⎨=⎩∴每盒猪肉粽的进价为40元,每盒豆沙粽进价为30元.(2)(40)[1002(50)]w a a =---22(70)1800a =--+.∴当70a =时,w 最大值为1800元.∴该商家每天销售猪肉粽获得的最大利润为1800元.【点睛】本题主要考查了二元一次方程组的实际应用以及二次函数的实际应用,根据题意列出相应的函数关系式是解此题的关键.47.(2022·四川广元·统考中考真题)为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元.(1)科技类图书与文学类图书的单价分别为多少元?(2)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变):购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书不少于30本,但不超过60本.按此优惠,社区至少要准备多少购书款?【答案】(1)科技类图书的单价为38元,文学类图书的单价为26元.(2)社区至少要准备2700元购书款.【分析】(1)设科技类图书的单价为x 元,文学类图书的单价为y 元,然后根据题意可列出方程组进行求解;(2)设社区需要准备w 元购书款,购买科技类图书m 本,则文学类图书有(100-m )本,由(1)及题意可分当3040m ≤<时,当4050m ≤≤时及当5060m <≤时,进而问题可分类求解即可.【详解】(1)解:设科技类图书的单价为x 元,文学类图书的单价为y 元,由题意得:2315445282x y x y +=⎧⎨+=⎩,解得:3826x y =⎧⎨=⎩;答:科技类图书的单价为38元,文学类图书的单价为26元.(2)解:设社区需要准备w 元购书款,购买科技类图书m 本,则文学类图书有(100-m )本,由(1)可得:①当3040m ≤<时,则有:()3826100122600w m m m =+-=+,∵12>0,∴当m =30时,w 有最小值,即为36026002960w =+=;②当4050m ≤≤时,则有:()()2384026100522600w m m m m m =-++-=-++,∵-1<0,对称轴为直线26m =,∴当4050m ≤≤时,w 随m 的增大而减小,∴当m =50时,w 有最小值,即为250525026002700w =-+⨯+=;③当5060m <≤时,此时科技类图书的单价为785028-=(元),则有()282610022600w m m m =+-=+,∵2>0,∴当m =51时,w 有最小值,即为10226002702w =+=;综上所述:社区至少要准备2700元的购书款.【点睛】本题主要考查二元一次方程组的应用、一次函数与二次函数的应用,解题的关键是找准等量关系,注意分类讨论.48.(2021·四川雅安·统考中考真题)某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现销售量y (瓶)与每瓶售价x (元)之间存在一次函数关系(其中1021x ≤≤,且x 为整数),当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶;(1)求y 与x 之间的函数关系式;(2)设该药店销售该消毒液每天的销售利润为w 元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大.【答案】(1)5150y x =-+;(2)当每瓶消毒液售价为20元时,药店销售该消毒液每天销售利润最大,最大为500元.(1)求二次函数的表达式;(2)二次函数在第四象限的图象上有一点为t ,PAB 的面积为S ,求S 与t 的函数关系式;(3)在二次函数图象上是否存在点M 、N 为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点说明理由.【答案】(1)22y x x =-(2)2312S t t =-++(3)存在,(1,1)-N 或(3,3)【分析】(1)由二次函数的最小值为1-,点(1,)M m 是其对称轴上一点,得二次函数顶点为顶点式2(1)1y a x =--,将点(0,0)O 代入即可求出函数解析式;(2)连接OP ,根据AOB OAP OBP S S S S =+-△△△求出S 与t 的函数关系式;当0y =时,220x x -=,0x ∴=或 点P 在抛物线22y x x =-上,∴AOB OAP OBP S S S S ∴=+-△△△12=⨯(3)设()2,2N n n n -,当AB 为对角线时,由中点坐标公式得,当AM 为对角线时,由中点坐标公式得,当AN 为对角线时,由中点坐标公式得,综上:(1,1)-N 或(3,3)或(1,3)-.。
初三数学09 二次函数-2024年中考数学真题分项汇编(全国通用)(解析版)
专题09 二次函数一.选择题1.(2022·陕西)已知二次函数223y x x =--的自变量123,,x x x 对应的函数值分别为1y ,2y ,3y .当110x -<<,212x <<,33x >时,1y ,2y ,3y 三者之间的大小关系是( )A .123y y y <<B .231y y y <<C .312y y y <<D .213y y y <<【答案】D【分析】先将抛物线配成顶点式,求出对称轴为1x =,再求出抛物线与x 轴的两个交点坐标为(1,0)-和(3,0),根据开口向上即可判断.【详解】解: 抛物线2223(1)4y x x x =--=--,∴对称轴1x =,顶点坐标为(1,4)-,当0y =时,2(1)40--=x ,解得1x =-或3x =,∴抛物线与x 轴的两个交点坐标为:(1,0)-,(3,0),∴当110x -<<,212x <<,33x >时,213y y y <<,故选:D .【点睛】本题考查抛物线的性质,熟练掌握抛物线的性质是解决问题的关键,记住在抛物线的左右函数的增减性不同,确定对称轴的位置是关键,属于中考常考题型.2.(2022·山东潍坊)抛物线y =x 2+x +c 与x 轴只有一个公共点,则c 的值为( )A .14-B .14C .4-D .4【答案】B【分析】根据抛物线与x 轴只有一个公共点,得到根的判别式等于0,即可求出c 的值.【详解】解:∵y =x 2+x +c 与x 轴只有一个公共点,∴x 2+x +c =0有两个相等的实数根,∴△=1-4c =0,解得:c =14.故选:B .【点睛】此题考查了抛物线与x 轴的交点,弄清根的判别式的意义是解本题的关键.3.(2022·湖南郴州)关于二次函数()215y x =-+,下列说法正确的是( )A .函数图象的开口向下B .函数图象的顶点坐标是()1,5-C .该函数有最大值,是大值是5D .当1x >时,y 随x 的增大而增大【答案】D 【分析】由抛物线的表达式和函数的性质逐一求解即可.【详解】解:对于y =(x -1)2+5,∵a =1>0,故抛物线开口向上,故A 错误;顶点坐标为(1,5),故B 错误;该函数有最小值,是小值是5,故C 错误;当1x >时,y 随x 的增大而增大,故D 正确,故选:D .【点睛】本题考查的是抛物线与x 轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.4.(2022·山东青岛)已知二次函数2y ax bx c =++的图象开口向下,对称轴为直线1x =-,且经过点(30)-,,则下列结论正确的是( )A .0b >B .0c <C .0a b c ++>D .30a c +=【答案】D【分析】图象开口向下,得a <0, 对称轴为直线12b x a=-=-,得b =2a ,则b <0,图象经过(30)-,,根据对称性可知,图象经过点(1)0,,故c >0,当x =1时,a +b +c =0,将b =2a 代入,可知3a +c =0.【详解】解:∵图象开口向下,∴a <0,∵对称轴为直线12b x a=-=-,∴b =2a ,∴b <0,故A 不符合题意;根据对称性可知,图象经过(30)-,,∴图象经过点(1)0,,∴c >0,故B 不符合题意;当x =1时,a +b +c =0,故C 不符合题意;将将b =2a 代入,可知3a +c =0,故D 符合题意.故选:D .【点睛】本题考查了二次函数的性质和图象,对称轴及对称性,与坐标轴的交点,熟练地掌握二次函数的图象特征是解决问题的关键.5.(2022·黑龙江哈尔滨)抛物线22(9)3y x =+-的顶点坐标是( )A .(9,3)-B .(9,3)--C .(9,3)D .(9,3)-【答案】B【分析】根据二次函数的顶点式2()y a x h k =-+可得顶点坐标为(,)h k 即可得到结果.【详解】∵二次函数解析式为22(9)3y x =+- ,∴顶点坐标为(9,3)--;故选:B .【点睛】本题主要考查了二次函数顶点式的顶点坐标的求解,准确理解是解题的关键.6.(2022·浙江湖州)把抛物线y=x 2向上平移3个单位,平移后抛物线的表达式是( )A .y=2x -3B .y=2x +3C .y=2(3)x +D .y=2(3)x -【答案】B【分析】根据二次函数图像平移规律:上加下减,可得到平移后的函数解析式.【详解】∵抛物线y=x 2向上平移3个单位,∴平移后的抛物线的解析式为:y=x 2+3.故答案为:B.【点睛】本题考查二次函数的平移,熟记平移规律是解题的关键.7.(2022·湖北武汉)二次函数()2y x m n =++的图象如图所示,则一次函数y mx n =+的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限【答案】D 【分析】根据抛物线的顶点在第四象限,得出m <0,n <0,即可得出一次函数y =mx +n 的图象经过二、三、四象限.【详解】解:∵抛物线的顶点(-m ,n )在第四象限,∴-m >0,n <0,∴m <0,∴一次函数y =mx +n 的图象经过二、三、四象限,故选:D .【点睛】此题考查了二次函数的图象,用到的知识点是二次函数的图象与性质、一次函数的图象与性质,关键是根据抛物线的顶点在第四象限,得出n 、m 的符号.8.(2022·广西玉林)小嘉说:将二次函数2y x =的图象平移或翻折后经过点(2,0)有4种方法:①向右平移2个单位长度 ②向右平移1个单位长度,再向下平移1个单位长度③向下平移4个单位长度 ④沿x 轴翻折,再向上平移4个单位长度你认为小嘉说的方法中正确的个数有( )A .1个B .2个C .3个D .4个【答案】D【分析】根据二次函数图象的平移可依此进行求解问题.【详解】解:①将二次函数2y x =向右平移2个单位长度得到:()22y x =-,把点(2,0)代入得:()2220y =-=,所以该平移方式符合题意;②将二次函数2y x =向右平移1个单位长度,再向下平移1个单位长度得到:()211y x =--,把点(2,0)代入得:()22110y =--=,所以该平移方式符合题意;③将二次函数2y x =向下平移4个单位长度得到:24y x =-,把点(2,0)代入得:2240y =-=,所以该平移方式符合题意;④将二次函数2y x =沿x 轴翻折,再向上平移4个单位长度得到:24y x =-+,把点(2,0)代入得:2240y =-+=,所以该平移方式符合题意;综上所述:正确的个数为4个;故选D .【点睛】本题主要考查二次函数图象的平移,熟练掌握二次函数图象的平移是解题的关键.9.(2022·湖南岳阳)已知二次函数2243y mx m x =--(m 为常数,0m ≠),点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,则m 的取值范围是( )A .m 1≥或0m <B .m 1≥C .1m ≤-或0m >D .1m ≤-【答案】A 【分析】先求出抛物线的对称轴及抛物线与y 轴的交点坐标,再分两种情况:0m >或0m <,根据二次函数的性质求得m 的不同取值范围便可.【详解】解:∵二次函数2243y mx m x =--,∴对称轴为2x m =,抛物线与y 轴的交点为()0,3-,∵点(),p p P x y 是该函数图象上一点,当04p x ≤≤时,3p y ≤-,∴①当0m >时,对称轴20x m =>,此时,当4x =时,3y ≤-,即2244433m m ⋅-⋅-≤-,解得m 1≥;②当0m <时,对称轴20x m =<,当04x ≤≤时,y 随x 增大而减小,则当04p x ≤≤时,3p y ≤-恒成立;综上,m 的取值范围是:m 1≥或0m <.故选:A .【点睛】本题考查了二次函数的性质,关键是分情况讨论.10.(2022·四川宜宾)已知抛物线2y ax bx c =++的图象与x 轴交于点()2,0A -、()4,0B ,若以AB 为直径的圆与在x 轴下方的抛物线有交点,则a 的取值范围是( )A .13a ≥B .13a >C .103a <<D .103a <≤【答案】A【分析】根据题意,设抛物线的解析式为()()24y a x x =+-,进而求得顶点的的坐标,结合图形可知当顶点纵坐标小于或等于-3满足题意,即可求解.【详解】解: 抛物线2y ax bx c =++的图象与x 轴交于点()2,0A -、()4,0B ,设抛物线的解析式为()()24y a x x =+-()222819y ax ax a a x a ∴=--=--顶点坐标为()1,9a -,6AB = ,以AB 为直径的圆与在x 轴下方的抛物线有交点,则圆的半径为3,如图,93a ∴-≤-解得13a ≥故选:A【点睛】本题考查了圆的的性质,二次函数图象的性质,求得抛物线的顶点纵坐标的范围是解题的关键.11.(2022·山东威海)如图,二次函数y =ax 2+bx (a ≠0)的图像过点(2,0),下列结论错误的是( )A .b >0B .a +b >0C .x =2是关于x 的方程ax 2+bx =0(a ≠0)的一个根D .点(x 1,y 1),(x 2,y 2)在二次函数的图像上,当x 1>x 2>2时,y 2<y 1<0【答案】D【分析】根据二次函数的图像和性质作出判断即可.【详解】解:根据图像知,当1x =时,0y a b =+>,故B 选项结论正确,不符合题意,0a < ,0b ∴>,故A 选项结论正确,不符合题意;由题可知二次函数对称轴为12b x a=-=,2b a ∴=-,20a b a a a ∴+=-=->,故B 选项结论正确,不符合题意;根据图像可知2x =是关于x 的方程()200++=≠ax bx c a 的一个根,故C 选项结论正确,不符合题意,若点()11,x y ,()22,x y 在二次函数的图像上,当122x x >>时,120y y <<,故D 选项结论不正确,符合题意,故选:D .【点睛】本题主要考查二次函数的图像和性质,熟练掌握二次函数的图像和性质是解题的关键.12.(2022·广西)已知反比例函数(0)b y b x=≠的图象如图所示,则一次函数()0y cx a c =-≠和二次函数2(0)y ax bx c a =++≠在同一平面直角坐标系中的图象可能是( )A .B .C .D .【答案】D【分析】先由反比例函数图象得出b >0,再分当a >0,a <0时分别判定二次函数图象符合的选项,在符合的选项中,再判定一次函数图象符合的即可得出答案.【详解】解:∵反比例函数(0)b y b x =≠的图象在第一和第三象限内,∴b >0,若a <0,则-2b a >0,所以二次函数开口向下,对称轴在y 轴右侧,故A 、B 、C 、D 选项全不符合;当a >0,则-2b a<0时,所以二次函数开口向上,对称轴在y 轴左侧,故只有C 、D 两选项可能符合题意,由C 、D 两选图象知,c <0,又∵a >0,则-a <0,当c <0,a >0时,一次函数y =cx -a 图象经过第二、第三、第四象限,故只有D 选项符合题意.故选:D .【点睛】本题考查函数图象与系数的关系,熟练掌握反比例函数图象、一次函数图象、二次函数图象与系数的关系是解题的关键.13.(2022·山东潍坊)如图,在▱ABCD 中,∠A =60°,AB =2,AD =1,点E ,F 在▱ABCD 的边上,从点A 同时出发,分别沿A →B →C 和A →D →C 的方向以每秒1个单位长度的速度运动,到达点C 时停止,线段EF 扫过区域的面积记为y ,运动时间记为x ,能大致反映y 与x 之间函数关系的图象是( )A .B .C .D .【答案】A【分析】分0≤x ≤1,1<x <2,2≤x ≤3三种情况讨论,利用三角形面积公式求解即可.【详解】解:当0≤x ≤1时,过点F 作FG ⊥AB 于点G ,∵∠A=60°,AE=AF=x,x,∴AG=12由勾股定理得FG,AE×FG2,图象是一段开口向上的抛物线;∴y=12当1<x<2时,过点D作DH⊥AB于点H,∵∠DAH=60°,AE=x,AD=1,DF= x-1,∴AH=1,2由勾股定理得DH(DF+AE)×DH∴y=12当2≤x≤3时,过点E作EI⊥CD于点I,∵∠C=∠DAB=60°,CE=CF=3-x,同理求得EI x),CF×EI x)22,图象是一段开口向下的抛物线;∴y= AB×DH -12观察四个选项,只有选项A符合题意,故选:A.【点睛】本题考查了利用分类讨论的思想求动点问题的函数图象;也考查了平行四边形的性质,含30度的直角三角形的性质,勾股定理,三角形的面积公式以及一次函数和二次函数的图象.14.(2022·辽宁)如图,在Rt ABC 中,90,24ABC AB BC ∠=︒==,动点P 从点A 出发,以每秒1个单位长度的速度沿线段AB 匀速运动,当点P 运动到点B 时,停止运动,过点P 作PQ AB ⊥交AC 于点Q ,将APQ 沿直线PQ 折叠得到A PQ ' ,设动点P 的运动时间为t 秒,A PQ ' 与ABC 重叠部分的面积为S ,则下列图象能大致反映S 与t 之间函数关系的是( )A .B .C .D .【答案】D【分析】由题意易得AP t =,1tan 2A ∠=,则有12PQ t =,进而可分当点P 在AB 中点的左侧时和在AB 中点的右侧时,然后分类求解即可.【详解】解:∵90,24ABC AB BC ∠=︒==,∴1tan 2A ∠=,由题意知:AP t =,∴1tan 2PQ AP A t =⋅∠=,由折叠的性质可得:,90A P AP APQ A PQ ''=∠=∠=︒,当点P 与AB 中点重合时,则有2t =,当点P 在AB 中点的左侧时,即02t ≤<,∴A PQ ' 与ABC 重叠部分的面积为211112224A PQ S A P PQ t t t ''=⋅=⋅= ;当点P 在AB 中点的右侧时,即24t ≤≤,如图所示:由折叠性质可得:,90A P AP t APQ A PQ ''==∠=∠=︒,1tan tan 2A A '∠=∠=,∴4BP t =-,∴24A B t '=-,∴tan 2BD A B A t ''=⋅∠=-,∴A PQ ' 与ABC 重叠部分的面积为()()2111324442224PBDQ S BD PQ PB t t t t t ⎛⎫=+⋅=+-⋅-=-+- ⎪⎝⎭梯形;综上所述:能反映A PQ ' 与ABC 重叠部分的面积S 与t 之间函数关系的图象只有D 选项;故选D .【点睛】本题主要考查二次函数的图象及三角函数,熟练掌握二次函数的图象及三角函数是解题的关键.15.(2022·贵州铜仁)如图,若抛物线2(0)y ax bx c a =++≠与x 轴交于A 、B 两点,与y 轴交于点C ,若OAC OCB ∠=∠.则ac 的值为( )A .1-B .2-C .12-D .13-【答案】A 【分析】观察图象,先设11(,0)(<0)A x x ,22(,0)(>0)B x x ,(0,)C c (>0)c ,根据已知条件OAC OCB ∠=∠及OC AB ⊥证明OAC OCB ∽△△,得出21212x x c x x ⋅==-⋅,利用根与系数的关系知12c x x a ⋅=,最后得出答案.【详解】设11(,0)(<0)A x x ,22(,0)(>0)B x x ,(0,)C c (>0)c ,∵二次函数2y ax bx c =++的图象过点(0,)C c ,∴OC c =,∵OAC OCB ∠=∠,OC AB ⊥,∴OAC OCB ∽△△,∴OA OC OC OB=,∴2OC OA OB =⋅,即21212x x c x x ⋅==-⋅,令20ax bx c ++=,根据根与系数的关系知12c x x a ⋅=,∴212c x x c a -=-=,故1ac =- 故选:A .【点睛】本题考查了二次函数2y ax bx c =++(0)a ≠与关于方程20ax bx c ++=(0)a ≠之间的相互转换,同时要将线段的长转化为点的坐标之间的关系,灵活运用数形结合的思想是解题关键.16.(2022·黑龙江牡丹江)若二次函数2y ax =的图象经过点P (-2,4),则该图象必经过点( )A .(2,4)B .(-2,-4)C .(-4,2)D .(4,-2)【答案】A【详解】根据点在曲线上,点的坐标满足方程的关系,将P (-2,4)代入2y ax =,得()2421a a =-⇒=,∴二次函数解析式为2y x =.∴所给四点中,只有(2,4)满足2y x =.故选A .17.(2022·内蒙古通辽)在平面直角坐标系中,将二次函数()211y x =-+的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为( )A .()221y x =--B .()223y x =-+ C .21y x =+ D .21y x =-【答案】D【分析】根据抛物线的平移规律:上加下减,左加右减解答即可.【详解】解:将二次函数()211y x =-+的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为()2211121y x x =-++-=-故选D .【点睛】本题考查了抛物线的平移规律.关键是确定平移前后抛物线的顶点坐标,寻找平移规律.18.(2022·四川遂宁)如图,D 、E 、F 分别是ABC 三边上的点,其中8BC =,BC 边上的高为6,且DE //BC ,则DEF 面积的最大值为( )A .6B .8C .10D .12【答案】A 【分析】过点A 作AM ⊥BC 于M ,交DE 于点N ,则AN ⊥DE ,设AN a =,根据∥DE BC ,证明ADE ABC ,根据相似三角形对应高的比等于相似比得到43DE a =,列出DEF 面积的函数表达式,根据配方法求最值即可.【详解】如图,过点A 作AM ⊥BC 于M ,交DE 于点N ,则AN ⊥DE ,设AN a =,DE BC ∥,,ADE B AED C ∴∠=∠∠=∠,ADE ABC ∴ ,DE AN BC AM ∴=,86DE a ∴=,∴43DE a =,2211422(6)4(3)622333DEF S DE MN a a a a a ∴=⋅⋅=⨯⨯-=-+=--+ ,∴当3a =时,S 有最大值,最大值为6,故选:A .【点睛】本题考查了平行线的性质,相似三角形的判定和性质,二次函数求最值,熟练掌握知识点是解题的关键.19.(2022·四川自贡)已知A(−3,−2),B(1,−2),抛物线y=ax2+bx+c(a>0)顶点在线段AB上运动,形状保持不变,与x轴交于C,D两点(C在D的右侧),下列结论:①c≥−2;②当x>0时,一定有y随x的增大而增大;③若点D横坐标的最小值为−5,点C横坐标的最大值为3;④当四边形ABCD为平行四边形时,a=12.其中正确的是()A.①③B.②③C.①④D.①③④【答案】D【分析】根据顶点在线段AB上抛物线与y轴的交点坐标为(0,c)可以判断出c的取值范围,可判断①;根据二次函数的增减性判断②;先确定x=1时,点D的横坐标取得最大值,然后根据二次函数的对称性求出此时点C的横坐标,即可判断③;令y=0,利用根与系数的关系与顶点的纵坐标求出CD的长度的表达式,然后根据平行四边形的对边平行且相等可得AB=CD,然后列出方程求出a的值,判断④.【详解】解:∵点A,B的坐标分别为(-3,-2)和(1,-2),∴线段AB与y轴的交点坐标为(0,-2),又∵抛物线的顶点在线段AB上运动,抛物线与y轴的交点坐标为(0,c) ,∴C≥-2,(顶点在y轴上时取“=”),故①正确;∵抛物线的顶点在线段AB上运动,开口向上,∴当x>1时,一定有y随x的增大而增大,故②错误;若点D的横坐标最小值为-5,则此时对称轴为直线x=-3,根据二次函数的对称性,点C的横坐标最大值为1+2=3,故③正确;令y=0,则ax2+bx+c=0,设该方程的两根为x1,x2,则x1+x2=-ba,x1x2=ca,∴CD2=( x1-x2) 2=( x1+x2) 2-4x1x22224 ()4b c b aca a a-=--⨯=,根据顶点坐标公式,2424ac ba-=-,∴248ac ba-=-,即248b aca-=,∵四边形ACDB为平行四边形,∴CD=AB=1-(-3)=4,∴8a=42=16,解得a=12,故④正确;综上所述,正确的结论有①③④.故选:D ..【点睛】本题考查了二次函数的综合题型,主要利用了二次函数的顶点坐标,二次函数的对称性,根与系数的关系,平行四边形的对边平行且相等的性质,要注意顶点在y 轴上的情况.20.(2022·江苏泰州)已知点()()()1233,,1,,1,y y y --在下列某一函数图像上,且312y y y <<那么这个函数是( )A .3y x=B .23y x =C .3y x =D .3y x=-【答案】D【分析】先假设选取各函数,代入自变量求出y 1、y 2、y 3的值,比较大小即可得出答案.【详解】解:A .把点()()()1233,,1,,1,y y y --代入y =3x ,解得y 1=-9,y 2=-3,y 3=3,所以y 1<y 2<y 3,这与已知条件312y y y <<不符,故选项错误,不符合题意;B .把点()()()1233,,1,,1,y y y --代入y =3x 2,解得y 1=27,y 2=3,y 3=3,所以y 1>y 2=y 3,这与已知条件312y y y <<不符,故选项错误,不符合题意;C . 把点()()()1233,,1,,1,y y y --代入y =3x ,解得y 1=-1,y 2=-3,y 3=3,所以y 2<y 1<y 3,这与已知条件312y y y <<不符,故选项错误,不符合题意;D . 把点()()()1233,,1,,1,y y y --代入y =-3x ,解得y 1=1,y 2=3,y 3=-3,所以312y y y <<,这与已知条件312y y y <<相符,故选项正确,符合题意;故选:D .【点睛】此题考查了一次函数、反比例函数以及二次函数,解题的关键是掌握函数值的大小变化和函数的性质.21.(2022·广西贺州)已知二次函数y =2x 2−4x −1在0≤x ≤a 时,y 取得的最大值为15,则a 的值为( )A .1B .2C .3D .4【答案】D【分析】先找到二次函数的对称轴和顶点坐标,求出y =15时,x 的值,再根据二次函数的性质得出答案.【详解】解:∵二次函数y =2x 2-4x -1=2(x -1)2-3,∴抛物线的对称轴为x =1,顶点(1,-3),∵1>0,开口向上,∴在对称轴x =1的右侧,y 随x 的增大而增大,∵当0≤x ≤a 时,即在对称轴右侧,y 取得最大值为15,∴当x =a 时,y =15,∴2(a -1)2-3=15,解得:a =4或a =-2(舍去),故a 的值为4.故选:D .【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是二次函数的增减性,利用二次函数的性质解答.22.(2022·内蒙古包头)已知实数a ,b 满足1b a -=,则代数式2267a b a +-+的最小值等于( )A .5B .4C .3D .2【答案】A【分析】由已知得b =a +1,代入代数式即得a 2-4a +9变形为(a -2)2+5,再根据二次函数性质求解.【详解】解:∵b -a =1,∴b =a +1,∴a 2+2b -6a +7=a 2+2(a +1)-6a +7=a 2-4a +9=(a -2)2+5,∵(a -2)2≥0,∴当a =2时,代数式a 2+2b -6a +7有最小值,最小值为5,故选:A .【点睛】本题考查二次函数的最值,通过变形将代数式化成(a -2)2+5是解题的关键.23.(2022·黑龙江齐齐哈尔)如图,二次函数2y ax bx c =++(0)a ≠的图象与y 轴的交点在(0,1)与(0,2)之间,对称轴为1x =-,函数最大值为4,结合图象给出下列结论:①2b a =;②32a -<<-;③24<0ac b -;④若关于x 的一元二次方程24ax bx c m ++=- (0)a ≠有两个不相等的实数根,则m >4;⑤当x <0时,y 随x 的增大而减小.其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】B 【分析】根据二次函数图象与性质逐个结论进行分析判断即可.【详解】解:∵二次函数2y ax bx c =++(0)a ≠的对称轴为1x =-,∴1,2b x a=-=- ∴2,b a =故①正确;∵函数图象开口向下,对称轴为1x =-,函数最大值为4,∴函数的顶点坐标为(-1,4)当x =-1时,4-+=a b c∴24a a c -+=∴4c a =+,∵二次函数2y ax bx c =++(0)a ≠的图象与y 轴的交点在(0,1)与(0,2)之间,∴1<c <2∴1<4+a <2∴32a -<<-,故②正确;∵抛物线与x 轴有两个交点,∴240b ac ->∴24<0ac b -,故③正确;∵抛物线的顶点坐标为(-1,4)且方程24ax bx c m ++=-有两个不相等的实数根,∴044m <-<∴48m <<,故④错误;由图象可得,当x >-1时,y 随x 的增大而减小,故⑤错误.所以,正确的结论是①②③,共3个,故选:B【点睛】本题主要考查了二次函数图象与性质,,熟练掌握二次函数的图象与性质是解答本题的关键.24.(2022·湖北鄂州)如图,已知二次函数y =ax 2+bx +c (a 、b 、c 为常数,且a ≠0)的图像顶点为P (1,m ),经过点A (2,1);有以下结论:①a <0;②abc >0;③4a +2b+c =1;④x >1时,y 随x 的增大而减小;⑤对于任意实数t ,总有at 2+bt ≤a +b ,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C 【分析】①根据抛物线的开口方向向下即可判定;②先运用二次函数图像的性质确定a 、b 、c 的正负即可解答;③将点A 的坐标代入即可解答;④根据函数图像即可解答;⑤运用作差法判定即可.【详解】解:①由抛物线的开口方向向下,则a <0,故①正确;②∵抛物线的顶点为P (1,m )∴12b a-=,b =-2a ∵a <0∴b >0∵抛物线与y 轴的交点在正半轴∴c >0∴abc <0,故②错误;③∵抛物线经过点A (2,1)∴1=a ·22+2b +c ,即4a +2b +c =1,故③正确;④∵抛物线的顶点为P (1,m ),且开口方向向下∴x >1时,y 随x 的增大而减小,即④正确;⑤∵a <0∴at 2+bt -(a +b )= at 2-2at -a +2a = at 2-2at +a =a (t 2-2t +1)= a (t -1)2≤0∴at 2+bt ≤a +b ,则⑤正确综上,正确的共有4个.故答案为C .【点睛】本题主要考查了二次函数图像的性质,灵活运用二次函数图像的性质以及掌握数形结合思想成为解答本题的关键.25.(2022·四川雅安)抛物线的函数表达式为y =(x ﹣2)2﹣9,则下列结论中,正确的序号为( )①当x =2时,y 取得最小值﹣9;②若点(3,y 1),(4,y 2)在其图象上,则y 2>y 1;③将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y =(x ﹣5)2﹣5;④函数图象与x 轴有两个交点,且两交点的距离为6.A .②③④B .①②④C .①③D .①②③④【答案】B【分析】由二次函数的开口向上,函数有最小值,可判断①,由二次函数的增减性可判断②,由二次函数图象的平移可判断③,由二次函数与x 轴的交点坐标可判断④,从而可得答案.【详解】解: y =(x ﹣2)2﹣9,图象的开口向上,∴当x =2时,y 取得最小值﹣9;故①符合题意;y =(x ﹣2)2﹣9的对称轴为2x =,而3242,-<- 21,y y ∴> 故②符合题意;将其函数图象向左平移3个单位长度,再向上平移4个单位长度所得抛物线的函数表达式为y =(x +1)2﹣5,故③不符合题意;当0y =时,则()2290,x --= 解得:125,1,x x ==- 而()516,--= 故④符合题意;故选B【点睛】本题考查的是二次函数的图象与性质,二次函数与x 轴的交点问题,掌握“二次函数的图象与性质”是解本题的关键.二.填空题26.(2022·辽宁营口)如图1,在四边形ABCD 中,,90,45BC AD D A ∠=︒∠=︒∥,动点P ,Q 同时从点A 出发,点P /s 的速度沿AB 向点B 运动(运动到B 点即停止),点Q 以2cm /s 的速度沿折线AD DC →向终点C 运动,设点Q 的运动时间为(s)x ,APQ 的面积为()2cm y ,若y 与x 之间的函数关系的图像如图2所示,当7(s)2x =时,则y =____________2cm .【答案】354【分析】根据题意以及函数图像可得出AED APQ ∽,则点Q 在AD 上运动时,APQ 为等腰直角三角形,然后根据三角形面积公式得出当面积最大为9时,此时3x =,则26cm AD x ==,当34x <≤时,过点P 作PF AD ⊥于点F ,则此时APQ APF ADQ PQDF S S S S =+- 四边形,分别表示出相关线段可得y 与x 之间的函数解析式,将7(s)2x =代入解析式求解即可.【详解】解:过点D 作DE AB ⊥,垂足为E ,在Rt ADE △中,∵90AED ∠=︒,45EAD ∠=︒,∴AE AD =,∵点P /s ,点Q 的速度为2cm /s ,∴,2AP AQ x =,∴AP AQ 在APQ 和AED 中,∵AE AP AD AQ =45A ∠=︒,∴AED APQ ∽,∴点Q 在AD 上运动时,APQ 为等腰直角三角形,∴AP PQ ==,∴当点Q 在AD 上运动时,21122y AP AQ x =⋅==,由图像可知,当9y =此时面积最大,3x =或3-(负值舍去),∴26cm AD x ==,当34x <≤时,过点P 作PF AD ⊥于点F ,如图:此时APQ APF ADQ PQDF S S S S =+- 四边形,在Rt APQ 中,AP =,45A ∠=︒,∴AF PF x ==,6FD x =-,26QD x =-,∴2111(26)(6)6(26)222APQ S x x x x x =++-⋅--⨯⨯- ,即26y x x =-+,所以当7(s)2x =时,227735(6(cm )224y =-+⨯=,故答案为:354.【点睛】本题考查了动点问题的函数图像,求出各段函数的函数关系式是解答本题的关键.27.(2022·江苏无锡)把二次函数y =x 2+4x +m 的图像向上平移1个单位长度,再向右平移3个单位长度,如果平移后所得抛物线与坐标轴有且只有一个公共点,那么m 应满足条件:________.【答案】m >3【分析】先求得原抛物线的顶点坐标为(-2,m -4),再求得平移后的顶点坐标为(1,m -3),根据题意得到不等式m -3>0,据此即可求解.【详解】解:∵y =x 2+4x +m =(x +2)2+m -4,此时抛物线的顶点坐标为(-2,m -4),函数的图象向上平移1个单位长度,再向右平移3个单位长度后的顶点坐标为(-2+3,m -4+1),即(1,m -3),∵平移后所得抛物线与坐标轴有且只有一个公共点,∴m -3>0,解得:m >3,故答案为:m >3.【点睛】本题考查了二次函数图象与几何变换,二次函数的性质,属于基础题,解决本题的关键是得到新抛物线的顶点坐标.28.(2022·福建)已知抛物线22y x x n =+-与x 轴交于A ,B 两点,抛物线22y x x n =--与x 轴交于C ,D 两点,其中n >0,若AD =2BC ,则n 的值为______.【答案】8【分析】先求出抛物线22y x x n =+-与x 轴的交点,抛物线22y x x n =--与x 轴的交点,然后根据2AD BC =,得出224AD BC =,列出关于n 的方程,解方程即可。
2024年中考数学真题汇编专题14 二次函数的图象与性质+答案详解
2024年中考数学真题汇编专题14 二次函数的图象与性质+答案详解(试题部分)一、单选题1.(2024·内蒙古包头·中考真题)将抛物线22y x x =+向下平移2个单位后,所得新抛物线的顶点式为( ) A .()213y x =+− B .()=+−2y x 12C .()213y x =−−D .()212y x =−−2.(2024·广东广州·中考真题)函数21y ax bx c =++与2ky x=的图象如图所示,当( )时,1y ,2y 均随着x 的增大而减小.A .1x <−B .10x −<<C .02x <<D .1x >3.(2024·四川凉山·中考真题)抛物线()2213y x c =−+经过()()1235202y y y ⎛⎫− ⎪⎝⎭,,,,,三点,则123y y y ,,的大小关系正确的是( ) A .123y y y >>B .231y y y >>C .312y y y >>D .132y y y >>4.(2024·四川达州·中考真题)抛物线2y x bx c =−++与x 轴交于两点,其中一个交点的横坐标大于1,另一个交点的横坐标小于1,则下列结论正确的是( ) A .1b c +>B .2b =C .240b c +<D .0c <5.(2024·四川泸州·中考真题)已知二次函数()2231y ax a x a =+−+−(x 是自变量)的图象经过第一、二、四象限,则实数a 的取值范围为( ) A .918a ≤< B .302a << C .908a <<D .312a ≤<6.(2024·陕西·中考真题)已知一个二次函数2y ax bx c =++的自变量x 与函数y 的几组对应值如下表,则下列关于这个二次函数的结论正确的是( ) A .图象的开口向上B .当0x >时,y 的值随x 的值增大而增大C .图象经过第二、三、四象限D .图象的对称轴是直线1x =7.(2024·湖北·中考真题)抛物线2y ax bx c =++的顶点为()1,2−−,抛物线与y 轴的交点位于x 轴上方.以下结论正确的是( ) A .0a <B .0c <C .2a b c −+=−D .240b ac −=8.(2024·广东·中考真题)若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则( ) A .321y y y >>B .213y y y >>C .132y y y >>D .312y y y >>9.(2024·四川自贡·中考真题)一次函数24y x n =−+,二次函数2(1)3y x n x =+−−,反比例函数1n y x+=在同一直角坐标系中图象如图所示,则n 的取值范围是( )A .1n >−B .2n >C .11n −<<D .12n <<10.(2024·四川遂宁·中考真题)如图,已知抛物线2y ax bx c =++(a 、b 、c 为常数,且0a ≠)的对称轴为直线=1x −,且该抛物线与x 轴交于点()1,0A ,与y 轴的交点B 在()0,2−,()0,3−之间(不含端点),则下列结论正确的有多少个( )①0abc >; ②930a b c −+≥;③213a <<; ④若方程21ax bx c x +=++两根为(),m n m n <,则31m n −<<<.A .1B .2C .3D .411.(2024·江苏连云港·中考真题)已知抛物线2y ax bx c =++(a 、b 、c 是常数,a<0)的顶点为(1,2).小烨同学得出以下结论:①0abc <;②当1x >时,y 随x 的增大而减小;③若20ax bx c ++=的一个根为3,则12a =−;④抛物线22y ax =+是由抛物线2y ax bx c =++向左平移1个单位,再向下平移2个单位得到的.其中一定正确的是( )A .①②B .②③C .③④D .②④12.(2024·四川广安·中考真题)如图,二次函数2y ax bx c =++(a ,b ,c 为常数,0a ≠)的图象与x 轴交于点3,02A ⎛⎫− ⎪⎝⎭,对称轴是直线12x =−,有以下结论:①0abc <;②若点()11,y −和点()22,y 都在抛物线上,则12y y <;③21142am bm a b +≤−(m 为任意实数);④340a c +=.其中正确的有( )A .1个B .2个C .3个D .4个13.(2024·四川眉山·中考真题)如图,二次函数()20y ax bx c a =++≠的图象与x 轴交于点()3,0A ,与y 轴交于点B ,对称轴为直线1x =,下列四个结论:①0bc <;②320a c +<;③2ax bx a b +≥+;④若21c −<<−,则8433a b c −<++<−,其中正确结论的个数为( )A .1个B .2个C .3个D .414.(2024·福建·中考真题)已知二次函数()220y x ax a a =−+≠的图象经过1,2a A y ⎛⎫ ⎪⎝⎭,()23,B a y 两点,则下列判断正确的是( )A .可以找到一个实数a ,使得1y a >B .无论实数a 取什么值,都有1y a >C .可以找到一个实数a ,使得20y <D .无论实数a 取什么值,都有20y <15.(2024·贵州·中考真题)如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3−,顶点坐标为()1,4−,则下列说法正确的是( )A .二次函数图象的对称轴是直线1x =B .二次函数图象与x 轴的另一个交点的横坐标是2C .当1x <−时,y 随x 的增大而减小D .二次函数图象与y 轴的交点的纵坐标是316.(2024·四川乐山·中考真题)已知二次函数()2211y x x x t =−−≤≤−,当=1x −时,函数取得最大值;当1x =时,函数取得最小值,则t 的取值范围是( )A .02t <≤B .04t <≤C .24t ≤≤D .2t ≥17.(2024·黑龙江绥化·中考真题)二次函数()20y ax bx c a =++≠的部分图象如图所示,对称轴为直线=1x −,则下列结论中: ①0bc> ②2am bm a b +≤−(m 为任意实数) ③31a c +< ④若()1,M x y 、()2,N x y 是抛物线上不同的两个点,则123x x +≤−.其中正确的结论有( )A .1个B .2个C .3个D .4个18.(2024·四川广元·中考真题)如图,已知抛物线2y ax bx c =++过点()0,2C −与x 轴交点的横坐标分别为1x ,2x ,且110x −<<,223x <<,则下列结论:①<0a b c −+;②方程220ax bx c +++=有两个不相等的实数根; ③0a b +>; ④23a >; ⑤2244b ac a −>.其中正确的结论有( )A .1个B .2个C .3个D .4个19.(2024·黑龙江牡丹江·中考真题)在平面直角坐标系中,抛物线()20y ax bx c a =++≠与x 轴交于A 、B两点,()()3,0,1,0A B −,与y 轴交点C 的纵坐标在3−~2−之间,根据图象判断以下结论:①20abc >;②423b <<;③若221122ax bx ax bx −=−且12x x ≠,则122x x +=−;④直线56y cx c =−+与抛物线2y ax bx c =++的一个交点(,)(0)m n m ≠,则12m =.其中正确的结论是( )A .①②④B .①③④C .①②③D .①②③④20.(2024·内蒙古赤峰·中考真题)如图,正方形ABCD 的顶点A ,C 在抛物线24y x =−+上,点D 在y 轴上.若A C ,两点的横坐标分别为m n ,(0m n >>),下列结论正确的是( )A .1m n +=B .1m n −=C .1mn =D .1m n= 21.(2024·四川宜宾·中考真题)如图,抛物线()20y ax bx c a =++<的图象交x 轴于点()3,0A −、()1,0B ,交y 轴于点C .以下结论:①0a b c ++=;②320a b c ++<;③当以点A 、B 、C 为顶点的三角形是等腰三角形时,c =3c =时,在AOC 内有一动点P ,若2OP =,则23CP AP +.其中正确结论有( )A .1个B .2个C .3个D .4个22.(2024·黑龙江齐齐哈尔·中考真题)如图,二次函数()220y ax bx a =++≠的图象与x 轴交于()1,0−,1(,0)x ,其中123x <<.结合图象给出下列结论:①0ab >;②2a b −=−;③当1x >时,y 随x 的增大而减小;④关于x 的一元二次方程()2200ax bx a ++=≠的另一个根是2a−;⑤b 的取值范围为413b <<.其中正确结论的个数是( ) A .2B .3C .4D .5二、填空题23.(2024·四川内江·中考真题)已知二次函数221y x x =−+的图象向左平移两个单位得到抛物线C ,点()12,P y ,()23,Q y 在抛物线C 上,则1y 2y (填“>”或“<”);24.(2024·吉林长春·中考真题)若抛物线2y x x c =−+(c 是常数)与x 轴没有交点,则c 的取值范围是 .25.(2024·黑龙江牡丹江·中考真题)将抛物线23y ax bx =++向下平移5个单位长度后,经过点()24,−,则637a b −−= .26.(2024·四川成都·中考真题)在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =−+−图象上三点.若101x <<,24x >,则1y 2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是 .27.(2024·上海·中考真题)对于一个二次函数2()y a x m k =−+(0a ≠)中存在一点(),P x y '',使得0x m y k '−='−≠,则称2x m '−为该抛物线的“开口大小”,那么抛物线211323y x x =−++“开口大小”为 .28.(2024·湖北武汉·中考真题)抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1−,(),1m 两点,且01m <<.下列四个结论: ①0b >;②若01x <<,则()()2111a x b x c −+−+>;③若1a =−,则关于x 的一元二次方程 22ax bx c ++=无实数解;④点()11,A x y ,()22,B x y 在抛物线上,若1212x x +>−,12x x >,总有12y y <,则102m <≤.其中正确的是 (填写序号).29.(2024·四川德阳·中考真题)如图,抛物线2y ax bx c =++的顶点A 的坐标为1,3n ⎛⎫− ⎪⎝⎭,与x 轴的一个交点位于0和1之间,则以下结论:①0abc >;②520b c +<;③若抛物线经过点()()126,,5,y y −,则12y y >;④若关于x 的一元二次方程24ax bx c ++=无实数根,则4n <.其中正确结论是 (请填写序号).30.(2024·山东烟台·中考真题)已知二次函数2y ax bx c =++的y 与x 的部分对应值如下表:下列结论:①0abc >;②关于x 的一元二次方程29ax bx c ++=有两个相等的实数根;③当41x −<<时,y 的取值范围为<<0y 5;④若点()1,m y ,()22,m y −−均在二次函数图象上,则12y y =;⑤满足()212ax b x c +++<的x 的取值范围是<2x −或3x >.其中正确结论的序号为 .三、解答题31.(2024·江苏扬州·中考真题)如图,已知二次函数2y x bx c =−++的图像与x 轴交于(2,0)A −,(1,0)B 两点.(1)求b c 、的值;(2)若点P 在该二次函数的图像上,且PAB 的面积为6,求点P 的坐标.32.(2024·安徽·中考真题)已知抛物线2y x bx =−+(b 为常数)的顶点横坐标比抛物线22y x x =−+的顶点横坐标大1. (1)求b 的值;(2)点()11,A x y 在抛物线22y x x =−+上,点()11,B x t y h ++在抛物线2y x bx =−+上. (ⅰ)若3h t =,且10x ≥,0t >,求h 的值; (ⅱ)若11x t =−,求h 的最大值.33.(2024·北京·中考真题)在平面直角坐标系xOy 中,已知抛物线()2220=−≠y ax a x a .(1)当1a =时,求抛物线的顶点坐标;(2)已知()11,M x y 和()22,N x y 是抛物线上的两点.若对于13x a =,234x ≤≤,都有12y y <,求a 的取值范围. 34.(2024·浙江·中考真题)已知二次函数2y x bx c =++(b ,c 为常数)的图象经过点(2,5)A −,对称轴为直线12x =−.(1)求二次函数的表达式;(2)若点(1,7)B 向上平移2个单位长度,向左平移m (0m >)个单位长度后,恰好落在2y x bx c =++的图象上,求m 的值;(3)当2x n −≤≤时,二次函数2y x bx c =++的最大值与最小值的差为94,求n 的取值范围.35.(2024·广西·中考真题)课堂上,数学老师组织同学们围绕关于x 的二次函数223y x ax a =++−的最值问题展开探究.【经典回顾】二次函数求最值的方法.(1)老师给出4a =−,求二次函数223y x ax a =++−的最小值. ①请你写出对应的函数解析式;②求当x 取何值时,函数y y 值;【举一反三】老师给出更多a 的值,同学们即求出对应的函数在x 取何值时,y 的最小值.记录结果,并整理成下表:注:*为②的计算结果.【探究发现】老师:“请同学们结合学过的函数知识,观察表格,谈谈你的发现.” 甲同学:“我发现,老师给了a 值后,我们只要取x a =−,就能得到y 的最小值.”乙同学:“我发现,y 的最小值随a 值的变化而变化,当a 由小变大时,y 的最小值先增大后减小,所以我猜想y 的最小值中存在最大值.”(2)请结合函数解析式223y x ax a =++−,解释甲同学的说法是否合理?(3)你认为乙同学的猜想是否正确?若正确,请求出此最大值;若不正确,说明理由.36.(2024·云南·中考真题)已知抛物线21y x bx =+−的对称轴是直线32x =.设m 是抛物线21y x bx =+−与x 轴交点的横坐标,记533109m M −=.(1)求b 的值;(2)比较M 37.(2024·四川成都·中考真题)如图,在平面直角坐标系xOy 中,抛物线L :()2230y ax ax a a =−−>与x轴交于A ,B 两点(点A 在点B 的左侧),其顶点为C ,D 是抛物线第四象限上一点.(1)求线段AB 的长;(2)当1a =时,若ACD 的面积与ABD △的面积相等,求tan ABD ∠的值;(3)延长CD 交x 轴于点E ,当AD DE =时,将ADB 沿DE 方向平移得到A EB ''.将抛物线L 平移得到抛物线L ',使得点A ',B '都落在抛物线L '上.试判断抛物线L '与L 是否交于某个定点.若是,求出该定点坐标;若不是,请说明理由.38.(2024·山东·中考真题)在平面直角坐标系xOy 中,点()2,3P −在二次函数()230y ax bx a =+−>的图像上,记该二次函数图像的对称轴为直线x m =. (1)求m 的值;(2)若点(),4Q m −在23y ax bx =+−的图像上,将该二次函数的图像向上平移5个单位长度,得到新的二次函数的图像.当04x ≤≤时,求新的二次函数的最大值与最小值的和;(3)设23y ax bx =+−的图像与x 轴交点为()1,0x ,()()212,0x x x <.若2146x x <−<,求a 的取值范围. 39.(2024·四川乐山·中考真题)在平面直角坐标系xOy 中,我们称横坐标、纵坐标都为整数的点为“完美点”.抛物线222y ax ax a =−+(a 为常数且0a >)与y 轴交于点A .(1)若1a=,求抛物线的顶点坐标;(2)若线段OA(含端点)上的“完美点”个数大于3个且小于6个,求a的取值范围;=交于M、N两点,线段MN与抛物线围成的区域(含边界)内恰有4个“完美点”,(3)若抛物线与直线y x求a的取值范围.2024年中考数学真题汇编专题14 二次函数的图象与性质+答案详解(答案详解)一、单选题1.(2024·内蒙古包头·中考真题)将抛物线22y x x =+向下平移2个单位后,所得新抛物线的顶点式为( ) A .()213y x =+− B .()=+−2y x 12C .()213y x =−−D .()212y x =−− 【答案】A【分析】本题主要考查了二次函数的平移以及顶点式,根据平移的规律“上加下减.左加右减”可得出平移后的抛物线为222y x x =+−,再把222y x x =+−化为顶点式即可.【详解】解:抛物线22y x x =+向下平移2个单位后,则抛物线变为222y x x =+−,∴222y x x =+−化成顶点式则为 ()213y x =+−,故选:A .2.(2024·广东广州·中考真题)函数21y ax bx c =++与2k y x=的图象如图所示,当( )时,1y ,2y 均随着x 的增大而减小.A .1x <−B .10x −<<C .02x <<D .1x >【答案】D 【分析】本题考查了二次函数以及反比例函数的图象和性质,利用数形结合的思想解决问题是关键.由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于在一、三象限内,且2y 均随着x 的增大而减小,据此即可得到答案.【详解】解:由函数图象可知,当1x >时,1y 随着x 的增大而减小;2y 位于一、三象限内,且在每一象限内2y 均随着x 的增大而减小,∴当1x >时,1y ,2y 均随着x 的增大而减小,故选:D .3.(2024·四川凉山·中考真题)抛物线()2213y x c =−+经过()()1235202y y y ⎛⎫− ⎪⎝⎭,,,,,三点,则123y y y ,,的大小关系正确的是( )A .123y y y >>B .231y y y >>C .312y y y >>D .132y y y >>4.(2024·四川达州·中考真题)抛物线2y x bx c =−++与x 轴交于两点,其中一个交点的横坐标大于1,另一个交点的横坐标小于1,则下列结论正确的是( )A .1b c +>B .2b =C .240b c +<D .0c <【答案】A【分析】本题考查了二次函数的性质,设抛物线2y x bx c =−++与x 轴交于两点,横坐标分别为1212,,x x x x <,依题意,121,1x x <>,根据题意抛物线开口向下,当1x =时,0y >,即可判断A 选项,根据对称轴即可判断B 选项,根据一元二次方程根的判别式,即可求解.判断C 选项,无条件判断D 选项,据此,即可求解.【详解】解:依题意,设抛物线2y x bx c =−++与x 轴交于两点,横坐标分别为1212,,x x x x <依题意,121,1x x <>∵10a =−<,抛物线开口向下,∴当1x =时,0y >,即10b c −++>5.(2024·四川泸州·中考真题)已知二次函数()2231y ax a x a =+−+−(x 是自变量)的图象经过第一、二、四象限,则实数a 的取值范围为( )A .918a ≤<B .302a <<C .908a <<D .312a ≤< 【详解】解:二次函数6.(2024·陕西·中考真题)已知一个二次函数2y ax bx c =++的自变量x 与函数y 的几组对应值如下表,则下列关于这个二次函数的结论正确的是( )A .图象的开口向上B .当0x >时,y 的值随x 的值增大而增大C .图象经过第二、三、四象限D .图象的对称轴是直线1x =7.(2024·湖北·中考真题)抛物线2y ax bx c =++的顶点为1,2−−,抛物线与轴的交点位于x 轴上方.以下结论正确的是( )A .0a <B .0c <C .2a b c −+=−D .240b ac −= 【答案】C【分析】本题考查了二次函数的性质以及二次函数图像与系数的关系.根据二次函数的解析式结合二次函数的性质,画出草图,逐一分析即可得出结论.【详解】解:根据题意画出函数2y ax bx c =++的图像,如图所示:∵开口向上,与y 轴的交点位于x 轴上方,∴0a >,0c >,∵抛物线与x 轴有两个交点,∴240b ac ∆=−>,∵抛物线2y ax bx c =++的顶点为()1,2−−,∴2a b c −+=−,观察四个选项,选项C 符合题意,故选:C .8.(2024·广东·中考真题)若点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,则( )A .321y y y >>B .213y y y >>C .132y y y >>D .312y y y >> 【答案】A【分析】本题考查了二次函数的图象和性质、二次函数图象上点的坐标特征等知识点,根据二次函数的解析式得出函数图象的对称轴是y 轴(直线0x =),图象的开口向上,在对称轴的右侧,y 随x 的增大而增大,再比较即可.【详解】解∶ 二次函数2y x =的对称轴为y 轴,开口向上, ∴当0x >时, y 随x 的增大而增大,∵点()()()1230,,1,,2,y y y 都在二次函数2y x =的图象上,且012<<, ∴321y y y >>,故选∶A .9.(2024·四川自贡·中考真题)一次函数24y x n =−+,二次函数2(1)3y x n x =+−−,反比例函数1n y x+=在同一直角坐标系中图象如图所示,则n 的取值范围是( )A .1n >−B .2n >C .11n −<<D .12n <<【答案】C10.(2024·四川遂宁·中考真题)如图,已知抛物线2y ax bx c =++(a 、b 、c 为常数,且0a ≠)的对称轴为直线=1x −,且该抛物线与x 轴交于点()1,0A ,与y 轴的交点B 在()0,2−,()0,3−之间(不含端点),则下列结论正确的有多少个( )①0abc >;②930a b c −+≥;③213a <<; ④若方程21ax bx c x +=++两根为(),m n m n <,则31m n −<<<.A .1B .2C .3D .4 【答案】B【分析】本题主要考查二次函数和一次函数的性质,根据题干可得0a >,20b a =>,32c −<<−,即可判断①错误;根据对称轴和一个交点求得另一个交点为()3,0−,即可判断②错误;将c 和b 用a 表示,即可得到332a −<−<−,即可判断③正确;结合抛物线2y ax bx c =++和直线1y x =+与x 轴得交点,即可判断④正确.【详解】解:由图可知0a >,11.(2024·江苏连云港·中考真题)已知抛物线2y ax bx c =++(a 、b 、c 是常数,a<0)的顶点为(1,2).小烨同学得出以下结论:①0abc <;②当1x >时,y 随x 的增大而减小;③若20ax bx c ++=的一个根为3,则12a =−;④抛物线22y ax =+是由抛物线2y ax bx c =++向左平移1个单位,再向下平移2个单位得到的.其中一定正确的是( )A .①②B .②③C .③④D .②④【答案】B0a <,02b ∴−<即a bc ++2c a ∴=−c ∴的值可正也可负,a<2,b a =−∴抛物线为09a =−12a ∴=−,故③正确;抛物线12.(2024·四川广安·中考真题)如图,二次函数2y ax bx c =++(a ,b ,c 为常数,0a ≠)的图象与x 轴交于点3,02A ⎛⎫− ⎪⎝⎭,对称轴是直线12x =−,有以下结论:①0abc <;②若点()11,y −和点()22,y 都在抛物线上,则12y y <;③21142am bm a b +≤−(m 为任意实数);④340a c +=.其中正确的有( )A .1个B .2个C .3个D .4个 <02b a−,<0b ∴.>0abc ∴.故①错误;对称轴是直线而(1−−−−故选:B.【点睛】本题考查了二次函数图像与系数之间的关系,解题的关键在于通过图像判断对称轴,开口方向以及与坐标轴的交点.13.(2024·四川眉山·中考真题)如图,二次函数()20y ax bx c a =++≠的图象与x 轴交于点()3,0A ,与y 轴交于点B ,对称轴为直线1x =,下列四个结论:①0bc <;②320a c +<;③2ax bx a b +≥+;④若21c −<<−,则8433a b c −<++<−,其中正确结论的个数为( )A .1个B .2个C .3个D .4【详解】解:①函数图象开口方向向上,对称轴在②二次函数2b a =−,1x ∴=−时,a b c ∴−+3a c ∴+=③对称轴为直线④2c −<<∴根据抛物线与相应方程的根与系数的关系可得3c a =−,23a ∴−<−<−1233a <<,2b a =−,a bc ∴++83a ∴−<+故④正确;综上所述,正确的有②③④,14.(2024·福建·中考真题)已知二次函数()220y x ax a a =−+≠的图象经过1,2a A y ⎛⎫ ⎪⎝⎭,()23,B a y 两点,则下列判断正确的是( )A .可以找到一个实数a ,使得1y a >B .无论实数a 取什么值,都有1y a >C .可以找到一个实数a ,使得20y <D .无论实数a 取什么值,都有20y <【详解】解:二次函数解析式为当15.(2024·贵州·中考真题)如图,二次函数2y ax bx c =++的部分图象与x 轴的一个交点的横坐标是3−,顶点坐标为()1,4−,则下列说法正确的是( )A .二次函数图象的对称轴是直线1x =B .二次函数图象与x 轴的另一个交点的横坐标是2C .当1x <−时,y 随x 的增大而减小D .二次函数图象与y 轴的交点的纵坐标是3 【答案】D【分析】本题考查了二次函数的性质,待定系数法求二次函数解析式,利用二次函数的性质,对称性,增减性判断选项A 、B 、C ,利用待定系数法求出二次函数的解析式,再求出与y 轴的交点坐标即可判定选项D .【详解】解∶ ∵二次函数2y ax bx c =++的顶点坐标为()1,4−, ∴二次函数图象的对称轴是直线=1x −,故选项A 错误;∵二次函数2y ax bx c =++的图象与x 轴的一个交点的横坐标是3−,对称轴是直线=1x −, ∴二次函数图象与x 轴的另一个交点的横坐标是1,故选项B 错误; ∵抛物线开口向下, 对称轴是直线=1x −,∴当1x <−时,y 随x 的增大而增大,故选项C 错误; 设二次函数解析式为()214y a x =++, 把()3,0−代入,得()20314a =−++,解得1a =−, ∴()214y x =−++,当0x =时,()20143y =−++=,∴二次函数图象与y 轴的交点的纵坐标是3,故选项D 正确, 故选D .16.(2024·四川乐山·中考真题)已知二次函数()2211y x x x t =−−≤≤−,当=1x −时,函数取得最大值;当1x =时,函数取得最小值,则t 的取值范围是( )A .02t <≤B .04t <≤C .24t ≤≤D .2t ≥【答案】C【分析】本题考查了二次函数的图象与性质,二次函数的最值等知识.熟练掌握二次函数的图象与性质是解题的关键.由()22211y x x x =−=−−,可知图象开口向上,对称轴为直线1x =,顶点坐标为()11−,,当=1x −时,3y =,即()13−,关于对称轴对称的点坐标为()33,,由当=1x −时,函数取得最大值;当1x =时,函数取得最小值,可得113t ≤−≤,计算求解,然后作答即可. 【详解】解:∵()22211y x x x =−=−−,∴图象开口向上,对称轴为直线1x =,顶点坐标为()11−,, 当=1x −时,3y =,∴()13−,关于对称轴对称的点坐标为()33,, ∵当=1x −时,函数取得最大值;当1x =时,函数取得最小值, ∴113t ≤−≤, 解得,24t ≤≤,故选:C .17.(2024·黑龙江绥化·中考真题)二次函数()20y ax bx c a =++≠的部分图象如图所示,对称轴为直线=1x −,则下列结论中: ①0bc> ②2am bm a b +≤−(m 为任意实数) ③31a c +< ④若()1,M x y 、()2,N x y 是抛物线上不同的两个点,则123x x +≤−.其中正确的结论有( )A .1个B .2个C .3个D .4个18.(2024·四川广元·中考真题)如图,已知抛物线2y ax bx c =++过点()0,2C −与x 轴交点的横坐标分别为1x ,2x ,且110x −<<,223x <<,则下列结论:①<0a b c −+;②方程220ax bx c +++=有两个不相等的实数根; ③0a b +>; ④23a >; ⑤2244b ac a −>.其中正确的结论有( )A .1个B .2个C .3个D .4个【详解】解:①抛物线开口向上,∴2244b ac a −>,故⑤符合题意; 故选:C .19.(2024·黑龙江牡丹江·中考真题)在平面直角坐标系中,抛物线()20y ax bx c a =++≠与x 轴交于A 、B两点,()()3,0,1,0A B −,与y 轴交点C 的纵坐标在3−~2−之间,根据图象判断以下结论:①20abc >;②423b <<;③若221122ax bx ax bx −=−且12x x ≠,则122x x +=−;④直线56y cx c =−+与抛物线2y ax bx c =++的一个交点(,)(0)m n m ≠,则12m =.其中正确的结论是( )A .①②④B .①③④C .①②③D .①②③④20.(2024·内蒙古赤峰·中考真题)如图,正方形ABCD 的顶点A ,C 在抛物线24y x =−+上,点D 在y 轴上.若A C ,两点的横坐标分别为m n ,(0m n >>),下列结论正确的是( )A .1m n +=B .1m n −=C .1mn =D .1mn= 先证明(AAS)ANB DMA ≌2)4n +.(2m n E +,4b +−,AM m =,四边形AC ∴、BD 互相平分,AB =90BAN DAM ∴∠+∠=︒,DAM ∠BAN ADM ∴∠=∠.90BNA AMD ∠=∠=︒,BA (AAS)ANB DMA ∴≌.AM NB ∴=,DMAN =.点A 、C 的横坐标分别为24(,)A m m ∴+−,(C (m n E +∴,2m n −−点21.(2024·四川宜宾·中考真题)如图,抛物线()20y ax bx c a =++<的图象交x 轴于点()3,0A −、()1,0B ,交y 轴于点C .以下结论:①0a b c ++=;②320a b c ++<;③当以点A 、B 、C 为顶点的三角形是等腰三角形时,c =3c =时,在AOC 内有一动点P ,若2OP =,则23CP AP +.其中正确结论有( )A.1个B.2个C.3个D.4个3⎝⎭∴42323 OHOP==,∵23 OPOA=,∴OH OP OP OA=,又∵HOP POA∠=∠,Rt OCH 中,由勾股定理得∴正确的有3个,故选:C .【点睛】本题主要考查了二次函数图象的性质,熟练掌握二次函数的相关知识是解题的关键.22.(2024·黑龙江齐齐哈尔·中考真题)如图,二次函数()220y ax bx a =++≠的图象与x 轴交于()1,0−,1(,0)x ,其中123x <<.结合图象给出下列结论:①0ab >;②2a b −=−;③当1x >时,y 随x 的增大而减小;④关于x 的一元二次方程()2200ax bx a ++=≠的另一个根是2a−;⑤b 的取值范围为413b <<.其中正确结论的个数是( ) A .2 B .3 C .4 D .5该函数图象与该图象中,当2b a =+∴关于x 的一元二次方程b x −±=0a <,(1a x −∴=∴④正确;123x <<解得1−<a b −=−1b ∴−<−413b ∴<<∴⑤正确.综上,②③④⑤正确,共二、填空题23.(2024·四川内江·中考真题)已知二次函数221y x x =−+的图象向左平移两个单位得到抛物线C ,点()12,P y ,()23,Q y 在抛物线C 上,则1y 2y (填“>”或“<”); 【答案】<【分析】本题主要考查了二次函数图象的平移以及二次函数的性质,由平移的规律可得出抛物线C 的解析式为()21y x =+,再利用二次函数图象的性质可得出答案. 【详解】解:()22211y x x x =−+=−,∵二次函数221y x x =−+的图象向左平移两个单位得到抛物线C , ∴抛物线C 的解析式为()21y x =+, ∴抛物线开口向上,对称轴为=1x −, ∴当1x >−时,y 随x 的增大而增大, ∵23<, ∴12y y <, 故答案为:<.24.(2024·吉林长春·中考真题)若抛物线2y x x c =−+(c 是常数)与x 轴没有交点,则c 的取值范围是 .25.(2024·黑龙江牡丹江·中考真题)将抛物线23y ax bx =++向下平移5个单位长度后,经过点()24,−,则637a b −−= . 【答案】2【分析】此题考查了二次函数的平移,根据平移规律得到函数解析式,把点的坐标代入得到23a b −=,再整体代入变形后代数式即可.【详解】解:抛物线23y ax bx =++向下平移5个单位长度后得到22352y ax bx ax bx =++−=+−, 把点()24,−代入得到,()24222a b =⨯−−−,得到23a b −=,∴()6373273372a b a b −−=−−=⨯−=, 故答案为:226.(2024·四川成都·中考真题)在平面直角坐标系xOy 中,()11,A x y ,()22,B x y ,()33,C x y 是二次函数241y x x =−+−图象上三点.若101x <<,24x >,则1y 2y (填“>”或“<”);若对于11m x m <<+,212m x m +<<+,323m x m +<<+,存在132y y y <<,则m 的取值范围是 .27.(2024·上海·中考真题)对于一个二次函数2()y a x m k =−+(0a ≠)中存在一点(),P x y '',使得0x m y k '−='−≠,则称2x m '−为该抛物线的“开口大小”,那么抛物线211323y x x =−++“开口大小”为 .y 28.(2024·湖北武汉·中考真题)抛物线2y ax bx c =++(a ,b ,c 是常数,0a <)经过()1,1−,(),1m 两点,且01m <<.下列四个结论: ①0b >;②若01x <<,则()()2111a x b x c −+−+>;③若1a =−,则关于x 的一元二次方程 22ax bx c ++=无实数解;④点()11,A x y ,()22,B x y 在抛物线上,若1212x x +>−,12x x >,总有12y y <,则102m <≤.其中正确的是 (填写序号).29.(2024·四川德阳·中考真题)如图,抛物线2y ax bx c =++的顶点A 的坐标为1,3n ⎛⎫− ⎪⎝⎭,与x 轴的一个交点位于0和1之间,则以下结论:①0abc >;②520b c +<;③若抛物线经过点()()126,,5,y y −,则12y y >;④若关于x 的一元二次方程24ax bx c ++=无实数根,则4n <.其中正确结论是 (请填写序号).30.(2024·山东烟台·中考真题)已知二次函数2y ax bx c =++的y 与x 的部分对应值如下表:下列结论:①0abc >;②关于x 的一元二次方程29ax bx c ++=有两个相等的实数根;③当41x −<<时,y 的取值范围为<<0y 5;④若点()1,m y ,()22,m y −−均在二次函数图象上,则12y y =;⑤满足()212ax b x c +++<的x 的取值范围是<2x −或3x >.其中正确结论的序号为 .【答案】①②④由2228y x y x x =−+⎧⎨=−−+⎩,解得1120x y =⎧⎨=⎩,2235x y =−⎧⎨=⎩, ∴()2,0A ,()3,5B −,由图形可得,当3x <−或2x >时,2282x x x −−+<−+,即()212ax b x c +++<,故⑤错误;综上,正确的结论为①②④, 故答案为:①②④.三、解答题31.(2024·江苏扬州·中考真题)如图,已知二次函数2y x bx c =−++的图像与x 轴交于(2,0)A −,(1,0)B 两点.(1)求b c 、的值;(2)若点P 在该二次函数的图像上,且PAB 的面积为6,求点P 的坐标. 【答案】(1)12b c =−=,(2)122434()()P P −−−,,,【分析】本题主要考查二次函数与几何图形的综合,掌握待定系数法求解析式,解一元二次方程的方法是1PABS=4n =,4n =±,32.(2024·安徽·中考真题)已知抛物线2y x bx =−+(b 为常数)的顶点横坐标比抛物线22y x x =−+的顶点横坐标大1. (1)求b 的值;(2)点()11,A x y 在抛物线22y x x =−+上,点()11,B x t y h ++在抛物线2y x bx =−+上. (ⅰ)若3h t =,且10x ≥,0t >,求h 的值; (ⅱ)若11x t =−,求h 的最大值. 【答案】(1)4b =33.(2024·北京·中考真题)在平面直角坐标系xOy 中,已知抛物线()2220=−≠y ax a x a .(1)当1a =时,求抛物线的顶点坐标;(2)已知()11,M x y 和()22,N x y 是抛物线上的两点.若对于13x a =,234x ≤≤,都有12y y <,求a 的取值范围.综上,当01a <<或4a <−,都有12y y <.34.(2024·浙江·中考真题)已知二次函数2y x bx c =++(b ,c 为常数)的图象经过点(2,5)A −,对称轴为直线12x =−.(1)求二次函数的表达式;(2)若点(1,7)B 向上平移2个单位长度,向左平移m (0m >)个单位长度后,恰好落在2y x bx c =++的图象上,求m 的值;(3)当2x n −≤≤时,二次函数2y x bx c =++的最大值与最小值的差为94,求n 的取值范围.35.(2024·广西·中考真题)课堂上,数学老师组织同学们围绕关于x 的二次函数223y x ax a =++−的最值问题展开探究.【经典回顾】二次函数求最值的方法.(1)老师给出4a =−,求二次函数223y x ax a =++−的最小值. ①请你写出对应的函数解析式;②求当x 取何值时,函数y 有最小值,并写出此时的y 值;【举一反三】老师给出更多a 的值,同学们即求出对应的函数在x 取何值时,y 的最小值.记录结果,并整理成下表:注:*为②的计算结果.【探究发现】老师:“请同学们结合学过的函数知识,观察表格,谈谈你的发现.” 甲同学:“我发现,老师给了a 值后,我们只要取x a =−,就能得到y 的最小值.”乙同学:“我发现,y 的最小值随a 值的变化而变化,当a 由小变大时,y 的最小值先增大后减小,所以我猜想y 的最小值中存在最大值.”(2)请结合函数解析式223y x ax a =++−,解释甲同学的说法是否合理?(3)你认为乙同学的猜想是否正确?若正确,请求出此最大值;若不正确,说明理由.36.(2024·云南·中考真题)已知抛物线21y x bx =+−的对称轴是直线32x =.设m 是抛物线21y x bx =+−与x 轴交点的横坐标,记533109m M −=.(1)求b 的值;(2)比较M。
初三数学二次函数试题答案及解析
初三数学二次函数试题答案及解析1.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位【答案】A.【解析】根据图象左移加可得,将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是向左平移了2个单位,故选A.【考点】二次函数图象的平移变换.2.如图,已知抛物线y=﹣x2+bx+c的对称轴为直线x=1,且与x轴的一个交点为(3,0),那么它对应的函数解析式是.【答案】y=﹣x2+2x+3【解析】∵抛物线y=﹣x2+bx+c的对称轴为直线x=1,∴=1,解得b=2,∵与x轴的一个交点为(3,0),∴0=﹣9+6+c,解得c=3,故函数解析式为y=﹣x2+2x+3.故答案为:y=﹣x2+2x+3【考点】待定系数法求二次函数解析式3.如图1,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O 出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,PQ两点同时运动,相遇时停止.在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR.设运动时间为t秒.(1)当t=时,△PQR的边QR经过点B;(2)设△PQR和矩形OABC重叠部分的面积为S,求S关于t的函数关系式;(3)如图2,过定点E(5,0)作EF⊥BC,垂足为F,当△PQR的顶点R落在矩形OABC的内部时,过点R作x轴、y轴的平行线,分别交EF、BC于点M、N,若∠MAN=45°,求t的值.【答案】(1)1秒(2)(3)t 的值为(8﹣2)【解析】(1)△PQR 的边QR 经过点B 时,△ABQ 构成等腰直角三角形,则有AB=AQ ,由此列方程求出t 的值;(2)在图形运动的过程中,有三种情形,需要分类讨论,避免漏解;(3)由已知可得ABFE 为正方形;其次通过旋转,由三角形全等证明MN=EM+BN ;设EM=m ,BN=n ,在Rt △FMN 中,由勾股定理得到等式:mn+3(m+n )﹣9=0,由此等式列方程求出时间t 的值.试题解析:(1)△PQR 的边QR 经过点B 时,△ABQ 构成等腰直角三角形, ∴AB=AQ ,即3=4﹣t , ∴t=1.即当t=1秒时,△PQR 的边QR 经过点B .(2)①当0≤t≤1时,如答图1﹣1所示.设PR 交BC 于点G ,过点P 作PH ⊥BC 于点H ,则CH=OP=2t ,GH=PH=3. S=S 矩形OABC ﹣S 梯形OPGC =8×3﹣(2t+2t+3)×3 =﹣6t+;②当1<t≤2时,如答图1﹣2所示.设PR 交BC 于点G ,RQ 交BC 、AB 于点S 、T .过点P 作PH ⊥BC 于点H ,则CH=OP=2t ,GH=PH=3. QD=t ,则AQ=AT=4﹣t ,∴BT=BS=AB ﹣AQ=3﹣(4﹣t )=t ﹣1. S=S 矩形OABC ﹣S 梯形OPGC ﹣S △BST=8×3﹣(2t+2t+3)×3﹣(t ﹣1)2 =﹣t 2﹣5t+19;③当2<t≤4时,如答图1﹣3所示.设RQ 与AB 交于点T ,则AT=AQ=4﹣t . PQ=12﹣3t ,∴PR=RQ=(12﹣3t ).S=S △PQR ﹣S △AQT =PR 2﹣AQ 2=(12﹣3t )2﹣(4﹣t )2 =t 2﹣14t+28.综上所述,S 关于t 的函数关系式为:.(3)∵E (5,0),∴AE=AB=3, ∴四边形ABFE 是正方形.如答图2,将△AME 绕点A 顺时针旋转90°,得到△ABM′,其中AE 与AB 重合. ∵∠MAN=45°,∴∠EAM+∠NAB=45°, ∴∠BAM′+∠NAB=45°, ∴∠MAN=∠M′AN .连接MN .在△MAN 与△M′AN 中,∴△MAN ≌△M′AN (SAS ). ∴MN=M′N=M′B+BN∴MN=EM+BN .设EM=m ,BN=n ,则FM=3﹣m ,FN=3﹣n .在Rt △FMN 中,由勾股定理得:FM 2+FN 2=MN 2,即(3﹣m )2+(3﹣n )2=(m+n )2, 整理得:mn+3(m+n )﹣9=0. ①延长MR 交x 轴于点S ,则m=EM=RS=PQ=(12﹣3t ), ∵QS=PQ=(12﹣3t ),AQ=4﹣t ,∴n=BN=AS=QS ﹣AQ=(12﹣3t )﹣(4﹣t )=﹣t+2. ∴m=3n ,代入①式,化简得:n 2+4n ﹣3=0,解得n=﹣2+或n=﹣2﹣(舍去)∴2﹣t=﹣2+解得:t=8﹣2.∴若∠MAN=45°,则t的值为(8﹣2)秒.【考点】1、图形面积;2、全等三角形;3、勾股定理;4、正方形4.如图,抛物线交坐标轴于A、B、D三点,过点D作轴的平行线交抛物线于点C.直线l过点E(0,-),且平分梯形ABCD面积.⑴直接写出A、B、D三点的坐标;⑵直接写出直线l的解析式;⑶若点P在直线l上,且在x轴上方,tan∠OPB=,求点P的坐标.【答案】⑴点A(-2,0),点B(8,0),点D(0,);⑵直线l:;⑶(7,7).【解析】⑴令,解之即可求得A,B的坐标;在中,令,解之即可求得D的坐标.⑵作CF⊥x轴,F为垂足.先求出矩形OFCD的中心坐标M(3,),则直线ME即为所求直线l.[⑶若点P为所求的点,画出△POB的外接圆⊙G,并作GH⊥x轴,H为垂足,则∠OGH=∠HGB=∠OPB;作PN⊥x轴,GN∥x轴,交于点N,则GN=3,PN=4,因此点P的坐标为(7,7).⑴点A(-2,0),点B(8,0),点D(0,).⑵直线l:.⑶如图,若点P为所求的点,画出△POB的外接圆⊙G,并作GH⊥x轴,H为垂足,则∠OGH =∠HGB=∠OPB.∵OH=HB=4,tan∠OGH=tan∠HGB=tan∠OPB=,∴GH=3,GO=GB=GP=5,即⊙G的圆心G坐标为(4,3),半径r=5.将点G坐标代入直线l解析式发现,点G恰巧在直线l上.设直线l与x轴交于点Q,不难计算GH:QH=4:3.作PN⊥x轴,GN∥x轴,交于点N,则GN=3,PN=4,因此点P的坐标为(7,7).【考点】1.二次函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.锐角三角函数定义.5.抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求此抛物线的解析式;(2)抛物线上是否存在点P,使,若存在,求出P点坐标;若不存在,请说明理由.【答案】(1)y=-x2+2x+3;(2) P坐标为(,)、(,);(,);(,).【解析】(1)设出抛物线的顶点形式为y=a(x-1)2+4,将A坐标代入求出a的值,即可确定出抛物线解析式;(2)存在,设出P(a,-a2+2a+3),直线AB解析式为y=kx+b,将A与B坐标代入求出k与b 的值,确定出直线AB解析式,根据三角形ABP面积为三角形ABC面积的一半,由两三角形都以AB为底边,得到C到直线AB的距离为P到直线AB距离的2倍,利用点到直线的距离公式列出关于a的方程,求出方程的解得到a的值,即可确定出满足题意P的坐标.试题解析:(1)设抛物线的顶点形式为y=a(x-1)2+4,将A(3,0)代入得:0=4a+4,即a=-1,则抛物线解析式为y=-(x-1)2+4=-x2+2x+3;(2)存在这样的P点,设P(a,-a2+2a+3),设直线AB解析式为y=kx+b,将A(3,0),B(0,3)代入得:,解得:,∴直线AB解析式为y=-x+3,∵S△ABP =S△ABC,且两三角形都以AB为底边,∴P到直线AB的距离等于C到直线AB距离的,∵C(1,4)到直线AB的距离d=,∴P到直线AB的距离d=,即|-a2+3a|=1,整理得:a2-3a-1=0或a2-3a+1=0,解得:a=或a=当a=时,-a2+2a+3=-;当a=时,-a2+2a+3=-;当a=时,-a2+2a+3=-;当a=时,-a2+2a+3=-.则满足题意的P坐标为(,)、(,);(,);(,).考点: 1.待定系数法求二次函数解析式;2.二次函数的性质.6.在二次函数中,函数y与自变量x的部分对应值如下表:x…-10123…(1)求这个二次函数的表达式;(2)当x的取值范围满足什么条件时,?【答案】(1) y=(x-1)(x-3)(或y=x2-4x+3);(2) 当1<x<3时,y<0.【解析】(1)根据表中的数据知,该函数与x轴的两个交点坐标是(1,0),(3,0),设y=a(x-1)(x-3)(a≠0),然后把点(0,3)代入求得a值;(2)根据二次函数的性质进行解答.试题解析:(1)∵函数与x轴的两个交点坐标是(1,0),(3,0),∴设y=a(x-1)(x-3)(a≠0).又∵该函数图象经过点(0,3),∴3=3a,解得,a=1.故该函数解析式为y=(x-1)(x-3)(或y=x2-4x+3);(2)由(1)知,该函数解析式为y=(x-1)(x-3),则该抛物线的开口方向向上.∵y<0,∴1<x<3.答:当1<x<3时,y<0.考点: 1.待定系数法求二次函数解析式,2.二次函数的性质.7.已知一个二次函数的图像经过点(4,1)和(,6).(1)求这个二次函数的解析式;(2)求这个二次函数图像的顶点坐标和对称轴.【答案】(1);(2)顶点坐标是(2,-3),对称轴是直线.【解析】(1)利用待定系数法确定二次函数的解析式;(2)把(1)中得到的解析式配成顶点式,然后根据二次函数的性质确定顶点坐标和对称轴试题解析:(1)由题意,得解这个方程组,得∴所求二次函数的解析式是.(2)顶点坐标是(2,-3).对称轴是直线.【考点】1.待定系数法求二次函数解析式;2.二次函数的性质.8.如图,在平面直角坐标系xOy中,边长为2的正方形OABC的顶点A、C分别在x轴、y轴的正半轴上,二次函数y=-x2+bx+c的图象经过B、C两点.(1)求b,c的值.(2)结合函数的图象探索:当y>0时x的取值范围.【答案】(1),c=2;(2)-1<x<3.【解析】(1)根据正方形的性质得到B(2,2),C(0,2),然后把B点和C点坐标代入解析式得到关于b、c的方程组,再解方程组即可;(2)由(1)得到二次函数解析式为y=-x2+x+2,再求出抛物线与x轴的交点坐标,然后根据图象得到当y>0时x的取值范围.试题解析:(1)∵正方形OABC的边长为2,∴B(2,2),C(0,2),把B(2,2),C(0,2)代入y=-x2+bx+c得,解得;(2)二次函数解析式为y=-x2+x+2,当y=0时,-x2+x+2=0,解得x1=-1,x2=3,∴抛物线与x轴的交点坐标为(-1,0),(3,0),∴当-1<x<3时,y>0.考点: 1.待定系数法求二次函数解析式;2.二次函数与不等式(组).9.在平面直角坐标系xOy中,二次函数y=-x2+(m-1)x+4m的图象与x轴负半轴交于点A,与y轴交于点B(0,4),已知点E(0,1).(1)求m的值及点A的坐标;(2)如图,将△AEO沿x轴向右平移得到△A′E′O′,连结A′B、BE′.①当点E′落在该二次函数的图象上时,求AA′的长;②设AA′=n,其中0<n<2,试用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值时点E′的坐标;③当A′B+BE′取得最小值时,求点E′的坐标.【答案】(1)m="1,A(-2,0);" (2)①,②点E′的坐标是(1,1),③点E′的坐标是(,1).【解析】(1)将点代入解析式即可求出m的值,这样写出函数解析式,求出A点坐标;(2)①将E点的坐标代入二次函数解析式,即可求出AA′;②连接EE′,构造直角三角形,利用勾股定理即可求出A′B2+BE′2 当n=1时,其最小时,即可求出E′的坐标;③过点A作AB′⊥x轴,并使AB′ =" BE" = 3.易证△AB′A′≌△EBE′,当点B,A′,B′在同一条直线上时,A′B + B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′,由相似就可求出E′的坐标试题解析:解:(1)由题意可知4m=4,m=1.∴二次函数的解析式为.∴点A的坐标为(-2,0).(2)①∵点E(0,1),由题意可知,.解得.∴AA′=.②如图,连接EE′.由题设知AA′=n(0<n<2),则A′O=2-n.在Rt△A′BO中,由A′B2=A′O2+BO2,得A′B2=(2–n)2+42=n2-4n+20.∵△A′E′O′是△AEO沿x轴向右平移得到的,∴EE′∥AA′,且EE′=AA′.∴∠BEE′=90°,EE′=n.又BE=OB-OE=3.∴在Rt△BE′E中,BE′2=E′E2+BE2=n2+9,∴A′B2+BE′2=2n2-4n+29=2(n–1)2+27.当n=1时,A′B2+BE′2可以取得最小值,此时点E′的坐标是(1,1).③如图,过点A作AB′⊥x轴,并使AB′=BE=3.易证△AB′A′≌△EBE′,∴B′A′=BE′,∴A′B+BE′=A′B+B′A′.当点B,A′,B′在同一条直线上时,A′B+B′A′最小,即此时A′B+BE′取得最小值.易证△AB′A′∽△OBA′,∴,∴AA′=,∴EE′=AA′=,∴点E′的坐标是(,1).【考点】1.二次函数综合题;2.平移.10.抛物线y=2(x-3)2+1的顶点坐标为_________.【答案】(3,1).【解析】根据二次函数的性质,由顶点式直接得出顶点坐标即可.故答案是(3,1).【考点】二次函数的性质.11.二次函数y=ax2+bx+c的图象如图所示,有下列结论:①a<0,②b<0,③c<0,④4a-2b+c<0,⑤b+2a=0其中正确的个数有()A.1个B.2个C.3个D.4个【答案】D.【解析】∵抛物线的开口向下,∴a<0,∵与y轴的交点为在y轴的正半轴上,∴c>0,∴①③正确;∵对称轴为,得2a-b,∴2a+b=0,∴a、b异号,即b>0,∴②错误,⑤正确;∵当x=-2时,y=4a-2b+c<0,∴④正确.综上所知①③④⑤正确.故选D.【考点】二次函数图象与系数的关系.12.某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看做一次函数:y =-10x+500.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?(6分)(2)如果李明想要每月获得2 000元的利润,那么销售单价应定为多少元?(3分)(3)物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2 000元,那么他每月的成本最少需要多少元?(成本=进价×销售量) (3分)【答案】(1)35;(2)30或40;(3)3600.【解析】(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,根据利润=(定价-进价)×销售量,从而列出关系式;(2)令w=2000,然后解一元二次方程,从而求出销售单价;(3)根据函数解析式,利用一次函数的性质求出最低成本即可.试题解析:(1)由题意得出:,∵,∴当销售单价定为35元时,每月可获得最大利润.(2)由题意,得:,解这个方程得:x1=30,x2=40.∴李明想要每月获得2000元的利润,销售单价应定为30元或40元.(3)∵,∴抛物线开口向下. ∴当30≤x≤40时,W≥2000.∵x≤32,∴当30≤x≤32时,W≥2000.设成本为P(元),由题意,得:,∵k=200<0,∴P随x的增大而减小.∴当x=32时,P最小=3600.答:想要每月获得的利润不低于2000元,每月的成本最少为3600元.【考点】二次函数的应用.13.如图,抛物线经过点A(6,0)、B(0,-4).(1)求该抛物线的解析式;(2)若抛物线对称轴与x轴交于点C,连接BC,点P在抛物线对称轴上,使△PBC为等腰三角形,请写出符合条件的所有点P坐标.(直接写出答案)【答案】(1)(2).【解析】(1)把点(6,0)、(0,-4)代入抛物线得,.可得.(2)点在抛物线对称轴上,当时;当以为圆心;以的长为半径画圆交直线点;当以为圆心,以的长为半径画圆交直线两点,试题解析:∵抛物线经过A(6,0)、B(0,-4)∴ 1分∴∴ 3分∴ 5分(2).【考点】1.待定系数法求二次函数的解析式.2.等腰三角形性质.14.将抛物线向左平移2个单位,再向下平移1个单位,所得抛物线为A.B.C.D.【答案】C【解析】根据图象平移变化的规律,左右平移时,左加右减。
2024年中考数学真题汇编专题15 二次函数的实际应用+答案详解
2024年中考数学真题汇编专题15 二次函数的实际应用+答案详解(试题部分)一、单选题1.(2024·天津·中考真题)从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是()230506h t t t =−≤≤.有下列结论:①小球从抛出到落地需要6s ; ②小球运动中的高度可以是30m ;③小球运动2s 时的高度小于运动5s 时的高度. 其中,正确结论的个数是( ) A .0B .1C .2D .32.(2024·黑龙江齐齐哈尔·中考真题)如图,在等腰Rt ABC △中,90BAC ∠=︒,12AB =,动点E ,F 同时从点A 出发,分别沿射线AB 和射线AC 的方向匀速运动,且速度大小相同,当点E 停止运动时,点F 也随之停止运动,连接EF ,以EF 为边向下做正方形EFGH ,设点E 运动的路程为()012x x <<,正方形EFGH 和等腰Rt ABC △重合部分的面积为下列图像能反映y 与x 之间函数关系的是( )A .B .C .D .3.(2024·山东烟台·中考真题)如图,水平放置的矩形ABCD 中,6cm AB =,8cm BC =,菱形EFGH 的顶点E ,G 在同一水平线上,点G 与AB 的中点重合,EF =,60E ∠=︒,现将菱形EFGH 以1cm /s的速度沿BC 方向匀速运动,当点E 运动到CD 上时停止,在这个运动过程中,菱形EFGH 与矩形ABCD 重叠部分的面积()2cm S 与运动时间()s t 之间的函数关系图象大致是( )A .B .C .D .二、填空题4.(2024·广西·中考真题)如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是7m 4,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM = m .5.(2024·甘肃·中考真题)如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系20.020.3 1.6y x x =−++的图象,点()62.68B ,在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长4m CD =,高 1.8m DE =的矩形,则可判定货车 完全停到车棚内(填“能”或“不能”).6.(2024·四川自贡·中考真题)九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB CD ⊥于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得 6.6AE =m , 1.4OE =m ,6OB =m ,5OC =m ,3OD =m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是 2cm .三、解答题7.(2024·陕西·中考真题)一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索1L 与缆索2L 均呈抛物线型,桥塔AO 与桥塔BC 均垂直于桥面,如图所示,以O 为原点,以直线FF '为x 轴,以桥塔AO 所在直线为y 轴,建立平面直角坐标系.已知:缆索1L 所在抛物线与缆索2L 所在抛物线关于y 轴对称,桥塔AO 与桥塔BC 之间的距离100m OC =,17m AO BC ==,缆索1L 的最低点P 到FF '的距离2m PD =(桥塔的粗细忽略不计)(1)求缆索1L 所在抛物线的函数表达式;(2)点E 在缆索2L 上,EF FF '⊥,且 2.6m EF =,FO OD <,求FO 的长.8.(2024·湖北·中考真题)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m ,篱笆长80m .设垂直于墙的边AB 长为x 米,平行于墙的边BC 为y 米,围成的矩形面积为2cm S .(1)求y 与,x s 与x 的关系式.(2)围成的矩形花圃面积能否为2750cm ,若能,求出x 的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x 的值.9.(2024·河南·中考真题)从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =−+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示). (2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.10.(2024·湖北武汉·中考真题)16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =−+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km . ①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离. (2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .11.(2024·四川内江·中考真题)端午节吃粽子是中华民族的传统习俗.市场上猪肉粽的进价比豆沙粽的进价每盒多20元,某商家用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价52元时,可售出180盒;每盒售价提高1元时,少售出10盒. (1)求这两种粽子的进价;(2)设猪肉粽每盒售价x 元()5270x ≤≤,y 表示该商家销售猪肉粽的利润(单位:元),求y 关于x 的函数表达式并求出y 的最大值.12.(2024·贵州·中考真题)某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y(盒)与销售单价x(元)是一次函数关系,下表是y与x的几组对应值.(1)求y与x的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m的值.13.(2024·广东·中考真题)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)14.(2024·四川遂宁·中考真题)某酒店有A B、两种客房、其中A种24间,B种20间.若全部入住,一天、两种客房均有10间入住,一天营业额为3200元.营业额为7200元;若A B(1)求A B、两种客房每间定价分别是多少元?(2)酒店对A种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A种客房每间定价为多少元时,A种客房一天的营业额W最大,最大营业额为多少元?15.(2024·四川南充·中考真题)2024年“五一”假期期间,阆中古城景区某特产店销售A,B两类特产.A 类特产进价50元/件,B类特产进价60元/件.已知购买1件A类特产和1件B类特产需132元,购买3件A类特产和5件B类特产需540元.(1)求A类特产和B类特产每件的售价各是多少元?(2)A类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A类特产降价x元,每天的销售量为y件,求y与x的函数关系式,并写出自变量x的取值范围.(3)在(2)的条件下,由于B类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w元,求w与x的函数关系式,并求出每件A类特产降价多少元时总利润w最大,最大利润是多少元?(利润=售价-进价)16.(2024·江苏盐城·中考真题)请根据以下素材,完成探究任务.17.(2024·山东烟台·中考真题)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?18.(2024·江西·中考真题)如图,一小球从斜坡O点以一定的方向弹出球的飞行路线可以用二次函数()20y ax bx a =+<刻画,斜坡可以用一次函数14y x =刻画,小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律如下表:(1)①m =______,n =______; ②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系25y t vt =−+. ①小球飞行的最大高度为______米; ②求v 的值.19.(2024·江苏苏州·中考真题)如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A −,()6,0C ,反比例函数()0,0ky k x x=≠>的图象与AB 交于点(),4D m ,与BC 交于点E .(1)求m ,k 的值; (2)点P 为反比例函数()0,0ky k x x=≠>图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM AB ∥,交y 轴于点M ,过点P 作PN x ∥轴,交BC 于点N ,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标.20.(2024·青海·中考真题)在如图所示的平面直角坐标系中,有一斜坡OA ,从点O 处抛出一个小球,落到点33,2A ⎛⎫⎪⎝⎭处.小球在空中所经过的路线是抛物线2y x bx =−+的一部分.(1)求抛物线的解析式; (2)求抛物线最高点的坐标;(3)斜坡上点B 处有一棵树,点B 是OA 的三等分点,小球恰好越过树的顶端C ,求这棵树的高度. 21.(2024·天津·中考真题)将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠==.(1)填空:如图①,点C 的坐标为______,点B 的坐标为______;(2)若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围;②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可).2024年中考数学真题汇编专题15 二次函数的实际应用+答案详解(答案详解)一、单选题1.(2024·天津·中考真题)从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是()230506h t t t =−≤≤.有下列结论:①小球从抛出到落地需要6s ; ②小球运动中的高度可以是30m ;③小球运动2s 时的高度小于运动5s 时的高度. 其中,正确结论的个数是( ) A .0 B .1 C .2 D .3令0=解方程即可判断【详解】解:令0=,则30,解得:10t =,∴小球从抛出到落地需要6∵()230553t t x =−−−∴最大高度为45m ,∴小球运动中的高度可以是2t =时,302=⨯−时,305=⨯−∴小球运动2s 时的高度大于运动时的高度,故③错误;2.(2024·黑龙江齐齐哈尔·中考真题)如图,在等腰Rt ABC △中,90BAC ∠=︒,12AB =,动点E ,F 同时从点A 出发,分别沿射线AB 和射线AC 的方向匀速运动,且速度大小相同,当点E 停止运动时,点F 也随之停止运动,连接EF ,以EF 为边向下做正方形EFGH ,设点E 运动的路程为()012x x <<,正方形EFGH 和等腰Rt ABC △重合部分的面积为下列图像能反映y 与x 之间函数关系的是( )A .B .C .D .∴2EF x =,12BE x =−,∵45AEF B ∠=∠=︒,A ∠∴FAE EOB ∽V V , ∴AE EO=,3.(2024·山东烟台·中考真题)如图,水平放置的矩形ABCD 中,6cm AB =,8cm BC =,菱形EFGH 的顶点E ,G 在同一水平线上,点G 与AB 的中点重合,EF =,60E ∠=︒,现将菱形EFGH 以1cm /s 的速度沿BC 方向匀速运动,当点E 运动到CD 上时停止,在这个运动过程中,菱形EFGH 与矩形ABCD 重叠部分的面积()2cm S 与运动时间()s t 之间的函数关系图象大致是( )A .B .C .D .∴HFG是等边三角形,EF=23cm∠=30OEF=EG EO2S=时,重合部分为MNG,依题意,MNG为等边三角形,运动时间为t,则NG⨯⨯NG NG6时,如图所示,12EKJ S =EKJ S S S =菱形 (3333t −−二、填空题4.(2024·广西·中考真题)如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是7m 4,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM = m .5.(2024·甘肃·中考真题)如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系20.020.3 1.6y x x =−++的图象,点()62.68B ,在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长4m CD =,高 1.8m DE =的矩形,则可判定货车 完全停到车棚内(填“能”或“不能”).【答案】能【分析】本题主要考查了二次函数的实际应用,根据题意求出当2x =时,y 的值,若此时y 的值大于1.8,则货车能完全停到车棚内,反之,不能,据此求解即可.【详解】解:∵4m CD =,()62.68B ,, ∴642−=,在20.020.3 1.6y x x =−++中,当2x =时,20.0220.32 1.6 2.12y =−⨯+⨯+=,∵2.12 1.8>,∴可判定货车能完全停到车棚内,故答案为:能.6.(2024·四川自贡·中考真题)九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙OE=m,6AE=m, 1.4AB CD⊥于点O(如图),其中AB上的EO段围墙空缺.同学们测得 6.6OB=m,OD=m.班长买来可切断的围栏16m,准备利用已有围墙,围出一块封闭的矩形菜地,则该OC=m,35菜地最大面积是2cm.三、解答题7.(2024·陕西·中考真题)一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索1L 与缆索2L 均呈抛物线型,桥塔AO 与桥塔BC 均垂直于桥面,如图所示,以O 为原点,以直线FF '为x 轴,以桥塔AO 所在直线为y 轴,建立平面直角坐标系.已知:缆索1L 所在抛物线与缆索2L 所在抛物线关于y 轴对称,桥塔AO 与桥塔BC 之间的距离100m OC =,17m AO BC ==,缆索1L 的最低点P 到FF '的距离2m PD =(桥塔的粗细忽略不计)(1)求缆索1L 所在抛物线的函数表达式;(2)点E 在缆索2L 上,EF FF '⊥,且 2.6m EF =,FO OD <,求FO 的长.8.(2024·湖北·中考真题)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m,篱笆长80m.设垂直于墙的边AB长为x米,平行于墙的边BC为y米,围成的矩形面积为2cmS.(1)求y与,x s与x的关系式.(2)围成的矩形花圃面积能否为2750cm,若能,求出x的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x的值.∵1940x ≤<,∴25x =;(3)解:()22280220800s x x x =−+=−−+∵20,-<∴s 有最大值,又1940x ≤<,∴当20x =时,s 取得最大值,此时800s =,即当20x =时,s 的最大值为8009.(2024·河南·中考真题)从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =−+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.10.(2024·湖北武汉·中考真题)16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =−+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离.(2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .11.(2024·四川内江·中考真题)端午节吃粽子是中华民族的传统习俗.市场上猪肉粽的进价比豆沙粽的进价每盒多20元,某商家用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价52元时,可售出180盒;每盒售价提高1元时,少售出10盒. (1)求这两种粽子的进价;(2)设猪肉粽每盒售价x 元()5270x ≤≤,y 表示该商家销售猪肉粽的利润(单位:元),求y 关于x 的函数表达式并求出y 的最大值.∴当60x =时,y 取得最大值为1000元.12.(2024·贵州·中考真题)某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值.(1)求y 与x 的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值. 【答案】(1)280y x =−+(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元 (3)2【分析】本题考查了二次函数的应用,解题的关键是: (1)利用待定系数法求解即可;(2)设日销售利润为w 元,根据利润=单件利润×销售量求出w 关于x 的函数表达式,然后利用二次函数的性质求解即可;(3)设日销售利润为w 元,根据利润=单件利润×销售量-m ×销售量求出w 关于x 的函数表达式,然后利用二次函数的性质求解即可.【详解】(1)解∶设y 与x 的函数表达式为y kx b =+, 把12x =,56y =;20x =,40y =代入,得12562040k b k b +=⎧⎨+=⎩,解得280k b =−⎧⎨=⎩,∴y 与x 的函数表达式为280y x =−+; (2)解:设日销售利润为w 元, 根据题意,得()10w x y =−⋅()()10280x x =−−+22100800x x =−+−13.(2024·广东·中考真题)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)14.(2024·四川遂宁·中考真题)某酒店有A B、两种客房、其中A种24间,B种20间.若全部入住,一天、两种客房均有10间入住,一天营业额为3200元.营业额为7200元;若A B(1)求A B、两种客房每间定价分别是多少元?(2)酒店对A种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A种客房每间定价为多少元时,A种客房一天的营业额W最大,最大营业额为多少元?15.(2024·四川南充·中考真题)2024年“五一”假期期间,阆中古城景区某特产店销售A,B两类特产.A 类特产进价50元/件,B类特产进价60元/件.已知购买1件A类特产和1件B类特产需132元,购买3件A 类特产和5件B 类特产需540元.(1)求A 类特产和B 类特产每件的售价各是多少元?(2)A 类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A 类特产降价x 元,每天的销售量为y 件,求y 与x 的函数关系式,并写出自变量x 的取值范围.(3)在(2)的条件下,由于B 类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w 元,求w 与x 的函数关系式,并求出每件A 类特产降价多少元时总利润w 最大,最大利润是多少元?(利润=售价-进价)【答案】(1)A 类特产的售价为60元/件,B 类特产的售价为72元/件 (2)1060y x =+(010x ≤≤)(3)A 类特产每件售价降价2元时,每天销售利润最犬,最大利润为1840元【分析】本题主要考查一元一次方程的应用、函数关系式和二次函数的性质,()1根据题意设每件A 类特产的售价为x 元,则每件B 类特产的售价为()132x −元,进一步得到关于x 的一元一次方程求解即可;()2根据降价1元,每天可多售出10件列出函数关系式,结合进价与售价,且每件售价不低于进价得到x得取值范围;()3结合(2)中A 类特产降价x 元与每天的销售量y 件,得到A 类特产的利润,同时求得B 类特产的利润,整理得到关于x 的二次函数,利用二次函数的性质求解即可.【详解】(1)解:设每件A 类特产的售价为x 元,则每件B 类特产的售价为()132x −元. 根据题意得()35132540x x +−=. 解得60x =.则每件B 类特产的售价1326072−=(元).答:A 类特产的售价为60元/件,B 类特产的售价为72元/件. (2)由题意得1060y x =+∵A 类特产进价50元/件,售价为60元/件,且每件售价不低于进价 ∴010x ≤≤.答:1060y x =+(010x ≤≤).(3)(6050)(1060)100(7260)w x x =−−++⨯−22=−++=−−+.x x x1040180010(2)1840Q−<100,∴当2x=时,w有最大值1840.答:A类特产每件售价降价2元时,每天销售利润最大,最大利润为1840元.16.(2024·江苏盐城·中考真题)请根据以下素材,完成探究任务.17.(2024·山东烟台·中考真题)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?18.(2024·江西·中考真题)如图,一小球从斜坡O 点以一定的方向弹出球的飞行路线可以用二次函数()20y ax bx a =+<刻画,斜坡可以用一次函数14y x =刻画,小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律如下表:(1)①m =______,n =______; ②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系25y t vt =−+. ①小球飞行的最大高度为______米; ②求v 的值.19.(2024·江苏苏州·中考真题)如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A −,()6,0C ,反比例函数()0,0k y k x x=≠>的图象与AB 交于点(),4D m ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数()0,0k y k x x=≠>图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM AB ∥,交y 轴于点M ,过点P 作PN x ∥轴,交BC 于点N ,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标. PMN S =()2,0A −)6,0,又AC BC =8BC =.ACB ∠=∴点(6,8B 设直线AB 将(2,0A −AC BC=PN x∥轴,BLN∴∠=PM AB∥MPL∴∠=QMP∴∠QM QP∴=设点P的坐标为PMNS=当3t=20.(2024·青海·中考真题)在如图所示的平面直角坐标系中,有一斜坡OA,从点O处抛出一个小球,落到点33,2A⎛⎫⎪⎝⎭处.小球在空中所经过的路线是抛物线2y x bx=−+的一部分.(1)求抛物线的解析式;(2)求抛物线最高点的坐标;(3)斜坡上点B处有一棵树,点B是OA的三等分点,小球恰好越过树的顶端C,求这棵树的高度.∵BOD AOE ∠=∠,BDO ∠∴OBD OAE ∽△△, ∴OD BD OB OE AE OA==, 又∵点B 是OA 的三等分点,∴1OB =,21.(2024·天津·中考真题)将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠==.(1)填空:如图①,点C 的坐标为______,点B 的坐标为______;(2)若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围;②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可).,再证明EO A'是等边三角形,运用线段的和差关系重合时,和当C'与点,再分别以2 3分别作图,运用数形结合思路列式计算,即可作答.60,(A∴EO A'是等边三角形=AE AO'=−BE AB=−BE AB=−+2BE t∵由①得出EO A '是等边三角形,(122AO t ='3EAO '=,32t ⎛⎫− ⎪⎝⎭3124。
部编数学九年级上册专题22.7二次函数(压轴题综合测试卷)(人教版)(解析版)含答案
专题22.7 二次函数(满分100)学校:___________姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(本大题共10小题,每小题3分,满分30分)1.(2022·陕西·西安工业大学附中九年级期中)对于抛物线y=ax2+2ax−15a+3,当x=1时,y<0,该抛物线的顶点一定在( )A.第一象限B.第二象限C.第三象限D.第四象限【思路点拨】由x=1时,y<0求出a的取值范围,再利用二次函数的性质求出顶点坐标即可求解.【解题过程】2.(2022·全国·九年级专题练习)下表是若干组二次函数y=x2−5x+c的自变量x与函数值y的对应值:x… 1.3 1.4 1.5 1.6 1.7…y…0.360.13﹣0.08﹣0.27﹣0.44…那么方程x2﹣5x+c=0的一个近似根(精确到0.1)是( )A.3.4B.3.5C.3.6D.3.7【思路点拨】观察表格可得-0.08更接近于0,得到方程的一个近似根(精确到0.1)是1.5,再由y=x2−5x+c的对称轴【解题过程】3.(2022·全国·九年级课时练习)已知关于x的二次函数y=x2+ (2k+1)x+k,下列说法不正确的是()A.对任意实数k,该函数图象与x轴都有两个不同的交点B.对任意实数k,该函数图象都经过点−12C.对任意实数k,当x>−k时,函数y的值都随x的增大而增大D.对任意实数k,该函数图象的顶点在二次函数y=−x2−x的图象上运动【思路点拨】根据二次函数图象及性质逐项判断可得答案.【解题过程】4.(2022·广东·模拟预测)如图,抛物线y=﹣x2+4x﹣3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得到C2,C2与x轴交于B、D两点.若直线y=kx﹣k与C1、C2共有3个不同的交点,则k的最大值是( )B.6C.D.6﹣A.12【思路点拨】本题首先要确定直线可能所处的位置(如下图所示),一种情况是直线m与抛物线相切,另一种情况是直线n过B点,进而求出k的值.【解题过程】解:如图抛物线y=-x2+4x-3与x轴交于点A、B,则点A、B的坐标为:(1,0)、(3,0),由抛物线从C1:y=-x2+4x-3平移得到抛物线C2,则容易得到其的方程为:y=-(x-4)2+1,(3≤x≤5).直线y=kx-k过点A(1,0),当直线m与C2只有一个交点和在x轴的位置时,直线y=kx-k与C1、C2共有3个不同的交点,5.(2022·全国·九年级课时练习)一次函数y=ax+b(a≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.【思路点拨】逐一分析四个选项,根据二次函数图象的开口方向以及对称轴与y轴的位置关系,即可得出a、b的正负性,由此即可得出一次函数图象经过的象限,即可得出结论.【解题过程】解:A. ∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项错误;B. ∵二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,故本选项错误;C.∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项正确;D. ∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,故本选项错误.故选C .6.(2022·山东济南·一模)在平面直角坐标系中,若点P 的横坐标和纵坐标相等,则称点P 为雅系点.已知二次函数y =ax 2+bx +c(a ≠0)的图象上有且只有一个雅系点(−52,−52),且当m ≤x ≤0时,函数y =ax 2−4x +c +14(a ≠0)的最小值为-6,最大值为-2,则m 的取值范围是( )A .−1≤m ≤0B .−72≤m ≤−2C .−4≤m ≤−2D .−72≤m ≤−94【思路点拨】【解题过程】由于函数图象在对称轴x=-2左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小,且当0≤x≤m时,函数y=-x2-4x-6的最小值为-6,最大值为-2,∴-4≤m≤-2,故选:C.7.(2022·全国·九年级课时练习)将函数y=−x2+2x+m(0≤x≤4)在x轴下方的图像沿x轴向上翻折,在x轴上方的图像保持不变,得到一个新图像.若使得新图像对应的函数最大值与最小值之差最小,则m的值为()A.2.5B.3C.3.5D.4【思路点拨】【解题过程】8.(2022·湖南·宁远县教研室模拟预测)如图,二次函数y=ax2+bx+c(a≠0)的图像与x轴负半轴交于−12,0,对称轴为直线x=1.有以下结论:①abc>0;②3a+c>0;③若点(−3,y1),(3,y2),(0,y3)均在函数图像上,则y1>y3>y2;④若方程a(2x+1)(2x−5)=1的两根为x1,x2且x1<x2,则x1<−12<52<x2;⑤点M,N是抛物线与x轴的两个交点,若在x轴下方的抛物线上存在一点P,使得PM⊥PN,则a的范围为a≥.其中结论正确的有()A.2个B.3个C.4个D.5个【思路点拨】【解题过程】解:观察图像得:抛物线开口向上,与y轴交于负半轴,9.(2022·江苏·九年级专题练习)如图,等腰Rt△ABC与矩形DEFG在同一水平线上,AB=DE=2,DG=3,现将等腰Rt△ABC沿箭头所指方向水平平移,平移距离x是自点C到达DE之时开始计算,至AB离开GF为止.等腰Rt△ABC与矩形DEFG的重合部分面积记为y,则能大致反映y与x的函数关系的图象为()A.B.C.D.【思路点拨】根据平移过程,可分三种情况,当0≤x<1时,当1≤x<3时,当3≤x≤4时,利用直角三角形的性质及面积公式分别写出各种情况下y与x的函数关系式,再结合函数图象即可求解.【解题过程】解:过点C作CM⊥AB于N,DG=3,在等腰Rt△ABC中,AB=2,∴CN=1,①当0≤x<1时,如图,CM=x,10.(2022·全国·九年级课时练习)如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y =4x−12x 2刻画,斜坡可以用一次函数y =12x 刻画.下列结论错误的是( )A.小球落地点距O点水平距离为7米B.小球距O点水平距离超过4米呈下降趋势C.当小球抛出高度达到7.5m时,小球距O点水平距离为3mmD.小球距斜坡的最大铅直高度为498【思路点拨】【解题过程】二.填空题(本大题共5小题,每小题3分,满分15分)11.(2022·全国·九年级单元测试)如果函数y=(m﹣2)x m2+m−4是二次函数,则m的值为________.【思路点拨】根据二次函数的定义,可得m2+m-4=2且m-2≠0,然后进行计算即可解答.【解题过程】解:由题意得:m2+m﹣4=2且m﹣2≠0,∴m=2或﹣3且m≠2,∴m=﹣3,故答案为:﹣3.12.(2022·全国·九年级专题练习)已知抛物线的解析式为y=x2−(m+2)x+m+1(m为常数),则下列说法正确的是____________.①当m=2时,点(2,1)在抛物线上;②对于任意的实数m,x=1都是方程x2−(m+2)x+m+1=0的一个根;③若m>0,当x>1时,y随x的增大而增大;④已知点A(−3,0),B(1,0),则当−4≤m<0时,抛物线与线段AB有两个交点.【思路点拨】①将点代入解析式中即可判断;②解方程x2−(m+2)x+m+1=0即可判断;③根据函数解析判断开口方向,根据对称轴及开口方向即可判断;④解方程x2−(m+2)x+m+1=0,根据题意,利用m的取值范围及AB即可判断.【解题过程】当y=0时,x2−(m+2)x+m+1=0,解得x1=1,x2=m+1,∴抛物线与x轴的交点坐标为(1,0)、(m+1,0),当−4≤m≤0时,-3≤m+1≤1,∴“④已知点A(−3,0),B(1,0),则当−4≤m<0时,抛物线与线段AB有两个交点”的说法错误,(因为当m=1时只有一个交点),不符合题意,综上所述,说法正确的是②,故答案为:②.13.(2022·湖北·广水市应山办事处中心中学九年级阶段练习)如图,已知点A1,A2,…,A2014在函数y=x2位于第二象限的图象上,点B1,B2,…,B2014在函数y=x2位于第一象限的图象上,点C1,C2,…,C2014在y轴的正半轴上,若四边形OA1C1B1、C1A2C2B2,…,C2013A2014C2014B2014都是正方形,则正方形C2013A2014C2014B2014的边长为_________.【思路点拨】根据正方形对角线平分一组对角可得OB1与y轴的夹角为45°,然后表示出OB1的解析式,再与抛物线解析式联立求出点B1的坐标,然后求出OB1的长,再根据正方形的性质求出OC1,表示出C1B2的解析式,与抛物线联立求出B2的坐标,然后求出C1B2的长,再求出C1C2的长,然后表示出C2B3的解析式,与抛物线联立求出B3的坐标,然后求出C2B3的长,从而根据边长的变化规律解答即可.【解题过程】解:∵四边形OA1C1B1是正方形,∴OB1与y轴的夹角为45°,∴OB11的解析式为y=x,联立y=xy=x2,解得x=0y=0或x=1y=1,∴点B1(1,1),14.(2022·全国·九年级课时练习)距离地面有一定高度的某发射装置竖直向上发射物体,物体离地面的高度ℎ(米)与物体运动的时间t(秒)之间满足函数关系ℎ=−5t2+mt+n,其图像如图所示,物体运动的最高点离地面20米,物体从发射到落地的运动时间为3秒.设w表示0秒到t秒时ℎ的值的“极差”(即0秒到t 秒时ℎ的最大值与最小值的差),则当0≤t≤1时,w的取值范围是_________;当2≤t≤3时,w的取值范围是_________.【思路点拨】【解题过程】15.(2022·吉林·东北师大附中明珠学校九年级期末)在如图所示的平面直角坐标系中,抛物线y =-14x 2+12x +2与x 轴交于点M 、N (M 在N 左侧),与y 轴交于点A ,点B 是点A 关于抛物线对称轴的对称点,经过点M 的射线MD 与y 轴负半轴相交于点C ,与抛物线的另一个交点为D ,∠BMN=∠NMD ,点P 是y 轴负半轴上一点,且∠MDP =∠BMN ,则点P 的坐标是_______.【思路点拨】【解题过程】∵∠BMN =∠NMD ,∴MN 垂直平分BB ′,∴B 点和B′关于x 轴对称,当y =0时,−14x 2+12x +2=0 ,解得∴M (﹣2,0),N (4,0),故答案为(0,﹣4).评卷人得分三.解答题(本大题共9小题,满分55分)16.(2022·江西上饶·二模)探究函数性质时,我们经历了列表、描点、连线画出函数图像,观察分析图像特征,概括函数性质的过程.结合已有的学习经验,请画出函数y1=−12x22的图像并探究该函数的性质.x…−4−3−2−101234…y1…−23a−2−4b−4−2−1211−23…y2c d e f g(1)列表,写出表中a,b的值:a=______,b=______;描点、连线,在所给的平面直角坐标系中画出该函数的图像.(2)观察函数图像,判断下列关于函数性质的结论是否正确,在下面横线上填入“序号”或填入“无”,正确的是______,错误的是______.的图像关于y轴对称;①函数y1=−12x22有最小值,最小值为−6;②当x=0时,函数y1=−12x22③在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知二次函数y2=x2−6,请你写出表中c,d,e,f,g的值:c=______,d=______,e=______,f=______,g=______,并在所给的同一坐标系中画出函数y2=x2−6的图像,结合你所画的函数图像,直接<x2的解集.写出不等式6−12x22【思路点拨】(1)将x=﹣3,0分别代入解析式即可得y的值,再画出函数的图像;(2)结合图像可从函数的增减性及对称性进行判断;(3)将x=−2、−1、0、1、2分别代入到y2=x2−6中,求出对应的函数值,然后在同一坐标系中画出y2=x2−6的函数图像,通过观察图像即可得到答案.【解题过程】不等式6−12x22<x2可转化为−12x22<x2−6,17.(2021·甘肃·模拟预测)在平面直角坐标系中,已知点A(0,2).B(2,2),抛物线y=x2−2mx+ m2−2与直线x=﹣2交于点P.(1)用含m的代数式表示抛物线的对称轴及顶点坐标;(2)设点P的纵坐标为y P,求y P的最小值;此时抛物线上有两点(x1,y1),(x2,y2),且x1<x2≤−2.比较y1与y2的大小;(3)当抛物线与线段AB有公共点时,请求出m的取值范围.【思路点拨】(1)把抛物线的解析式化成顶点式,即可求得对称轴及顶点坐标;(2)先将x=−2代入抛物线y=x2−2mx+m2−2中,可得y=4−2m×(−2)+m2−2=(m+2)2−2,根据二次函数的最值可得y的最小值,确定此时抛物线的解析式,根据增减性和图象可得y1与y2的大小;(3)令y=2解出两个解,这两个解符合AB横坐标范围,可解答.【解题过程】解:(1)∵y=x2−2mx+m2−2=(x−m)2−2,∴抛物线的对称轴为直线x=m,顶点坐标为(m,﹣2);(2)∵抛物线y=x2−2mx+m2−2与直线x=﹣2交于点P(x P,y P),∴y P=4−2m×(−2)+m2−2=(m+2)2−2,∴当m=﹣2时,y取得最小值,此时y=﹣2,如图1,∴y=x2+4x+2=(x+2)2−2,∴当x≤﹣2时,y随x的增大而减小,∵x1<x2≤-2,∴y1>y2;(3)如图2,y=x2−2mx+m2−2=(x−m)2−2,当y=2时,(x−m)2−2=2,∴x=m±2,∵抛物线与线段AB有公共点,且点A(0,2),B(2,2),∴0≤m﹣2≤2或0≤m+2≤2,∴﹣2≤m≤0或2≤m≤4;∴m的范围为﹣2≤m≤0或2≤m≤4.18.(2022·湖南·长沙市立信中学八年级期末)已知y是x的函数,若函数图像上存在一点P(a,b),满足b﹣a=2,则称点P为函数图像上“梦幻点”.例如:直线y=2x+1上存在的“梦幻点”P(1,3).x+3上的“梦幻点”的坐标;(1)求直线y=12(2)已知在双曲线y=k(k≠0)上存在两个“梦幻点”且两个“梦幻点”k的值.xx2+(m−t+1)x+n+t的图像上存在唯一的梦幻点,且﹣2≤m≤3时,n的最小值为t,(3)若二次函数y=14求t的值.【思路点拨】【解题过程】19.(2022·全国·九年级课时练习)某农场有100亩土地对外出租,现有两种出租方式:方式一若每亩土地的年租金是400元,则100亩土地可以全部租出.每亩土地的年租金每增加5元土地少租出1亩.方式二每亩土地的年租金是600元.(1)若选择方式一,当出租80亩土地时,每亩年租金是_____元;(2)当土地出租多少亩时,方式一与方式二的年总租金差最大?最大值是多少?(3)农场热心公益事业,若选择方式一,农场每租出1亩土地捐出a元(a>0)给慈善机构;若选择方式二,农场一次性捐款1800元给慈善机构,当租出的土地小于60亩时,方式一的年收入高于方式二的年收入,直接写出a的取值范围.(注:年收入=年总租金-捐款数)【思路点拨】(1)依据出租方式进行列式计算即可;(2)分别计算出方式一与方式二的总租金,再计算差,得二次函数,依据二次函数的性质求解即可;(3)根据题意得到关系式w=−5x2+(300−a)x+1800,根据方式一的年收入高于方式二的年收入可得关于a的不等式,即可求出a的即会范围.【解题过程】解:(1)若选择方式一,当出租80亩土地时,每亩年租金是:400+5×(100−80)=500(元)故答案为:500;(2)设出租x亩土地,则方式一的每亩年租金为:400+5(100−x)=900−5x,∴方式一的年总租金为:x(900−5x)=−5x2+900x;方式二的年租金为600×x=600x设方式一与方式二的年总租金差为y元,由题意得,y=−5x2+900x−600x=−5x2+300x=−5(x−30)2+4500∵−5<0∴当x=30时,y有最大值为4500∴当土地出租30亩时,方式一与方式二的年总租金差最大,为4500元;(3)设出租x亩土地,方式一的年收入为:−5x2+900x−ax;方式二的年收入为:600x−1800;设方式一与方式二的年总租金差为w元,由题意可得,20.(2022·黑龙江·兰西县崇文实验学校八年级期中)已知抛物线y=ax2+bx+6(a为常数,a≠0)交x 轴于点A(6,0),点B(−1,0),交y轴于点C.(1)求点C的坐标和抛物线的解析式;(2)P是抛物线上位于直线AC上方的动点,过点P作y轴平行线,交直线AC于点D,当PD取得最大值时,求点P的坐标;(3)M是抛物线的对称轴l上一点,N为抛物线上一点;当直线AC垂直平分△AMN的边MN时,求点N的坐标.【思路点拨】(1)当x=0时,y=6,可求点C坐标,利用待定系数法可求解析式;(2)先求出直线AC的解析式,再设D(t,−t+6)(0<t<6),知P(t,−t2+5t+6),从而得PD=−t2+5t+6−(−t+6)=−t2+6t=−(t−3)2+9,据此可得答案;(3)先判断出NF∥x轴,进而求出点N的纵坐标,即可建立方程求解得出结论.【解题过程】解:(1)∵抛物线y=ax2+bx+6经过点A(6,0),B(−1,0),∴a−b+6=036a+6b+6=0,∴a=−1b=5,∴抛物线的解析式为y=−x2+5x+6,当x=0时,y=6,∴点C(0,6);(2)如图(1),∵A(6,0),C(0,6),∴直线AC的解析式为y=−x+6,设D(t,−t+6)(0<t<6),则P(t,−t2+5t+6),∴PD=−t2+5t+6−(−t+6)=−t2+6t=−(t−3)2+9,∵点F在线段MN的垂直平分线AC上,∴FM=FN,∠NFC=∠MFC,∵l∥y轴,∴∠MFC=∠OCA=45°,21.(2021·福建漳州·模拟预测)将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q,设AP=x.(1)当点Q在边CD上时,求证:PQ=PB.(2)在(1)的情况下,设四边形PBCQ的面积为y,求y与x之间的函数关系式,并写出x的取值范围;(3)当点P在线段AC上滑动时,当△PCQ是等腰三角形时,求x的值.【思路点拨】(1)过点P作MN∥BC,分别交AB、CD于点M、N,根据矩形的性质和直角三角形的性质,可证明△QNP≌△PMB,可证明PQ=PB;(2)设AP=x,结合(1)的结论可分别表示出AM、BM、CQ和PN,可表示出△PBC和△PCQ的面积,从而表示出四边形PBCQ的面积,从而得到y与x的关系式;(3)△PCQ可以成为等腰三角形.当点Q在DC边上时,利用勾股定理可得到x的方程;当点Q在DC的延长线上时,由PQ=CQ,可得到x的方程;当Q与点C重合时,不满足条件;从而可求得满足条件的x 的值.【解题过程】解:(1)证明:过点P作MN∥BC,分别交AB、CD于点M、N,如图1,则四边形AMND和四边形BCNM都是矩形,△AMP和△CNP都是等腰三角形,∴NP=NC=MB.∵∠BPQ=90°,∴∠QPN+∠BPM=90°,而∠BPM+∠PBM=90°,由PC =CQ 得:2−x =2③当点Q 与C 点重合,△PCQ 22.(2022·吉林长春·九年级开学考试)在平面直角坐标系中,抛物线y =x 2﹣2mx +1(m 为常数)的图象与y 轴交于点A .(1)求点A 的坐标.(2)当此抛物线的顶点恰好落在x 轴的负半轴时,求此抛物线所对应的二次函数的表达式,并写出函数值y 随x 的增大而增大时x 的取值范围.(3)当x ≤32m 时,若函数y =x 2﹣2mx +1(m 为常数)的最小值12,求m 的值.(4)已知Rt △EFG 三个顶点的坐标分别为E (m ,m )、F (0,m ),G (m ,m ﹣10).若|m |<10,设抛物线y =x 2﹣2mx +1(m 为常数)与△EFG 的较短的直角边的交点为P ,过点P 作x 轴的平行线,与抛物线的另一个交点为Q ,过点A 作x 轴的平行线,与抛物线的另一个交点为B .若AB =2PQ ,直接写出m 的值,【思路点拨】【解题过程】23.(2022·湖南·邵阳县教育科学研究室模拟预测)如图,直线l:y=−3x−6与x轴、y轴分别相交于点A、x2+bx+c与x轴的另一个交点为点B,其顶点为点D,对称轴与x轴相C;经过点A、C的抛物线C:y=12交于点E.(1)求抛物线C的对称轴.(2)将直线l向右平移得到直线l1.①如图①,直线l1与抛物线C的对称轴DE相交于点P,要使PB+PC的值最小,求直线l1的解析式.②如图②,直线l1与直线BC相交于点F,直线l1上是否存在点M,使得以点A、C、F、M为顶点的四边形是菱形,若存在,求出点M的坐标;若不存在,请说明理由.【思路点拨】【解题过程】(1)解:在y=−3x−6中,令y=0,即-3x-6=0,x=-2,得A(-2,0).则PB+PC≥BC.当点P到达点Q时,PB+PC=QB+QC=BC的值最小.令y=0,即12x2−2x−6=0,解得x1=−2,x2=6.∴点B坐标为(6,0).设直线BC的表达式为y=kx+h,则:6k+ℎ=0ℎ=−6,解得k=1ℎ=−6.∴y=x−624.(2022·福建省龙岩市永定区第二初级中学九年级期中)已知抛物线y=ax2+bx+c(a>0)经过点A (﹣1,m),B(3,m),与y轴交于点C.(1)若抛物线经过点P(1,1),求b+2c的值;(2)当m=0,且﹣1≤x≤0时,y的最小值为﹣3.①求抛物线的解析式;②直线y=kx(k≠1)与抛物线交于点D,与直线BC交于点E,连接CD,当SΔCOESΔCDE =32时,求k的值.【思路点拨】(1)利用抛物线的对称性求得抛物线的对称轴,从而得到b与a的关系,利用待定系数法将(1,1)代入解析式,整理即可得出结论;(2)①利用待定系数法解得即可;②分点D,点E在第一象限,第三象限,第四象限三种情况讨论,利用三角形的面积关系得到点D与点E 的横坐标的关系,设点D栋横坐标,得到点E的横坐标,利用BC解析式表示出点E坐标,代入直线y=kx 中求得k值,从而得到点D坐标,将点D坐标代入抛物线解析式,从而得出未知数的值,将未知数的值代入与k的关系式即可求得结论.【解题过程】。
2022-2023学年人教版九年级数学上册二次函数专题含解析
2022-2023学年人教版九年级数学上册《第22章二次函数》解答综合练习题(附答案)1.二次函数y =ax 2+bx +c (a ≠0)图象上部分点的横坐标x ,纵坐标y 的对应值如表:x… ﹣4 ﹣3 ﹣2 1 2 …y … ﹣ 0 0 ﹣ …(1)求这个二次函数的表达式;(2)在图中画出此二次函数的图象;(3)结合图象,直接写出当﹣4≤x <0时,y 的取值范围 .2.已知抛物线y =ax 2﹣2ax +c 经过点(5,),(0,﹣1).(1)求抛物线的表达式及顶点坐标.(2)点M (x 1,y 1),N (x 2,y 2)在抛物线上,且x 2=x 1+3,若y 1,y 2始终小于0,求x 1的取值范围.3.如图,已知抛物线过A 、B 、C 三点,点A 的坐标为(﹣1,0),点B 的坐标为(3,0),且3AB =4OC .(1)求点C 的坐标;(2)求抛物线的关系式,并求出这个二次函数的最大值.4.平面直角坐标系xOy 中,二次函数y =a 2+bx +c 的顶点为(,﹣),它的图象与x 轴交于点A ,B ,AB =5,交y 轴于点C .(1)求二次函数的解析式;(2)当﹣1≤x<5时,写出该二次函数y的取值范围;(3)将抛物线向上平移m个单位长度,当抛物线与坐标轴有且只有2个公共点,求m 的值;(4)对于这个二次函数,若自变量x的值增加4时,对应的函数值y增大,求满足题意的自变量x的取值范围.5.已知:二次函数y=x2﹣(a+3)x+a+2(a为常数).(1)若该函数图象与坐标轴只有两个交点(非原点),求a的值;(2)若该函数图象与x轴相交于A(x1,0),B(x2,0)两点,x1<x2,与y轴相交于点C(0,c),c>0,且满足x12+x22﹣x1x2=7.①求抛物线的解析式;②在抛物线的对称轴上是否存在点P,使△P AC是以AC为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由.6.已知二次函数y=x2﹣2mx+m2﹣4的图象与x轴交于A、B两点(点A在点B的左边),且与y轴交于D点.(1)当点B、D都在坐标系的正半轴,且△BOD为等腰三角形,求二次函数解析式;(2)当m=﹣2时,将函数y=x2﹣2mx+m2﹣4的图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象Ω.当直线y=2x+n与图象Ω仅有两个公共点时,求实数n的取值范围.7.在直角坐标平面内,二次函数图象的顶点为A(1,﹣4),且过点B(3,0).(1)求该二次函数的解析式;(2)将该二次函数图象经过怎样的一次平移,可使平移后所得图象与坐标轴只有两个交点?8.已知二次函数y=x2+mx+n(m,n为常数).(1)若m=﹣2,n=﹣4,求二次函数的最小值;(2)若n=3,该二次函数的图象与直线y=1只有一个公共点,求m的值;(3)若n=m2,且3m+4<0,当x满足m≤x≤m+2时,y有最小值13,求此二次函数的解析式.9.直线y=﹣x﹣1与抛物线y=ax2+4ax+b交于x轴上A点和另一点D,抛物线交y轴于C 点,且CD∥x轴,求抛物线解析式.10.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx﹣6与x轴分别交于A、B两点(A在B的左侧),与y轴交于点C,直线y=x﹣m交x轴于点B,交y轴于点C,且OA=OB.(1)求抛物线的解析式;(2)点P为第三象限抛物线上一点,连接BP、PC,设点P的横坐标为t,△PBC的面积为S,求S与t的函数解析式;(3)在(2)的条件下,过点C作CD∥x轴交BP的延长线于点D,连接AD,若∠ADB+∠DCB=180°,求t的值.11.已知二次函数的图象与x轴交于A(﹣2,0),B(3,0)两点,且函数有最大值为2,求二次函数的解析式.12.已知:二次函数的图象经过点A(﹣1,0),B(0,﹣3)和C(3,12).(1)求二次函数的解析式并求出图象的顶点D的坐标;(2)设点M(x1,y1),N(1,y2)在该抛物线上,若y1≤y2,直接写出x1的取值范围.13.抛物线y=ax2+bx+c与坐标轴交于A,B,C三点,已知OA=2OB=2OC=4.(1)求抛物线解析式:(2)若腰长为4的等腰直角三角形BDE的一直角边在x轴上,请问抛物线平移后能否同时经过D,E两点?若能,请说明平移方式;若不能,请说明理由.14.抛物线y=ax2﹣2ax+m经过点A(﹣1,0),与x轴另一交点为B,交y轴负半轴于C 点,且S△CAB=6(1)求抛物线的解析式;(2)若在y轴右侧的抛物线上有一点M,使△AMC的面积为9,请求出M点的坐标.15.如图,已知抛物线y=﹣x2+4x+m与x轴交于A,B两点,AB=2,与y轴交于C.(1)求抛物线解析式;(2)求P为对称轴上一点,要使P A+PC最小,求点P的坐标.16.阅读下面的材料:小明在学习中遇到这样一个问题:若1≤x≤m,求二次函数y=x2﹣6x+7的最大值.他画图研究后发现,x=1和x=5时的函数值相等,于是他认为需要对m进行分类讨论.他的解答过程如下:∵二次函数y=x2﹣6x+7的对称轴为直线x=3,∴由对称性可知,x=1和x=5时的函数值相等.∴若1≤m<5,则x=1时,y的最大值为2;若m≥5,则x=m时,y的最大值为m2﹣6m+7.请你参考小明的思路,解答下列问题:(1)当﹣2≤x≤4时,二次函数y=2x2+4x+1的最大值为;(2)若p≤x≤2,求二次函数y=2x2+4x+1的最大值;(3)若t≤x≤t+2时,二次函数y=2x2+4x+1的最大值为31,则t的值为.17.已知y关于x的二次函数y=x2﹣bx+b2+b﹣5的图象与x轴有两个公共点.(1)求b的取值范围;(2)若b取满足条件的最大整数值,当m≤x≤时,函数y的取值范围是n≤y≤6﹣2m,求m,n的值;(3)若在自变量x的值满足b≤x≤b+3的情况下,对应函数y的最小值为,求此时二次函数的解析式.18.在平面直角坐标系xOy中,已知二次函数y=x2+bx+c.(1)当b=﹣2时,①若c=4,求该函数最小值;②若2≤x≤3,则此时x对应的函数值的最小值是5,求c的值;(2)当c=2b时,若对于任意的x满足b≤x≤b+2且此时x所对应的函数值的最小值是12,直接写出b的值.19.已知抛物线F:y=x2+bx+c(b、c为常数).(1)当b=﹣2,c=2,且m≤x≤m+1时,求函数y的最小值和最大值(用含m的代数式表示);(2)若抛物线过(﹣3,0),当﹣3≤x≤0时,函数的最小值为﹣4,求函数解析式;(3)当c=b2,且b≤x≤b+3时,最小值为21,求函数解析式;(4)若抛物线过点A(0,﹣2)、B(3,1),设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,记抛物线在A、B之间的部分为图象G(包含A、B两点).若直线CD与图象G有公共点,结合函数图象,直接写出点D纵坐标t的取值范围;(5)把函数F沿着直线y=c翻折,得到的函数x<0的部分记作F1,原函数F的x≥0的部分记作F2,F1和F2合起来组成函数W,若b=﹣4,且c﹣1≤x≤c时函数W的最大值为1,则c的值为.20.已知二次函数y=x2+2bx+c(b、c为常数).(Ⅰ)当b=1,c=﹣3时,求二次函数在﹣2≤x≤2上的最小值;(Ⅱ)当c=3时,求二次函数在0≤x≤4上的最小值;(Ⅲ)当c=4b2时,若在自变量x的值满足2b≤x≤2b+3的情况下,与其对应的函数值y的最小值为21,求此时二次函数的解析式.21.已知函数y=﹣x2+(m﹣1)x+m(m为常数).(1)试说明该函数的图象与x轴始终有交点;(2)求证:不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上;(3)当﹣2≤m≤3时,求该函数的图象的顶点纵坐标的取值范围.22.已知二次函数y=x2+2(m﹣1)x﹣4m﹣1(m为常数).(1)若函数y=x2+2(m﹣1)x﹣4m﹣1与x轴交点的横坐标为﹣1,,则关于x的方程4x2+4(m﹣1)x﹣4m﹣1=0的根是;(2)若不论m取何值,该函数图象的顶点都在一个新的二次函数图象上,求此新函数的解析式;(3)若该函数的顶点纵坐标的取值范围是﹣5≤y<﹣2时,求m的取值范围.23.已知抛物线C1:y1=a(x﹣h)2+2,直线l:y2=kx﹣kh+2(k≠0).(1)求证:直线l恒过抛物线C的顶点;(2)若a>0,h=1,当t≤x≤t+3时,二次函数y1=a(x﹣h)2+2的最小值为2,求t 的取值范围.(3)点P为抛物线的顶点,Q为抛物线与直线l的另一个交点,当1≤k≤3时,若线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,求a的取值范围.24.已知抛物线y=ax2+bx+c(a≠0)经过A(4,0)、B(﹣1,0)、C(0,4)三点.(1)求抛物线的函数解析式;(2)如图1,点D是在直线AC上方的抛物线的一点,DN⊥AC于点N,DM∥y轴交AC 于点M,求△DMN周长的最大值及此时点D的坐标;(3)如图2,点P为第一象限内的抛物线上的一个动点,连接OP,OP与AC相交于点Q,求的最大值.25.已知抛物线y=ax2+bx﹣1(a>0)经过点(2,﹣1),当1﹣2m≤x≤1+3m时,y的最小值为﹣2.(1)求抛物线的解析式;(2)当n<x<n+1时,y的取值范围是2n+1<y<2n+4,求n的值.参考答案1.解:(1)由题意,设二次函数的表达式为y=a(x+3)(x﹣1),∵二次函数经过点(﹣2,),∴﹣3a=,∴a=﹣,∴二次函数的表达式为y=﹣(x+3)(x﹣1)=﹣x2﹣x+;(2)y=﹣x2﹣x+=﹣(x+1)2+2,顶点为(﹣1,2),描点、连线,画出图形如图所示:(3)观察函数图象可知:当﹣4≤x<0时,y的取值范围是﹣≤y≤2,故答案为:﹣≤y≤2.2.解:(1)把点(5,),(0,﹣1)代入y=ax2﹣2ax+c得:,解得:,∴y=x2﹣x﹣1=(x﹣1)2﹣,∴抛物线的顶点坐标为(1,﹣);(2)y=x2﹣x﹣1=(x2﹣2x﹣8)=(x﹣4)(x+2),∵点M(x1,y1),N(x2,y2)在抛物线上,且x2=x1+3,∴y1=(x1﹣4)(x1+2),y2=(x2﹣4)(x2+2)=(x1﹣1)(x1+5),∵y1,y2始终小于0,∴(x1﹣4)(x1+2)<0,(x1﹣1)(x1+5)<0,∴﹣2<x1<4,﹣5<x1<1,∴﹣2<x1<1.3.解:(1)∵点A的坐标为(﹣1,0),点B的坐标为(3,0),∴OA=1,OB=3,∴AB=4,∵3AB=4OC,∴OC=3,∴C点坐标为(0,3);(2)设二次函数的解析式为y=a(x+1)(x﹣3),把C(0,3)代入得a×1×(﹣3)=3,解得a=﹣1,∴二次函数的解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3,∵a=﹣1<0,∴当x=﹣=1时,y最大值==4.4.解:(1)由题意得=,即x A+x B=3,x A﹣x B=5,联立方程,解得,∴点A坐标为(4,0),点B坐标为(﹣1,0),设抛物线解析式为y=a(x﹣)2﹣,把(4,0)代入得0=a﹣,解得a=1,∴抛物线解析式为y=(x﹣)2﹣,即y=x2﹣3x﹣4.(2)∵抛物线开口向上,对称轴为直线x=,∴当x=时,y取最小值为﹣,∵5﹣>﹣(﹣1),∴当x=5时,用取最大值,把x=5代入y=x2﹣3x﹣4得y=6.故答案为:﹣≤y<6.(3)∵抛物线y=x2﹣3x﹣4与x轴有2个交点,与y轴有一个交点,∴抛物线向上移动至顶点落在x轴上满足题意,∴﹣+m=0,解得m=,抛物线向上移动至经过原点时满足题意,即﹣4+m=0,解得m=4,综上所述,m=或m=4.(4)∵抛物线开口向上,对称轴为直线x=,∴当x与x+4所对应y值相等时,=,∴x=﹣,∴x>﹣满足题意.5.解:(1)∵抛物线与y一定有一个交点,而抛物线与坐标轴只有两个交点,∴抛物线与x轴只有一个公共点,∴△=(a+3)2﹣4(a+2)=0,整理得a2+2a+1=0,解得a1=a2=﹣1,即a的值为﹣1;(2)①根据根与系数的关系得x1+x2=a+3,x1•x2=a+2,而x12+x22﹣x1x2=7,∴(x1+x2)2﹣3x1•x2=7,∴(a+3)2﹣3(a+2)=7,整理得a2+3a﹣4=0,解得a1=﹣4,a2=1,而c>0,即a+2>0,∴a=1,∴抛物线解析式为y=x2﹣4x+3;②存在.当y=0时,x2﹣4x+3=0,解得x1=1,x2=3,则A(1,0),B(3,0),当x=0时,y=x2﹣4x+3=3,则C(0,3),∴抛物线的对称轴为直线x=2,抛物线的顶点坐标为(2,﹣1),如图,AC==,当AP=AC时,P1(2,3);当CP=CA时,CP2=,而CP1=2,则P2P1==,则P2(2,3+),同样方法得到P1P3=,所以P3(2,3﹣),∴满足条件的P点坐标为(2,3)或(2,3+)或(2,3﹣).6.解:(1)令y=0得x2﹣2mx+m2﹣4=0,解得x1=m﹣2,x2=m+2,∴A(m﹣2,0),B(m+2,0),D(0,m2﹣4),∵点D在y轴正半轴,∴m2﹣4>0,设存在实数m,使得△BOD为等腰三角形,则BO=OD,即|m+2|=m2﹣4,①当m+2>0时,m2﹣4=m+2,解得m=3或m=﹣2(舍去);②当m+2<0时,m2﹣4+m+2=0,解得m=1或m=﹣2(都舍去);③当m+2=0时,点O、B、D重合,不合题意,舍去;综上所述,m=3.故二次函数解析式为:y=x2﹣6x+5.(2)当m=﹣2时,y=x2+4x,则A(﹣4,0),B(0,0)顶点为(﹣2,﹣4),因为直线y=2x+n与图象Ω有两个公共点,则当直线y=2x+n过A点时n=8,当直线y=2x+n过B(0,0)时,n=0,当直线y=2x+n与y=﹣x2﹣4x只有一个公共点时,n=9,根据图象,可得0<n<8或n>9.7.解:(1)设抛物线的解析式为y=a(x﹣1)2﹣4,由题意,得∴0=a(3﹣1)2﹣4,∴a=1,∴抛物线的解析式为:y=(x﹣1)2﹣4.(2)∵抛物线的解析式为:y=(x﹣1)2﹣4.∴抛物线的开口向上,对称轴为x=1,当y=0时,x1=3,x2=﹣1,∴抛物线与x轴的交点是(﹣1,0)或(3,0)∴由抛物线的图象特征可以得出将抛物线向左平移3个单位时,抛物线对称轴的右侧经过原点;所得图象与坐标轴只有两个交点.抛物线向右平移1个单位时,抛物线的对称轴左侧经过原点,所得图象与坐标轴只有两个交点.抛物线向上平移3个单位时,抛物线经过原点,所得图象与坐标轴只有两个交点.抛物线向上平移4个单位时,抛物线的顶点在x轴上,所得图象与坐标轴只有两个交点.8.解:(1)当m=﹣2,n=﹣4时,y=x2﹣2x﹣4=(x﹣1)2﹣5∴当x=1时,y最小值=﹣5;(2)当n=3时,y=x2+mx+3,令y=1,则x2+mx+3=1,由题意知,x2+mx+3=1有两个相等的实数根,则△=m2﹣8=0,∴m=;(3)由3m+4<0,可知m,∴m≤x≤m+2,抛物线y=x2+mx+m2的对称轴为x=,∵m,∴,∴对称轴为x=,∴在m≤x≤m+2时,y随x的增大而减小,∴当x=m+2,y有最小值为13,∴(m+2)2+m(m+2)+m2=13,即m2+2m﹣3=0,解得m=1或m=﹣3,而m,∴m=﹣3,此时,y=x2﹣3x+9.9.解:如图,∵直线y=﹣x﹣1交于x轴上A点,∴A(﹣1,0),∵抛物线y=ax2+4ax+b交于x轴上A点,∴a﹣4a+b=0,∴b=3a,由抛物线y=ax2+4ax+b可知C(0,b),∵CD∥x轴,∴C、D是对称点,且D的纵坐标为b,∵抛物线的对称轴是:x=﹣2,∴D(﹣4,b),∵点D在直线y=﹣x﹣1上,∴b=4﹣1=3,∴a=1,∴抛物线解析式为y=x2+4x+3.10.解:(1)∵抛物线y=ax2+bx﹣6与y轴交于点C,∴点C(0,﹣6),∵直线y=x﹣m交y轴于点C,∴﹣m=﹣6∴m=6,∴直线y=x﹣6,∴当y=0时,x=6,∴点B(6,0),∴OB=6∵OA=OB,∴OA=7,∴点A(﹣7,0),∴∴∴抛物线解析式为:y=x2+x﹣6;(2)如图1,过点P作PH∥AB交BC于点H,∵点P的横坐标为t,∴点P(t,t2+t﹣6)∴t2+t﹣6=x﹣6,∴x=t2+t∴S=×6×(t2+t﹣t)=t2﹣t;(3)如图2,作抛物线的对称轴交x轴于E,BF平分∠ABC,交对称轴于点F,连接AF,DF,∵点C(0,﹣6),点A(﹣7,0),点B(6,0),∵OB=6,OC=6,AB=13,∴∠OBC=60°,∵DC∥AB,∴∠DCB+∠ABC=180°,∴∠DCB=120°,∵∠ADB+∠DCB=180°,∴∠ADB=60°,∵抛物线y=x2+x﹣6的对称轴为x=﹣;∴点E坐标为(﹣,0),AF=BF,BE==AE,∵BF平分∠ABC,∴∠ABF=30°,且AF=BF,∴∠F AB=30°,EF⊥AB,∴∠AFB=180°﹣∠F AB﹣∠FBA=120°,EF=,BF=,∴∠AFB=2∠ADB∴点D在以点F为圆心,BF为半径的圆上,设点D(x,﹣6)∴DF=BF∴(﹣﹣x)2+(6﹣)2=()2,∴x=﹣4,∴点D(﹣4,﹣6),且点B(6,0)∴BD解析式为:y=x﹣,∴解得(舍去),∴t=﹣11.解:∵二次函数的图象与x轴交于A(﹣2,0),B(3,0)两点,∴抛物线的对称轴为直线x=,∵函数有最大值为2,∴抛物线的顶点坐标为(,2),设抛物线的解析式为y=a(x+2)(x﹣3),把(,2)代入得a×(+2)(﹣3)=2,解得a=﹣,所以抛物线的解析式为y=﹣(x+2)•(x﹣3)=﹣x2+x+.12.解:(1)设抛物线解析式为y=ax2+bx+c,把A(﹣1,0),B(0,﹣3)和C(3,12)代入,得,解得:,∴抛物线解析式为y=2x2﹣x﹣3,∵y=2x2﹣x﹣3=,∴顶点D的坐标为(,﹣);(2)∵抛物线y=2x2﹣x﹣3的对称轴为直线x=,∴N(1,y2)关于直线x=的对称点为(,﹣2),∵M(x1,y1),N(1,y2)在该抛物线上,且y1≤y2,∴﹣≤x1≤1.13.解:(1)∵OA=2OB=2OC=4,∴OB=OC=2,∴A(﹣4,0)、B(2,0)、C(0,2),将A(﹣4,0)、B(2,0)、C(0,2)代入抛物线y=ax2+bx+c得:,解之得a=﹣,b=﹣,c=2,∴y=﹣,(2)抛物线平移后能同时经过点D、E两点,理由如下:∵BD=BE=4,∴E(2,4),D(6,0),设抛物线平移后的解析式为;y=,将E、D坐标代入得,解之得m=2,k=4,∴平移后抛物线顶点为(2,4),∵原抛物线顶点为(﹣1,),∴将原来抛物线向右平移3个单位,再向上平移个单位后能同时经过D、E两点.14.解:(1)设B的坐标为(x,0),∵抛物线y=ax2﹣2ax+m,A(﹣1,0),当y=0时,ax2﹣2ax+m=0,∴﹣1+x=2,∴x=3,∴B(3,0),∴AB=1+3=4,∵S△CAB=×4•×OC=6,∴OC=3,∴C(0,﹣3),把A(﹣1,0)和C(0,﹣3)代入抛物线y=ax2﹣2ax+m得:,解得:a=1,m=﹣3,∴抛物线的解析式为y=x2﹣2x﹣3;(2)设M的坐标为(x,x2﹣2x﹣3),分别过点A、M作y轴的平行线,过C作x轴的平行线,交前面平行线于D、E,连接AM,如图所示:则△AMC的面积=梯形ADEM 的面积﹣△ACD的面积﹣△CEM的面积=(3+x2﹣2x﹣3+3)(1+x)﹣×3×3﹣x (x2﹣2x﹣3+3)=9,解得:x=(负值舍去),∴x2﹣2x﹣3=,∴M点的坐标为(,).15.解:(1)抛物线的对称轴为直线x=﹣=2,∵点A与点B是抛物线的对称点,而AB=2,∴A点坐标为(1,0),B点坐标为(3,0),∴抛物线解析式为y=﹣(x﹣1)(x﹣3)=﹣x2+4x﹣3;(2)连接BC,交直线x=2于点P,则P A=PB,∴P A+PC=PB+PC=BC,∴此时P A+PC最小,设直线BC的解析式为y=kx+b,把C(0,﹣3),B(3,0)代入得,解得,∴直线BC的解析式为y=x﹣3,当x=2时,y=x﹣3=2﹣3=﹣1,∴P点坐标为(2,﹣1).16.解:(1)∵抛物线的对称轴为直线x=﹣1,∴当﹣2≤x≤4时,二次函数y=2x2+4x+1的最大值为:2×42+4×4+1=49;(2)∵二次函数y=2x2+4x+1的对称轴为直线x=﹣1,∴由对称性可知,当x=﹣4和x=2时函数值相等,∴若p≤﹣4,则当x=p时,y的最大值为2p2+4p+1,若﹣4<p≤2,则当x=2时,y的最大值为17;(3)t<﹣2时,最大值为:2t2+4t+1=31,整理得,t2+2t﹣15=0,解得t1=3(舍去),t2=﹣5,t≥﹣2时,最大值为:2(t+2)2+4(t+2)+1=31,整理得,(t+2)2+2(t+2)﹣15=0,解得t1=1,t2=﹣7(舍去),所以,t的值为1或﹣5.17.解:(1)由题意知,Δ>0,即,∴﹣4b+20>0,解得:b<5;(2)由题意,b=4,代入得:y=x2﹣4x+3,∴对称轴为直线,又∵a=1>0,函数图象开口向上,∴当m≤x≤时,y随x的增大而减小,∴当x=时,y=n=;当x=m时,y=6﹣2m=m2﹣4m+3,m2﹣2m﹣3=0,解得:m1=﹣1,m2=3(不合题意,舍去);∴m=﹣1,n=;(3)∵,∴对称轴为x=0.5b,开口向上,∴①当b≤0.5b≤b+3,即﹣6≤b≤0时,函数y在顶点处取得最小值,有b﹣5=,∴b=(不合题意,舍去);②当b+3<0.5b,即b<﹣6时,取值范围在对称轴左侧,y随x的增大而减小,∴当x=b+3时,y最小值=,代入得:,b2+16b+15=0,解得:b1=﹣15,b2=﹣1(不合题意,舍去),∴此时二次函数的解析式为:;③当0.5b<b,即b>0时,取值范围在对称轴右侧,y随x的增大而增大,∴当x=b时,y最小值=,代入得:,b2+4b﹣21=0,解得:b1=﹣7(不合题意,舍去),b2=3,∴此时二次函数的解析式为:.综上所述,符合题意的二次函数的解析式为:或.18.解:(1)①由题意,二次函数的解析式为y=x2﹣2x+4=(x﹣1)2+3,∴顶点坐标为(1,3),∴函数的最小值为3.②∵y=x2﹣2x+c,∴对称轴是直线x=1,∵2≤x≤3,则此时x对应的函数值的最小值是5,∴x=2时,y=5,∴5=4﹣4+c,∴c=5.(2)当c=2b时,y=x2+bx+2b,图象开口向上,对称轴为直线x=﹣,①当﹣<b,即b>0时,在自变量x的值满足b≤x≤b+2的情况下,y随x的增大而增大,∴当x=b时,y=b2+b•b+2b=2b2+2b最小值,∴2b2+2b=12,解得,b1=﹣3(舍去),b2=2;②当b≤﹣≤b+2时,即﹣≤b≤0,∴x=﹣,y的值最小,∴b2﹣+2b=12,方程无解.③当﹣>b+2,即b<﹣,在自变量x的值满足b≤x≤b+2的情况下,y随x的增大而减小,故当x=b+2时,y=(b+2)2+b(b+2)+2b=2b2+8b+4为最小值,∴2b2+8b+4=12.解得,b1=﹣2+2(舍去),b2=﹣2﹣2;综上所述,满足条件的b的值为2或﹣2﹣2.19.解:(1)∵b=﹣2,c=2,∴y=x2﹣2x+2=(x﹣1)2+1,开口向上,对称轴为x=1,①当m+1<1时即m<0,在对称轴的左边,y随x的增大而减小,∴y max=f(m)=m2﹣2m+2,y min=f(m+1)=m2+1,②当0≤m<时,1≤m+1<,对称轴x=1取得最小值,∴y max=f(m)=m2﹣2m+2,y min=f(1)=1,③当<m≤1时,<m+1≤2,对称轴x=1取得最小值,∴y max=f(m+1)=m2+1,y min=f(1)=1,④当m>1时,在对称轴的右边,y随x的增大而增大,∴y max=f(m+1)=m2+1,y min=f(m)=m2+2m+2,(2)∵抛物线过(﹣3,0),∴9﹣3b+c=0,∵当﹣3≤x≤0时函数最小值为﹣4,抛物线对称轴为,∴(﹣3,0)点在对称轴的左侧,不能在对称轴的右侧,①当﹣3<<0时,即0<b<6时,y min=f()=+c=﹣4,∴b=2,c=﹣3,y=x2+2x﹣3,②当>0时,即b<0,y min=f(0)=c=﹣4,∴b=(不符合舍去),故函数解析式为y=x2+2x﹣3,(3)∵c=b2,∴y=x2+bx+b2,抛物线对称轴为,①当b+3≤时,即b≤﹣2,∴y min=f(b+3)=3b2+9b+9=21,∴b=﹣4,c=16,y=x2﹣4x+16,②当b<<b+3时,即﹣2<b<0时,∴f(b)=3b2,f(b+3)=3b2+9b+9,f(b+3)>f(b),f(b)=21,b=(舍去),f(b+3)<f(b),f(b+3)=21,b=﹣4或者b=1(舍去),∴y=x2﹣4x+16,③当b>时,即b>0时,∴y min=f(b)=3b2=21,∴b=或(舍去),∴c=7,y=x2+x+7,∴综上所述解析式y=x2﹣4x+16或y=x2+x+7,故函数解析式为y=x2﹣4x+16或y=x2+x+7,(4)∵抛物线过A、B点,∴b=﹣2,c=﹣2,y=x2﹣2x﹣2,∵点B和点C关于原点对称,B(3,1),∴C(﹣3,﹣1),∴设D(1,t),CD所在的直线为L CD,①L CD过点B(与G刚好有交点),设L CD:y=kx+b,将C(﹣3,﹣1),B(3,1)代入y=kx+b,得y=x,∴t=,②L CD与G相切,即与图象只有一个交点,设L CD:y=kx+b,将C(﹣3,﹣1),D(1,t)代入y=kx+b,得y=x+,联立直线和抛物线解析式得,得x2﹣=0,∴Δ=﹣4×=0∴t=﹣33﹣16,∴(﹣33﹣16)≤t≤,故答案为:(﹣33﹣16)≤t≤,(5)∵b=﹣4,∴y=x2﹣4x+c,抛物线对称轴x=2,则函数W仍为原函数,①当c<2时,y max=f(c﹣1)=1,∴c=1,②当2<c<3时,f(c﹣1)=c2﹣5c+5,f(c)=c2﹣3c,f(c﹣1)>f(c),c<,f(c﹣1)=1,c=1或c=4(舍去),f(c﹣1)<f(c),c≤,f(c)1,c=(舍去),③c≥3,y max=f(c)=1,∴c=或c=(舍去),∴综上所述c=1 或者c=,故答案为:1或者.20.解:(Ⅰ)当b=1,c=﹣3时,二次函数解析式为y=x2+2x﹣3=(x+1)2﹣4,∴x=﹣1在﹣2≤x≤2的范围内,此时函数取得最小值为﹣4,(Ⅱ)y=x2+2bx+3,的对称轴为x=﹣b,①若﹣b<0,即b>0时,当x=0时,y有最小值为3,②若0≤b≤4,即:﹣4≤b≤0时,当x=﹣b时,y有最小值﹣b2+3;③若﹣b>4,即b<﹣4时,当x=4时,y有最小值为8b+19,(Ⅲ)当c=4b2时,二次函数的解析式为y=x2+2bx+4b2,它的开口向上,对称轴为x=﹣b的抛物线,①若﹣b<2b,即b>0时,在自变量x的值满足2b≤x≤2b+3的情况下,与其对应的函数值y随x增大而增大,∴当x=2b时,y=(2b)2+2b×2b+(2b)2=12b2为最小值,∴12b2=21,∴b=或b=﹣(舍)∴二次函数的解析式为y=x2+x+7,②若2b≤﹣b≤2b+3,即﹣1≤b≤0,当x=﹣b时,代入y=x2+2bx+4b2,得y最小值为3b2,∴3b2=21∴b=﹣(舍)或b=(舍),③若﹣b>2b+3,即b<﹣1,在自变量x的值满足2b≤x≤2b+3的情况下,与其对应的函数值y随x增大而减小,∴当x=2b+3时,代入二次函数的解析式为y=x2+2bx+4b2中,得y最小值为12b2+18b+9,∴12b2+18b+9=21,∴b=﹣2或b=(舍),∴二次函数的解析式为y=x2﹣4x+16.综上所述,b=或b=﹣2,此时二次函数的解析式为y=x2+x+7或y=x2﹣4x+16 21.解:(1)∵函数y=﹣x2+(m﹣1)x+m(m为常数),∴△=(m﹣1)2+4m=(m+1)2≥0,∴该函数的图象与x轴始终有交点;(2)y=﹣x2+(m﹣1)x+m=﹣(x﹣)2+,把x=代入y=(x+1)2得:y=(+1)2=,则不论m为何值,该函数的图象的顶点都在函数y=(x+1)2的图象上;(3)设函数z=,当m=﹣1时,z有最小值为0;当m<﹣1时,z随m的增大而减小;当m>﹣1时,z随m的增大而增大,当m=﹣2时,z=;当m=3时,z=4,则当﹣2≤m≤3时,该函数图象的顶点坐标的取值范围是0≤≤4.22.解:(1)∵抛物线y=x2+2(m﹣1)x﹣4m﹣1与x轴交点的横坐标为﹣1,,∴x2+2(m﹣1)x﹣4m﹣1=0的解为x=﹣1或x=,由4x2+4(m﹣1)x﹣4m﹣1=0得(2x)2+2(m﹣1)•2x﹣4m﹣1=0,∴2x=﹣1或2x=,∴x1=﹣,x2=.故答案为:x1=﹣,x2=.(2)∵y=x2+2(m﹣1)x﹣4m﹣1=x2+2(m﹣1)x+(m﹣1)2﹣(m﹣1)2﹣4m﹣1=(x+m﹣1)2﹣m2﹣2m﹣2,∴抛物线顶点坐标为(﹣m+1,﹣m2﹣2m﹣2),令﹣m+1=x,﹣m2﹣2m﹣2=y,则y=﹣x2+4x﹣5,∴抛物线顶点所在抛物线解析式为y=﹣x2+4x﹣5.(3)由题意得﹣5≤﹣m2﹣2m﹣2<﹣2,∵令y=﹣m2﹣2m﹣2=﹣(m+1)2﹣1,∴抛物线开口向下,对称轴为值m=﹣1,顶点坐标为(﹣1,﹣1),把y=﹣5代入y=﹣(m+1)2﹣1得﹣5=﹣(m+1)2﹣1,解得m=1或m=﹣3,把y=﹣2代入y=﹣(m+1)2﹣1得﹣2=﹣(m+1)2﹣1,解得m=0或m=﹣2,∴﹣5≤y<﹣2时,﹣3≤m<﹣2或0<m≤1.23.(1)证明:∵抛物线C1的解析式为y1=a(x﹣h)2+2,∴抛物线的顶点为(h,2).当x=h时,y2=kx﹣kh+2=2,∴直线l恒过抛物线C1的顶点.(2)解:∵a>0,h=1,∴当x=1时,y1=a(x﹣h)2+2取得最小值2.又∵当t≤x≤t+3时,二次函数y1=a(x﹣h)2+2的最小值为2,∴,∴﹣2≤t≤1.(3)解:令y1=y2,则a(x﹣h)2+2=k(x﹣h)+2,解得:x1=h,x2=h+.∵线段PQ(不含端点P,Q)上至少存在一个横坐标为整数的点,∴>1或<﹣1.∵k>0,∴0<a<k或﹣k<a<0.又∵1≤k≤3,∴﹣1<a<0或0<a<1.24.解:(1)法一:依题意,得,解之,得,∴抛物线解析式为y=﹣x2+3x+4.法二:依题意,得y=a(x﹣4)(x+1)(a≠0),将C(0,4)坐标代入得,﹣3a=3,解得a=﹣1,∴抛物线解析式为y=﹣x2+3x+4.法三:依题意,得,解之,得,∴抛物线解析式为y=﹣x2+3x+4.(2)如图1,延长DM交x轴于点H,∵OA=OC=4,OA⊥OC,DM∥y轴交AC于点M,∴∠OAC=45°,∠AHM=90°,∵DN⊥AC于点N,∴∠AMH=∠DMN=45°,∴△DMN是等腰直角三角形,∴.设直线AC的解析式为y=kx+b'(k≠0),将A(4,0)、C(0,4)两点坐标代入得,解得,所以直线AC的解析式为y=﹣x+4,设D(m,﹣m2+3m+4),∴M(m,﹣m+4),∴DM=﹣m2+3m+4﹣(﹣m+4)=﹣m2+4m=﹣(m﹣2)2+4,∴当m=2时,DM最大值为4,此时D(2,6),∵△DMN是等腰直角三角形,∴△DMN周长=,∴△DMN周长的最大值为,此时D(2,6).(3)如图2,设Q(m,﹣m+4),P(n,﹣n2+3n+4),∴.设直线OP的解析式为y=kx(k≠0),将Q(m,﹣m+4)点代入得,∴直线OP的解析式,将P(n,﹣n2+3n+4)坐标代入得,,所以,化简得,∴,∵∴当n=2时,的最大值为1.25.解:(1)∵抛物线y=ax2+bx﹣1(a>0)经过点(2,﹣1),∴4a+2b﹣1=﹣1,∴b=﹣2a.∴y=ax2﹣2ax﹣1,∴该抛物线的对称轴为直线x=1.∵当1﹣2m≤x≤1+3m时,y的最小值为﹣2.∴当x=1时,a﹣2a﹣1=﹣2,解得:a=1.∴y=x2﹣2x﹣1;(2)由(1)知,抛物线为y=(x﹣1)2﹣2.∵当n<x<n+1时,y的取值范围是2n+1<y<2n+4,∴y不能取最小值﹣2,即n,n+1在对称轴x=1的同侧.分两种情况讨论:①n+1<1,即n<0时,在对称轴左侧y随x的增大而减小,当x=n时,(n﹣1)2﹣2=2n+4,解得:n=﹣1或n=5,当x=n+1时,(n+1﹣1)2﹣2=2n+1,解得:n=﹣1或n=3,∵n<0,∴n=﹣1.②n>1时,在对称轴左侧y随x的增大而增大,当x=n时,(n﹣1)2﹣2=2n+1,整理得:n2﹣4n﹣2=0.当x=n+1时,(n+1﹣1)2﹣2=2n+4,整理得:n2﹣2n﹣6=0.∵n2﹣4n﹣2=0与n2﹣2n﹣6=0不一致,∴不合题意,舍去.综上所述,当n<x<n+1时,y的取值范围是2n+1<y<2n+4时,n=﹣1.。
中考数学真题模拟题汇编 二次函数抛物线(带答案解析)
中考数学真题模拟题汇编二次函数抛物线(带答案解析)姓名:_______________班级:_______________考号:_______________题号一、简答题二、综合题三、选择题四、填空题总分得分一、简答题(每空?分,共?分)1、如图,抛物线y=﹣经过A(4,0),C(0,4)两点,点B是抛物线与x轴的另一个交点,点E是OC 的中点,作直线AC、点M在抛物线上,过点M作MD⊥x轴,垂足为点D,交直线AC于点N,设点M的横坐标为m,MN 的长度为d.(1)直接写出直线AC的函数关系式;(2)求抛物线对应的函数关系式;(3)求d关于m的函数关系式;(4)当以点M、N、E、O为顶点的四边形为平行四边形时,直接写出m的值.2、如图,抛物线y=﹣(x﹣1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(﹣1,0).(1)求点B,C的坐标;(2)判断△CDB的形状并说明理由;(3)将△COB沿x轴向右平移t个单位长度(0<t<3)得到△QPE.△QPE与△CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围.评卷人得分3、如图,抛物线y=﹣x2+2x+3与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为D.(1)直接写出A、B、C三点的坐标和抛物线的对称轴;(2)连接BC,与抛物线的对称轴交于点E,点P为线段BC上的一个动点,过点P作PF∥DE交抛物线于点F,设点P 的横坐标为m;①用含m的代数式表示线段PF的长,并求出当m为何值时,四边形PEDF为平行四边形?②设△BCF的面积为S,求S与m的函数关系式.4、如图,在平面直角坐标系中,一次函数分别与x轴、y轴相交于A、B两点,二次函数的图像经过点A.(1)试证明二次函数的图像与x轴有两个交点;(2)若二次函数图像的顶点D在直线AB上,求m,n的值;(3)设二次函数的图像与x轴的另一个交点为点C,顶点D关于x轴的对称点设为点E,以AE,AC 为邻边作平行四边形EACF,顶点F能否在该二次函数的图像上?如果在,求出这个二次函数的表达式;如果不在,请说明理由?二、综合题评卷人得分(每空?分,共?分)5、如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,且A点坐标为(﹣3,0),经过B点的直线交抛物线于点D(﹣2,﹣3).(1)求抛物线的解析式;(2)过x轴上点E(a,0)(E点在B点的右侧)作直线EF∥BD,交抛物线于点F,求直线BD和直线EF的解析式;(3)是否存在实数a使四边形BDFE是平行四边形?如果存在,求出满足条件的a;如果不存在,请说明理由.6、如图,已知抛物线=22-2与轴交于A,B两点(点A在点B 的左侧),与轴交于点C.(1)写出以A,B,C为顶点的三角形的面积;(2)过点E(0,6)且与轴平行的直线l1与抛物线相交于M,N两点(点M在点N的左侧),以MN为一边,抛物线上的任一点P为另一顶点作平行四边形。
人教版九年级上册二次函数和动点题型整理(解析版)
授课类型C专题( 二次函数动点问题)授课日期及时段教学内容C专题——二次函数动点问题专题导入1.如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A沿AC向点C以1cm/s的速度运动,同时点Q从点C沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积的最小值为(D)A.19cm2 B.16cm2 C.12cm2 D.15cm22. 如图,正方形ABCD中,AB=4cm,点E、F同时从C点出发,以1cm/s的速度分别沿CB﹣BA、CD﹣DA运动,到点A时停止运动.设运动时间为t(s),△AEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为(D )3.如图,的顶点在抛物线上,将绕点顺时针旋转,得到,边与该抛物线交于点,则点的坐标为(C).A.B.C.D.4.如图,△ABC是直角三角形,∠A=90°,AB=8cm,AC=6cm,点P从点A出发,沿AB方向以2cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则△PAQ的最大面积是(B)A.8cm2 B.9cm2 C.16cm2 D.18cm25.如图,在▱ABCD中,AB=6,BC=10,AB⊥AC,点P从点B出发沿着B→A→C的路径运动,同时点Q从点A 出发沿着A→C→D的路径以相同的速度运动,当点P到达点C时,点Q随之停止运动,设点P运动的路程为x,y=PQ2,下列图象中大致反映y与x之间的函数关系的是(B)A.B.C.D.6.如图,在平面直角坐标系xOy中,A(2,0),B(0,2),点M在线段AB上,记MO+MP最小值的平方为s,当点P沿x轴正向从点O运动到点A时(设点P的横坐标为x),s关于x的函数图象大致为( A )A.B.C.D.B.7.如图,已知等腰直角的直角边长与正方形的边长均为厘米,与在同一直线上,开始时点与点重合,让以每秒厘米的速度向左运动,最终点与点重合,则重叠部分面积(厘米)与时间(秒)之间的函数关系式为________.8.二次函数的函数图象如图,点位于坐标原点,点在y轴的正半轴上,点在二次函数位于第一象限的图象上,,, 都是直角顶点在抛物线上的等腰直角三角形,则的斜边长为_____20(自己做的)_______.9.如图,已知 A 、B 是线段MN 上的两点,MN4,MA1,MB1.以A 为中心顺 时针旋转点M ,以B 为中心逆时针旋转点N ,使MN 两点重合成一点C ,构成△ABC ,设AB x.(1)则x 的取值范围是____1<x<2_____;(2)△ABC 的最大面积是__22_______. C10.如图,将二次函数2714y x ⎛⎫=-- ⎪⎝⎭的图像向上平移m 个单位得到二次函数2y 的图像,且与二次函数()2124y x =+-的图像相交于A ,过A 作x 轴的平行线分别交1y ,2y 于点B , C ,当12AC BA =时, m 的值是______1643____.11.如图(1),在平面直角坐标系中,点A(0,-6),点B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=44直角边CD在y 如图1,在平面直角坐标系中,点A(0,-6),点B(6,0).RT△CDE,∠CDE=90°,CD=4,DE=3轴上,且点C与点A重合.Rt△CDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:(1)如图(2),当Rt△CDE运动到点D与点O重合时,设CE交AB于点M,求∠BME的度数.(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.(3)在Rt△CDE的运动过程中,设AC=h,△OAB与△CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.12.如图1,等腰Rt△ABC和等腰Rt△DEF中,∠BCA=∠FDE=90°,AB=4,EF=8.点A、C、D、E在一条直线上,等腰Rt△DEF静止不动,初始时刻,C与D重合,之后等腰Rt△ABC从C出发,沿射线CE方向以每秒1个单位长度的速度匀速运动,当A点与E点重合时,停止运动.设运动时间为t秒(t≥0).(1)直接写出线段AC、DE的长度;(2)在等腰Rt△ABC的运动过程中,设等腰Rt△ABC和等腰Rt△DEF重叠部分的面积为S,请直接写出S与t的函数关系式和相应的自变量t的取值范围;(3)在整个运动过程中,当线段AB与线段EF相交时,设交点为点M,点O为线段CE的中点;是否存在这样的t,使点E、O、M三点构成的三角形是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.(课堂精粹)在直角坐标系中,已知三角形三个顶点的坐标,如果三角形的三条边中有一条边与坐标轴平行,可以直接运用三角形面积公式求解三角形面积.如果三角形的三条边与坐标轴都不平行,则通常有以下方法:ED CBAF ED A BC D FEDCBAh45︒D CBA1.如图,过三角形的某个顶点作与x 轴或y 轴的平行线,将原三角形分割成两个满足一条边与坐标轴平行的三角形,分别求出面积后相加.1122ABC ACD ADB C B ACE CEB A B S S S AD y y S S CE x x ∆∆∆∆∆=+=⋅-=+=⋅-其中D ,E 两点坐标可以通过BC 或AB 的直线方程以及A 或C 点坐标得到.2.如图,首先计算三角形的外接矩形的面积,然后再减去矩形内其他各块面积.ABC DEBF DAC AEB CBF S S S S S ∆∆∆∆=---.所涉及的各块面积都可以通过已知点之间的坐标差直接求得. 3.如图,通过三个梯形的组合,可求出三角形的面积.该方法不常用.()()()()()()111222ABC ADEB CFEB ADFC A B A B B C B c C A C A S S S S x x y y x x y y x x y y ∆=-++=-++-++-+4. 如图,作三角形的高,运用三角形的面积公式求解四边形的面积.该方法不常用,如果三角形的一条边与0x y ±=平行,则可以快速求解.专题导入(画竹必先成竹于胸!)1.已知二次函数)0(2≠++=acbxaxy的图像过点E(2,3),对称轴为x=1,它的图像与x轴交于两点A10,)0(),0,(22212121=+xxxxxBx<且。
初三数学二次函数试题答案及解析
初三数学二次函数试题答案及解析1.如图,已知抛物线图象经过A(-1,0),B(4,0)两点.(1)求抛物线的解析式;(2)若C(m,m-1)是抛物线上位于第一象限内的点,D是线段AB上的一个动点(不与A、B重合),过点D分别作DE∥BC交AC于E,DF∥AC交BC于F.①求证:四边形DECF是矩形;②连结EF,线段EF的长是否存在最小值?若存在,求出EF的最小值;若不存在,请说明理由.【答案】(1);(2)①证明见解析;②2.【解析】(1)根据待定系数法即可求得;(2)把C(m,m-1)代入求得点C的坐标,从而求得AH=4,CH=2,BH=1,AB=5,然后根据,∠AHC=∠BHC=90°得出△AHC∽△CHB,根据相似三角形的对应角相等求得∠ACH=∠CBH,因为∠CBH+∠BCH=90°所以∠ACH+∠BCH=90°从而求得∠ACB=90°,先根据有两组对边平行的四边形是平行四边形求得四边形DECF是平行四边形,进而求得DECF是矩形;(3)根据矩形的对角线相等,求得EF=CD,因为当CD⊥AB时,CD的值最小,此时CD的值为2,所以EF的最小值是2;试题解析:(1)∵抛物线图象经过A(-1,0),B(4,0)两点,∴根据题意,得,解得,所以抛物线的解析式为:;(2)①证明:∵把C(m,m-1)代入得∴,解得:m=3或m=-2,∵C(m,m-1)位于第一象限,∴,∴m>1,∴m=-2舍去,∴m=3,∴点C坐标为(3,2),由A(-1,0)、B(3,0)、C(3,2)得 AH=4,CH=2,BH=1,AB=5过C点作CH⊥AB,垂足为H,则∠AHC=∠BHC=90°,∵,∠AHC=∠BHC=90°∴△AHC∽△CHB,∴∠ACH=∠CBH,∵∠CBH+∠BCH=90°∴∠ACH+∠BCH=90°∴∠ACB=90°,∵DE∥BC,DF∥AC,∴四边形DECF是平行四边形,∴DECF是矩形;②存在;连接CD∵四边形DECF是矩形,∴EF=CD,当CD⊥AB时,CD的值最小,∵C(3,2),∴DC的最小值是2,∴EF的最小值是2;【考点】二次函数综合题.2.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B,C重合),现将△PCD沿直线PD折叠,使点C落下点C′处;作∠BPC′的平分线交AB于点E.设BP=x,BE=y,那么y关于x的函数图象大致应为()A.B.C.D.【答案】C.【解析】∵将△PCD沿直线PD折叠,使点C落下点C′处;∴∠CPD=∠C′PD=∠CPC′,∵PE平分∠BPC′,∴∠BPE=∠C′PE=∠BPC′,又∵∠BPC′+∠CPC′=180°,,∴∠BPE+∠CPD=90°,在△PCD中,∵∠C=90°,∴∠CPD+∠PDC=90°,∴∠BPE=∠PDC,又∵∠B=∠C=90°,∴△PCD∽△EBP,∴,即,∴y=x(5﹣x)=﹣(x﹣)2+,只有C选项图象符合.故选C.【考点】动点问题的函数图象.3.如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(-2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.(1)求抛物线的函数表达式;(2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标;(3)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,直接写出点P的坐标;若不存在,请说明理由.【答案】(1)抛物线为y=-x2+x+4.(2)M的坐标为(6,4)或(3-,-4)或(3+,-4).(3)点P的坐标为(4+,)或(4-,)或(-1+,-8+2)或(-1-,-8-2).【解析】(1)解析式已存在,y=ax2+bx+4,我们只需要根据特点描述求出a,b即可.由对称轴为-,又过点A(-2,0),所以函数表达式易得.(2)四边形为平行四边形,则必定对边平行且相等.因为已知MN∥BC,所以MN=BC,即M、N的位置如B、C位置关系,则可分2种情形,①N点在M点右下方,即M向下平行4个单位,向右2个单位与N重合;②M点在N右下方,即N向下平行4个单位,向右2个单位与M重合.因为M在抛物线,可设坐标为(x,-x2+x+4),易得N坐标.由N在x轴上,所以其纵坐标为0,则可得关于x的方程,进而求出x,求出M的坐标.(3)使△PBD≌△PBC,易考虑∠CBD的平分线与抛物线的交点.确定平分线可因为BC=BD,可作等腰△BCD,利用三线合一,求其中线所在方程,进而与抛物线联立得方程组,解出P即可.试题解析:(1)∵抛物线y=ax2+bx+4交x轴于A(-2,0),∴0=4a-2b+4,∵对称轴是x=3,∴-=3,即6a+b=0,两关于a、b的方程联立解得 a=-,b=,∴抛物线为y=-x2+x+4.(2)∵四边形为平行四边形,且BC∥MN,∴BC=MN.①N点在M点右下方,即M向下平移4个单位,向右平移2个单位与N重合.设M(x,-x2+x+4),则N(x+2,-x2+x),∵N在x轴上,∴-x2+x=0,解得 x=0(M 与C 重合,舍去),或x=6, ∴x M =6,∴M (6,4).②M 点在N 右下方,即N 向下平行4个单位,向右2个单位与M 重合. 设M (x ,- x 2+x+4),则N (x-2,-x 2+x+8), ∵N 在x 轴上, ∴-x 2+x+8=0,解得 x=3-,或x=3+,∴x M =3-,或3+.∴M (3-,-4)或(3+,-4)综上所述,M 的坐标为(6,4)或(3-,-4)或(3+,-4).(3)∵OC=4,OB=3, ∴BC=5.如果△PBD ≌△PBC ,那么BD=BC=5, ∵D 在x 轴上,∴D 为(-2,0)或(8,0).①当D 为(-2,0)时,连接CD ,过B 作直线BE 平分∠DBC 交CD 于E ,交抛物线于P 1,P 2, 此时△P 1BC ≌△P 1BD ,△P 2BC ≌△P 2BD , ∵BC=BD ,∴E 为CD 的中点,即E (-1,2),设过E (-1,2),B (3,0)的直线为y=kx+b ,则,解得,∴BE :y=-x+. 设P (x ,y ),则有,解得 ,或,则P 1(4+,),P 2(4-,).②当D 为(8,0)时,连接CD ,过B 作直线BF 平分∠DBC 交CD 于F ,交抛物线于P 3,P 4, 此时△P 3BC ≌△P 3BD ,△P 4BC ≌△P 4BD , ∵BC=BD ,∴F 为CD 的中点,即E (4,2),设过E (4,2),B (3,0)的直线为y=kx+b ,则,解得,∴BF :y=2x-6. 设P (x ,y ),则有, 解得或,则P3(-1+,-8+2),P4(-1-,-8-2).综上所述,点P的坐标为(4+,)或(4-,)或(-1+,-8+2)或(-1-,-8-2).【考点】二次函数综合题.4.将二次函数化为的形式,结果为()A.B.C.D.【答案】D.【解析】. 故选D.【考点】配方法的应用.5.某公司在甲、乙两地同时销售某种品牌的汽车.已知在甲、乙两地的销售利润y(单位:万元)与销售量x(单位:辆)之间分别满足:,,若该公司在甲,乙两地共销售15辆该品牌的汽车,则能获得的最大利润为A.30万元B.40万元C.45万元D.46万元【答案】D.【解析】设在甲地销售x辆,则在乙地销售(15-x)量,根据题意得出:W=y1+y2=-x2+10x+2(15-x)=-x2+8x+30,∴最大利润为:(万元),故选D.【考点】二次函数的应用.6.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(-2,4),过点A作AB⊥y轴,垂足为B,连接OA.(1)求△OAB的面积;(2)若抛物线y=-x2-2x+c经过点A.①求c的值;②将抛物线向下平移m个单位,使平移后得到的抛物线顶点落在△OAB的内部(不包括△OAB 的边界),求m的取值范围(直接写出答案即可).【答案】(1)4 (2)①c=4 ②1<m<3【解析】(1)根据点A的坐标是(-2,4),得出AB,BO的长度,即可得出△OAB的面积;(2)①把点A的坐标(-2,4)代入y=-x2-2x+c中,直接得出即可;②利用配方法求出二次函数解析式即可得出顶点坐标,根据AB的中点E的坐标以及F点的坐标即可得出m的取值范围.解:(1)∵点A的坐标是(-2,4),AB⊥y轴,∴AB=2,OB=4,∴△OAB的面积为:×AB×OB=×2×4=4,(2)①把点A的坐标(-2,4)代入y=-x2-2x+c中,-(-2)2-2×(-2)+c=4,∴c=4,②∵y=-x2-2x+4=-(x+1)2+5,∴抛物线顶点D的坐标是(-1,5),过点D作DE⊥AB于点E交AO于点F,AB的中点E的坐标是(-1,4),OA的中点F的坐标是(-1,2),∴m的取值范围是:1<m<3.7.如图所示,一个二次函数的图象经过点A,C,B三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴的正半轴上,且AB=OC.则这个二次函数的解析式是________.【答案】y=-x2+x+5【解析】∵A(-1,0),B(4,0),∴AO=1, OB=4,即AB=AO+OB=1+4=5.∴OC=5,即点C的坐标为(0,5).设图象经过A,C,B三点的二次函数的解析式为y=a(x-4)(x+1),∵点C(0,5)在图象上.∴5=a(0-4)(0+1),即a=-.∴所求的二次函数解析式为y=- (x-4)(x+1).即y=-x2+x+5.8.如图,已知抛物线与x轴交于A(-1,0)、E(3,0)两点,与y轴交于点B(0,3)。
人教全国中考数学二次函数的综合中考真题汇总含答案解析
一、二次函数 真题与模拟题分类汇编(难题易错题)1.如图:在平面直角坐标系中,直线l :y=13x ﹣43与x 轴交于点A ,经过点A 的抛物线y=ax 2﹣3x+c 的对称轴是x=32. (1)求抛物线的解析式;(2)平移直线l 经过原点O ,得到直线m ,点P 是直线m 上任意一点,PB ⊥x 轴于点B ,PC ⊥y 轴于点C ,若点E 在线段OB 上,点F 在线段OC 的延长线上,连接PE ,PF ,且PE=3PF .求证:PE ⊥PF ;(3)若(2)中的点P 坐标为(6,2),点E 是x 轴上的点,点F 是y 轴上的点,当PE ⊥PF 时,抛物线上是否存在点Q ,使四边形PEQF 是矩形?如果存在,请求出点Q 的坐标,如果不存在,请说明理由.【答案】(1)抛物线的解析式为y=x 2﹣3x ﹣4;(2)证明见解析;(3)点Q 的坐标为(﹣2,6)或(2,﹣6). 【解析】 【分析】(1)先求得点A 的坐标,然后依据抛物线过点A ,对称轴是x=32列出关于a 、c 的方程组求解即可;(2)设P (3a ,a ),则PC=3a ,PB=a ,然后再证明∠FPC=∠EPB ,最后通过等量代换进行证明即可;(3)设E (a ,0),然后用含a 的式子表示BE 的长,从而可得到CF 的长,于是可得到点F 的坐标,然后依据中点坐标公式可得到22x x x x Q P F E ++=,22y y y yQ P F E ++=,从而可求得点Q 的坐标(用含a 的式子表示),最后,将点Q 的坐标代入抛物线的解析式求得a 的值即可. 【详解】(1)当y=0时,140 33x-=,解得x=4,即A(4,0),抛物线过点A,对称轴是x=32,得161203322a ca-+=⎧⎪-⎨-=⎪⎩,解得14ac=⎧⎨=-⎩,抛物线的解析式为y=x2﹣3x﹣4;(2)∵平移直线l经过原点O,得到直线m,∴直线m的解析式为y=13x.∵点P是直线1上任意一点,∴设P(3a,a),则PC=3a,PB=a.又∵PE=3PF,∴PC PBPF PE=.∴∠FPC=∠EPB.∵∠CPE+∠EPB=90°,∴∠FPC+∠CPE=90°,∴FP⊥PE.(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.∵CF=3BE=18﹣3a,∴OF=20﹣3a.∴F(0,20﹣3a).∵PEQF为矩形,∴22x x x xQ P F E++=,22y y y yQ P F E++=,∴Q x+6=0+a,Q y+2=20﹣3a+0,∴Q x=a﹣6,Q y=18﹣3a.将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).∴Q(﹣2,6).如下图所示:当点E 在点B 的右侧时,设E (a ,0),则BE=a ﹣6.∵CF=3BE=3a ﹣18, ∴OF=3a ﹣20. ∴F (0,20﹣3a ). ∵PEQF 为矩形,∴22x x x x Q P F E ++=,22y y y yQ P F E ++=, ∴Q x +6=0+a ,Q y +2=20﹣3a+0, ∴Q x =a ﹣6,Q y =18﹣3a .将点Q 的坐标代入抛物线的解析式得:18﹣3a=(a ﹣6)2﹣3(a ﹣6)﹣4,解得:a=8或a=4(舍去). ∴Q (2,﹣6).综上所述,点Q 的坐标为(﹣2,6)或(2,﹣6). 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a 的式子表示点Q 的坐标是解题的关键.2.(2017南宁,第26题,10分)如图,已知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a 的值、点A 的坐标及抛物线的对称轴;(2)点P 为抛物线的对称轴上一动点,若△PAD 为等腰三角形,求出点P 的坐标; (3)证明:当直线l 绕点D 旋转时,11AM AN+均为定值,并求出该定值.【答案】(1)a =13-,A 0),抛物线的对称轴为x 2)点P 的坐标为04);(3)2. 【解析】试题分析:(1)由点C 的坐标为(0,3),可知﹣9a =3,故此可求得a 的值,然后令y =0得到关于x 的方程,解关于x 的方程可得到点A 和点B 的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO =60°,依据AE 为∠BAC 的角平分线可求得∠DAO =30°,然后利用特殊锐角三角函数值可求得OD =1,则可得到点D 的坐标.设点P 的,a ).依据两点的距离公式可求得AD 、AP 、DP 的长,然后分为AD =PA 、AD =DP 、AP =DP 三种情况列方程求解即可;(3)设直线MN 的解析式为y =kx +1,接下来求得点M 和点N 的横坐标,于是可得到AN 的长,然后利用特殊锐角三角函数值可求得AM 的长,最后将AM 和AN 的长代入化简即可.试题解析:(1)∵C (0,3),∴﹣9a =3,解得:a =13-.令y =0得:290ax a --=,∵a ≠0,∴290x --=,解得:x =x =∴点A 0),B (0),∴抛物线的对称轴为x(2)∵OA OC =3,∴tan ∠CAO ∴∠CAO =60°.∵AE 为∠BAC 的平分线,∴∠DAO =30°,∴DO =1,∴点D 的坐标为(0,1).设点P a ).依据两点间的距离公式可知:AD 2=4,AP 2=12+a 2,DP 2=3+(a ﹣1)2. 当AD =PA 时,4=12+a 2,方程无解.当AD =DP 时,4=3+(a ﹣1)2,解得a =0或a =2(舍去),∴点P 0).当AP =DP 时,12+a 2=3+(a ﹣1)2,解得a =﹣4,∴点P ,﹣4).综上所述,点P 04).(3)设直线AC 的解析式为y =mx +3,将点A 的坐标代入得:30+=,解得:m ∴直线AC 的解析式为3y =+. 设直线MN 的解析式为y =kx +1.把y =0代入y =kx +1得:kx +1=0,解得:x =1k -,∴点N 的坐标为(1k-,0),∴AN =1k-.将3y =+与y =kx +1联立解得:x,∴点M .过点M 作MG ⊥x 轴,垂足为G .则AG =33k +-.∵∠MAG =60°,∠AGM =90°,∴AM =2AG 33k +-2323k k --,∴11AM AN +323231k k --3232k -3(32(31)k k - =32. 点睛:本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式,分类讨论是解答问题(2)的关键,求得点M 的坐标和点N 的坐标是解答问题(3)的关键.3.抛物线2y x bx c =-++(b ,c 为常数)与x 轴交于点()1,0x 和()2,0x ,与y 轴交于点A ,点E 为抛物线顶点。
九年级上册数学 二次函数中考真题汇编[解析版]
九年级上册数学 二次函数中考真题汇编[解析版]一、初三数学 二次函数易错题压轴题(难)1.如图,抛物线()21y x a x a =-++与x 轴交于,A B 两点(点A 位于点B 的左侧),与y轴的负半轴交于点C .()1求点B 的坐标.()2若ABC 的面积为6.①求这条抛物线相应的函数解析式.②在拋物线上是否存在一点,P 使得POB CBO ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)(1,0);(2)①223y x x =+-;②存在,点P 的坐标为1133313++⎝⎭或53715337-+-⎝⎭. 【解析】【分析】(1)直接令0y =,即可求出点B 的坐标;(2)①令x=0,求出点C 坐标为(0,a ),再由△ABC 的面积得到12(1−a)•(−a)=6即可求a 的值,即可得到解析式;②当点P 在x 轴上方时,直线OP 的函数表达式为y=3x ,则直线与抛物线的交点为P ;当点P 在x 轴下方时,直线OP 的函数表达式为y=-3x ,则直线与抛物线的交点为P ;分别求出点P 的坐标即可.【详解】解:()1当0y =时,()210,x a x a -++= 解得121,.x x a ==点A 位于点B 的左侧,与y 轴的负半轴交于点,C0,a ∴<∴点B 坐标为()1,0.()2①由()1可得,点A 的坐标为(),0a ,点C 的坐标为()0,,0,a a <1,AB a OC a ∴=-=- ABC 的面积为6,()()116,2a a ∴--⋅= 123,4a a ∴=-=.0,a < 3a ∴=-22 3.y x x =+-②点B 的坐标为()1,0,点C 的坐标为()0,3-,∴设直线BC 的解析式为3,y kx =-则03,k =-3k ∴=.,POB CBO ∠=∠∴当点P 在x 轴上方时,直线//OP 直线,BC∴直线OP 的函数解析式3,y x =为则23,23,y x y x x =⎧⎨=+-⎩1112x y ⎧=⎪⎪∴⎨⎪=⎪⎩(舍去),2212x y ⎧+=⎪⎪⎨⎪=⎪⎩∴点的P坐标为1322⎛⎫+ ⎪ ⎪⎝⎭; 当点P 在x 轴下方时,直线'OP 与直线OP 关于x 轴对称,则直线'OP 的函数解析式为3,y x =-则23,23,y x y x x =-⎧⎨=+-⎩1152x y ⎧-=⎪⎪∴⎨⎪=⎪⎩舍去),2252x y ⎧-=⎪⎪⎨⎪=⎪⎩∴点P'的坐标为53715337,⎛⎫-+-⎪ ⎪⎝⎭综上可得,点P的坐标为1133313,⎛⎫++⎪⎪⎝⎭或53715337,⎛⎫-+-⎪⎪⎝⎭【点睛】本题考查二次函数的图象及性质,一次函数的性质,熟练掌握二次函数的图象及性质,结合数形结合的思想和分类讨论的思想解题是解本题的关键.2.在平面直角坐标系中,将函数y=x2﹣2mx+m(x≤2m,m为常数)的图象记为G,图象G的最低点为P(x0,y0).(1)当y0=﹣1时,求m的值.(2)求y0的最大值.(3)当图象G与x轴有两个交点时,设左边交点的横坐标为x1,则x1的取值范围是.(4)点A在图象G上,且点A的横坐标为2m﹣2,点A关于y轴的对称点为点B,当点A不在坐标轴上时,以点A、B为顶点构造矩形ABCD,使点C、D落在x轴上,当图象G 在矩形ABCD内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.【答案】(1)512+或﹣1;(2)14;(3)0<x1<1;(4)m=0或m>43或23≤m<1【解析】【分析】(1)分m>0,m=0,m<0三种情形分别求解即可解决问题;(2)分三种情形,利用二次函数的性质分别求解即可;(3)由(1)可知,当图象G与x轴有两个交点时,m>0,求出当抛物线顶点在x轴上时m的值,利用图象法判断即可;(4)分四种情形:①m<0,②m=0,③m>1,④0<m≤1,分别求解即可解决问题.【详解】解:(1)如图1中,当m>0时,∵y=x2﹣2mx+m=(x﹣m)2﹣m2+m,图象G是抛物线在直线y=2m的左侧部分(包括点D),此时最底点P(m,﹣m2+m),由题意﹣m2+m=﹣1,解得m=51+或51-+(舍弃),当m=0时,显然不符合题意,当m<0时,如图2中,图象G是抛物线在直线y=2m的左侧部分(包括点D),此时最底点P是纵坐标为m,∴m=﹣1,综上所述,满足条件的m的值为512或﹣1;(2)由(1)可知,当m>0时,y0=﹣m2+m=﹣(m﹣12)2+14,∵﹣1<0,∴m=12时,y0的最大值为14,当m=0时,y0=0,当m<0时,y0<0,综上所述,y0的最大值为14;(3)由(1)可知,当图象G与x轴有两个交点时,m>0,当抛物线顶点在x轴上时,4m2﹣4m=0,∴m=1或0(舍弃),∴观察观察图象可知,当图象G与x轴有两个交点时,设左边交点的横坐标为x1,则x1的取值范围是0<x1<1,故答案为0<x1<1;(4)当m<0时,观察图象可知,不存在点A满足条件,当m=0时,图象G在矩形ABCD内的部分所对应的函数值y随x的增大而减小,满足条件,如图3中,当m>1时,如图4中,设抛物线与x轴交于E,F,交y轴于N,观察图象可知当点A在x轴下方或直线x=﹣m和y轴之间时(可以在直线x=﹣m上)时,满足条件.则有(2m﹣2)2﹣2m(2m﹣2)+m<0,解得m>43,或﹣m≤2m﹣2<0,解得23≤m<1(不合题意舍弃),当0<m≤1时,如图5中,当点A在直线x=﹣m和y轴之间时(可以在直线x=﹣m上)时,满足条件.即或﹣m≤2m﹣2<0,解得23≤m <1, 综上所述,满足条件m 的值为m =0或m >43或23≤m <1. 【点睛】本题属于二次函数综合题,考查了二次函数的性质,矩形的性质,最值问题,不等式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考压轴题.3.已知点P(2,﹣3)在抛物线L :y =ax 2﹣2ax+a+k (a ,k 均为常数,且a≠0)上,L 交y 轴于点C ,连接CP .(1)用a 表示k ,并求L 的对称轴及L 与y 轴的交点坐标;(2)当L 经过(3,3)时,求此时L 的表达式及其顶点坐标;(3)横、纵坐标都是整数的点叫做整点.如图,当a <0时,若L 在点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,求a 的取值范围;(4)点M(x 1,y 1),N(x 2,y 2)是L 上的两点,若t≤x 1≤t+1,当x 2≥3时,均有y 1≥y 2,直接写出t 的取值范围.【答案】(1)k=-3-a ;对称轴x =1;y 轴交点(0,-3);(2)2y=2x -4x-3,顶点坐标(1,-5);(3)-5≤a <-4;(4)-1≤t ≤2.【解析】【分析】(1)将点P(2,-3)代入抛物线上,求得k 用a 表示的关系式;抛物线L 的对称轴为直线2a x==12a--,并求得抛物线与y 轴交点; (2)将点(3,3)代入抛物线的解析式,且k=-3-a ,解得a=2,k=-5,即可求得抛物线解析式与顶点坐标;(3)抛物线L 顶点坐标(1,-a-3),点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1,可得1<-a-3≤2,即可求得a 的取值范围;(4)分类讨论取a >0与a <0的情况进行讨论,找出1x 的取值范围,即可求出t 的取值范围.【详解】解:(1)∵将点P(2,-3)代入抛物线L :2y=ax -2ax+a+k ,∴-3=4a 4a a+k=a+k -+∴k=-3-a ;抛物线L 的对称轴为直线-2a x=-=12a,即x =1; 将x=0代入抛物线可得:y=a+k=a+(-3-a)=-3,故与y 轴交点坐标为(0,-3); (2)∵L 经过点(3,3),将该点代入解析式中,∴9a-6a+a+k=3,且由(1)可得k=-3-a ,∴4a+k=3a-3=3,解得a=2,k=-5,∴L 的表达式为2y=2x -4x-3;将其表示为顶点式:2y=2(x-1)-5,∴顶点坐标为(1,-5);(3)解析式L 的顶点坐标(1,-a-3),∵在点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1,∴1<-a-3≤2,∴-5≤a <-4;(4)①当a <0时,∵2x 3≥,为保证12y y ≥,且抛物线L 的对称轴为x=1,∴就要保证1x 的取值范围要在[-1,3]上,即t ≥-1且t+1≤3,解得-1≤t ≤2;②当a >0时,抛物线开口向上,t ≥3或t+1≤-1,解得:t ≥3或t ≤-2,但会有不符合题意的点存在,故舍去,综上所述:-1≤t ≤2.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,数形结合解题是关键.4.在平面直角坐标系中,点(),p tq 与(),q tp ()0t ≠称为一对泛对称点.(1)若点()1,2,()3,a 是一对泛对称点,求a 的值;(2)若P ,Q 是第一象限的一对泛对称点,过点P 作PA x ⊥轴于点A ,过点Q 作QB y ⊥轴于点B ,线段PA ,QB 交于点C ,连接AB ,PQ ,判断直线AB 与PQ 的位置关系,并说明理由;(3)抛物线2y ax bx c =++()0a <交y 轴于点D ,过点D 作x 轴的平行线交此抛物线于点M (不与点D 重合),过点M 的直线y ax m =+与此抛物线交于另一点N .对于任意满足条件的实数b ,是否都存在M ,N 是一对泛对称点的情形?若是,请说明理由,并对所有的泛对称点(),M M M x y ,(),N N N x y 探究当M y >N y 时M x 的取值范围;若不是,请说明理由.【答案】(1)23;(2)AB ∥PQ ,见解析;(3)对于任意满足条件的实数b ,都存在M ,N 是一对泛对称点的情形,此时对于所有的泛对称点M(x M ,y M ),N(x N ,y N ),当y M >y N 时,x M 的取值范围是x M <1且x M ≠0【解析】【分析】(1)利用泛对称点得定义求出t 的值,即可求出a.(2)设P ,Q 两点的坐标分别为P (p,tq ),Q (q,tp ),根据题干条件得到A (p,0),B (0,tp ),C (p,tp )的坐标,利用二元一次方程组证出k 1=k 2,所以AB ∥PQ.(3)由二次函数与x 轴交点的特征,得到D 点的坐标;然后利用二次函数与一元二次方程的关系,使用求根公式即可得到答案.【详解】(1)解:因为点(1,2),(3,a )是一对泛对称点,设3t =2解得t =23所以a =t×1=23 (2)解:设P ,Q 两点的坐标分别为P (p,tq ),Q (q,tp ),其中0<p <q ,t >0. 因为PA ⊥x 轴于点A ,QB ⊥y 轴于点B ,线段PA ,QB 交于点C ,所以点A ,B ,C 的坐标分别为:A (p,0),B (0,tp ),C (p,tp )设直线AB ,PQ 的解析式分别为:y =k 1x +b 1,y =k 2x +b 2,其中k 1k 2≠0.分别将点A (p,0),B (0,tp )代入y =k 1x +b 1,得111pk b tp b tp +=⎧⎨=⎩. 解得11k t b tp =-⎧⎨=⎩ 分别将点P (p,tq ),Q (q,tp )代入y =k 2x +b 2,得2222pk b tp qk b tp +=⎧⎨+=⎩. 解得22k t b tp tp =-⎧⎨=+⎩ 所以k 1=k 2.所以AB ∥PQ(3)解:因为抛物线y =ax 2+bx +c (a <0)交y 轴于点D ,所以点D 的坐标为(0,c ).因为DM ∥x 轴,所以点M 的坐标为(x M ,c ),又因为点M 在抛物线y =ax 2+bx +c (a <0)上.可得ax M 2+bx M +c =c ,即x M (ax M +b )=0.解得x M =0或x M =-b a. 因为点M 不与点D 重合,即x M ≠0,也即b≠0,所以点M 的坐标为(-b a,c ) 因为直线y =ax +m 经过点M ,将点M (-b a ,c )代入直线y =ax +m 可得,a·(-b a)+m =c. 化简得m =b +c所以直线解析式为:y =ax +b +c. 因为抛物线y =ax 2+bx +c 与直线y =ax +b +c 交于另一点N ,由ax 2+bx +c =ax +b +c ,可得ax 2+(b -a )x -b =0.因为△=(b -a )2+4ab =(a +b )2,解得x 1=-b a ,x 2=1. 即x M =-b a ,x N =1,且-b a≠1,也即a +b≠0. 所以点N 的坐标为(1,a +b +c ) 要使M (-b a,c )与N (1,a +b +c )是一对泛对称点, 则需c =t ×1且a +b +c =t ×(-b a ). 也即a +b +c =(-b a)·c 也即(a +b )·a =-(a +b )·c. 因为a +b≠0,所以当a =-c 时,M ,N 是一对泛对称点.因此对于任意满足条件的实数b ,都存在M ,N 是一对泛对称点的情形.此时点M 的坐标为(-b a,-a ),点N 的坐标为(1,b ).所以M ,N 两点都在函数y =b x(b≠0)的图象上. 因为a <0, 所以当b >0时,点M ,N 都在第一象限,此时 y 随x 的增大而减小,所以当y M >y N 时,0<x M <1;当b <0时,点M 在第二象限,点N 在第四象限,满足y M >y N ,此时x M <0.综上,对于任意满足条件的实数b ,都存在M ,N 是一对泛对称点的情形,此时对于所有的泛对称点M (x M ,y M ),N (x N ,y N ),当y M >y N 时,x M 的取值范围是x M <1且x M ≠0.【点睛】本题主要考察了新定义问题,读懂题意是是做题的关键;主要考察了二元一次方程组,二次函数、一元二次方程知识点的综合,把握题干信息,熟练运用知识点是解题的核心.5.定义:对于已知的两个函数,任取自变量x 的一个值,当0x ≥时,它们对应的函数值相等;当0x <时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y x =,它的相关函数为(0)(0)x x y x x ≥⎧=⎨-<⎩. (1)已知点()5,10A -在一次函数5y ax =-的相关函数的图像上,求a 的值; (2)已知二次函数2142y x x =-+-. ①当点3,2B m ⎛⎫ ⎪⎝⎭在这个函数的相关函数的图像上时,求m 的值;②当33x -≤≤时,求函数2142y x x =-+-的相关函数的最大值和最小值. (3)在平面直角坐标系中,点M 、N 的坐标分别为1,12⎛⎫-⎪⎝⎭、9,12⎛⎫ ⎪⎝⎭,连结MN .直接写出线段MN 与二次函数24y x x n =-++的相关函数的图像有两个公共点时n 的取值范围.【答案】(1)1;(2)①22- ;②max 432y =,min 12y =-;(3)31n -<≤-,514n <≤【解析】【分析】 (1)先求出5y ax =-的相关函数,然后代入求解,即可得到答案;(2)先求出二次函数的相关函数,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可;②当-3≤x <0时,y=x 2-4x+12,然后可 此时的最大值和最小值,当0≤x≤3时,函数y=-x 2+4x-12,求得此时的最大值和最小值,从而可得到当-3≤x≤3时的最大值和最小值; (3)首先确定出二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围. 【详解】解:(1)根据题意,一次函数5y ax =-的相关函数为5,(0)5,(0)ax x y ax x -≥⎧=⎨-+<⎩,∴把点()5,10A -代入5y ax =-+,则(5)510a -⨯-+=,∴1a =;(2)根据题意,二次函数2142y x x =-+-的相关函数为2214,(0)214,(0)2x x x y x x x ⎧-+-≥⎪⎪=⎨⎪-+<⎪⎩,①当m <0时,将B (m ,32)代入y=x 2-4x+12得m 2-4m+1322=,解得:m=2 当m≥0时,将B (m ,32)代入y=-x 2+4x-12得:-m 2+4m-12=32,解得:或m=2.综上所述:m=2-或m=2+或m=2- ②当-3≤x <0时,y=x 2-4x+12,抛物线的对称轴为x=2,此时y 随x 的增大而减小, ∴当3x =-时,有最大值,即2143(3)4(3)22y =--⨯-+=, ∴此时y 的最大值为432. 当0≤x≤3时,函数y=-x 2+4x 12-,抛物线的对称轴为x=2, 当x=0有最小值,最小值为12-, 当x=2时,有最大值,最大值y=72. 综上所述,当-3≤x≤3时,函数y=-x 2+4x 12-的相关函数的最大值为432,最小值为12-;(3)如图1所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有1个公共点.∴当x=2时,y=1,即-4+8+n=1,解得n=-3.如图2所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=x2-4x-n与y轴交点纵坐标为1,∴-n=1,解得:n=-1.∴当-3<n≤-1时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=-x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x 2-4x-n 经过点M (12-,1), ∴14+2-n=1,解得:n=54. ∴1<n≤54时,线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有2个公共点. 综上所述,n 的取值范围是-3<n≤-1或1<n≤54. 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值是解题的关键.6.定义:函数l 与l '的图象关于y 轴对称,点(),0P t 是x 轴上一点,将函数l '的图象位于直线x t =左侧的部分,以x 轴为对称轴翻折,得到新的函数w 的图象,我们称函数w 是函数l 的对称折函数,函数w 的图象记作1F ,函数l 的图象位于直线x t =上以及右侧的部分记作2F ,图象1F 和2F 合起来记作图象F .例如:如图,函数l 的解析式为1y x =+,当1t =时,它的对称折函数w 的解析式为()11y x x =-<.(1)函数l 的解析式为21y x =-,当2t =-时,它的对称折函数w 的解析式为_______; (2)函数l 的解析式为1²12y x x =--,当42x -≤≤且0t =时,求图象F 上点的纵坐标的最大值和最小值;(3)函数l 的解析式为()2230y ax ax a a =--≠.若1a =,直线1y t =-与图象F 有两个公共点,求t 的取值范围.【答案】(1)()212y x x =+<-;(2)F 的解析式为2211(0)211(0)2y x x x y x x x ⎧=--≥⎪⎪⎨⎪=--+<⎪⎩;图象F 上的点的纵坐标的最大值为32y =,最小值为3y =-;(3)当3t =-,1t <≤,5t <<时,直线1y t =-与图象F 有两个公共点. 【解析】 【分析】(1)根据对折函数的定义直接写出函数解析式即可;(2)先根据题意确定F 的解析式,然后根据二次函数的性质确定函数的最大值和最小值即可;(3)先求出当a=1时图像F 的解析式,然后分14t -=-、点(),1t t -落在223()y x x x t =--≥上和点(),1t t -落在()223y x x x t =--+<上三种情况解答,最后根据图像即可解答. 【详解】解:(1)()212y x x =+<-(2)F 的解析式为2211(0)211(0)2y x x x y x x x ⎧=--≥⎪⎪⎨⎪=--+<⎪⎩当4x =-时,3y =-,当1x =-时,32y =, 当1x =时,32y =-,当2x =时,1y =, ∴图象F 上的点的纵坐标的最大值为32y =,最小值为3y =-. (3)当1a =时,图象F 的解析式为2223()23()y x x x t y x x x t ⎧=--≥⎨=--+<⎩∴该函数的最大值和最小值分别为4和-4; a :当14t -=-时,3t =-,∴当3t =-时直线1y t =-与图象F 有两个公共点;b :当点(),1t t -落在223()y x x x t =--≥上时,2123t t t -=--,解得1317t -=,2317t +=c :当点(),1t t -落在()223y x x x t =--+<上时,2123t t t -=--+,解得34t =-(舍),41t =14t -=,∴55t = ∴当3171t -<≤或3175t +<<时,直线1y t =-与图象F 有两个公共点; 综上所述:当3t =-,3171t -<≤,3175t +<<时,直线1y t =-与图象F 有两个公共点. 【点睛】本题属于二次函数综合题,考查了“称折函数”的定义、二次函数的性质、解二元一次方程等知识,弄清题意、灵活运用所学知识是解答本题的关键.7.如图,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠交x 轴于点(2,0),(3,0)A B -,交y 轴于点C ,且经过点(6,6)D --,连接,AD BD .(1)求该抛物线的函数关系式;(2)△ANM 与ABD ∆是否相似?若相似,请求出此时点M 、点N 的坐标;若不存在,请说明理由;(3)若点P 是直线AD 上方的抛物线上一动点(不与点,A D 重合),过P 作//PQ y 轴交直线AD 于点Q ,以PQ 为直径作⊙E ,则⊙E 在直线AD 上所截得的线段长度的最大值等于 .(直接写出答案)【答案】(1)2113442y x x =--+;(2)点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32);(3)QH 有最大值,当x=2-时,其最大值为125. 【解析】 【分析】(1)用交点式函数表达式得:y=a (x-2)(x+3),将点D 坐标代入上式即可求解; (2)分∠MAB=∠BAD 、∠MAB=∠BDA ,两种大情况、四种小情况,分别求解即可; (3)根据题意,利用二次函数的性质和三角函数,QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+=23392055x x --+,即可求解. 【详解】解:(1)用交点式函数表达式得:y=a (x-2)(x+3), 将点D 坐标代入上式并解得:14a =-, 故函数的表达式为:2113442y x x =--+…①, 则点C (0,32);(2)由题意得:AB=5,AD=10,BD=, ①∠MAN=∠ABD 时, (Ⅰ)当△ANM ∽△ABD 时, 直线AD 所在直线的k 值为34,则直线AM 表达式中的k 值为34-,则直线AM 的表达式为:3(2)4y x =--,故点M (0,32),AD AB AM AN =,则AN=54,则点N (34,0); (Ⅱ)当△AMN ∽△ABD 时,同理可得:点N (-3,0),点M (0,32),故点M (0,32)、点N (34,0)或点M (0,32),N (-3,0); ②∠MAN=∠BDA 时, (Ⅰ)△ABD ∽△NMA 时, ∵AD ∥MN ,则tan ∠MAN=tan ∠BDA=12, AM :y=12-(x-2),则点M (-1,32)、点N (-3,0); (Ⅱ)当△ABD ∽△MNA 时,AD BD AM AN=,即3535=, 解得:AN=94,故点N (14-,0)、M (-1,32); 故:点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32); 综上,点M (0,32)、点N (34,0)或点M (0,32),N (-3,0)或点M (-1,32)、点N (-3,0)或N (14-,0)、M (-1,32); (3)如图所示,连接PH ,由题意得:tan ∠PQH=43,则cos ∠PQH=35, 则直线AD 的表达式为:y=3342x -, 设点P (x ,2113442x x --+),则点Q (x ,3342x -), 则QH=PQcos ∠PQH=35PQ=352113(442x x --+33)42x -+ =23392055x x --+ =2312(2)205x -++, ∵3020-<, 故QH 有最大值,当x=2-时,其最大值为125. 【点睛】本题考查的是二次函数综合应用,涉及到一次函数、圆的基本知识,解直角三角形,相似三角形的判定和性质,其中(2)需要分类求解共四种情况,避免遗漏.8.如图,已知顶点为M (32,258)的抛物线过点D (3,2),交x 轴于A ,B 两点,交y 轴于点C ,点P 是抛物线上一动点. (1)求抛物线的解析式;(2)当点P 在直线AD 上方时,求△PAD 面积的最大值,并求出此时点P 的坐标;(3)过点P 作直线CD 的垂线,垂足为Q ,若将△CPQ 沿CP 翻折,点Q 的对应点为Q '.是否存在点P ,使Q '恰好落在x 轴上?若存在,求出点P 的坐标;若不存在,说明理由.【答案】(1)213222y x x =-++;(2)最大值为4,点P (1,3);(3)存在,点P 139313-+). 【解析】 【分析】(1)用待定系数法求解即可;(2)由△PAD 面积S =S △PHA +S △PHD ,即可求解;(3)结合图形可判断出点P 在直线CD 下方,设点P 的坐标为(a ,213222a a -++),当P 点在y 轴右侧时,运用解直角三角形及相似三角形的性质进行求解即可. 【详解】解:(1)设抛物线的表达式为:y =a (x ﹣h )2+k =a (x ﹣32)2+258, 将点D 的坐标代入上式得:2=a (3﹣32)2+258, 解得:a =﹣12, ∴抛物线的表达式为:213222y x x =-++;(2)当x=0时,y=﹣12x2+32x+2=2,即点C坐标为(0,2),同理,令y=0,则x=4或﹣1,故点A、B的坐标分别为:(﹣1,0)、(4,0),过点P作y轴的平行线交AD于点H,由点A、D的坐标得,直线AD的表达式为:y=12(x+1),设点P(x,﹣12x2+32x+2),则点H(x,12x+12),则△PAD面积为:S=S△PHA+S△PHD=12×PH×(x D﹣x A)=12×4×(﹣12x2+32x+2﹣12x12)=﹣x2+2x+3,∵﹣1<0,故S有最大值,当x=1时,S有最大值,则点P(1,3);(3)存在满足条件的点P,显然点P在直线CD下方,设直线PQ交x轴于F,点P的坐标为(a,﹣12a2+32a+2),当P点在y轴右侧时(如图2),CQ=a,PQ=2﹣(﹣12a2+32a+2)=12a2﹣32a,又∵∠CQ′O+∠FQ′P=90°,∠COQ′=∠Q′FP=90°,∴∠FQ′P=∠OCQ′,∴△COQ′∽△Q′FP,'''Q C Q P CO FQ =,即213222'a aa Q F-=, ∴Q ′F =a ﹣3,∴OQ ′=OF ﹣Q ′F =a ﹣(a ﹣3)=3,CQ =CQ ′=22223213CO OQ +=+=,此时a =13,点P 的坐标为(13,9313-+). 【点睛】此题考查了二次函数的综合应用,综合考查了翻折变换、相似三角形的判定与性质,解答此类题目要求我们能将所学的知识融会贯通,属于中考常涉及的题目.9.平面直角坐标系xOy 中,对于任意的三个点A 、B 、C ,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A ,B ,C 三点都在矩形的内部或边界上,则称该矩形为点A ,B ,C 的“三点矩形”.在点A ,B ,C 的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A ,B ,C 的“最佳三点矩形”.如图1,矩形DEFG ,矩形IJCH 都是点A ,B ,C 的“三点矩形”,矩形IJCH 是点A ,B ,C 的“最佳三点矩形”.如图2,已知M (4,1),N (﹣2,3),点P (m ,n ).(1)①若m =1,n =4,则点M ,N ,P 的“最佳三点矩形”的周长为 ,面积为 ;②若m =1,点M ,N ,P 的“最佳三点矩形”的面积为24,求n 的值; (2)若点P 在直线y =﹣2x +4上.①求点M ,N ,P 的“最佳三点矩形”面积的最小值及此时m 的取值范围; ②当点M ,N ,P 的“最佳三点矩形”为正方形时,求点P 的坐标;(3)若点P (m ,n )在抛物线y =ax 2+bx +c 上,且当点M ,N ,P 的“最佳三点矩形”面积为12时,﹣2≤m ≤﹣1或1≤m ≤3,直接写出抛物线的解析式.【答案】(1)①18,18;②或5;(2)①最小值为12,;②点的坐标为或;(3),或.【解析】 【分析】(1)①根据题意,易得M、N、P的“最佳三点矩形”的周长和面积②先求出和的值,再根据m=1以及M、N、P的“最佳三点矩形”的面积是24,可分析出此矩形的邻边长分别为6、4进而求出n的值(2)①结合图形,易得M、N、P的“最佳三点矩形”的面积的最小值,分别将对应的值代入y=-2x+4即可求出m的取值范围②当M、N、P的“最佳三点矩形”为正方形时,易得边长为6,将对应的值代入y=-2x+4即可求出P点坐标(3)根据题意画出图像,易得抛物线的解析式【详解】解:(1)①如图,过P做直线AB平行于x轴,过N做直线AC平行于y轴,过M做MB平行于y轴,分别交于点A(-2,4)、C(-2,1)、B(4,1)则AC=BM=3,AB=CM=6故周长=(3+6)=18,面积=3=18故M、N、P的“最佳三点矩形”的周长和面积分别为18,18;②∵M(4,1),N(-2,3)∴,又∵m=1,点M、N、P的“最佳三点矩形”的面积为24∴此矩形的邻边长分别为6,4∴n=-1或5(2)如图1,①易得点M、N、P的“最佳三点矩形”的面积的最小值为12;分别将y=3,y=1代入y=-2x+4,可得x分别为,结合图象可知:②当点M、N、P的“最佳三点矩形”为正方形,边长为6,分别将y=7,y=-3代入y=-2x+4 ,可得分别为,点P 的坐标为(,7)或( ,-3) (3)如图2,y=+或y=+【点睛】此题比较灵活,读懂题意,画出图像求解是解题关键10.如图,经过原点的抛物线2y ax x b =-+与直线2y =交于A ,C 两点,其对称轴是直线2x =,抛物线与x 轴的另一个交点为D ,线段AC 与y 轴交于点B .(1)求抛物线的解析式,并写出点D 的坐标;(2)若点E 为线段BC 上一点,且2EC EA -=,点(0,)P t 为线段OB 上不与端点重合的动点,连接PE ,过点E 作直线PE 的垂线交x 轴于点F ,连接PF ,探究在P 点运动过程中,线段PE ,PF 有何数量关系?并证明所探究的结论;(3)设抛物线顶点为M ,求当t 为何值时,DMF ∆为等腰三角形?【答案】(1)214y x x =-;点D 的坐标为(4,0);(2)5PF PE =,理由见解析;(3)51t +=98t = 【解析】【分析】 (1)先求出a 、b 的值,然后求出解析式,再求出点D 的坐标即可;(2)由题意,先求出点E 的坐标,然后证明Rt Rt PBE FHE ∆∆∽,得到2EF PE =,结合勾股定理,即可得到答案;(3)根据题意,可分为三种情况进行分析:FM FD =或DF DM =或FM MD =,分别求出三种情况的值即可.【详解】解:(1)∵抛物线2y ax x b =-+经过原点,∴0b =.又抛物线的对称轴是直线2x =,∴122a --=,解得:14a =. ∴抛物线的解析式为:214y x x =-. 令2104y x x =-=, 解得:10x =,24x =.∴点D 的坐标为(4,0).(2)线段PE 、PF 的数量关系为:5PF PE =.证明:由抛物线的对称性得线段AC 的中点为(2,2)G ,如图①,AE EG GC +=,∴EG GC AE =-,∴EG EG EG GC AE EC EA +=+-=-,∵2EC EA -=,∴1EG =,∴(1,2)E ,过点E 作EH x ⊥轴于H ,则2EH OB ==.∵PE EF ⊥,∴90PEF ∠=︒,∵BE EH ⊥,∴90BEH ∠=︒.∴PEB HEF ∠=∠.在Rt PBE ∆与Rt FHE ∆中,∵PEB HEF ∠=∠,90EHF EBP ∠=∠=︒,∴Rt Rt PBE FHE ∆∆∽,∴12PE BE EF HE ==, ∴2EF PE =. 在Rt PEF ∆中,由勾股定理得:222222(2)5PF PE EF PE PE PE =+=+=, ∴5PF PE =.(3)由2211(2)144y x x x =-=--, ∴顶点M 坐标为(2,1)-.若DMF ∆为等腰三角形,可能有三种情形:(I )若FM FD =.如图②所示:连接MG 交x 轴于点N ,则90MNF ∠=︒,∵(4,0)D , ∴2222125MD MN ND =+=+=设FM FD k ==,则2NF k =-.在Rt MNF ∆中,由勾股定理得:222NF MN MF +=,∴22(2)1k k -+=,解得:54k =, ∴54FM =,34NF =, ∴1MN =,即点M 的纵坐标为1-;令1y =-,则2114x x -=-, ∴2x =,即ON=2,∴OF=114, ∴11,04F ⎛⎫ ⎪⎝⎭.∵(1,2)E ,∴1,2BE BP t ==-,∴221(2)PE t =+-, ∴251(2)PF t =•+-,在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴22211()55(2)4t t +=+-, ∴98t =. (II )若DF DM =.如图③所示:此时5FD DM ==∴45OF =,∴(45,0)F ,由(I )知,221(2)PE t =+-,251(2)PF t =+-在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴222(45)55(2)t t +-=+-∴512t =. (III )若FM MD =.由抛物线对称性可知,此时点F 与原点O 重合.∵PE EF ⊥,点P 在直线AC 上方,与点P 在线段OB 上运动相矛盾,故此种情形不存在.【点睛】本题考查的是二次函数综合运用,涉及到相似三角形的判定和性质,一次函数的性质,等腰三角形的性质,全等三角形的判定和性质,以及勾股定理等知识,其中(3),要注意分类求解,避免遗漏.。
人教版数学九年级上册 二次函数中考真题汇编[解析版]
人教版数学九年级上册二次函数中考真题汇编[解析版] 一、初三数学二次函数易错题压轴题(难)1.图①,二次函数y=ax2+bx+c(a≠0)的图象经过点A(﹣1,0),并且与直线y=1 2 x﹣2相交于坐标轴上的B、C两点,动点P在直线BC下方的二次函数的图象上.(1)求此二次函数的表达式;(2)如图①,连接PC,PB,设△PCB的面积为S,求S的最大值;(3)如图②,抛物线上是否存在点Q,使得∠ABQ=2∠ABC?若存在,则求出直线BQ的解析式及Q点坐标;若不存在,请说明理由.【答案】(1)y=12x2﹣32x﹣2;(2)﹣1<0,故S有最大值,当x=2时,S的最大值为4;(3)Q的坐标为(53,﹣289)或(﹣113,929).【解析】【分析】(1)根据题意先求出点B、C的坐标,进而利用待定系数法即可求解;(2)由题意过点P作PH//y轴交BC于点H,并设点P(x,12x2﹣32x﹣2),进而根据S=S△PHB+S△PHC=12PH•(x B﹣x C),进行计算即可求解;(3)根据题意分点Q在BC下方、点Q在BC上方两种情况,利用解直角三角形的方法,求出点H的坐标,进而分析求解.【详解】解:(1)对于直线y=12x﹣2,令x=0,则y=﹣2,令y=0,即12x﹣2=0,解得:x=4,故点B、C的坐标分别为(4,0)、(0,﹣2),抛物线过点A、B两点,则y=a(x+1)(x﹣4),将点C的坐标代入上式并解得:a=12,故抛物线的表达式为y=12x2﹣32x﹣2①;(2)如图2,过点P作PH//y轴交BC于点H,设点P(x,12x2﹣32x﹣2),则点H(x,12x﹣2),S=S△PHB+S△PHC=12PH•(x B﹣x C)=12×4×(12x﹣2﹣12x2+32x+2)=﹣x2+4x,∵﹣1<0,故S有最大值,当x=2时,S的最大值为4;(3)①当点Q在BC下方时,如图2,延长BQ交y轴于点H,过点Q作QC⊥BC交x轴于点R,过点Q作QK⊥x轴于点K,∵∠ABQ=2∠ABC,则BC是∠ABH的角平分线,则△RQB为等腰三角形,则点C是RQ的中点,在△BOC中,tan∠OBC=OCOB=12=tan∠ROC=RCBC,则设RC=x=QB,则BC=2x,则RB22(2)x x5=BQ,在△QRB中,S△RQB=12×QR•BC=12BR•QK,即122x•2x=125,解得:KQ5∴sin∠RBQ=KQBQ55x=45,则tanRBH=43,在Rt △OBH 中,OH =OB•tan ∠RBH =4×43=163,则点H (0,﹣163), 由点B 、H 的坐标得,直线BH 的表达式为y =43(x ﹣4)②, 联立①②并解得:x =4(舍去)或53, 当x =53时,y =﹣289,故点Q (53,﹣289); ②当点Q 在BC 上方时,同理可得:点Q 的坐标为(﹣113,929); 综上,点Q 的坐标为(53,﹣289)或(﹣113,929). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质、解直角三角形、面积的计算等,注意分类讨论思维的应用,避免遗漏.2.已知函数2266()22()x ax a x a y x ax a x a ⎧-+>=⎨-++≤⎩(a 为常数,此函数的图象为G )(1)当a =1时,①直接写出图象G 对应的函数表达式 ②当y=-1时,求图象G 上对应的点的坐标(2)当x >a 时,图象G 与坐标轴有两个交点,求a 的取值范围 (3)当图象G 上有三个点到x 轴的距离为1时,直接写出a 的取值范围【答案】(1)①2266(1)22(1)x x x y x x x ⎧-+>=⎨-++≤⎩,②(1,1),(31),(31)--+--;(2)0a <或2635a <<;(3)315a --<,1153a <<,113a <<-【解析】 【分析】(1)①将1a =代入函数解析式中即可求出结论;②分1x >和1x ≤两种情况,将y=-1分别代入求出x 的值即可;(2)根据a 和0的大小关系分类讨论,然后根据二次函数的性质逐一求解即可;(3)先求出266y x ax a =-+的对称轴为直线6321ax a -=-=⨯,顶点坐标为()23,96a a a -+,222y x ax a =-++的对称轴为直线()221a x a =-=⨯-,顶点坐标为()2,2a aa +,然后根据a 和0的大小关系分类讨论,然后根据二次函数的性质逐一求解即可. 【详解】(1)①1a =时,2266(1)22(1)x x x y x x x ⎧-+>=⎨-++≤⎩②当1x >时,2661x x -+=-2670x x -+=1233x x ==当1x ≤时,2221x x -++=-2230x x --=121,3x x =-=(舍)∴坐标为(1,1),(31),(31)---- (2)当0a <时266()y x ax a x a =-+>与y 轴交点坐标(0,6)a ,266y x ax a =-+对称轴为直线6321ax a -=-=⨯,过点(1,1) ∴x >a >3a ,此时图像G 与坐标轴有两个交点(与x 轴一个交点,与y 轴一个交点) 当0a ≥时,266()y x ax a x a =-+>的图像与y 轴无交点顶点坐标为()23,96a a a -+当x a =时,256y a a =-+>0①,且2960a a -+<②时,此时图像G 与x 轴有两个交点将①的两边同时除以a ,解得65a <; 将②的两边同时除以a ,解得23a > ∴2635a << 即当2635a <<时,图像G 与坐标轴有两个交点,综上,0a <或2635a << (3)266y x ax a =-+的对称轴为直线6321ax a -=-=⨯,顶点坐标为()23,96a a a -+ 222y x ax a =-++的对称轴为直线()221a x a =-=⨯-,顶点坐标为()2,2a a a +①当a <0时,()222y x ax a x a =-++≤中,当x=a 时,y 的最大值为22a a +由()210a +≥可得221a a +≥-,即此图象必有一个点到x 轴的距离为1而()266y x ax a x a =-+>必过(1,1),即此图象必有一个点到x 轴的距离为1,此时x>3a ,y >225666a a a a a a ⋅+=-+-当2221561a a a a ⎧+<⎨-+<-⎩时,()222y x ax a x a =-++≤与x 轴只有一个交点,()266y x ax a x a =-+>与x 轴有两个交点解得:315a --<; 当2221561a a a a ⎧+>⎨-+>-⎩时,()222y x ax a x a =-++≤与x 轴有两个交点,()266y x ax a x a =-+>与x 轴有一个交点解得:315a +-+<<,与前提条件a <0不符,故舍去; ②当a ≥0时,()222y x ax a x a =-++≤中,当x=a 时,y 的最大值为22a a +,必过点(-1,-1),即此图象必有一个点到x 轴的距离为1而()266y x ax a x a =-+>,此时当x=3a 时,y 的最小值为296a a -+,由()2310a --≤可得2961a a -+≤,即此图象必有一个点到x 轴的距离为1 当222221561961961a a a a a a a a ⎧+<⎪-+>⎪⎨-+>-⎪⎪-+≠⎩时,()222y x ax a x a =-++≤与x 轴只有一个交点,()266y x ax a x a =-+>与x 轴有两个交点解得:115a <<-+且13a ≠;当222221561961961a a a a a a a a ⎧+<⎪-+<⎪⎨-+<-⎪⎪-+≠⎩时,()222y x ax a x a =-++≤与x 轴只有一个交点,()266y x ax a x a =-+>与x 轴有两个交点此不等式无解,故舍去;当222221561961961a aa aa aa a⎧+>⎪-+<⎪⎨-+>-⎪⎪-+≠⎩时,()222y x ax a x a=-++≤与x轴有两个交点,()266y x ax a x a=-+>与x轴有一个交点此不等式无解,故舍去;综上:314125a---<<或1153a<<或1123a<<-+【点睛】此题考查的是二次函数的性质和分段函数的应用,此题难度较大,掌握二次函数的性质和分类讨论的数学思想是解决此题的关键.3.如图,抛物线()250y ax bx a=+-≠经过x轴上的点1,0A和点B及y轴上的点C,经过B C、两点的直线为y x n=+.(1)求抛物线的解析式.(2)点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,PBE△的面积最大并求出最大值.(3)过点A作AM BC⊥于点M,过抛物线上一动点N(不与点B C、重合)作直线AM的平行线交直线BC于点Q.若点A M N Q、、、为顶点的四边形是平行四边形,求点N的横坐标.【答案】(1)265y x x=-+-(2)2t=;2(3)5412或4或5412【解析】【分析】(1)先确定A 、B 、C 三点的坐标,然后用待定系数法解答即可;(2)先求出AB 、BC 的长并说明△BOC 是等腰直角三角形,再求出点P 到BC 的高d为()4542d BP sin t =⋅︒=-,则12PBESBE d =⨯⨯)()12442t t t =⨯-=-,再根据二次函数的性质即可确定最大值;(3)先求出4542AM AB sin =⋅︒=⨯=N 作直线AM 的平行线交直线BC 于点,Q 则,再说明四边形AMNQ是平行四边形,得到NQ AM ==;再过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H 结合题意说明NQH 为等腰直角三角形,求得4NH ===;设()2,65N m m m -+-,则(),0G m ,(),5H m m -,最后分点N 在x 轴上方时、点N 在x 轴下方且5m >时和1m <三种情况解答即可. 【详解】解:()1因为直线y x n =+经过B C 、两点,且点B 在x 轴上,点C 在y 轴上, ∵()(),,00,B n C n -∴抛物线25y ax bx =+-经过点1,0A ,点(),0B n -,点()0,C n ,∴250505a b an bn n +-=⎧⎪--=⎨⎪-=⎩,解得51,6n a b =-⎧⎪=-⎨⎪=⎩所以抛物线的解析式为265y x x =-+-.()2∵()()()1,05,0,0,,5,A B C -∴4,AB BC BOC ==为等腰直角三角形, ∴45,ABC ∠=由题意得4,2,02BP t BE t t =-=<≤点P 到BE的距离()4542d BP sin t =⋅︒=- 所以12PBESBE d =⨯⨯)()1244222t t t t =⨯⨯-=-;∵二次函数()()42f t t =-的函数图象开口向下,零点为0和4, ∴0422t +==时,∴()()()22422max f t f ==⨯⨯-=即2t =时,PBE △的面积最大,且最大值为()3由题意得454AM AB sin =⋅︒== 过点N 作直线AM 的平行线交直线BC 于点,Q 则,NQ BC ⊥ ∵点,A M N Q 、、为顶点的四边形是平行四边形,∴NQ AM ==过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H ∵:5BC l y x =-,∴NQH 为等腰直角三角形,∴4,NH ===设()2,65N m m m -+-, 则(),0G m ,(),5H m m -,①点N 在x 轴上方时,此时()()2655,NH m m m =-+---∴()()26554m m m -+---=,即()()140,m m --=解得1m =(舍,因为此时点N 与点A 重合)或4m =;②点N 在x 轴下方且5m >时,此时()()2565,NH m m m =---+- ∴()()25654m m m ---+-=,即2540,m m --=解得552m -=<(舍)或m =③点N 在x 轴下方且1m <时,此时()()2565,NH m m m =---+-∴()()25654m m m ---+-=,即2540,m m --=解得52m =或52m +=(舍)综上所述,54,2m m +==,52m =符合题意, 即若点,A M N Q 、、为顶点的四边形是平行四边形,点N 的横坐标为5412-或4或5412+.【点睛】本题主要考查了二次函数的性质、平行四边形的判定与性质,掌握二次函数的性质以及分类讨论思想是解答本题的关键4.如图1,抛物线2:C y x =经过变换可得到抛物线()1111:C y a x x b =-,1C 与x 轴的正半轴交于点1A ,且其对称轴分别交抛物线C 、1C 于点1B 、1D ,此时四边形111D OB A 恰为正方形;按上述类似方法,如图2,抛物线()1111:C y a x x b =-经过变换可得到抛物线()2222:C y a x x b =-,2C 与x 轴的正半轴交于点2A ,且对称轴分别交抛物线1C 、2C 于点2B 、2D ,此时四边形222OB A D 也恰为正方形;按上述类似方法,如图3,可得到抛物线()3333:C y a x x b =-与正方形333OB A D ,请探究以下问题: (1)填空:1a = ,1b = ; (2)求出2C 与3C 的解析式;(3)按上述类似方法,可得到抛物线():n n n n C y a x x b =-与正方形n n n OB A D (1n ≥). ①请用含n 的代数式直接表示出n C 的解析式;②当x 取任意不为0的实数时,试比较2018y 与2019y 的函数值的大小关系,并说明理由.【答案】(1)11a =,12b =;(2)22132y x x =-,23126y x x =-;(3)①()2212123n n y x x n -=-≥⨯,②20182019y y >. 【解析】 【分析】(1)求与x 轴交点A 1坐标,根据正方形对角线性质表示出B 1的坐标,代入对应的解析式即可求出对应的b 1的值,写出D 1的坐标,代入y 1的解析式中可求得a 1的值; (2)求与x 轴交点A 2坐标,根据正方形对角线性质表示出B 2的坐标,代入对应的解析式即可求出对应的b 2的值,写出D 2的坐标,代入y 2的解析式中可求得a 2的值,写出抛物线C 2的解析式;再利用相同的方法求抛物线C 3的解析式;(3)①根据图形变换后二次项系数不变得出a n =a 1=1,由B 1坐标(1,1)、B 2坐标(3,3)、B 3坐标(7,7)得B n 坐标(2n -1,2n -1),则b n =2(2n -1)=2n +1-2(n ≥1),写出抛物线C n 解析式.②根据规律得到抛物线C 2015和抛物线C 2016的解析式,用求差法比较出y 2015与y 2016的函数值的大小. 【详解】解:(1)y 1=0时,a 1x (x -b 1)=0, x 1=0,x 2=b 1, ∴A 1(b 1,0),由正方形OB 1A 1D 1得:OA 1=B 1D 1=b 1, ∴B 1(12b ,12b ),D 1(12b ,12b-), ∵B 1在抛物线c 上,则12b =(12b )2, 解得:b 1=0(不符合题意),b 1=2, ∴D 1(1,-1),把D 1(1,-1)代入y 1=a 1x (x -b 1)中得:-1=-a 1, ∴a 1=1, 故答案为1,2;(2)当20y =时,有()220a x x b -=,解得2x b =或0x =,()22,0A b ∴.由正方形222OB A D ,得2222B D OA b ==,222,22b b B ⎛⎫∴ ⎪⎝⎭,222,22b b D ⎛⎫- ⎪⎝⎭. 2B 在抛物线1C 上,2222222b b b ⎛⎫∴=- ⎪⎝⎭. 解得24b =或20b =(不合舍去),()22,2D ∴-2D 在抛物线2C 上,()22224a ∴-=-. 解得212a =. 2C ∴的解析式是()2142y x x =-,即22122y x x =-. 同理,当30y =时,有()330a x x b -=,解得3x b =,或0x =.()33,0A b ∴.由正方形333OB A D ,得3333B D OA b ==,333,22b b B ⎛⎫∴ ⎪⎝⎭,333,22b b D ⎛⎫- ⎪⎝⎭. 3B 在抛物线2C 上,2333122222b b b ⎛⎫∴=-⋅ ⎪⎝⎭. 解得312b =或30b =(不合舍去), ()36,6D ∴-3D 在抛物线3C 上,()366612a ∴-=-.解得316a =. 3C ∴的解析式是()31126y x x =-,即23126y x x =-. (3)解:①n C 的解析式是()2212123n n y x x n -=-≥⨯.②由①可得2201820161223y x x =-⨯,2201920171223y x x =-⨯. 当0x ≠时,220182019201620171110233y y x >⎛⎫-=- ⎪⎝⎭, 20182019y y ∴>.【点睛】本题是二次函数与方程、正方形的综合应用,将函数知识与方程、正方形有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用正方形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.就此题而言:①求出抛物线与x 轴交点坐标⇔把y =0代入计算,把函数问题转化为方程问题;②利用正方形对角线相等且垂直平分表示出对应B 1、B 2、B 3、B n 的坐标;③根据规律之间得到解析式是关键.5.如图,直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,抛物线y =ax 2﹣32x+c 经过A ,B 两点,与x 轴的另一交点为C . (1)求抛物线的解析式;(2)M 为抛物线上一点,直线AM 与x 轴交于点N ,当32MN AN =时,求点M 的坐标; (3)P 为抛物线上的动点,连接AP ,当∠PAB 与△AOB 的一个内角相等时,直接写出点P 的坐标.【答案】(1)y =12x 2﹣32x ﹣2;(2)点M 的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)点P 的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2).【解析】【分析】 (1)根据题意直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,则点A 、B 的坐标分别为:(0,-2)、(4,0),即可求解; (2)由题意直线MA 的表达式为:y =(12m ﹣32)x ﹣2,则点N (43m -,0),当MN AN=32时,则NHON=32,即4343mmm---=32,进行分析即可求解;(3)根据题意分∠PAB=∠AOB=90°、∠PAB=∠OAB、∠PAB=∠OBA三种情况,分别求解即可.【详解】解:(1)直线y=12x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,﹣2)、(4,0),则c=﹣2,将点B的坐标代入抛物线表达式并解得:a=12,故抛物线的表达式为:y=12x2﹣32x﹣2①;(2)设点M(m,12m2﹣32m﹣2)、点A(0,﹣2),将点M、A的坐标代入一次函数表达式:y=kx+b并解得:直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN=32时,则NHON=32,即:4343mmm---=32,解得:m=5或﹣2或2或1,故点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)①∠PAB=∠AOB=90°时,则直线AP的表达式为:y=﹣2x﹣2②,联立①②并解得:x=﹣1或0(舍去0),故点P(﹣1,0);②当∠PAB=∠OAB时,当点P在AB上方时,无解;当点P在AB下方时,将△OAB沿AB折叠得到△O′AB,直线OA交x轴于点H、交抛物线为点P,点P为所求,则BO=OB=4,OA=OA=2,设OH=x,则sin∠H=BO OAHB HA'=,即:2444x x=++,解得:x=83,则点H(﹣83,0),.则直线AH的表达式为:y=﹣34x﹣2③,联立①③并解得:x=32,故点P(32,﹣258);③当∠PAB=∠OBA时,当点P在AB上方时,则AH=BH,设OH=a,则AH=BH=4﹣a,AO=2,故(4﹣a)2=a2+4,解得:a=32,故点H(32,0),则直线AH的表达式为:y=43x﹣2④,联立①④并解得:x=0或173(舍去0),故点P(173,509);当点P在AB下方时,同理可得:点P(3,﹣2);综上,点P的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、勾股定理的运用等,要注意分类讨论,解题全面.6.在平面直角坐标系中,将函数y=x2﹣2mx+m(x≤2m,m为常数)的图象记为G,图象G的最低点为P(x0,y0).(1)当y0=﹣1时,求m的值.(2)求y0的最大值.(3)当图象G与x轴有两个交点时,设左边交点的横坐标为x1,则x1的取值范围是.(4)点A在图象G上,且点A的横坐标为2m﹣2,点A关于y轴的对称点为点B,当点A不在坐标轴上时,以点A、B为顶点构造矩形ABCD,使点C、D落在x轴上,当图象G 在矩形ABCD内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.【答案】(1)51或﹣1;(2)14;(3)0<x1<1;(4)m=0或m>43或23≤m<1【解析】【分析】(1)分m>0,m=0,m<0三种情形分别求解即可解决问题;(2)分三种情形,利用二次函数的性质分别求解即可;(3)由(1)可知,当图象G与x轴有两个交点时,m>0,求出当抛物线顶点在x轴上时m的值,利用图象法判断即可;(4)分四种情形:①m<0,②m=0,③m>1,④0<m≤1,分别求解即可解决问题.【详解】解:(1)如图1中,当m>0时,∵y=x2﹣2mx+m=(x﹣m)2﹣m2+m,图象G是抛物线在直线y=2m的左侧部分(包括点D),此时最底点P(m,﹣m2+m),由题意﹣m2+m=﹣1,解得m=51+或51-+(舍弃),当m=0时,显然不符合题意,当m<0时,如图2中,图象G是抛物线在直线y=2m的左侧部分(包括点D),此时最底点P是纵坐标为m,∴m=﹣1,综上所述,满足条件的m的值为512或﹣1;(2)由(1)可知,当m>0时,y0=﹣m2+m=﹣(m﹣12)2+14,∵﹣1<0,∴m=12时,y0的最大值为14,当m=0时,y0=0,当m<0时,y0<0,综上所述,y0的最大值为14;(3)由(1)可知,当图象G与x轴有两个交点时,m>0,当抛物线顶点在x轴上时,4m2﹣4m=0,∴m=1或0(舍弃),∴观察观察图象可知,当图象G与x轴有两个交点时,设左边交点的横坐标为x1,则x1的取值范围是0<x1<1,故答案为0<x1<1;(4)当m<0时,观察图象可知,不存在点A满足条件,当m=0时,图象G在矩形ABCD内的部分所对应的函数值y随x的增大而减小,满足条件,如图3中,当m>1时,如图4中,设抛物线与x轴交于E,F,交y轴于N,观察图象可知当点A在x轴下方或直线x=﹣m和y轴之间时(可以在直线x=﹣m上)时,满足条件.则有(2m﹣2)2﹣2m(2m﹣2)+m<0,解得m>43,或﹣m≤2m﹣2<0,解得23≤m<1(不合题意舍弃),当0<m≤1时,如图5中,当点A在直线x=﹣m和y轴之间时(可以在直线x=﹣m上)时,满足条件.即或﹣m≤2m﹣2<0,解得23≤m<1,综上所述,满足条件m的值为m=0或m>43或23≤m<1.【点睛】本题属于二次函数综合题,考查了二次函数的性质,矩形的性质,最值问题,不等式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考压轴题.7.如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y=6x(x>0)经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?【答案】(1)y=﹣x2+2x+3;(2)N(57,0),F(0,53);(3)t=9﹣15【解析】【分析】(1)由已知求出D点坐标,将点A(-1,0)和D(2,3)代入y=ax2+bx+3即可;(2)作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;(3)设P(0,t),作△PBD的外接圆N,当⊙N与y轴相切时,∠BPD的度数最大;【详解】解;(1)C(0,3)∵CD⊥y,∴D点纵坐标是3.∵D在y=6x上,∴D(2,3),将点A(﹣1,0)和D(2,3)代入y=ax2+bx+3,∴a=﹣1,b=2,∴y=﹣x2+2x+3;(2)M(1,4),B(3,0),作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;∴M'(﹣1,4),D'(2,﹣3),∴M'D'直线的解析式为y=﹣73x+53,∴N(57,0),F(0,53);(3)设P(0,t).∵△PBO和△CDP都是直角三角形,tan∠CDP=32t,tan∠PBO=3t,令y=tan∠BPD=3 233123t tt t-+--,∴yt2+t﹣3yt+6y﹣9=0,△=﹣15y2+30y+1=0时,y=1541515-+-(舍)或y=1541515+,∴t=32﹣12×1y,∴t=9﹣215,∴P(0,9﹣215).【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,利用轴对称求最短距离,学会利用辅助圆解决问题,属于中考压轴题.8.如图,抛物线y=ax2+bx+2经过点A(−1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=23S△ABD?若存在,请求出点D 坐标;若不存在,请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.【答案】(1)213222y x x=-++(2)存在,D(1,3)或(2,3)或(5,3-)(3)10【解析】【分析】(1)由A、B的坐标,利用待定系数法可求得抛物线解析式;(2)由条件可求得点D到x轴的距离,即可求得D点的纵坐标,代入抛物线解析式可求得D点坐标;(3)由条件可证得BC⊥AC,设直线AC和BE交于点F,过F作FM⊥x轴于点M,则可得BF=BC,利用平行线分线段成比例可求得F点的坐标,利用待定系数法可求得直线BE解析式,联立直线BE 和抛物线解析式可求得E 点坐标,则可求得BE 的长.【详解】解:(1)∵抛物线y=ax 2+bx+2经过点A (-1,0),B (4,0),∴2016420a b a b -+=⎧⎨++=⎩,解得:1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线解析式为:213222y x x =-++; (2)由题意可知C (0,2),A (-1,0),B (4,0),∴AB=5,OC=2,∴S △ABC =12AB•OC=12×5×2=5, ∵S △ABC =23S △ABD , ∴S △ABD =315522⨯=, 设D (x ,y ), ∴11155222AB y y •=⨯•=, 解得:3y =;当3y =时,2132322y x x =-++=, 解得:1x =或2x =,∴点D 的坐标为:(1,3)或(2,3);当3y =-时,2132322y x x =-++=-, 解得:5x =或2x =-(舍去),∴点D 的坐标为:(5,-3);综合上述,点D 的坐标为:(1,3)或(2,3)或(5,-3);(3)∵AO=1,OC=2,OB=4,AB=5,∴AC ==BC ==∴222AC BC AB +=,∴△ABC 为直角三角形,即BC ⊥AC ,如图,设直线AC 与直线BE 交于点F ,过F 作FM ⊥x 轴于点M ,由题意可知∠FBC=45°,∴∠CFB=45°, ∴25CF BC == ∴AO AC OM CF =,即1525OM = 解得:2OM =, ∴OC AC FM AF =,即2535FM = 解得:6FM =,∴点F 为(2,6),且B 为(4,0),设直线BE 解析式为y=kx+m ,则2640k m k m +=⎧⎨+=⎩,解得312k m =-⎧⎨=⎩, ∴直线BE 解析式为:312y x =-+;联立直线BE 和抛物线解析式可得:231213222y x y x x =-+⎧⎪⎨=-++⎪⎩, 解得:40x y =⎧⎨=⎩或53x y =⎧⎨=-⎩, ∴点E 坐标为:(5,3)-, ∴22(54)(3)10BE =-+-=【点睛】本题为二次函数的综合应用,涉及待定系数法、三角形面积、勾股定理及其逆定理、平行线分线段成比例、函数图象的交点、等腰直角三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中求得D 点的纵坐标是解题的关键,在(3)中由条件求得直线BE 的解析式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,有一定的难度.9.如图,若抛物线y=x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,直线y=x﹣3经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,过点P作PH⊥x轴于点H,交BC于点M,连接PC.①线段PM是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P运动的过程中,是否存在点M,恰好使△PCM是以PM为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【答案】(1)y=x2﹣2x﹣3;(2)①有,94;②存在,(2,﹣3)或(32,2﹣2)【解析】【分析】(1)由直线表达式求出点B、C的坐标,将点B、C的坐标代入抛物线表达式,即可求解;(2)①根据PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94即可求解;②分PM=PC、PM=MC两种情况,分别求解即可.【详解】解:(1)对于y=x﹣3,令x=0,y=﹣3,y=0,x=3,故点B、C的坐标分别为(3,0)、(0,﹣3),将点B、C的坐标代入抛物线表达式得:9303b cc++=⎧⎨=-⎩,解得:32 cb=-⎧⎨=-⎩,故抛物线的表达式为:y=x2﹣2x﹣3;(2)设:点M(x,x﹣3),则点P(x,x2﹣2x﹣3),①有,理由:PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94,∵﹣1<0,故PM有最大值,当x=32时,PM最大值为:94;②存在,理由:PM2=(x﹣3﹣x2+2x+3)2=(﹣x2+3x)2;PC2=x2+(x2﹣2x﹣3+3)2;MC2=(x﹣3+3)2+x2;(Ⅰ)当PM=PC时,则(﹣x2+3x)2=x2+(x2﹣2x﹣3+3)2,解得:x=0或2(舍去0),故x=2,故点P(2,﹣3);(Ⅱ)当PM=MC时,则(﹣x2+3x)2=(x﹣3+3)2+x2,解得:x=0或3±2(舍去0和3+2),故x=3﹣2,则x2﹣2x﹣3=2﹣42,故点P(3﹣2,2﹣42).综上,点P的坐标为:(2,﹣3)或(3﹣2,2﹣42).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质等,其中(2)②,要注意分类求解,避免遗漏.10.如图,在平面直角坐标系中,矩形AOBC的边AO在x轴的负半轴上,边OB在y轴的负半轴上.且AO=12,OB=9.抛物线y=﹣x2+bx+c经过点A和点B.(1)求抛物线的表达式;(2)在第二象限的抛物线上找一点M,连接AM,BM,AB,当△ABM面积最大时,求点M的坐标;(3)点D是线段AO上的动点,点E是线段BO上的动点,点F是射线AC上的动点,连接EF,DF,DE,BD,且EF是线段BD的垂直平分线.当CF=1时.①直接写出点D的坐标;②若△DEF的面积为30,当抛物线y=﹣x2+bx+c经过平移同时过点D和点E时,请直接写出此时的抛物线的表达式.【答案】(1)y=﹣x2﹣514x﹣9;(2)M(﹣6,31.5);(3)①(﹣50)或(﹣3,0),②y=﹣x2﹣133x﹣4【解析】【分析】(1)利用待定系数法把问题转化为解方程组即可解决问题.(2)如图1中,设M(m,﹣m2﹣514m﹣9),根据S△ABM=S△ACM+S△MBC﹣S△ACB构建二次函数,利用二次函数的性质解决问题即可.(3)①分两种情形:如图2中,当点F在AC的延长线设时,连接DF,FB.设D(m,0).根据FD=FB,构建方程求解.当点F在线段AC上时,同法可得.②根据三角形的面积求出D,E的坐标,再利用待定系数法解决问题即可.【详解】解:(1)由题意A(﹣12,0),B(0,﹣9),把A,B的坐标代入y=﹣x2+bx+c,得到9 144120cb c=-⎧⎨--+=⎩,解得:5149bc⎧=-⎪⎨⎪=-⎩,∴抛物线的解析式为y=﹣x2﹣514x﹣9.(2)如图1中,设M(m,﹣m2﹣514m﹣9),S△ABM=S△ACM+S△MBC﹣S△ACB=12×9×(m+12)+12×12×(﹣m2﹣514m﹣9+9)﹣12×12×9=﹣6m2﹣72m=﹣6(m+6)2+216,∵﹣6<0,∴m=﹣6时,△ABM的面积最大,此时M(﹣6,31.5).(3)①如图2中,当点F在AC的延长线设时,连接DF,FB.设D(m,0).∵EF垂直平分线段BD,∴FD=FB,∵F(﹣12,﹣10),B(0,﹣9),∴102+(m+12)2=122+12,∴m=﹣12﹣55∴D(﹣50).当点F在线段AC上时,同法可得D(﹣3,0),综上所述,满足条件的点D的坐标为(﹣50)或(﹣3,0).故答案为(﹣50)或(﹣3,0).②由①可知∵△EF的面积为30,∴D(﹣3,0),E(0,﹣4),把D,E代入y=﹣x2+b′x+c′,可得'493''0cb c=-⎧⎨--+=⎩,解得:13'3'4bc⎧=-⎪⎨⎪=-⎩,∴抛物线的解析式为y=﹣x2﹣133x﹣4.故答案为:y=﹣x2﹣133x﹣4.【点睛】本题属于二次函数综合题,考查了二次函数的性质,待定系数法,线段的垂直平分线的性质等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考压轴题.。
九年级上册数学 二次函数中考真题汇编[解析版]
九年级上册数学二次函数中考真题汇编[解析版]一、初三数学二次函数易错题压轴题(难)1.已知,抛物线y=-12x2 +bx+c交y轴于点C(0,2),经过点Q(2,2).直线y=x+4分别交x轴、y轴于点B、A.(1)直接填写抛物线的解析式________;(2)如图1,点P为抛物线上一动点(不与点C重合),PO交抛物线于M,PC交AB于N,连MN.求证:MN∥y轴;(3)如图,2,过点A的直线交抛物线于D、E,QD、QE分别交y轴于G、H.求证:CG •CH 为定值.【答案】(1)2122y x x=-++;(2)见详解;(3)见详解.【解析】【分析】(1)把点C、D代入y=-12x2 +bx+c求解即可;(2)分别设PM、PC的解析式,由于PM、PC与抛物线的交点分别为:M、N.,分别求出M、N的代数式即可求解;(3)先设G、H的坐标,列出QG、GH的解析式,得出与抛物线的交点D、E的横坐标,再列出直线AE的解析式,算出它与抛物线横坐标的交点方程.运用韦达定理即可求证.【详解】详解:(1)∵y=-12x2 +bx+c过点C(0,2),点Q(2,2),∴2122222b cc⎧-⨯++⎪⎨⎪=⎩=,解得:12b c =⎧⎨=⎩. ∴y=-12x 2+x+2; (2) 设直线PM 的解析式为:y=mx ,直线PC 的解析式为:y=kx+2 由22122y kx y x x =+⎧⎪⎨=-++⎪⎩得12x 2+(k-1)x=0, 解得:120,22x x k ==-,x p =22p x k =- 由21=22y mx y x x =⎧⎪⎨-++⎪⎩得12x 2+(m-1)x-2=0, ∴124b x x a⋅=-=- 即x p•x m =-4,∴x m =4p x -=21k -. 由24y kx y x =+⎧⎨=+⎩得x N =21k -=x M , ∴MN ∥y 轴.(3)设G (0,m ),H (0,n ).设直线QG 的解析式为y kx m =+,将点()2,2Q 代入y kx m =+得22k m =+22m k -∴= ∴直线QG 的解析式为22m y x m -=+ 同理可求直线QH 的解析式为22n y x n -=+; 由222122m y x m y x x -⎧=+⎪⎪⎨⎪=-++⎪⎩得221=222m x m x x -+-++ 解得:122,2x x m ==-2D x m ∴=-同理,2E x n =-设直线AE 的解析式为:y=kx+4, 由24122y kx y x x =+⎧⎪⎨=-++⎪⎩, 得12x 2-(k-1)x+2=0 124b x x a∴⋅=-= 即x D x E =4, 即(m-2)•(n-2)=4∴CG•CH=(2-m )•(2-n )=4.2.如图1,抛物线y =mx 2﹣3mx +n (m ≠0)与x 轴交于点C (﹣1,0)与y 轴交于点B (0,3),在线段OA 上有一动点E (不与O 、A 重合),过点E 作x 轴的垂线交直线AB 于点N ,交抛物线于点P ,过点P 作PM ⊥AB 于点M .(1)分别求出抛物线和直线AB 的函数表达式;(2)设△PMN 的面积为S 1,△AEN 的面积为S 2,当123625S S = 时,求点P 的坐标; (3)如图2,在(2)的条件下,将线段OE 绕点O 逆时针旋转的到OE ′,旋转角为α(0°<α<90°),连接E′A、E′B,求E'A+23E'B的最小值.【答案】(1)抛物线y=﹣34x2+94x+3,直线AB解析式为y=﹣34x+3;(2)P(2,32);(3)4103【解析】【分析】(1)由题意令y=0,求出抛物线与x轴交点,列出方程即可求出a,根据待定系数法可以确定直线AB解析式;(2)根据题意由△PNM∽△ANE,推出65PNAN=,以此列出方程求解即可解决问题;(3)根据题意在y轴上取一点M使得OM′=43,构造相似三角形,可以证明AM′就是E′A+23E′B的最小值.【详解】解:(1)∵抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),则有330nm m n⎧⎨⎩++==,解得433mn⎧⎪⎨⎪-⎩==,∴抛物线239344y x x=-++,令y=0,得到239344x x-++=0,解得:x=4或﹣1,∴A(4,0),B(0,3),设直线AB解析式为y=kx+b,则340bk b+⎧⎨⎩==,解得334kb⎧-⎪⎨⎪⎩==,∴直线AB解析式为y=34-x+3.(2)如图1中,设P(m,239344m m-++),则E(m,0),∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∵△PMN的面积为S1,△AEN的面积为S2,123625SS=,∴65PNAN=,∵NE∥OB,∴AN AEAB OA=,∴AN=54545454(4﹣m),∵抛物线解析式为y=239344x x-++,∴PN=239344m m-++﹣(34-m+3)=34-m2+3m,∴2336455(4)4m mm-+=-,解得m=2或4(舍弃),∴m=2,∴P(2,32).(3)如图2中,在y 轴上 取一点M′使得OM′=43,连接AM′,在AM′上取一点E′使得OE′=OE .∵OE′=2,OM′•OB =43×3=4, ∴OE′2=OM′•OB , ∴OE OB OM OE '='', ∵∠BOE′=∠M′OE′, ∴△M′OE′∽△E′OB , ∴M E OE BE OB '''='=23, ∴M′E′=23BE′, ∴AE′+23BE′=AE′+E′M′=AM′,此时AE′+23BE′最小(两点间线段最短,A 、M′、E′共线时), 最小值=AM′2244()3+410. 【点睛】本题属于二次函数综合题,考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM ′就是AE′+23BE′的最小值,属于中考压轴题.3.在平面直角坐标系中,O 为坐标原点,抛物线L :y =ax 2﹣4ax (a >0)与x 轴正半轴交于点A .抛物线L 的顶点为M ,对称轴与x 轴交于点D .(1)求抛物线L 的对称轴.(2)抛物线L :y =ax 2﹣4ax 关于x 轴对称的抛物线记为L ',抛物线L '的顶点为M ',若以O 、M 、A 、M '为顶点的四边形是正方形,求L '的表达式.(3)在(2)的条件下,点P 在抛物线L 上,且位于第四象限,点Q 在抛物线L '上,是否存在点P 、点Q 使得以O 、D 、P 、Q 为顶点的四边形是平行四边形,若存在,求出点P 坐标,若不存在,请说明理由.【答案】(1)2x =;(2)2122y x x =-+ ;(3)存在,P 点的坐标为()33,3+或()33,3--或()13,3-或()13,3+-或31,2⎛⎫- ⎪⎝⎭ 【解析】【分析】(1)根据抛物线的对称轴公式计算即可.(2)利用正方形的性质求出点M ,M ′的坐标即可解决问题.(3)分OD 是平行四边形的边或对角线两种情形求解即可.【详解】解:(1)∵抛物线L :y =ax 2﹣4ax (a >0),∴抛物线的对称轴x =﹣42a a-=2. (2)如图1中,对于抛物线y =ax 2﹣4ax ,令y =0,得到ax 2﹣4ax =0,解得x =0或4,∴A (4,0),∵四边形OMAM ′是正方形,∴OD =DA =DM =DM ′=2,∴M ((2,﹣2),M ′(2,2)把M (2,﹣2)代入y =ax 2﹣4ax ,可得﹣2=4a ﹣8a ,∴a =12, ∴抛物线L ′的解析式为y =﹣12(x ﹣2)2+2=﹣12x 2+2x . (3)如图3中,由题意OD =2.当OD 为平行四边形的边时,PQ =OD =2,设P (m ,12m 2﹣2m ),则Q [m ﹣2,﹣12(m ﹣2)2+2(m ﹣2)]或[m +2,﹣12(m +2)2+2(m +2)], ∵PQ ∥OD ,∴12m 2﹣2m =﹣12(m ﹣2)2+2(m ﹣2)或12m 2﹣2m =﹣12(m +2)2+2(m +2), 解得m =33,∴P 33或(333或(133和33,当OD 是平行四边形的对角线时,点P 的横坐标为1,此时P (1,﹣32), 综上所述,满足条件的点P 的坐标为33或(333或(133)和33)或(1,﹣32). 【点睛】本题属于二次函数综合题,考查了二次函数的性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题4.如图,抛物线()250y ax bx a =+-≠经过x 轴上的点1,0A 和点B 及y 轴上的点C ,经过B C 、两点的直线为y x n =+.(1)求抛物线的解析式.(2)点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,PBE △的面积最大并求出最大值. (3)过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B C 、重合)作直线AM 的平行线交直线BC 于点Q .若点A M N Q 、、、为顶点的四边形是平行四边形,求点N 的横坐标.【答案】(1)265y x x =-+- (2)2t =;2(3541-或4541+ 【解析】【分析】(1)先确定A 、B 、C 三点的坐标,然后用待定系数法解答即可;(2)先求出AB 、BC 的长并说明△BOC 是等腰直角三角形,再求出点P 到BC 的高d 为)2454d BP sin t =⋅︒=-,则12PBE S BE d =⨯⨯)()1222442t t t =⨯-=-,再根据二次函数的性质即可确定最大值; (3)先求出245422AM AB sin =⋅︒==N 作直线AM 的平行线交直线BC 于点,Q 则,再说明四边形AMNQ 是平行四边形,得到22NQ AM ==;再过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H 结合题意说明NQH 为等腰直角三角形,求得22884NH NQ HQ =+=+=;设()2,65N m m m -+-,则(),0G m , (),5H m m -,最后分点N 在x 轴上方时、点N 在x 轴下方且5m >时和1m <三种情况解答即可.【详解】解:()1因为直线y x n =+经过B C 、两点,且点B 在x 轴上,点C 在y 轴上, ∵()(),,00,B n C n -∴抛物线25y ax bx =+-经过点1,0A ,点(),0B n -,点()0,C n ,∴250505a b an bn n +-=⎧⎪--=⎨⎪-=⎩,解得51,6n a b =-⎧⎪=-⎨⎪=⎩所以抛物线的解析式为265y x x =-+-. ()2∵()()()1,05,0,0,,5,A B C -∴4,AB BC BOC ==为等腰直角三角形,∴45,ABC ∠=由题意得4,2,02BP t BE t t =-=<≤点P 到BE的距离()4542d BP sin t =⋅︒=- 所以12PBE S BE d =⨯⨯)()12442t t t =⨯-=-; ∵二次函数()()4f t t =-的函数图象开口向下,零点为0和4, ∴0422t +==时, ∴()()()2242maxf t f ==⨯-=即2t =时,PBE △的面积最大,且最大值为()3由题意得4542AM AB sin =⋅︒=⨯= 过点N 作直线AM 的平行线交直线BC 于点,Q 则,NQ BC ⊥ ∵点,A M N Q 、、为顶点的四边形是平行四边形,∴NQ AM ==过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H∵:5BC l y x =-,∴NQH 为等腰直角三角形,∴4,NH ===设()2,65N m m m -+-, 则(),0G m ,(),5H m m -,①点N 在x 轴上方时,此时()()2655,NH m m m =-+---∴()()26554m m m -+---=,即()()140,m m --=解得1m =(舍,因为此时点N 与点A 重合)或4m =;②点N 在x 轴下方且5m >时,此时()()2565,NH m m m =---+- ∴()()25654m m m ---+-=,即2540,m m --=解得552m -=<(舍)或52m =③点N 在x 轴下方且1m <时,此时()()2565,NH m m m =---+-∴()()25654m m m ---+-=,即2540,m m --=解得m =或m =(舍)综上所述,54,2m m +==,52m =符合题意, 即若点,A M N Q 、、为顶点的四边形是平行四边形,点N 或4.【点睛】本题主要考查了二次函数的性质、平行四边形的判定与性质,掌握二次函数的性质以及分类讨论思想是解答本题的关键5.已知点P(2,﹣3)在抛物线L:y=ax2﹣2ax+a+k(a,k均为常数,且a≠0)上,L交y轴于点C,连接CP.(1)用a表示k,并求L的对称轴及L与y轴的交点坐标;(2)当L经过(3,3)时,求此时L的表达式及其顶点坐标;(3)横、纵坐标都是整数的点叫做整点.如图,当a<0时,若L在点C,P之间的部分与线段CP所围成的区域内(不含边界)恰有4个整点,求a的取值范围;(4)点M(x1,y1),N(x2,y2)是L上的两点,若t≤x1≤t+1,当x2≥3时,均有y1≥y2,直接写出t的取值范围.y=2x-4x-3,顶点坐标(1,-【答案】(1)k=-3-a;对称轴x=1;y轴交点(0,-3);(2)25);(3)-5≤a <-4;(4)-1≤t ≤2. 【解析】 【分析】(1)将点P(2,-3)代入抛物线上,求得k 用a 表示的关系式;抛物线L 的对称轴为直线2ax==12a--,并求得抛物线与y 轴交点; (2)将点(3,3)代入抛物线的解析式,且k=-3-a ,解得a=2,k=-5,即可求得抛物线解析式与顶点坐标;(3)抛物线L 顶点坐标(1,-a-3),点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1,可得1<-a-3≤2,即可求得a 的取值范围;(4)分类讨论取a >0与a <0的情况进行讨论,找出1x 的取值范围,即可求出t 的取值范围. 【详解】解:(1)∵将点P(2,-3)代入抛物线L :2y=ax -2ax+a+k ,∴-3=4a 4a a+k=a+k -+ ∴k=-3-a ;抛物线L 的对称轴为直线-2ax=-=12a,即x =1; 将x=0代入抛物线可得:y=a+k=a+(-3-a)=-3,故与y 轴交点坐标为(0,-3);(2)∵L 经过点(3,3),将该点代入解析式中, ∴9a-6a+a+k=3,且由(1)可得k=-3-a , ∴4a+k=3a-3=3,解得a=2,k=-5,∴L 的表达式为2y=2x -4x-3;将其表示为顶点式:2y=2(x-1)-5, ∴顶点坐标为(1,-5);(3)解析式L 的顶点坐标(1,-a-3),∵在点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1, ∴1<-a-3≤2, ∴-5≤a <-4;(4)①当a <0时,∵2x 3≥,为保证12y y ≥,且抛物线L 的对称轴为x=1, ∴就要保证1x 的取值范围要在[-1,3]上, 即t ≥-1且t+1≤3,解得-1≤t ≤2;②当a >0时,抛物线开口向上,t ≥3或t+1≤-1,解得:t ≥3或t ≤-2,但会有不符合题意的点存在,故舍去, 综上所述:-1≤t ≤2.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,数形结合解题是关键.6.如图,过原点的抛物线y=﹣12x 2+bx+c 与x 轴交于点A (4,0),B 为抛物线的顶点,连接OB ,点P 是线段OA 上的一个动点,过点P 作PC ⊥OB ,垂足为点C . (1)求抛物线的解析式,并确定顶点B 的坐标;(2)设点P 的横坐标为m ,将△POC 绕着点P 按顺利针方向旋转90°,得△PO′C′,当点O′和点C′分别落在抛物线上时,求相应的m 的值;(3)当(2)中的点C′落在抛物线上时,将抛物线向左或向右平移n (0<n <2)个单位,点B 、C′平移后对应的点分别记为B ′、C″,是否存在n ,使得四边形OB′C″A 的周长最短?若存在,请直接写出n 的值和抛物线平移的方向,若不存在,请说明理由.【答案】(1)2122y x x =-+,点B (2,2);(2)m=2或209m =;(3)存在;n=27时,抛物线向左平移. 【解析】 【分析】(1)将点A 和点O 的坐标代入解析式,利用待定系数法即可求得二次函数的解析式,然后利用配方法可求得点B 的坐标;(2)由点A 、点B 、点C 的坐标以及旋转的性质可知△△PDC 为等腰直角三角形,从而可得到点O′坐标为:(m ,m ),点C′坐标为:(32m ,2m),然后根据点在抛物线上,列出关于m 的方程,从而可解得m 的值;(3)如图,将AC′沿C′B 平移,使得C′与B 重合,点A 落在A′处,以过点B 的直线y=2为对称轴,作A′的对称点A″,连接OA″,由线段的性质可知当B′为OA″与直线y=2的交点时,四边形OB′C″A 的周长最短,先求得点B′的坐标,根据点B 移动的方向和距离从而可得出点抛物线移动的方向和距离. 【详解】解:(1)把原点O (0,0),和点A (4,0)代入y=12-x 2+bx+c . 得040c b b c =⎧⎨-++=⎩,∴02c b =⎧⎨=⎩.∴22112(2)222y x x x =-+=--+. ∴点B 的坐标为(2,2).(2)∵点B 坐标为(2,2). ∴∠BOA=45°.∴△PDC 为等腰直角三角形. 如图,过C′作C′D ⊥O′P 于D .∵O′P=OP=m . ∴C′D=12O′P=12m . ∴点O′坐标为:(m ,m ),点C′坐标为:(32m ,2m ).当点O′在y=12-x 2+2x 上. 则−12m 2+2m =m . 解得:12m =,20m =(舍去). ∴m=2. 当点C′在y=12-x 2+2x 上, 则12-×(32m )2+2×32m =12m ,解得:1209m =,20m =(舍去). ∴m=209(3)存在n=27,抛物线向左平移. 当m=209时,点C′的坐标为(103,109).如图,将AC′沿C′B 平移,使得C′与B 重合,点A 落在A′处.以过点B 的直线y=2为对称轴,作A′的对称点A″,连接OA″. 当B′为OA″与直线y=2的交点时,四边形OB′C″A 的周长最短. ∵BA′∥AC′,且BA′=AC′,点A (4,0),点C′(103,109),点B (2,2). ∴点A′(83,89). ∴点A″的坐标为(83,289). 设直线OA″的解析式为y=kx ,将点A″代入得:82839k =, 解得:k=76. ∴直线OA″的解析式为y=76x . 将y=2代入得:76x=2, 解得:x=127, ∴点B′得坐标为(127,2). ∴n=212277-=. ∴存在n=27,抛物线向左平移. 【点睛】本题主要考查的是二次函数、旋转的性质、平移的性质、路径最短等知识点,由旋转的性质和平移的性质求得点点O′坐标为:(m ,m ),点C′坐标为:(32m ,2m)以及点B′的坐标是解题的关键.7.如图1,抛物线21:C y x b =+交y 轴于()0,1A .(1)直接写出抛物线1C 的解析式______________.(2)如图1,x 轴上两动点,M N 满足:m n X X n -==.若,B C (B 在C 左侧)为线段MN 上的两个动点,且满足:B 点和C 点关于直线:1l x =对称.过B 作BB x '⊥轴交1C 于B ',过C 作CC x '⊥轴交1C 于C ',连接B C ''.求B C ''的最大值(用含n 的代数式表示).(3)如图2,将抛物线1C 向下平移78个单位长度得到抛物线2C .2C 对称轴左侧的抛物线上有一点M ,其横坐标为m .以OM 为直径作K ,记⊙K 的最高点为Q .若Q 在直线2y x =-上,求m 的值.【答案】(1)21y x =+;(2)251|n -;(3)14m =-或12m =- 【解析】 【分析】(1)将()0,1A 带入抛物线1C 解析式,求得b 的值,即可得到抛物线1C 的解析式; (2)设(),0B q ,则()2,0C q -,求()2B C ''并进行化简,由1n q -≤<且12,qn <-得21n q -<,则当()2maxB C ''⎡⎤⎢⎥⎣⎦时,取min 2q q n ==-,带入()2B C '',即可求得()maxB C '';(3)依题意将抛物线1C 向下平移78个单位长度得到抛物线2C ,求得2C 解析式,根据解析式特点设21,8M m m ⎛⎫+ ⎪⎝⎭,得到222218OM m m ⎛⎫=++ ⎪⎝⎭,由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭,设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭,化简得到22211084k m k m ⎛⎫++-= ⎪⎝⎭,由Q 点在2y x =-上,得2Q k x m =-=-,继而得到231048m m -+=,解得14m =-或12m =-. 【详解】解:(1)将()0,1A 带入抛物线21:C y x b =+,得b=1, 则21:1C y x =+,(2)设(),0B q ,则()2,0C q -, ∴()22222(2)(2)B C q q q q ''⎡⎤=--+--⎣⎦2204020q q =-+()2201q =-,∵1n q -≤<且12,q n <-21n q -<∴,∴()2maxB C''⎡⎤⎢⎥⎣⎦时,min 2q q n ==-,即()22220(21)20(1)B C n n ''=--=-,∴()max1|B C n ''=-,(3)根据题意,将抛物线1C 向下平移78个单位长度得到抛物线2C , ∴221:8C y x =+, ∴21,8M m m ⎛⎫+⎪⎝⎭, ∴222218OM m m ⎛⎫=++ ⎪⎝⎭,∴由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭, 设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭,∴222111428OM k m ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦, 化简上式得:22211084k m k m ⎛⎫++-= ⎪⎝⎭, ∵Q 点在2y x =-上,则2Q k x m =-=-, ∴k m =-为上述方程的一个解, ∴分析可知1()04k m k m ⎛⎫+-= ⎪⎝⎭, 21148m m m -=+∴,∴231048m m -+=, 解得:114m =-,212m =-(经检验114m =-,212m =-是方程231048m m -+=的解),故14m =-或12m =-. 【点睛】本题主要考查二次函数的图像及性质、图像平移的性质、及二次函数与一元二次方程的综合应用、最值求法等知识.解题关键是熟练掌握二次函数的性质,充分利用数形结合的思想.8.已知二次函数y =ax 2+bx +c (a ≠0). (1)若b =1,a =﹣12c ,求证:二次函数的图象与x 轴一定有两个不同的交点; (2)若a <0,c =0,且对于任意的实数x ,都有y ≤1,求4a +b 2的取值范围; (3)若函数图象上两点(0,y 1)和(1,y 2)满足y 1•y 2>0,且2a +3b +6c =0,试确定二次函数图象对称轴与x 轴交点横坐标的取值范围. 【答案】(1)见解析;(2)240a b +≤ ;(3)12323b a <-< 【解析】 【分析】(1)根据已知条件计算一元二次方程的判别式即可证得结论; (2)根据已知条件求得抛物线的顶点纵坐标,再整理即可;(3)将(0,y 1)和(1,y 2)分别代入函数解析式,由y 1•y 2>0,及2a +3b +6c =0,得不等式组,变形即可得出答案. 【详解】解:(1)证明:∵y =ax 2+bx+c (a≠0), ∴令y =0得:ax 2+bx+c =0 ∵b =1,a =﹣12c , ∴△=b 2﹣4ac =1﹣4(﹣12c )c =1+2c 2, ∵2c 2≥0,∴1+2c 2>0,即△>0,∴二次函数的图象与x 轴一定有两个不同的交点; (2)∵a <0,c =0,∴抛物线的解析式为y =ax 2+bx ,其图象开口向下, 又∵对于任意的实数x ,都有y≤1,∴顶点纵坐标214b a-≤,∴﹣b 2≥4a , ∴4a+b 2≤0;(3)由2a+3b+6c =0,可得6c =﹣(2a+3b ), ∵函数图象上两点(0,y 1)和(1,y 2)满足y 1•y 2>0, ∴c (a+b+c )>0, ∴6c (6a+6b+6c )>0,∴将6c =﹣(2a+3b )代入上式得,﹣(2a+3b )(4a+3b )>0, ∴(2a+3b )(4a+3b )<0, ∵a≠0,则9a 2>0, ∴两边同除以9a 2得,24()()033b b a a ++<, ∴203403b a b a ⎧+<⎪⎪⎨⎪+>⎪⎩或203403b a b a ⎧+>⎪⎪⎨⎪+<⎪⎩,∴4233b a -<<-, ∴二次函数图象对称轴与x 轴交点横坐标的取值范围是:12323b a <-<. 【点睛】本题考查了抛物线与x 轴的交点、抛物线与一元二次方程的关系及抛物线与不等式的关系等知识点,熟练掌握二次函数的性质是解题的关键.9.如图,已知二次函数1L :()22311y mx mx m m =+-+≥和二次函数2L :()2341y m x m =--+-()1m ≥图象的顶点分别为M 、N ,与x 轴分别相交于A 、B 两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边),(1)函数()22311y mx mx m m =+-+≥的顶点坐标为______;当二次函数1L ,2L 的y 值同时随着x 的增大而增大时,则x 的取值范围是_______;(2)判断四边形AMDN 的形状(直接写出,不必证明);(3)抛物线1L ,2L 均会分别经过某些定点;①求所有定点的坐标;②若抛物线1L 位置固定不变,通过平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是多少?【答案】(1)()1,41m --+,13x ;(2)四边形AMDN 是矩形;(3)①所有定点的坐标,1L 经过定点()3,1-或()1,1,2L 经过定点()5,1-或()1,1-;②抛物线2L 应平移的距离是423+423-.【解析】【分析】(1)将已知抛物线解析式转化为顶点式,直接得到点M 的坐标;结合函数图象填空; (2)利用抛物线解析式与一元二次方程的关系求得点A 、D 、M 、N 的横坐标,可得AD 的中点为(1,0),MN 的中点为(1,0),则AD 与MN 互相平分,可证四边形AMDN 是矩形;(3)①分别将二次函数的表达式变形为1:(3)(1)1L y m x x =+-+和2:(1)(5)1L y m x x =----,通过表达式即可得出所过定点;②根据菱形的性质可得EH 1=EF=4即可,设平移的距离为x ,根据平移后图形为菱形,由勾股定理可得方程即可求解.【详解】解:(1)12b x a=-=-,顶点坐标M 为(1,41)m --+, 由图象得:当13x 时,二次函数1L ,2L 的y 值同时随着x 的增大而增大. 故答案为:(1,41)m --+;13x ;(2)结论:四边形AMDN 是矩形.由二次函数21:231(1)L y mx mx m m =+-+和二次函数22:(3)41(1)L y m x m m =--+-解析式可得:A 点坐标为41(1m m ---,0),D 点坐标为41(3m m-+,0), 顶点M 坐标为(1,41)m --+,顶点N 坐标为(3,41)m -,AD ∴的中点为(1,0),MN 的中点为(1,0),AD ∴与MN 互相平分,∴四边形AMDN 是平行四边形,又AD MN =,∴□AMDN 是矩形;(3)①二次函数21:231(3)(1)1L y mx mx m m x x =+-+=+-+,故当3x =-或1x =时1y =,即二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41(1)(5)1L y m x m m x x =--+-=----,故当1x =或5x =时1y =-,即二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,②二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,如图:四个定点分别为(3,1)E -、(1,1)F ,(1,1)H -、(5,1)G -,则组成四边形EFGH 为平行四边形,∴FH ⊥HG ,FH=2,HM=4-x ,设平移的距离为x ,根据平移后图形为菱形,则EH 1=EF=H 1M=4,由勾股定理可得:FH 2+HM 2=FM 2,即22242(4)x =+-,解得:43x =±抛物线1L 位置固定不变,通过左右平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是423+423-.【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.10.如图,经过原点的抛物线2y ax x b =-+与直线2y =交于A ,C 两点,其对称轴是直线2x =,抛物线与x 轴的另一个交点为D ,线段AC 与y 轴交于点B .(1)求抛物线的解析式,并写出点D 的坐标;(2)若点E 为线段BC 上一点,且2EC EA -=,点(0,)P t 为线段OB 上不与端点重合的动点,连接PE ,过点E 作直线PE 的垂线交x 轴于点F ,连接PF ,探究在P 点运动过程中,线段PE ,PF 有何数量关系?并证明所探究的结论;(3)设抛物线顶点为M ,求当t 为何值时,DMF ∆为等腰三角形?【答案】(1)214y x x =-;点D 的坐标为(4,0);(2)5PF PE =,理由见解析;(3)51t +=98t = 【解析】【分析】(1)先求出a 、b 的值,然后求出解析式,再求出点D 的坐标即可;(2)由题意,先求出点E 的坐标,然后证明Rt Rt PBE FHE ∆∆∽,得到2EF PE =,结合勾股定理,即可得到答案;(3)根据题意,可分为三种情况进行分析:FM FD =或DF DM =或FM MD =,分别求出三种情况的值即可.【详解】解:(1)∵抛物线2y ax x b =-+经过原点,∴0b =.又抛物线的对称轴是直线2x =,∴122a --=,解得:14a =. ∴抛物线的解析式为:214y x x =-. 令2104y x x =-=, 解得:10x =,24x =.∴点D 的坐标为(4,0).(2)线段PE 、PF 的数量关系为:5PF PE =.证明:由抛物线的对称性得线段AC 的中点为(2,2)G ,如图①,AE EG GC +=,∴EG GC AE =-,∴EG EG EG GC AE EC EA +=+-=-,∵2EC EA -=,∴1EG =,∴(1,2)E ,过点E 作EH x ⊥轴于H ,则2EH OB ==.∵PE EF ⊥,∴90PEF ∠=︒,∵BE EH ⊥,∴90BEH ∠=︒.∴PEB HEF ∠=∠.在Rt PBE ∆与Rt FHE ∆中,∵PEB HEF ∠=∠,90EHF EBP ∠=∠=︒,∴Rt Rt PBE FHE ∆∆∽,∴12PE BE EF HE ==,∴2EF PE =.在Rt PEF ∆中,由勾股定理得:222222(2)5PF PE EF PE PE PE =+=+=, ∴5PF PE =.(3)由2211(2)144y x x x =-=--, ∴顶点M 坐标为(2,1)-.若DMF ∆为等腰三角形,可能有三种情形:(I )若FM FD =.如图②所示:连接MG 交x 轴于点N ,则90MNF ∠=︒,∵(4,0)D ,∴2222125MD MN ND =+=+=设FM FD k ==,则2NF k =-.在Rt MNF ∆中,由勾股定理得:222NF MN MF +=,∴22(2)1k k -+=,解得:54k =, ∴54FM =,34NF =, ∴1MN =,即点M 的纵坐标为1-;令1y =-,则2114x x -=-, ∴2x =,即ON=2,∴OF=114, ∴11,04F ⎛⎫ ⎪⎝⎭. ∵(1,2)E ,∴1,2BE BP t ==-,∴221(2)PE t =+-,∴251(2)PF t =•+-,在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴22211()55(2)4t t +=+-, ∴98t =. (II )若DF DM =.如图③所示:此时5FD DM ==∴45OF =,∴(45,0)F ,由(I )知,221(2)PE t =+-,251(2)PF t =+-在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴222(45)55(2)t t +-=+-∴512t =. (III )若FM MD =.由抛物线对称性可知,此时点F 与原点O 重合.∵PE EF ⊥,点P 在直线AC 上方,与点P 在线段OB 上运动相矛盾,故此种情形不存在.【点睛】本题考查的是二次函数综合运用,涉及到相似三角形的判定和性质,一次函数的性质,等腰三角形的性质,全等三角形的判定和性质,以及勾股定理等知识,其中(3),要注意分类求解,避免遗漏.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册 二次函数中考真题汇编[解析版]一、初三数学 二次函数易错题压轴题(难)1.已知函数2266()22()x ax a x a y x ax a x a ⎧-+>=⎨-++≤⎩(a 为常数,此函数的图象为G )(1)当a =1时,①直接写出图象G 对应的函数表达式 ②当y=-1时,求图象G 上对应的点的坐标(2)当x >a 时,图象G 与坐标轴有两个交点,求a 的取值范围 (3)当图象G 上有三个点到x 轴的距离为1时,直接写出a 的取值范围【答案】(1)①2266(1)22(1)x x x y x x x ⎧-+>=⎨-++≤⎩,②(1,1),(31),(31)--+--;(2)0a <或2635a <<;(3)1a -<,1153a <<,113a <<-【解析】 【分析】(1)①将1a =代入函数解析式中即可求出结论;②分1x >和1x ≤两种情况,将y=-1分别代入求出x 的值即可;(2)根据a 和0的大小关系分类讨论,然后根据二次函数的性质逐一求解即可;(3)先求出266y x ax a =-+的对称轴为直线6321ax a -=-=⨯,顶点坐标为()23,96a a a -+,222y x ax a =-++的对称轴为直线()221ax a =-=⨯-,顶点坐标为()2,2a aa +,然后根据a 和0的大小关系分类讨论,然后根据二次函数的性质逐一求解即可. 【详解】(1)①1a =时,2266(1)22(1)x x x y x x x ⎧-+>=⎨-++≤⎩②当1x >时,2661x x -+=-2670x x -+=1233x x ==当1x ≤时,2221x x -++=-2230x x --=121,3x x =-=(舍)∴坐标为(1,1),(31),(31)---- (2)当0a <时266()y x ax a x a =-+>与y 轴交点坐标(0,6)a ,266y x ax a =-+对称轴为直线6321ax a -=-=⨯,过点(1,1) ∴x >a >3a ,此时图像G 与坐标轴有两个交点(与x 轴一个交点,与y 轴一个交点) 当0a ≥时,266()y x ax a x a =-+>的图像与y 轴无交点顶点坐标为()23,96a a a -+当x a =时,256y a a =-+>0①,且2960a a -+<②时,此时图像G 与x 轴有两个交点将①的两边同时除以a ,解得65a <; 将②的两边同时除以a ,解得23a > ∴2635a << 即当2635a <<时,图像G 与坐标轴有两个交点, 综上,0a <或2635a <<(3)266y x ax a =-+的对称轴为直线6321ax a -=-=⨯,顶点坐标为()23,96a a a -+ 222y x ax a =-++的对称轴为直线()221a x a =-=⨯-,顶点坐标为()2,2a a a + ①当a <0时,()222y x ax a x a =-++≤中,当x=a 时,y 的最大值为22a a +由()210a +≥可得221a a +≥-,即此图象必有一个点到x 轴的距离为1而()266y x ax a x a =-+>必过(1,1),即此图象必有一个点到x 轴的距离为1,此时x>3a ,y >225666a a a a a a ⋅+=-+-当2221561a a a a ⎧+<⎨-+<-⎩时,()222y x ax a x a =-++≤与x 轴只有一个交点,()266y x ax a x a =-+>与x 轴有两个交点解得:315a --<;当2221561a aa a⎧+>⎨-+>-⎩时,()222y x ax a x a=-++≤与x轴有两个交点,()266y x ax a x a=-+>与x轴有一个交点解得:1a-+<<,与前提条件a<0不符,故舍去;②当a≥0时,()222y x ax a x a=-++≤中,当x=a时,y的最大值为22a a+,必过点(-1,-1),即此图象必有一个点到x轴的距离为1而()266y x ax a x a=-+>,此时当x=3a时,y的最小值为296a a-+,由()2310a--≤可得2961a a-+≤,即此图象必有一个点到x轴的距离为1当222221561961961a aa aa aa a⎧+<⎪-+>⎪⎨-+>-⎪⎪-+≠⎩时,()222y x ax a x a=-++≤与x轴只有一个交点,()266y x ax a x a=-+>与x轴有两个交点解得:115a<<-+且13a≠;当222221561961961a aa aa aa a⎧+<⎪-+<⎪⎨-+<-⎪⎪-+≠⎩时,()222y x ax a x a=-++≤与x轴只有一个交点,()266y x ax a x a=-+>与x轴有两个交点此不等式无解,故舍去;当222221561961961a aa aa aa a⎧+>⎪-+<⎪⎨-+>-⎪⎪-+≠⎩时,()222y x ax a x a=-++≤与x轴有两个交点,()266y x ax a x a=-+>与x轴有一个交点此不等式无解,故舍去;综上:315a--<或1153a<<或113a<<-【点睛】此题考查的是二次函数的性质和分段函数的应用,此题难度较大,掌握二次函数的性质和分类讨论的数学思想是解决此题的关键.2.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 20x +(b+1)x 0+b ﹣2=x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围;(3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2121a +是线段AB 的垂直平分线,求实数b 的取值范围.【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b 的取值范围是﹣4≤b <0. 【解析】 【分析】(1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围;(3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121a +是线段AB 的垂直平分线,从而可以求得b 的取值范围. 【详解】解:(1)当a =2,b =﹣2时, 函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0,∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点, ∴△=b 2﹣4a (b ﹣2)>0,设t =b 2﹣4a (b ﹣2)=b 2﹣4ab+8a ,对于任何实数b ,t >0, 故(﹣4a )2﹣4×1×8a <0, 解得,0<a <2,即a 的取值范围是0<a <2; (3)由题意可得, 点A 和点B 在直线y =x 上, 设点A (x 1,x 1),点B (x 2,x 2),∵A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点, ∴x 1,x 2是方程ax 2+bx+b ﹣2=0的两个根, ∴x 1+x 2=﹣b a, ∵线段AB 中点坐标为(122x x +,122x x+), ∴该中点的坐标为(2b a -,2b a-), ∵直线y =﹣x+2121a +是线段AB 的垂直平分线,∴点(2b a -,2ba -)在直线y =﹣x+2121a +上, ∴2ba -=21221b a a ++∴﹣b =221a a ≤+4,(当a =2时取等号)∴0<﹣b ≤4,∴﹣4≤b <0,即b 的取值范围是﹣4≤b <0. 【点睛】本题是一道二次函数综合题、主要考查新定义、二次函数的性质、二次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.3.如图1,抛物线21:C y x b =+交y 轴于()0,1A .(1)直接写出抛物线1C 的解析式______________.(2)如图1,x 轴上两动点,M N 满足:m n X X n -==.若,B C (B 在C 左侧)为线段MN 上的两个动点,且满足:B 点和C 点关于直线:1l x =对称.过B 作BB x '⊥轴交1C 于B ',过C 作CC x '⊥轴交1C 于C ',连接B C ''.求B C ''的最大值(用含n 的代数式表示).(3)如图2,将抛物线1C 向下平移78个单位长度得到抛物线2C .2C 对称轴左侧的抛物线上有一点M ,其横坐标为m .以OM 为直径作K ,记⊙K 的最高点为Q .若Q 在直线2y x =-上,求m 的值.【答案】(1)21y x =+;(2)251|n -;(3)14m =-或12m =- 【解析】 【分析】(1)将()0,1A 带入抛物线1C 解析式,求得b 的值,即可得到抛物线1C 的解析式; (2)设(),0B q ,则()2,0C q -,求()2B C ''并进行化简,由1n q -≤<且12,qn <-得21n q -<,则当()2maxB C ''⎡⎤⎢⎥⎣⎦时,取min 2q q n ==-,带入()2B C '',即可求得()maxB C '';(3)依题意将抛物线1C 向下平移78个单位长度得到抛物线2C ,求得2C 解析式,根据解析式特点设21,8M m m ⎛⎫+ ⎪⎝⎭,得到222218OM m m ⎛⎫=++ ⎪⎝⎭,由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭,设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭,化简得到22211084k m k m ⎛⎫++-= ⎪⎝⎭,由Q 点在2y x =-上,得2Q k x m =-=-,继而得到231048m m -+=,解得14m =-或12m =-. 【详解】解:(1)将()0,1A 带入抛物线21:C y x b =+,得b=1, 则21:1C y x =+,(2)设(),0B q ,则()2,0C q -, ∴()22222(2)(2)B C q q q q ''⎡⎤=--+--⎣⎦2204020q q =-+()2201q =-,∵1n q -≤<且12,q n <-21n q -<∴,∴()2maxB C''⎡⎤⎢⎥⎣⎦时,min 2q q n ==-,即()22220(21)20(1)B C n n ''=--=-,∴()max1|B C n ''=-,(3)根据题意,将抛物线1C 向下平移78个单位长度得到抛物线2C , ∴221:8C y x =+, ∴21,8M m m ⎛⎫+⎪⎝⎭, ∴222218OM m m ⎛⎫=++ ⎪⎝⎭,∴由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭, 设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭,∴222111428OM k m ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦, 化简上式得:22211084k m k m ⎛⎫++-= ⎪⎝⎭, ∵Q 点在2y x =-上,则2Q k x m =-=-, ∴k m =-为上述方程的一个解, ∴分析可知1()04k m k m ⎛⎫+-= ⎪⎝⎭, 21148m m m -=+∴,∴231048m m -+=, 解得:114m =-,212m =-(经检验114m =-,212m =-是方程231048m m -+=的解),故14m =-或12m =-. 【点睛】本题主要考查二次函数的图像及性质、图像平移的性质、及二次函数与一元二次方程的综合应用、最值求法等知识.解题关键是熟练掌握二次函数的性质,充分利用数形结合的思想.4.在平面直角坐标系中,点(),p tq 与(),q tp ()0t ≠称为一对泛对称点. (1)若点()1,2,()3,a 是一对泛对称点,求a 的值;(2)若P ,Q 是第一象限的一对泛对称点,过点P 作PA x ⊥轴于点A ,过点Q 作QB y ⊥轴于点B ,线段PA ,QB 交于点C ,连接AB ,PQ ,判断直线AB 与PQ 的位置关系,并说明理由;(3)抛物线2y ax bx c =++()0a <交y 轴于点D ,过点D 作x 轴的平行线交此抛物线于点M (不与点D 重合),过点M 的直线y ax m =+与此抛物线交于另一点N .对于任意满足条件的实数b ,是否都存在M ,N 是一对泛对称点的情形?若是,请说明理由,并对所有的泛对称点(),M M M x y ,(),N N N x y 探究当M y >N y 时M x 的取值范围;若不是,请说明理由. 【答案】(1)23;(2)AB ∥PQ ,见解析;(3)对于任意满足条件的实数b ,都存在M ,N 是一对泛对称点的情形,此时对于所有的泛对称点M(x M ,y M ),N(x N ,y N ),当y M >y N时,x M的取值范围是x M<1且x M≠0【解析】【分析】(1)利用泛对称点得定义求出t的值,即可求出a.(2)设P,Q两点的坐标分别为P(p,tq),Q(q,tp),根据题干条件得到A(p,0),B (0,tp),C(p,tp)的坐标,利用二元一次方程组证出k1=k2,所以AB∥PQ.(3)由二次函数与x轴交点的特征,得到D点的坐标;然后利用二次函数与一元二次方程的关系,使用求根公式即可得到答案.【详解】(1)解:因为点(1,2),(3,a)是一对泛对称点,设3t=2解得t=23所以a=t×1=23(2)解:设P,Q两点的坐标分别为P(p,tq),Q(q,tp),其中0<p<q,t>0.因为PA⊥x轴于点A,QB⊥y轴于点B,线段PA,QB交于点C,所以点A,B,C的坐标分别为:A(p,0),B(0,tp),C(p,tp)设直线AB,PQ的解析式分别为:y=k1x+b1,y=k2x+b2,其中k1k2≠0.分别将点A(p,0),B(0,tp)代入y=k1x+b1,得111pk b tpb tp+=⎧⎨=⎩. 解得11k tb tp=-⎧⎨=⎩分别将点P(p,tq),Q(q,tp)代入y=k2x+b2,得2222pk b tpqk b tp+=⎧⎨+=⎩. 解得22k tb tp tp=-⎧⎨=+⎩所以k1=k2.所以AB∥PQ(3)解:因为抛物线y=ax2+bx+c(a<0)交y轴于点D,所以点D的坐标为(0,c).因为DM∥x轴,所以点M的坐标为(x M,c),又因为点M在抛物线y=ax2+bx+c(a<0)上.可得ax M 2+bx M+c=c,即x M(ax M+b)=0.解得x M=0或x M=-b a .因为点M不与点D重合,即x M≠0,也即b≠0,所以点M的坐标为(-ba,c)因为直线y=ax+m经过点M,将点M(-ba,c)代入直线y=ax+m可得,a·(-ba)+m=c.化简得m=b+c所以直线解析式为:y=ax+b+c.因为抛物线y=ax2+bx+c与直线y=ax+b+c交于另一点N,由ax2+bx+c=ax+b+c,可得ax2+(b-a)x-b=0.因为△=(b-a)2+4ab=(a+b)2,解得x1=-ba,x2=1.即x M=-ba,x N=1,且-ba≠1,也即a+b≠0.所以点N的坐标为(1,a+b+c)要使M(-ba,c)与N(1,a+b+c)是一对泛对称点,则需c=t ×1且a+b+c=t ×(-ba ).也即a+b+c=(-ba )·c也即(a+b)·a=-(a+b)·c.因为a+b≠0,所以当a=-c时,M,N是一对泛对称点.因此对于任意满足条件的实数b,都存在M,N是一对泛对称点的情形.此时点M的坐标为(-ba,-a),点N的坐标为(1,b).所以M,N两点都在函数y=bx(b≠0)的图象上.因为a<0,所以当b>0时,点M,N都在第一象限,此时 y随x的增大而减小,所以当y M>y N时,0<x M<1;当b<0时,点M在第二象限,点N在第四象限,满足y M>y N,此时x M<0.综上,对于任意满足条件的实数b,都存在M,N是一对泛对称点的情形,此时对于所有的泛对称点M(x M,y M),N(x N,y N),当y M>y N时,x M的取值范围是x M<1且x M≠0.【点睛】本题主要考察了新定义问题,读懂题意是是做题的关键;主要考察了二元一次方程组,二次函数、一元二次方程知识点的综合,把握题干信息,熟练运用知识点是解题的核心.5.如图,顶点为M的抛物线y=ax2+bx+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线y=6x(x>0)经过点D,连接MD,BD.(1)求抛物线的表达式;(2)点N,F分别是x轴,y轴上的两点,当以M,D,N,F为顶点的四边形周长最小时,求出点N,F的坐标;(3)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?【答案】(1)y=﹣x2+2x+3;(2)N(57,0),F(0,53);(3)t=9﹣15【解析】【分析】(1)由已知求出D点坐标,将点A(-1,0)和D(2,3)代入y=ax2+bx+3即可;(2)作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;(3)设P(0,t),作△PBD的外接圆N,当⊙N与y轴相切时,∠BPD的度数最大;【详解】解;(1)C(0,3)∵CD⊥y,∴D点纵坐标是3.∵D在y=6x上,∴D(2,3),将点A(﹣1,0)和D(2,3)代入y=ax2+bx+3,∴a=﹣1,b=2,∴y=﹣x2+2x+3;(2)M(1,4),B(3,0),作M关于y轴的对称点M',作D关于x轴的对称点D',连接M'D'与x轴、y轴分别交于点N、F,则以M,D,N,F为顶点的四边形周长最小即为M'D'+MD的长;∴M'(﹣1,4),D'(2,﹣3),∴M'D'直线的解析式为y=﹣73x+53,∴N(57,0),F(0,53);(3)设P(0,t).∵△PBO和△CDP都是直角三角形,tan∠CDP=32t-,tan∠PBO=3t,令y=tan∠BPD=3233123t tt t-+--,∴yt2+t﹣3yt+6y﹣9=0,△=﹣15y2+30y+1=0时,y =15415-+(舍)或y =15415+,∴t =32﹣12×1y,∴t =9﹣215, ∴P (0,9﹣215). 【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,利用轴对称求最短距离,学会利用辅助圆解决问题,属于中考压轴题.6.如图,抛物线y =ax 2+bx +2经过点A(−1,0),B(4,0),交y 轴于点C ; (1)求抛物线的解析式(用一般式表示);(2)点D 为y 轴右侧抛物线上一点,是否存在点D 使S △ABC =23S △ABD ?若存在,请求出点D 坐标;若不存在,请说明理由;(3)将直线BC 绕点B 顺时针旋转45°,与抛物线交于另一点E ,求BE 的长.【答案】(1)213222y x x =-++(2)存在,D (1,3)或(2,3)或(5,3-)(3)10 【解析】 【分析】(1)由A 、B 的坐标,利用待定系数法可求得抛物线解析式;(2)由条件可求得点D 到x 轴的距离,即可求得D 点的纵坐标,代入抛物线解析式可求得D 点坐标;(3)由条件可证得BC ⊥AC ,设直线AC 和BE 交于点F ,过F 作FM ⊥x 轴于点M ,则可得BF=BC ,利用平行线分线段成比例可求得F 点的坐标,利用待定系数法可求得直线BE 解析式,联立直线BE 和抛物线解析式可求得E 点坐标,则可求得BE 的长. 【详解】解:(1)∵抛物线y=ax 2+bx+2经过点A (-1,0),B (4,0),∴2016420a b a b -+=⎧⎨++=⎩,解得:1232a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线解析式为:213222y x x =-++; (2)由题意可知C (0,2),A (-1,0),B (4,0), ∴AB=5,OC=2,∴S △ABC =12AB•OC=12×5×2=5, ∵S △ABC =23S △ABD ,∴S △ABD =315522⨯=,设D (x ,y ), ∴11155222AB y y •=⨯•=, 解得:3y =; 当3y =时,2132322y x x =-++=, 解得:1x =或2x =,∴点D 的坐标为:(1,3)或(2,3); 当3y =-时,2132322y x x =-++=-, 解得:5x =或2x =-(舍去), ∴点D 的坐标为:(5,-3);综合上述,点D 的坐标为:(1,3)或(2,3)或(5,-3); (3)∵AO=1,OC=2,OB=4,AB=5,∴AC ==BC == ∴222AC BC AB +=,∴△ABC 为直角三角形,即BC ⊥AC ,如图,设直线AC 与直线BE 交于点F ,过F 作FM ⊥x 轴于点M ,由题意可知∠FBC=45°, ∴∠CFB=45°, ∴25CF BC == ∴AO AC OM CF =,即1525OM = 解得:2OM =, ∴OC AC FM AF =,即2535FM = 解得:6FM =,∴点F 为(2,6),且B 为(4,0), 设直线BE 解析式为y=kx+m ,则2640k m k m +=⎧⎨+=⎩,解得312k m =-⎧⎨=⎩, ∴直线BE 解析式为:312y x =-+;联立直线BE 和抛物线解析式可得:231213222y x y x x =-+⎧⎪⎨=-++⎪⎩, 解得:40x y =⎧⎨=⎩或53x y =⎧⎨=-⎩,∴点E 坐标为:(5,3)-,∴22(54)(3)10BE =-+-= 【点睛】本题为二次函数的综合应用,涉及待定系数法、三角形面积、勾股定理及其逆定理、平行线分线段成比例、函数图象的交点、等腰直角三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中求得D 点的纵坐标是解题的关键,在(3)中由条件求得直线BE 的解析式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,有一定的难度.7.如图,若抛物线y=x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,直线y=x﹣3经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,过点P作PH⊥x轴于点H,交BC于点M,连接PC.①线段PM是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P运动的过程中,是否存在点M,恰好使△PCM是以PM为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【答案】(1)y=x2﹣2x﹣3;(2)①有,94;②存在,(2,﹣3)或(32,2﹣2)【解析】【分析】(1)由直线表达式求出点B、C的坐标,将点B、C的坐标代入抛物线表达式,即可求解;(2)①根据PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94即可求解;②分PM=PC、PM=MC两种情况,分别求解即可.【详解】解:(1)对于y=x﹣3,令x=0,y=﹣3,y=0,x=3,故点B、C的坐标分别为(3,0)、(0,﹣3),将点B、C的坐标代入抛物线表达式得:9303b cc++=⎧⎨=-⎩,解得:32 cb=-⎧⎨=-⎩,故抛物线的表达式为:y=x2﹣2x﹣3;(2)设:点M(x,x﹣3),则点P(x,x2﹣2x﹣3),①有,理由:PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94,∵﹣1<0,故PM有最大值,当x=32时,PM最大值为:94;②存在,理由:PM2=(x﹣3﹣x2+2x+3)2=(﹣x2+3x)2;PC2=x2+(x2﹣2x﹣3+3)2;MC2=(x﹣3+3)2+x2;(Ⅰ)当PM=PC时,则(﹣x2+3x)2=x2+(x2﹣2x﹣3+3)2,解得:x=0或2(舍去0),故x=2,故点P(2,﹣3);(Ⅱ)当PM=MC时,则(﹣x2+3x)2=(x﹣3+3)2+x2,解得:x=0或3±2(舍去0和3+2),故x=3﹣2,则x2﹣2x﹣3=2﹣42,故点P(3﹣2,2﹣42).综上,点P的坐标为:(2,﹣3)或(3﹣2,2﹣42).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质等,其中(2)②,要注意分类求解,避免遗漏.8.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A 在点B的左侧.(1)如图1,当k=1时,直接写出A,B两点的坐标;(2)在(1)的条件下,点P为抛物线上的一个动点,且在直线AB下方,试求出△ABP面积的最大值及此时点P的坐标;(3)如图2,抛物线y=x2+(k﹣1)x﹣k(k>0)与x轴交于点C、D两点(点C在点D的左侧),在直线y=kx+1上是否存在唯一一点Q,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.【答案】(1)A(-1,0) ,B(2,3)(2)△ABP最大面积s=1927322288⨯=; P(12,﹣34)(3)存在;25【解析】【分析】(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1,然后解方程组211y xy x⎧=⎨=+⎩﹣即可;(2)设P(x,x2﹣1).过点P作PF∥y轴,交直线AB于点F,则F(x,x+1),所以利用S△ABP=S△PFA+S△PFB,,用含x的代数式表示为S△ABP=﹣x2+x+2,配方或用公式确定顶点坐标即可.(3)设直线AB:y=kx+1与x轴、y轴分别交于点E、F,用k分别表示点E的坐标,点F的坐标,以及点C的坐标,然后在Rt△EOF中,由勾股定理表示出EF的长,假设存在唯一一点Q,使得∠OQC=90°,则以OC为直径的圆与直线AB相切于点Q,设点N为OC中点,连接NQ,根据条件证明△EQN∽△EOF,然后根据性质对应边成比例,可得关于k的方程,解方程即可.【详解】解:(1)当k=1时,抛物线解析式为y=x2﹣1,直线解析式为y=x+1.联立两个解析式,得:x2﹣1=x+1,解得:x=﹣1或x=2,当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3,∴A(﹣1,0),B(2,3).(2)设P(x,x2﹣1).如答图2所示,过点P作PF∥y轴,交直线AB于点F,则F(x,x+1).∴PF=y F﹣y P=(x+1)﹣(x2﹣1)=﹣x2+x+2.S△ABP=S△PFA+S△PFB=PF(xF﹣xA)+PF(xB﹣xF)=PF(xB﹣xA)=PF∴S△ABP=(﹣x2+x+2)=﹣(x﹣12)2+278当x=12时,yP=x2﹣1=﹣34.∴△ABP面积最大值为,此时点P坐标为(12,﹣34).(3)设直线AB:y=kx+1与x轴、y轴分别交于点E、F,则E(﹣1k,0),F(0,1),OE=1k,OF=1.在Rt△EOF中,由勾股定理得:EF=22111=kk+⎛⎫+⎪⎝⎭.令y=x2+(k﹣1)x﹣k=0,即(x+k)(x﹣1)=0,解得:x=﹣k或x=1.∴C(﹣k,0),OC=k.假设存在唯一一点Q,使得∠OQC=90°,如答图3所示,则以OC为直径的圆与直线AB相切于点Q,根据圆周角定理,此时∠OQC=90°.设点N为OC中点,连接NQ,则NQ⊥EF,NQ=CN=ON=2k.∴EN=OE﹣ON=1k﹣2k.∵∠NEQ=∠FEO,∠EQN=∠EOF=90°,∴△EQN∽△EOF,∴NQ ENOF EF=,即:1221kkkk-=,解得:25,∵k>0,∴25.∴存在唯一一点Q,使得∠OQC=90°,此时25.考点:1.二次函数的性质及其应用;2.圆的性质;3.相似三角形的判定与性质.9.如图,已知抛物线2y x bx c=-++与x轴交于A,B两点,过点A的直线l与抛物线交于点C,其中点A的坐标是()1,0,点C的坐标是()2,3-,抛物线的顶点为点D.(1)求抛物线和直线AC 的解析式.(2)若点P 是抛物线上位于直线AC 上方的一个动点,求APC ∆的面积的最大值及此时点P 的坐标.(3)若抛物线的对称轴与直线AC 相交于点E ,点M 为直线AC 上的任意一点,过点M 作//MN DE 交抛物线于点N ,以D ,E ,M ,N 为顶点的四边形能否为平行四边形?若能,求出点M 的坐标;若不能,请说明理由.【答案】(1)y=-x 2-2x+3,y=-x+1;(2)最大值为278,此时点P(12-,154);(3)能,(0,1),(1172-+,3172)或(1172--,3172) 【解析】 【分析】(1)直接利用待定系数法进行求解,即可得到答案;(2)设点P(m ,-m 2-2m+3),则Q(m ,-m+1),求出PQ 的长度,结合三角形的面积公式和二次函数的性质,即可得到答案;(3)根据题意,设点M(t ,-t+1),则点N(t ,-t 2-2t+3),可分为两种情况进行分析:①当点M 在线段AC 上时,点N 在点M 上方;②当点M 在线段AC (或CA )延长线上时,点N 在点M 下方;分别求出点M 的坐标即可. 【详解】解:(1)∵抛物线y=-x 2+bx+c 过点A(1,0),C(-2,3),∴10423b c b c -++=⎧⎨--+=⎩,,解得:23b c =-⎧⎨=⎩,.∴抛物线的解析式为y=-x 2-2x+3. 设直线AC 的解析式为y=kx+n . 将点A ,C 坐标代入,得 023k n k n +=⎧⎨-+=⎩,,解得11k n =-⎧⎨=⎩,. ∴直线AC 的解析式为y=-x+1. (2)过点P 作PQ ∥y 轴交AC 于点Q . 设点P(m ,-m 2-2m+3),则Q(m ,-m+1).∴PQ=(-m 2-2m+3)-(-m+1)=-m 2-m+2.∴S △APC =S △PCQ +S △APQ =12PQ·(x A -x C )=12(-m 2-m+2)×3=23127()228m -++. ∴当m=12-时,S △APC 最大,最大值为278,此时点P(12-,154). (3)能.∵y=-x 2-2x+3,点D 为顶点,∴点D(-1,4),令x=-1时,y=-(-1)+1=2,∴点E(-1,2).∵MN ∥DE ,∴当MN=DE=2时,以D ,E ,M ,N 为顶点的四边形是平行四边形.∵点M 在直线AC 上,点N 在抛物线上,∴设点M(t ,-t+1),则点N(t ,-t 2-2t+3).①当点M 在线段AC 上时,点N 在点M 上方,则MN=(-t 2-2t+3)-(-t+1)=-t 2-t+2.∴-t 2-t+2=2,解得:t=0或t=-1(舍去).∴此时点M 的坐标为(0,1).②当点M 在线段AC (或CA )延长线上时,点N 在点M 下方,则MN=(-t+1)-(-t 2-2t+3)=t 2+t-2.∴t 2+t-2=2,解得:t=12-+或t=12-.∴此时点M 的坐标为(12-+,32-)或(12-,32+).综上所述,满足条件的点M 的坐标为:(0,1【点睛】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC 的函数关系式;(2)利用三角形的面积公式和二次函数的性质解题;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M 的位置.10.在平面直角坐标系xOy 中(如图),已知二次函数2y ax bx c =++(其中a 、b 、c是常数,且a≠0)的图像经过点A(0,-3)、B(1,0)、C(3,0),联结AB、AC.(1)求这个二次函数的解析式;(2)点D是线段AC上的一点,联结BD,如果:3:2ABD BCDS S∆∆=,求tan∠DBC的值;(3)如果点E在该二次函数图像的对称轴上,当AC平分∠BAE时,求点E的坐标.【答案】(1)243y x x=-+-;(2)32;(3)E(2,73-)【解析】【分析】(1)直接利用待定系数法,把A、B、C三点代入解析式,即可得到答案;(2)过点D作DH⊥BC于H,在△ABC中,设AC边上的高为h,利用面积的比得到32ADDC=,然后求出DH和BH,即可得到答案;(3)延长AE至x轴,与x轴交于点F,先证明△OAB∽△OFA,求出点F的坐标,然后求出直线AF的方程,即可求出点E的坐标.【详解】解:(1)将A(0,-3)、B(1,0)、C(3,0)代入20y ax bx c a=++≠()得,03,0934,300a ba bc=+-⎧⎪=+-⎨⎪-=++⎩解得143abc=-⎧⎪=⎨⎪=-⎩,∴此抛物线的表达式是:243y x x=-+-.(2)过点D作DH⊥BC于H,在△ABC 中,设AC 边上的高为h ,则11:():():3:222ABD BCD S S AD h DC h AD DC ∆∆=⋅⋅==, 又∵DH//y 轴,∴25CH DC DH OC AC OA ===. ∵OA=OC=3,则∠ACO=45°,∴△CDH 为等腰直角三角形,∴26355CH DH ==⨯=. ∴64255BH BC CH =-=-=. ∴tan ∠DBC=32DH BH =. (3)延长AE 至x 轴,与x 轴交于点F ,∵OA=OC=3,∴∠OAC=∠OCA=45°,∵∠OAB=∠OAC -∠BAC=45°-∠BAC ,∠OFA=∠OCA -∠FAC=45°-∠FAC ,∵∠BAC=∠FAC ,∴∠OAB=∠OFA .∴△OAB∽△OFA,∴13 OB OAOA OF==.∴OF=9,即F(9,0);设直线AF的解析式为y=kx+b(k≠0),可得093k bb=+⎧⎨-=⎩,解得133kb⎧=⎪⎨⎪=-⎩,∴直线AF的解析式为:133y x=-,将x=2代入直线AF的解析式得:73y=-,∴E(2,73 -).【点睛】本题考查了相似三角形的判定和性质,二次函数的性质,求二次函数的解析式,等腰直角三角形的判定和性质,求一次函数的解析式,解题的关键是掌握二次函数的图像和性质,以及正确作出辅助线构造相似三角形.。