计量经济学 回归模型

合集下载

计量经济学-多元线性回归模型

计量经济学-多元线性回归模型
多元线性回归模型的表达式
Y=β0+β1X1+β2X2+...+βkXk+ε,其中Y为因变 量,X1, X2,..., Xk为自变量,β0, β1,..., βk为回归 系数,ε为随机误差项。
多元线性回归模型的假设条件
包括线性关系假设、误差项独立同分布假设、无 多重共线性假设等。
研究目的与意义
研究目的
政策与其他因素的交互作用
多元线性回归模型可以引入交互项,分析政策与其他因素(如技 术进步、国际贸易等)的交互作用,更全面地评估政策效应。
实例分析:基于多元线性回归模型的实证分析
实例一
预测某国GDP增长率:收集该国历史数据,包括GDP、投资、消费、出口等变量,建立 多元线性回归模型进行预测,并根据预测结果提出政策建议。
最小二乘法原理
最小二乘法是一种数学优化技术,用 于找到最佳函数匹配数据。
残差是观测值与预测值之间的差,即 e=y−(β0+β1x1+⋯+βkxk)e = y (beta_0 + beta_1 x_1 + cdots + beta_k x_k)e=y−(β0+β1x1+⋯+βkxk)。
在多元线性回归中,最小二乘法的目 标是使残差平方和最小。
t检验
用于检验单个解释变量对被解释变量的影响 是否显著。
F检验
用于检验所有解释变量对被解释变量的联合 影响是否显著。
拟合优度检验
通过计算可决系数(R-squared)等指标, 评估模型对数据的拟合程度。
残差诊断
检查残差是否满足独立同分布等假设,以验 证模型的合理性。
04
多元线性回归模型的检验与 诊断

计量经济学回归分析模型

计量经济学回归分析模型
共计
表 2.1.1 某社区家庭每月收入与消费支出统计表 每月家庭可支配收入X(元)
800 1100 1400 1700 2000 2300 2600 2900 3200 3500 561 638 869 1023 1254 1408 1650 1969 2090 2299 594 748 913 1100 1309 1452 1738 1991 2134 2321 627 814 924 1144 1364 1551 1749 2046 2178 2530 638 847 979 1155 1397 1595 1804 2068 2266 2629
称i为观察值Yi围绕它旳期望值E(Y|Xi)旳离差
(deviation),是一种不可观察旳随机变量,又称 为随机干扰项(stochastic disturbance)或随机误 差项(stochastic error)。
例2.1中,个别家庭旳消费支出为:
(*)
即,给定收入水平Xi ,个别家庭旳支出可表达为两部分之和: (1)该收入水平下全部家庭旳平均消费支出E(Y|Xi),称为 系统性(systematic)或拟定性(deterministic)部分。
注意: 这里将样本回归线看成总体回归线旳近似替代

样本回归函数旳随机形式/样本回归模型:
一样地,样本回归函数也有如下旳随机形式:
Yi Yˆi ˆ i ˆ0 ˆ1 X i ei
式中, ei 称为(样本)残差(或剩余)项(residual),代表
了其他影响Yi 的随机因素的集合,可看成是 i 的估计量ˆ i 。
相应旳函数:
E(Y | X i ) f ( X i )
称为(双变量)总体回归函数(population regression function, PRF)。

计量经济学第2章 一元线性回归模型

计量经济学第2章 一元线性回归模型

15
~ ~ • 因为 2是β2的线性无偏估计,因此根据线性性, 2 ~ 可以写成下列形式: 2 CiYi
• 其中αi是线性组合的系数,为确定性的数值。则有
E ( 2 ) E[ Ci ( 1 2 X i ui )]
E[ 1 Ci 2 Ci X i Ci ui ]
6
ˆ ˆ X )2 ] ˆ , ˆ ) [ (Yi Q( 1 2 i 1 2 ˆ ˆ X 2 Yi 1 2 i ˆ ˆ 1 1 2 ˆ ˆ ˆ ˆ [ ( Y X ) ] 1 2 i Q( 1 , 2 ) i ˆ ˆ X X 2 Yi 1 2 i i ˆ ˆ 2 2
16
~
i
i
• 因此 ~ 2 CiYi 1 Ci 2 Ci X i Ci ui 2 Ci ui
• 再计算方差Var( ) 2 ,得 ~ ~ ~ 2 ~ Var ( 2 ) E[ 2 E ( 2 )] E ( 2 2 ) 2
C E (ui )
2 i 2 i
i
~
i
i
i
i
E ( 2 Ci ui 2 ) 2 E ( Ci ui ) 2
i
2 u
C
i
2 i
i
~ ˆ)的大小,可以对上述表达式做一 • 为了比较Var( ) 和 Var( 2 2
些处理: ~ 2 2 2 2 Var ( 2 ) u C ( C b b ) i u i i i
8
• 2.几个常用的结果
• (1) • (2) • (3) • (4)

计量经济学_詹姆斯斯托克_第8章_非线性的回归模型

计量经济学_詹姆斯斯托克_第8章_非线性的回归模型

Ln(TestScore) = 6.336 + 0.0554 ln(Incomei) (0.006) (0.0021)
假设 Income 从$10,000 增加到$11,000(或者 10%)。
则 TestScore 增加大约 0.0554 10% = 0.554%。
如果 TestScore = 650, 意味着测试成绩预计会增加
非线性的回归模型
非线性的回归函数
“非线性”的含义:
(1)非线性的函数 自变量与解释变量之间的非线性
函 数形式。
(2)非线性的回归 参数与随机项的非线性形式。
非线性的回归函数
一、多项式回归 二、对数回归 三、自变量的交互作用 四、其他非线性形式的回归 五*、非线性回归(参数非线性)
一、多项式回归
1、指数函数曲线
指数函数方程有两种形式:
yˆ aebx yˆ abx
y a>0,b>0
a>0,b<0
x
图11.1方yˆ 程 aebx 的图象
二、对数函数曲线
对数函数方程的一般表达式为:
yˆ a b ln x
y
b>0
b<0
x
图11.2 方程yˆ =a+blnx 的图象
(2)根据拟合程度的好坏来确定(如,利用spss 的相关功能) 在社会科学领域里,阶数不会太高!
一、多项式回归
形式: Y 0 1X 2 X 2 ...r X r u
(2)多项式的本质 泰勒展开
一、多项式回归
形式: Y 0 1X 2 X 2 ...r X r u
Y——收入; D1——性别(1——男;0——女) D2——学历(1——大学学历;0——没有)

计量经济学第三章-回归模型的扩展

计量经济学第三章-回归模型的扩展
验的结果,或直接取成 1/|ei|、1/ei2
第二节 自相关性
一Байду номын сангаас自相关性的概念及其产生原因:
1.定义:随机误差项的各期值之间存在相关性 COV(t, s)0, ts
例:投资函数、生产函数
2.产生原因: 1)模型遗漏了自相关的解释变量; 2)模型函数形式的设定误差; 3)经济惯性; 4)随机因素影响; (注:自相关性更易产生于时序数据)
原理:辅助回归检验 命令:View\ResidualTest \SerialCorrelation LM
Test
四、自相关性的修正方法
1.利用广义差分变换消除自相关性:
步骤: 实质:GLS估计
2.的估计方法:
1)近似估计; 2)迭代估计;
3.Eviews软件的实现:
1)检验自相关性的阶数; 2)在LS命令中增加AR项;
二、异方差的影响
1.OLS估计不再是最佳估计量; 2.T检验可靠性降低; 3.增大预测误差; 三、异方差的检验 ★1.图形分析: (1)观察Y、X相关图:SCAT Y X (2)残差分析:观察回归方程的残差图
在方程窗口直接点击Residual按钮; 或:点击View\Actual,Fitted,Residual\Table
1. 调整季节波动
y a bx 1D1 2D2 3D3
2. 检验模型结构的稳定性(P141)
y a bx D XD
3. 混合回归
例8.教材P132
第五节 滞后变量模型
一、滞后效应与滞后变量的作用 1、产生滞后效应的原因:
1)心理因素:消费习惯、消费心理(如价格、利率) 2)技术原因:农民收入、农产品价格、天气条件 3)制度原因:

计量经济学回归分析模型

计量经济学回归分析模型

计量经济学回归分析模型计量经济学是经济学中的一个分支,通过运用数理统计和经济理论的工具,研究经济现象。

其中回归分析模型是计量经济学中最为常见的分析方法之一、回归分析模型主要用于确定自变量与因变量之间的关系,并通过统计推断来解释这种关系。

回归分析模型中的关系可以是线性的,也可以是非线性的。

线性回归模型是回归分析中最为常见和基础的模型。

它可以表示为:Y=β0+β1X1+β2X2+...+βkXk+ε其中,Y代表因变量,X1,X2,...,Xk代表自变量,β0,β1,β2,...,βk代表回归系数,ε代表随机误差项。

回归模型的核心是确定回归系数。

通过最小二乘法估计回归系数,使得预测值与实际观测值之间的差异最小化。

最小二乘法通过使得误差的平方和最小化来估计回归系数。

通过对数据进行拟合,我们可以得到回归系数的估计值。

回归分析模型的应用范围非常广泛。

它可以用于解释和预测经济现象,比如价格与需求的关系、生产力与劳动力的关系等。

此外,回归分析模型还可以用于政策评估和决策制定。

通过分析回归系数的显著性,可以判断自变量对因变量的影响程度,并进行政策建议和决策制定。

在实施回归分析模型时,有几个重要的假设需要满足。

首先,线性回归模型要求因变量和自变量之间存在线性关系。

其次,回归模型要求自变量之间不存在多重共线性,即自变量之间没有高度相关性。

此外,回归模型要求误差项具有同方差性和独立性。

在解释回归分析模型的结果时,可以通过回归系数的显著性来判断自变量对因变量的影响程度。

显著性水平一般为0.05或0.01,如果回归系数的p值小于显著性水平,则说明该自变量对因变量具有显著影响。

此外,还可以通过确定系数R^2来评估模型的拟合程度。

R^2可以解释因变量变异的百分比,值越接近1,说明模型的拟合程度越好。

总之,回归分析模型是计量经济学中非常重要的工具之一、它通过分析自变量和因变量之间的关系,能够解释经济现象和预测未来走势。

在应用回归分析模型时,需要满足一定的假设条件,并通过回归系数和拟合优度来解释结果。

庞浩计量经济学第二章简单线性回归模型

庞浩计量经济学第二章简单线性回归模型

最小二乘法的应用
在统计学和计量经济学中,最 小二乘法广泛应用于估计线性 回归模型,以探索解释变量与 被解释变量之间的关系。
通过最小二乘法,可以估计出 解释变量的系数,从而了解各 解释变量对被解释变量的影响 程度。
最小二乘法还可以用于时间序 列分析、预测和数据拟合等场 景。
最小二乘法的局限性
最小二乘法假设误差项是独立同分布 的,且服从正态分布,这在实际应用 中可能不成立。
最小二乘法无法处理多重共线性问题, 当解释变量之间存在高度相关关系时, 最小二乘法的估计结果可能不准确。
最小二乘法对异常值比较敏感,异常 值的存在可能导致参数估计的不稳定。
04
模型的评估与选择
R-squared
总结词
衡量模型拟合优度的指标
详细描述
R-squared,也称为确定系数,用于衡量模型对数据的拟合程度。它的值在0到1之间,越接近1表示模型拟合越 好。R-squared的计算公式为(SSreg/SStot)=(y-ybar)2 / (y-ybar)2 + (y-ybar)2,其中SSreg是回归平方和, SStot是总平方和,y是因变量,ybar是因变量的均值。
数据来源
本案例的数据来源于某大型电商 平台的销售数据,包括商品的销 售量、价格、评价等。
数据处理
对原始数据进行清洗和预处理, 包括处理缺失值、异常值和重复 值,对分类变量进行编码,对连 续变量进行必要的缩放和转换。
模型建立与评估
模型建立
基于处理后的数据,使用简单线性回 归模型进行建模,以商品销售量作为 因变量,价格和评价作为自变量。
线性回归模型是一种数学模型, 用于描述因变量与一个或多个 自变量之间的线性关系。它通 常表示为:Y = β0 + β1X1 + β2X2 + ... + ε

5、计量经济学【多元线性回归模型】

5、计量经济学【多元线性回归模型】

二、多元线性回归模型的参数估计
2、最小二乘估计量的性质 当 ˆ0, ˆ1, ˆ2, , ˆk 为表达式形式时,为随机变量, 这时最小二乘估计量 ˆ0, ˆ1, ˆ2, , ˆk 经过证明同样也 具有线性性、无偏性和最小方差性(有效性)。 也就是说,在模型满足那几条基本假定的前提 下,OLS估计量具有线性性、无偏性和最小方差性 (有效性)这样优良的性质, 即最小二乘估计量
用残差平方和 ei2 最小的准则: i
二、多元线性回归模型的参数估计
1、参数的普通最小二乘估计法(OLS) 即:
min ei2 min (Yi Yˆi )2 min Yi (ˆ0 ˆ1X1i ˆ2 X 2i ˆk X ki )2
同样的道理,根据微积分知识,要使上式最小,只 需求上式分别对 ˆj ( j 0,1, k) 的一阶偏导数,并令 一阶偏导数为 0,就可得到一个包含 k 1 个方程的正 规方程组,这个正规方程组中有 k 1个未知参数 ˆ0, ˆ1, ˆ2, , ˆk ;解这个正规方程组即可得到这 k 1 个参数 ˆ0, ˆ1, ˆ2, , ˆk 的表达式,即得到了参数的最小 二乘估计量;将样本数据代入到这些表达式中,即可 计算出参数的最小二乘估计值。
该样本回归模型与总体回归模型相对应,其中残差 ei Yi Yˆi 可看成是总体回归模型中随机误差项 i 的 估计值。
2、多元线性回归模型的几种形式: 上述几种形式的矩阵表达式: 将多元线性总体回归模型 (3.1) 式表示的 n 个随机方 程写成方程组的形式,有:
Y1 0 1 X11 2 X 21 .Y.2.........0.......1.X...1.2........2.X...2.2. Yn 0 1 X1n 2 X 2n
ˆ0, ˆ1, ˆ2, , ˆk 是总体参数真值的最佳线性无偏估计 量( BLUE );即高斯—马尔可夫定理 (GaussMarkov theorem)。

计量经济学4简单的回归模型OLS

计量经济学4简单的回归模型OLS
yi 0 1xi
残差:yi的实际值与拟合值之差:
ui yi yi yi 0 1xi
7
• 最小化残差平方和:
n
2
n
ui
( yi 0 1xi )2
i 1
i 1
8
• 样本回归函数:(总体回归函数的一个样本估计)
y 0 1x
y 1x
• 描述了x变化如何引起y的变化,解释变量对被解释变量 的影响
n
2
( yi y)
i1
i 1
11
• 改变变量单位的影响。
12
• 在简单回归中加入非线性因素: • 加入自然对数
• 例如: log(wage) 0 1edu
• 1 描述了教育每增加一个单位 工资所增加的百
分比
13
OLS估计量的特征
• 假定1: y 0 1x u • 假定2:xi,yi为总体模型方程的随机样本,样
16
Var(1)
2
2
n
(xi x)2
SSTx
i 1
17
• 误差方差的估计:
• 误差与残差的区别
• 误差:u, error term
• 残差: u residual
• 无偏估计:
2
1
n
2
ui
SSR
n 2 i1
n2
18
简单回归模型应了解:
• 1、计量模型的思路: • (1)找到感兴趣的问题 • (2)建立函数关系 • (3)建立数据库 • (4)回归,得到函数关系中的参数,分析
变量间影响 • (5)分析估计量统计特征 • (6)对模型进行检验
19
本容量n
• 假定3: E( | x) 0

计量经济学-多元线性回归模型

计量经济学-多元线性回归模型

e e ˆ n k 1 n k 12e i2 3-21
*二、最大或然估计
对于多元线性回归模型
Yi 0 1 X 1i 2 X 2 i k X ki i
易知
Yi ~ N ( X i β , 2 )
Y的随机抽取的n组样本观测值的联合概率 ˆ, L (β 2 ) P (Y1 , Y2 , , Yn )
解该(k+1) 个方程组成的线性代数方程组,即
$ ,, 可得到(k+1) 个待估参数的估计值 j , j 012,, k 。
3-14
正规方程组的矩阵形式
n X 1i X ki
X X

1i 2 1i

X X X
ki
X
ki
X 1i
ˆ 0 1 1 ˆ X 11 X 12 1i ki 1 2 ˆ X ki k X k1 X k 2
ˆ 1 ˆ ˆ 2 β ˆ k
在离差形式下,参数的最小二乘估计结果为
ˆ β ( x x) 1 x Y
ˆ ˆ ˆ 0 Y 1 X 1 k X k
3-20
随机误差项的方差2的无偏估计
可以证明:随机误差项 的方差的无偏估计量为:
第三章

多元线性回归模型
多元线性回归模型 多元线性回归模型的参数估计 多元线性回归模型的统计检验 多元线性回归模型的预测 回归模型的其他形式 回归模型的参数约束
3-1
§3.1 多元线性回归模型
一、多元线性回归模型 二、多元线性回归模型的基本假定

计量经济学第二章经典线性回归模型

计量经济学第二章经典线性回归模型



1.β 的均值
β ( X X )1 X Y
( X X )1 X ( Xβ u)
( X X )1 X Xβ ( X X )1 X u
β ( X X ) 1 X u
27
E(β) β ( X X )1 X E(u) (由假设3)
β
(由假设1)

E
β
β
0 1
...
β K
Yi = α+ β +Xiui , i = 1, 2, ...,n (2.4) 即模型对X和Y的n对观测值(i=1,2,…,n)成立。
(2.3)式一般用于观测值为时间序列的情形,在横截 面数据的情形,通常采用(2.4) 式。
5
二、 多元线性回归模型
在许多实际问题中,我们所研究的因变量的变动 可能不仅与一个解释变量有关。因此,有必要考虑线 性模型的更一般形式,即多元线性回归模型:
...... ......
u1un
u2un
.................................
unu1 unu2 ...... un2
显然, E(uu) 2In 仅当
E(ui uj)=0 , i≠j E(ut2) = σ2, t=1,2,…,n 这两个条件成立时才成立,因此, 此条件相当前面条件 (2), (3)两条,即各期扰动项互不相关,并具有常数方差。 14
P
食品价格平减指数 总消费支出价格平减指数
100,(1972
100)
7
多元线性回归模型中斜率系数的含义
上例中斜率系数的含义说明如下: 价格不变的情况下,个人可支配收入每上升10
亿美元(1个billion),食品消费支出增加1.12亿 元(0.112个 billion)。

计量经济学-多元线性回归分析

计量经济学-多元线性回归分析

yi ˆ1 x1i ˆ2 x2i ˆk xki ei 其矩阵形式为
i=1,2…n
y xβˆ e
其中 :
y1
y
y2
yn
x11
x
x12
x 21
x 22
xk1 xk2
x1n x2n xkn
ˆ1
βˆ
ˆ 2
ˆk
在离差形式下,参数旳最小二乘估计成果为
模型中解释变量旳数目为(k)
模型:Yt 1 2t X 2t k X kt ut
也被称为总体回归函数旳随机体现形式。它 旳 非随机体现式为:
E(Yi | X 2i , X 3i , X ki ) 1 2 X 2i 3 X 3i k X ki
方程表达:各变量X值固定时Y旳平均响应。
0.17033
2.652155 0.0157
R-squared
0.9954 Mean dependent var
928.4909
Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)
βˆ (xx)1 xY
ˆ0 Y ˆ1 X 1 ˆk X k
⃟随机误差项旳方差旳无偏估计
能够证明,随机误差项旳方差旳无偏估计量为
ˆ 2 ei2 ee
nk nk
四、参数估计量旳性质
在满足基本假设旳情况下,其构造参数旳一般
最小二乘估计、最大或然估计及矩估计仍具有: 线性性、无偏性、有效性。
ˆ1
Байду номын сангаас
Q0
ˆ2
Q

计量经济学4种常用模型

计量经济学4种常用模型

计量经济学4种常用模型计量经济学是经济学的一个重要分支,主要研究经济现象的数量关系及其解释。

在计量经济学中,常用的模型有四种,分别是线性回归模型、时间序列模型、面板数据模型和离散选择模型。

下面将对这四种模型进行详细介绍。

第一种模型是线性回归模型,也是计量经济学中最常用的模型之一。

线性回归模型是通过建立自变量与因变量之间的线性关系来解释经济现象的模型。

在线性回归模型中,自变量通常包括经济学理论认为与因变量相关的变量,通过最小二乘法估计模型参数,得到经济现象的解释。

线性回归模型的优点是简单易懂,计算方便,但其前提是自变量与因变量之间存在线性关系。

第二种模型是时间序列模型,它主要用于分析时间序列数据的模型。

时间序列模型假设经济现象的变化是随时间演变的,通过分析时间序列的趋势、周期性和随机性,可以对经济现象进行预测和解释。

时间序列模型的常用方法包括自回归移动平均模型(ARMA)、自回归条件异方差模型(ARCH)等。

时间序列模型的优点是能够捕捉到时间的动态变化,但其局限性是对数据的要求较高,需要足够的时间序列观测样本。

第三种模型是面板数据模型,也称为横截面时间序列数据模型。

面板数据模型是将横截面数据和时间序列数据结合起来进行分析的模型。

面板数据模型可以同时考虑个体间的差异和时间的变化,因此能够更全面地解释经济现象。

面板数据模型的常用方法包括固定效应模型、随机效应模型等。

面板数据模型的优点是能够控制个体间的异质性,但其需要对个体间的相关性进行假设。

第四种模型是离散选择模型,它主要用于分析离散选择行为的模型。

离散选择模型假设个体在面临多种选择时,会根据一定的规则进行选择,通过建立选择概率与个体特征之间的关系,可以预测和解释个体的选择行为。

离散选择模型的常用方法包括二项Logit模型、多项Logit模型等。

离散选择模型的优点是能够分析个体的选择行为,但其局限性是对选择行为的假设较强。

综上所述,计量经济学中常用的模型有线性回归模型、时间序列模型、面板数据模型和离散选择模型。

计量经济学----几种常用的回归模型

计量经济学----几种常用的回归模型

证明:
d(ln Y ) dY Y 2 d(ln X ) dX X
适用性?
• 画出lnYi对lnXi的点图,看是否近似为一 条直线,若是,则考虑此模型。 • P165例6.3
例:柯布--道格拉斯生产函数(P210)
Y AK L e


i
ln Y ln A ln K ln L i ln Y 0 lnK lnL i
• P175图6.10
Eviews基本运算符号
柯布道格拉斯生产函数p210ilkylkayelakyi????????????????????lnlnlnlnlnlnln0i?注意?是产出对资本投入的偏弹性度量在保持劳动力投入不变的情况下资本投入变化1时的产出变动百分比
几种常用的回归模型
1. 对数线性模型 2. 半对数模型 3. 倒数模型 4. 对数倒数模型
回归子的相对改变量 2 回归元的绝对改变量
• 半对数模型的斜率系数度量了解释变量一个单位 的绝对变化,对应的因变量的相对变化量。 • P166例6.4
对数到线性模型(解释变量对数形式)
Yi 1 2 ln X i i
dY 2 d(lnX ) dX X
dY
2的含义?
• 其测度了X变化1%时Y的绝对变化量,当X变化1% 时,Y绝对变化为0.01 2
3. 倒数模型
1 Y i 1 2 X i i
• P170图6.6
4. 对数倒数模型
1 ln Yi 1 - 2 X i i
注意

是产出对资本投入的(偏)弹性,度量 在保持劳动力投入不变的情况下资本投入 变化1%时的产出变动百分比; • 是产出对劳动投入的(偏)弹性,度量 在保持资本投入不变的情况下劳动力投入 变化1%时的产出变动百分比; • 给出了规模报酬信息

计量经济学简单回归模型

计量经济学简单回归模型

总体回归线(PRF): E(y|x) = b0 + b1x
y
E(y|x=x2)
.
E(y|x=x1) .
x1=1
x2 =2
E(y|x) = b0 + b1x
x
2.2 一般最小二乘法(OLS)旳推导
一般最小二乘法(OLS)旳推导: 措施一:矩估计措施
• 零条件均值假定: E(u|x) = E(u) = 0
得样本相应旳矩条件(3’)(4’)成立。
• 即:求解有关 bˆ0, bˆ1旳方程组(3’)(4’)。
一般最小二乘法旳推导
• 根据样本均值旳定义以及加总旳性质,可将第一 种条件
(3' )
• 变换为
n
n 1
yi bˆ0 bˆ1xi 0
i 1
y bˆ0 bˆ1x,
or
bˆ0 y bˆ1x
家庭人均消费 = 395.96 + 0.48 • 家庭人均收入
2023年四川省农户调查样本, n=100 ;消费和收入单位:元
了解:样本回归线,样本数据点和残差
y
y4 y3
. . û3 û4{ yˆ bˆ0 bˆ1x
yˆ 3
y2
û2{.
y3
yˆ 3
y1
.} û1
x1
x2
x3
x4
x
有关OLS旳一点阐明
0
(4'')
Q
bˆ1
n
2
i 1
xi
yi bˆ0 bˆ1xi
0
• 这两个方程与前面旳矩条件完全一致,能够用相
同旳措施求解参数 bˆ0, bˆ1
所以,零条件均值假定能够表述为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ch2 回归模型
本章主要内容
普通最小二乘法的代数
普通最小二乘法估计量 普通最小二乘法假设检验
几个基本概念
函数关系、相关关系、因果关系
函数关系(确定性关系)
相关关系
相关关系是一种纯数学关系 统计关系式本身不可能意味着任何因果关系,看变量间 有 无 因 果 关 系 , 要 从 经 济 理 论 上 去 分 析 。 nonsense correlation

iபைடு நூலகம்
0
1 i
(1)
ˆ
Q ˆ ˆ x )( x ) 0 2( yi 0 1 i i ˆ 1 ˆ ˆ x )x 0 (y
i
0

i
0
1 i
i
(2)
ˆ x
i i
0
普通最小二乘估计的数值性质
1.样本回归线必然经过样本均值点 2. 残差和为零 3.Y的真实值和拟合值有共同的均值
(六) 多元线性回归模型
如果一个变量受到多个因素的影响,那么线 性回归模型中就有多个解释变量。 yi 0 1x1i 2 x2i i 如何估计样本回归函数
ˆ ˆ x ˆx ˆ y 0 1 1 2 2
0 , 1, 2 i 1
Min ˆ ˆ ˆ
2 ˆ ( y y ) i i ˆMin ˆ ˆ
ˆ) ˆ ) Var ( Var ( y ) Var ( y
ˆ Var ( y ) Var ( y ˆ) 2Cov( y ˆ) ˆ ˆ ) Var ( ˆ, yy
ˆ ˆ x, ˆ Cov( x, ˆ) Cov( ˆ ˆ) 0 ˆ, Cov( y ) 0 1 1 ˆ) ˆ ) Var ( Var ( y ) Var ( y
Fi Di ( yi y )( xi x ) ˆ 1 2 2 Di ( xi x )
练习:
y
请验证:1
ˆy
ˆ, y ˆ) 0 2 Cov(
(五)拟合程度的判断
(一)方差分解及其R2的定义 对于模型 y 0 1 x ,可以验证:
练习:
ˆ ˆ x ˆ x 的残差的 ˆi 样本回归直线y 0 1 1i 2 2i 自由度是多少?
(六) 多元线性回归模型 1.样本回归线必然经过样本均值点 2. 残差和为零 3.Y的真实值和拟合值有共同的均值 4.估计残差与自变量不相关 5.估计残差与拟合值不相关
(六)多元线性回归模型
方差分解公式依旧成立:
ˆ) ˆ ) Var ( Var ( y ) Var ( y
ˆ) Var ( y R Var ( y )
求解
ˆ y ˆx 0 1
ˆ ( x x )]x 0 [ y y i 1 i i ˆ
1
( y y )x (x x )x
i i
i
i
课堂练习:
ˆ 1 ( y y ) x ( y y )( x x ) ( x x ) y (x x )x (x x ) (x x ) x y Nx y x Nx
(三)关于R2的基本结论 ˆ 的样本相关系数r的平方。 R2也是y与 y ˆ Cov( y, y ˆ, y ˆ ˆ ) Var ( y ˆ ) Cov( ˆ ) Var ( y ˆ) yy
2 ˆ) ˆ) Cov ( y, y Var ( y 2 r R2 ˆ ) Var ( y ) Var ( y )Var ( y
i i i i i 2 2 i i i i i i 2 i 2 i
β1估计值的统计意义
定义y与x的样本协方差、x的样本方差分别为
Var ( x) ( xi x ) 2 / N
2
Cov( x, y ) ( xi x )( yi y ) / N
Var (a bx) b Var ( x) Cov(a bx, y ) bCov( x, y )
对于简单线性回归模型: y 0 1 x , R2 是y与x的样本相关系数的平方。(自己证明)
2 Var ( x ) ˆ R 1 Var ( y ) 2
拟合程度的判断
(三)利用R2判定系数的注意事项:
1.
采用的估计方法是OLS。
2.
拟合直线必须带有截距。为什么?
2 2 2 ˆ ˆ ( y y ) ( y y ) i i i
ˆ x
i 1
N
i i
0
1.样本回归线必然经过样本均值点
2. 残差和为零
3.Y的真实值和拟合值有共同的均值 4.估计残差与自变量不相关 5.估计残差与拟合值不相关
无截距回归性质
注意:估计残差之和不一定等于0!因此残差 估计量与解释变量不一定是不相关的。
ˆ, x) ( ˆi ˆ )xi x N cov(
TSS ( yi y ) 2 ˆi y ˆ )2 ( y ˆi y )2 ESS ( y ˆi ˆ )2 ˆi 2 RSS (
根据方差分解有: TSS=ESS+RSS
R 2 ESS / TSS 1 RSS / TSS
拟合程度的判断
ˆ, x ) 0 Cov(
5
ˆ ˆ y
i
i
0
普通最小二乘估计的数值性质
无论用何种估计方法,我们都希望残差 所包含的信息价值很小,如果残差还含 有大量的信息价值,那么该估计方法是 需要改进的!对模型 y 0 1 x 利 用OLS,至少我们能保证(1):残差均 值为零;(2)残差与解释变量x不相关 【一个变量与另一个变量相关是一个重 要的信息】。
(七)自由度与调整的R2
如果单纯依据R2标准,我们应该增加解释变量 以使模型拟合得更好。 但增加解释变量将增加待估计的参数,在样本 容量有限的情况下,这并不一定是明智之举。 什么叫自由度?假设变量x可以自由地取N个值, 那么x的自由度就是N。然而,如果施加一个约 xi a 为常数,那么 a 束, , x的自由度就减少了, 新的自由度就是N-1。
4.估计残差与自变量不相关
5.估计残差与拟合值不相关
普通最小二乘估计的数值性质
1 2 3 4
ˆ ˆx y 0 1
1 N x xi N i 1
1 y N
y
i 1
N
i
ˆ
i
0
ˆy y
ˆ x
i i
ˆi ˆ ) xi ( ˆi ˆ )( xi x ) 0 0 (
普通最小二乘法的代数
什么是回归?
案例1:孩子的身高 案例2:消费水平
回归分析:研究一个随机变量Y对另一个(X)或一组(X1, X2,…,Xk)变量的相依关系的统计分析方法。 计量经济学研究的是有因果关系的统计依赖关系!
(一)问题提出
假定y与x具有近似的线性关系:
其中 是随机误差项。我们对 0 , 1 这两个参数的值一无所知。 问题:一个样本容量为N的样本,其观测 ( y1 , x1 ),( y2 , x2 ),...,( y N , xN ) 值是: 如何利用该样本来猜测 0 , 1 ?

y 0 1 x
概念:总体回归模型与总体回归函数
为什么是线性的? 总体回归模型 y 0 1 x E( y x) 0 1x E( x) 总体回归函数(方程)
E( y x) 0 1x
某一经济学理论认为x与y具有线性的因果关 系。
可得
Cov( x, y ) ˆ 1 Var ( x)
(四)无截距回归(过原点回归)
y x ˆx min yi i
i 1 N


2
ˆx x 0 yi i i
i 1
N


(1)
ˆ
yx
i 1 N
N
i i 2
x
i 1
i
无截距回归性质
只有一个正规方程(1):
2
(七)自由度与调整的R2
如果在模型中增加解释变量,那么总的平方和不变, 但残差平方和至少不会增加,一般是减少的。为什 么? N
0 , 1 , 2 i 1
2 ˆ ˆ ˆ min ( y x x ) i 0 1 1 i 2 2 i ˆ ˆ ˆ
令最后所获得的目标函数值(也就是残差平方和) 为RSS1。对该优化问题施加约束: 并求解,则 ˆ 0 2 2 。 得到目标函数值RSS RSS1 <= RSS2
因果关系(causation)
相关性强弱的经验判断
相关系数 0.3原则与0.7原则(0.3的平方=0.1,0.7的平方 =0.5) 0.4-0.7低度相关 0.8以上高度相关
计量经济学研究的是有因果关系的 统计依赖关系!
正相关 线性相关 不相关 相关系数 负相关 有因果关系:回归分析 相关关系 正相关 无因果关系:相关分析 非线性相关 不相关 负相关
0
距离最短。这可以归结为求解一个数学 问题:
2 2 ˆ ˆ ˆ Min ( y y ) Min ( y x ) i i i 0 1 i ˆ ˆ ˆ ˆ N N
1
0 , 1 i 1
0 , 1 i 1

两种思考方法b
ˆ i 越近越好(最近距离 给定 xi,看起来 yi 与 y ˆ i 距离最近可能使得yj 是0)。由于使得yi与 y ˆ j 距离扩大。一种简单的权衡方式是, 与 y 给定(x1,… xN),拟合直线的选择应该使距离 的平均值是最小的。
相关文档
最新文档