高考理科数学试卷(带详解)
2020年全国统一高考数学试卷(理科)(新课标ⅱ)(含解析版)
2020年普通高等学校招生全国统一考试理科数学注意事项:1.答题前,考生务必将自己的姓名、考生号、座位号填写在答题卡上.本试卷满分150分.2.作答时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题目:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ð()A.{−2,3}B.{−2,2,3}C.{−2,−1,0,3}D.{−2,−1,0,2,3}【答案】A 【解析】【分析】首先进行并集运算,然后计算补集即可.【详解】由题意可得: 1,0,1,2A B ,则 U 2,3A B ð.故选:A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.2.若α为第四象限角,则()A.cos2α>0 B.cos2α<0C.sin2α>0D.sin2α<0【答案】D 【解析】【分析】由题意结合二倍角公式确定所给的选项是否正确即可.【详解】当6时,cos 2cos 03,选项B 错误;当3时,2cos 2cos 03,选项A 错误;由 在第四象限可得:sin 0,cos 0 ,则sin 22sin cos 0 ,选项C 错误,选项D 正确;故选:D.【点睛】本题主要考查三角函数的符号,二倍角公式,特殊角的三角函数值等知识,意在考查学生的转化能力和计算求解能力.3.在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者()A.10名B.18名C.24名D.32名【答案】B 【解析】【分析】算出第二天订单数,除以志愿者每天能完成的订单配货数即可.【详解】由题意,第二天新增订单数为50016001200900 ,故需要志愿者9001850名.故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.4.北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层,上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块,下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块,已知每层环数相同,且下层比中层多729块,则三层共有扇面形石板(不含天心石)()A.3699块B.3474块C.3402块D.3339块【答案】C 【解析】【分析】第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,设n S 为{}n a 的前n 项和,由题意可得322729n n n n S S S S ,解方程即可得到n ,进一步得到3n S .【详解】设第n 环天石心块数为n a ,第一层共有n 环,则{}n a 是以9为首项,9为公差的等差数列,9(1)99n a n n ,设n S 为{}n a 的前n 项和,则第一层、第二层、第三层的块数分别为232,,n n n n n S S S S S ,因为下层比中层多729块,所以322729n n n n S S S S ,即3(927)2(918)2(918)(99)7292222n n n n n n n n 即29729n ,解得9n ,所以32727(9927)34022n S S .故选:C【点晴】本题主要考查等差数列前n 项和有关的计算问题,考查学生数学运算能力,是一道容易题.5.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y 的距离为()A.55B.255C.355D.455【答案】B 【解析】【分析】由题意可知圆心在第一象限,设圆心的坐标为 ,,0a a a ,可得圆的半径为a ,写出圆的标准方程,利用点 2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y 的距离.【详解】由于圆上的点 2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必第一象限,设圆心的坐标为,a a ,则圆的半径为a ,圆的标准方程为 222x a y a a .由题意可得 22221a a a ,可得2650a a ,解得1a 或5a ,所以圆心的坐标为 1,1或 5,5,圆心到直线230x y 距离均为22555d;所以,圆心到直线230x y 的距离为255.故选:B.【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.6.数列{}n a 中,12a ,m n m n a a a ,若155121022k k k a a a ,则k ()A.2B.3C.4D.5【答案】C 【解析】分析】取1m ,可得出数列 n a 是等比数列,求得数列 n a 的通项公式,利用等比数列求和公式可得出关于k 的等式,由k N 可求得k 的值.【详解】在等式m n m n a a a 中,令1m ,可得112n n n a a a a ,12n na a,所以,数列 n a 是以2为首项,以2为公比的等比数列,则1222n n n a ,1011011105101210122122212211212k k k k k k a a a a,1522k ,则15k ,解得4k .故选:C.【点睛】本题考查利用等比数列求和求参数的值,解答的关键就是求出数列的通项公式,考查计算能力,属于中等题.7.如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为()A.EB.FC.GD.H【答案】A 【解析】【分析】根据三视图,画出多面体立体图形,即可求得M 点在侧视图中对应的点.【详解】根据三视图,画出多面体立体图形,图中标出了根据三视图M 点所在位置,可知在侧视图中所对应的点为E 故选:A【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.8.设O 为坐标原点,直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为()A.4B.8C.16D.32【答案】B 【解析】【分析】因为2222:1(0,0)x y C a b a b ,可得双曲线的渐近线方程是b y x a,与直线x a 联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab 值,根据2222c a b ,结合均值不等式,即可求得答案.【详解】∵2222:1(0,0)x y C a b a b双曲线的渐近线方程是by x a∵直线x a 与双曲线2222:1(0,0)x y C a b a b的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a,解得x a y b故(,)D a b 联立x ab y x a,解得x a y b故(,)E a b ||2ED bODE 面积为:1282ODE S a b ab△∵双曲线2222:1(0,0)x y C a b a b其焦距为2222222168c a b ab 当且仅当22a b 取等号C 的焦距的最小值:8故选:B.【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.9.设函数()ln |21|ln |21|f x x x ,则f (x )()A.是偶函数,且在1(,)2 单调递增B.是奇函数,且在11(,)22单调递减C.是偶函数,且在1(,)2单调递增D.是奇函数,且在1(,)2单调递减【答案】D 【解析】【分析】根据奇偶性的定义可判断出 f x 为奇函数,排除AC ;当11,22x时,利用函数单调性的性质可判断出 f x 单调递增,排除B ;当1,2x时,利用复合函数单调性可判断出 f x 单调递减,从而得到结果.【详解】由 ln 21ln 21f x x x 得 f x 定义域为12x x,关于坐标原点对称,又 ln 12ln 21ln 21ln 21f x x x x x f x ,f x 为定义域上的奇函数,可排除AC ;当11,22x时, ln 21ln 12f x x x , ln 21y x Q 在11,22 上单调递增, ln 12y x 在11,22上单调递减,f x 在11,22上单调递增,排除B ;当1,2x时, 212ln 21ln 12ln ln 12121x f x x x x x,2121x∵在1,2上单调递减, ln f 在定义域内单调递增,根据复合函数单调性可知: f x 在1,2上单调递减,D 正确.故选:D.【点睛】本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据 f x 与 f x 的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.10.已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为()A.3B.32C.1D.32【答案】C【解析】【分析】根据球O 的表面积和ABC 的面积可求得球O 的半径R 和ABC 外接圆半径r ,由球的性质可知所求距离22d R r.【详解】设球O 的半径为R ,则2416R ,解得:2R .设ABC 外接圆半径为r ,边长为a ,ABC ∵ 是面积为934的等边三角形,21393224a ,解得:3a ,22229933434a r a ,球心O 到平面ABC 的距离22431d R r .故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.11.若2233x y x y ,则()A.ln(1)0y x B.ln(1)0y x C.ln ||0x y D.ln ||0x y 【答案】A 【解析】【分析】将不等式变为2323x x y y ,根据 23t tf t 的单调性知x y ,以此去判断各个选项中真数与1的大小关系,进而得到结果.【详解】由2233x y x y 得:2323x x y y ,令 23ttf t ,2x y ∵为R 上的增函数,3x y 为R 上的减函数, f t 为R 上的增函数,x y ,0y x Q ,11y x , ln 10y x ,则A 正确,B 错误;x y Q 与1的大小不确定,故CD 无法确定.故选:A.【点睛】本题考查对数式的大小的判断问题,解题关键是能够通过构造函数的方式,利用函数的单调性得到,x y 的大小关系,考查了转化与化归的数学思想.12.0-1周期序列在通信技术中有着重要应用.若序列12n a a a 满足{0,1}(1,2,)i a i ,且存在正整数m ,使得(1,2,)i m i a a i 成立,则称其为0-1周期序列,并称满足(1,2,)i m i a a i 的最小正整数m 为这个序列的周期.对于周期为m 的0-1序列12n a a a ,11()(1,2,,1)mi i k i C k a a k m m 是描述其性质的重要指标,下列周期为5的0-1序列中,满足1()(1,2,3,4)5C k k 的序列是()A 11010 B.11011C.10001D.11001【答案】C 【解析】【详解】由i m i a a 知,序列i a 的周期为m ,由已知,5m ,511(),1,2,3,45i i k i C k a a k 对于选项A ,511223344556111111(1)()(10000)55555i i i C a a a a a a a a a a a a52132435465711112(2)()(01010)5555i i i C a a a a a a a a a a a a ,不满足;对于选项B ,51122334455611113(1)()(10011)5555i i i C a a a a a a a a a a a a ,不满足;对于选项D ,51122334455611112(1)()(10001)5555i i i C a a a a a a a a a a a a ,不满足;故选:C【点晴】本题考查数列的新定义问题,涉及到周期数列,考查学生对新定义的理解能力以及数学运算能力,是一道中档题.二、填空题目:本题共4小题,每小题5分,共20分.13.已知单位向量a ,b 的夹角为45°,ka –b 与a 垂直,则k =__________.【答案】22【解析】【分析】首先求得向量的数量积,然后结合向量垂直的充分必要条件即可求得实数k 的值.【详解】由题意可得:211cos 452a b ,由向量垂直的充分必要条件可得:0k a b a,即:2202k a a b k ,解得:22k .故答案为:22.【点睛】本题主要考查平面向量的数量积定义与运算法则,向量垂直的充分必要条件等知识,意在考查学生的转化能力和计算求解能力.14.4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种.【答案】36【解析】【分析】根据题意,采用捆绑法,先取2名同学看作一组,现在可看成是3组同学分配到3个小区,即可求得答案.【详解】∵4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学先取2名同学看作一组,选法有:246C 现在可看成是3组同学分配到3个小区,分法有:336A根据分步乘法原理,可得不同的安排方法6636 种故答案为:36.【点睛】本题主要考查了计数原理的实际应用,解题关键是掌握分步乘法原理和捆绑法的使用,考查了分析能力和计算能力,属于中档题.15.设复数1z ,2z 满足12||=||=2z z ,123i z z ,则12||z z =__________.【答案】23【解析】【分析】令12cos 2sin z i ,22cos 2sin z i ,根据复数的相等可求得1cos cos sin sin 2,代入复数模长的公式中即可得到结果.【详解】122z z ∵,可设12cos 2sin z i ,22cos 2sin z i , 122cos cos 2sin sin 3z z i i ,2cos cos 32sin sin 1,两式平方作和得: 422cos cos 2sin sin 4 ,化简得:1cos cos sin sin 2122cos cos 2sin sin z z i224cos cos 4sin sin 88cos cos sin sin 8423 故答案为:23.【点睛】本题考查复数模长的求解,涉及到复数相等的应用;关键是能够采用假设的方式,将问题转化为三角函数的运算问题.16.设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l 平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ②12p p ③23p p ④34p p 【答案】①③④【解析】【分析】利用两交线直线确定一个平面可判断命题1p 的真假;利用三点共线可判断命题2p 的真假;利用异面直线可判断命题3p 的真假,利用线面垂直的定义可判断命题4p 的真假.再利用复合命题的真假可得出结论.【详解】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为 ;若3l 与1l 相交,则交点A 在平面 内,同理,3l 与2l 的交点B 也在平面 内,所以,AB ,即3l ,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个,命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面,命题3p 为假命题;对于命题4p ,若直线m 平面 ,则m 垂直于平面 内所有直线,∵直线l 平面 , 直线m 直线l ,命题4p 为真命题.综上可知,14p p 为真命题,12p p 为假命题,23p p 为真命题,34p p 为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.ABC 中,sin 2A -sin 2B -sin 2C =sin B sin C.(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23;(2)323 .【解析】【分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)利用余弦定理可得到 29AC AB AC AB ,利用基本不等式可求得AC AB 的最大值,进而得到结果.【详解】(1)由正弦定理可得:222BC AC AB AC AB ,2221cos 22AC AB BC A AC AB , 0,A ∵,23A .(2)由余弦定理得:222222cos 9BC AC AB AC AB A AC AB AC AB ,即 29AC AB AC AB .22AC AB AC AB∵(当且仅当AC AB 时取等号), 22223924AC AB AC AB AC AB AC AB AC AB ,解得:23AC AB (当且仅当AC AB 时取等号),ABC 周长323L AC AB BC ,ABC 周长的最大值为323 .【点睛】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值.18.某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i i x ,2011200i i y,2021)80i i x x (,2021)9000i i y y (,201))800i i i x y x y ((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r =12211))))ni i i i i n n i i x y x x y y y x((((,2=1.414.【答案】(1)12000;(2)0.94;(3)详见解析【解析】【分析】(1)利用野生动物数量的估计值等于样区野生动物平均数乘以地块数,代入数据即可;(2)利用公式20120202211()()()()ii i i i i i x x y y r x x y y 计算即可;(3)各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样.【详解】(1)样区野生动物平均数为201111200602020i i y ,地块数为200,该地区这种野生动物的估计值为2006012000(2)样本(,)i i x y 的相关系数为20120202211()()800220.943809000()()i i i i i i i x x y y r x x y y (3)由于各地块间植物覆盖面积差异较大,为提高样本数据的代表性,应采用分层抽样先将植物覆盖面积按优中差分成三层,在各层内按比例抽取样本,在每层内用简单随机抽样法抽取样本即可.【点晴】本题主要考查平均数的估计值、相关系数的计算以及抽样方法的选取,考查学生数学运算能力,是一道容易题.19.已知椭圆C 1:22221x y a b(a >b >0)的右焦点F 与抛物线C 2的焦点重合,C 1的中心与C 2的顶点重合.过F 且与x 轴垂直的直线交C 1于A ,B 两点,交C 2于C ,D 两点,且|CD |=43|AB |.(1)求C 1的离心率;(2)设M 是C 1与C 2的公共点,若|MF |=5,求C 1与C 2的标准方程.【答案】(1)12;(2)221:13627x y C ,22:12C y x .【解析】【分析】(1)求出AB 、CD ,利用43CD AB可得出关于a 、c 的齐次等式,可解得椭圆1C 的离心率的值;(2)由(1)可得出1C 的方程为2222143x y c c,联立曲线1C 与2C 的方程,求出点M 的坐标,利用抛物线的定义结合5MF 可求得c 的值,进而可得出1C 与2C 的标准方程.【详解】(1) ,0F c ∵,AB x 轴且与椭圆1C 相交于A 、B 两点,则直线AB 的方程为x c ,联立22222221x c x y a b a b c,解得2x c b y a ,则22b AB a,抛物线2C 的方程为24y cx ,联立24x c y cx,解得2x c y c ,4CD c ,43CD AB ∵,即2843b c a,223b ac ,即222320c ac a ,即22320e e ,01e Q ,解得12e ,因此,椭圆1C 的离心率为12;(2)由(1)知2a c ,3b c ,椭圆1C 的方程为2222143x y c c,联立222224143y cx x y c c,消去y 并整理得22316120x cx c ,解得23x c 或6x c (舍去),由抛物线的定义可得25533c MF c c ,解得3c .因此,曲线1C 的标准方程为2213627x y ,曲线2C 的标准方程为212y x .【点睛】本题考查椭圆离心率的求解,同时也考查了利用抛物线的定义求抛物线和椭圆的标准方程,考查计算能力,属于中等题.20.如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【答案】(1)证明见解析;(2)1010.【解析】【分析】(1)由,M N 分别为BC ,11B C 的中点,1//MN CC ,根据条件可得11//AA BB ,可证1MN AA //,要证平面11EB C F 平面1A AMN ,只需证明EF 平面1A AMN 即可;(2)连接NP ,先求证四边形ONPA 是平行四边形,根据几何关系求得EP ,在11B C 截取1B Q EP ,由(1)BC ⊥平面1A AMN ,可得QPN 为1B E 与平面1A AMN 所成角,即可求得答案.【详解】(1)∵,M N 分别为BC ,11B C 的中点,1//MN BB 又11//AA BB 1//MN AA 在ABC 中,M 为BC 中点,则BC AM又∵侧面11BB C C 为矩形,1BC BB 1//MN BB ∵MN BC由MN AM M ,,MN AM 平面1A AMNBC ⊥平面1A AMN又∵11//B C BC ,且11B C 平面ABC ,BC 平面ABC ,11//B C 平面ABC又∵11B C 平面11EB C F ,且平面11EB C F 平面ABC EF 11//B C EF//EF BC又BC ∵平面1A AMNEF 平面1A AMNEF ∵平面11EB C F平面11EB C F 平面1A AMN(2)连接NP∵//AO 平面11EB C F ,平面AONP 平面11EB C F NP //AO NP根据三棱柱上下底面平行,其面1A NMA 平面ABC AM ,面1A NMA 平面1111A B C A N //ON AP故:四边形ONPA 是平行四边形设ABC 边长是6m (0m )可得:ON AP ,6NP AO AB m∵O 为111A B C △的中心,且111A B C △边长为6m 16sin 6033ON m 故:3ON AP m∵//EF BC AP EP AM BM3333EP 解得:EP m在11B C 截取1B Q EP m ,故2QN m∵1B Q EP 且1//B Q EP四边形1B QPE 是平行四边形,1//B E PQ由(1)11B C 平面1A AMN故QPN 为1B E 与平面1A AMN 所成角在Rt QPN △,根据勾股定理可得: 222226210PQ QN PN m m m 210sin 10210QN m QPN PQ m 直线1B E 与平面1A AMN 所成角的正弦值:1010.【点睛】本题主要考查了证明线线平行和面面垂直,及其线面角,解题关键是掌握面面垂直转为求证线面垂直的证法和线面角的定义,考查了分析能力和空间想象能力,属于难题.21.已知函数f (x )=sin 2x sin2x .(1)讨论f (x )在区间(0,π)的单调性;(2)证明:33()8f x ;(3)设n ∈N *,证明:sin 2x sin 22x sin 24x …sin 22n x ≤34nn .【答案】(1)当0,3x时, '0,f x f x 单调递增,当2,33x 时, '0,f x f x 单调递减,当2,3x时, '0,f x f x 单调递增.(2)证明见解析;(3)证明见解析.【解析】【分析】(1)首先求得导函数的解析式,然后由导函数的零点确定其在各个区间上的符号,最后确定原函数的单调性即可;(2)首先确定函数的周期性,然后结合(1)中的结论确定函数在一个周期内的最大值和最小值即可证得题中的不等式;(3)对所给的不等式左侧进行恒等变形可得2222123sin sin sin 2sin 2sin 4sin 2sin 2sin 2n n n f x x x x x x x x x ,然后结合(2)的结论和三角函数的有界性进行放缩即可证得题中的不等式.【详解】(1)由函数的解析式可得: 32sin cos f x x x ,则: 224'23sin cos sin f x x x x2222sin 3cos sin x x x 222sin 4cos 1x x 22sin 2cos 12cos 1x x x ,'0f x 在 0,x 上的根为:122,33x x,当0,3x时, '0,f x f x 单调递增,当2,33x时, '0,f x f x 单调递减,当2,3x时, '0,f x f x 单调递增.(2)注意到 22sinsin 2sin sin 2f x x x x x f x ,故函数 f x 是周期为 的函数,结合(1)的结论,计算可得: 00f f ,233333228f ,2233333228f ,据此可得: max 338f x, min 338f x ,即 338f x .(3)结合(2)的结论有:2222sin sin 2sin 4sin 2n x x x x 233333sin sin 2sin 4sin 2n x x x x2222123sin sin sin 2sin 2sin 4sin 2sin 2sin 2n n n x x x x x x x x 232333333sin sin 2888n x x 23338n 34n .【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.(二)选考题:共10分.请考生在第22、23题中任选一题作答.并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分.如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程]22.已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y ,(θ为参数),C 2:1,1x t t y t t(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【答案】(1)1:4C x y ;222:4C x y ;(2)17cos 5.【解析】【分析】(1)分别消去参数 和t 即可得到所求普通方程;(2)两方程联立求得点P ,求得所求圆的直角坐标方程后,根据直角坐标与极坐标的互化即可得到所求极坐标方程.【详解】(1)由22cos sin 1 得1C 的普通方程为:4x y ;由11x t t y t t 得:2222221212x t t y t t,两式作差可得2C 的普通方程为:224x y .(2)由2244x y x y 得:5232x y ,即53,22P ;设所求圆圆心的直角坐标为 ,0a ,其中0a ,则22253022a a,解得:1710a , 所求圆的半径1710r , 所求圆的直角坐标方程为:22217171010x y ,即22175x y x , 所求圆的极坐标方程为17cos 5.【点睛】本题考查极坐标与参数方程的综合应用问题,涉及到参数方程化普通方程、直角坐标方程化极坐标方程等知识,属于常考题型.[选修4—5:不等式选讲]23.已知函数2()|21|f x x a x a .(1)当2a 时,求不等式()4f x 的解集;(2)若()4f x ,求a 的取值范围.【答案】(1)32x x或112x;(2) ,13, .【解析】【分析】(1)分别在3x 、34x 和4x 三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到 21f x a ,由此构造不等式求得结果.【详解】(1)当2a 时, 43f x x x .当3x 时, 43724f x x x x ,解得:32x ≤;当34x 时, 4314f x x x ,无解;当4x 时, 43274f x x x x ,解得:112x;综上所述: 4f x 的解集为32x x或112x .(2) 22222121211f x x a x a x ax a a a a (当且仅当221a x a 时取等号), 214a ,解得:1a 或3a ,a 的取值范围为 ,13, .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.祝福语祝你马到成功,万事顺意!。
2021年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)
2021年普通高等学校招生全国统一考试(全国乙卷)数学(理)一、选择题1.设2()3()46z z z z i ++-=+,则z =()A.12i -B.12i +C.1i +D.1i -答案:C 解析:设z a bi =+,则z a bi =-,2()3()4646z z z z a bi i ++-=+=+,所以1a =,1b =,所以1z i =+.2.已知集合{|21,}S s s n n Z ==+∈,{|41,}T t t n n Z ==+∈,则S T = ()A.∅B.SC.TD.Z 答案:C 解析:21s n =+,n Z ∈;当2n k =,k Z ∈时,{|41,}S s s k k Z ==+∈;当21n k =+,k Z ∈时,{|43,}S s s k k Z ==+∈.所以T S Ü,S T T = .故选C.3.已知命题:p x R ∃∈﹐sin 1x <;命题||:,1x q x R e∈∀≥,则下列命题中为真命题的是()A.p q∧B.p q ⌝∧C.p q∧⌝D.()p q ⌝∨答案:A 解析:根据正弦函数的值域sin [1,1]x ∈-,故x R ∃∈,sin 1x <,p 为真命题,而函数||x y y e ==为偶函数,且0x ≥时,||1x y e =≥,故x R ∀∈,||1x y e =≥恒成立.,则q 也为真命题,所以p q ∧为真,选A.4.设函数1()1xf x x-=+,则下列函数中为奇函数的是()A.1()1f x --B.1()1f x -+C.1()1f x +-D.1()1f x ++答案:B 解析:12()111x f x x x -==-+++,()f x 向右平移一个单位,向上平移一个单位得到2()g x x=为奇函数.5.在正方体1111ABCD ABC D -中,P 为11BD 的中点,则直线PB 与1A D 所成的角为()A.2πB.3πC.4πD.6π答案:D 解析:如图,1P B C ∠为直线PB 与1A D 所成角的平面角.易知11AB C ∆为正三角形,又P 为11AC 中点,所以16PBC π∠=.6.将5名北京冬奥会志愿者分配到花样滑冰,短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有()A.60种B.120种C.240种D.480种答案:C 解析:所求分配方案数为2454240C A =.7.把函数()y f x =图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin()4y x π=-的图像,则)(f x =()A.7sin()212x π-B.sin()212x π+C.7sin(212x π-D.sin(212x π+答案:B解析:逆向:231sin()sin(sin() 412212 y x y x y xππππ=-−−−→=+−−−−−−−→=+左移横坐标变为原来的倍.故选B.8.在区间(0,1)与(1,2)中各随机取1个数,则两数之和大于74的概率为()A.7 9B.23 32C.9 32D.2 9答案:B解析:由题意记(0,1)x∈,(1,2)y∈,题目即求74x y+>的概率,绘图如下所示.故113311123224411132 ABCDAM ANSPS==⨯-⋅-⨯⨯==⨯阴正.9.魏晋时期刘徽撰写的《海岛算经》是关于测量的数学著作.其中第一题是测量海岛的高.如图,点,,E H G在水平线AC上,DE和FG是两个垂直于水平面且等高的测量标杆的高度,称为“表高”,EG称为“表距”,GC和EH都称为“表目距”.GC与EH的差称为“表目距的差”,则海岛的高AB =()A.⨯+表高表距表高表目距的差B.⨯-表高表距表高表目距的差C.⨯+表高表距表距表目距的差D.⨯-表高表距表距表目距的差答案:A 解析:连接DF 交AB 于M ,则AB AM BM =+.记BDM α∠=,BFM β∠=,则tan tan MB MBMF MD DF βα-=-=.而tan FG GC β=,tan EDEHα=.所以11(()tan tan tan tan MB MB GC EH GC EH MB MB MB FG ED ED βαβα--=-=⋅-=⋅.故ED DF MB GC EH ⋅⨯==-表高表距表目距的差,所以高AB ⨯=+表高表距表高表目距的差.10.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则A.a b <B.a b >C.2ab a <D.2ab a >答案:D 解析:若0a >,其图像如图(1),此时,0a b <<;若0a <,时图像如图(2),此时,0b a <<.综上,2ab a <.11.设B 是椭圆C :22221(0)x y a b a b +=>>的上顶点,若C 上的任意一点P 都满足,2PB b ≤,则C 的离心率的取值范围是()A.[)2B.1[,1)2C.2D.1(0,2答案:C 解析:由题意,点(0,)B b ,设00(,)P x y ,则2222200002221(1)x y y x a a b b +=⇒=-,故22222222222000000022()(122y c PB x y b a y by b y by a b b b =+-=-+-+=--++,0[,]y b b ∈-.由题意,当0y b =-时,2PB 最大,则32b b c -≤-,22b c ≥,222a c c -≥,2c c a =≤,2(0,2c ∈.12.设2ln1.01a =,ln1.02b =,1c -,则()A.a b c <<B.b c a <<C.b a c <<D.c a b <<答案:B 解析:设()ln(1)1f x x =+,则(0.02)b c f -=,易得1()1f x x '==+当0x ≥时,1x +=≥()0f x '≤.所以()f x 在[0,)+∞上单调递减,所以(0.02)(0)0f f <=,故b c <.再设()2ln(1)1g x x =++,则(0.01)a c g -=,易得2()21g x x '==+当02x ≤<时,1x ≥=+,所以()g x '在[0.2)上0≥.故()g x 在[0.2)上单调递增,所以(0.01)(0)0g g >=,故a c >.综上,a c b >>.二、填空题13.已知双曲线C :221(0)x y m m-=>的一条渐近线为0my +=,则C 的焦距为.答案:4解析:易知双曲线渐近线方程为by x a=±,由题意得2a m =,21b =,且一条渐近线方程为y x m=-,则有0m =(舍去),3m =,故焦距为24c =.14.已知向量(1,3)a = ,(3,4)b = ,若()a b b λ-⊥,则λ=.答案:35解析:由题意得()0a b b λ-⋅= ,即15250λ-=,解得35λ=.15.记ABC ∆的内角A ,B,C 的对边分别为a ,b ,c ,面积为,60B =︒,223a c ac +=,则b =.答案:解析:1sin24ABC S ac B ac ∆===4ac =,由余弦定理,222328b a c ac ac ac ac =+-=-==,所以b =.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为(写出符合要求的一组答案即可).答案:②⑤或③④解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面PAC ⊥平面ABC ,PA PC ==,BA BC =,2AC =,俯视图为⑤.俯视图为③,如图(2),PA ⊥平面ABC ,1PA =,AC AB =,2BC =,俯视图为④.三、解答题17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到产品该项指标数据如下:旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y,样本方差分别己为21s 和22S .(1)求x ,y,21s ,22s :(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210s s y x +-≥,否则不认为有显著提高)。
2023年全国统一高考数学试卷(理科)(甲卷)(解析版)
2023年全国统一高考数学试卷(理科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设集合A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},U为整数集,则∁U(A⋃B)=( )A.{x|x=3k,k∈Z}B.{x|x=3k﹣1,k∈Z}C.{x|x=3k﹣2,k∈Z}D.∅【答案】A【解答】解:∵A={x|x=3k+1,k∈Z},B={x|x=3k+2,k∈Z},∴A∪B={x|x=3k+1或x=3k+2,k∈Z},又U为整数集,∴∁U(A⋃B)={x|x=3k,k∈Z}.故选:A.2.(5分)若复数(a+i)(1﹣ai)=2,a∈R,则a=( )A.﹣1B.0C.1D.2【答案】C【解答】解:因为复数(a+i)(1﹣ai)=2,所以2a+(1﹣a2)i=2,即,解得a=1.故选:C.3.(5分)执行下面的程序框图,输出的B=( )A.21B.34C.55D.89【答案】B【解答】解:根据程序框图列表如下:A13821B251334n1234故输出的B=34.故选:B.4.(5分)向量||=||=1,||=,且+=,则cos〈﹣,﹣〉=( )【答案】D【解答】解:因为向量||=||=1,||=,且+=,所以﹣=+,即2=1+1+2×1×1×cos<,>,解得cos<,>=0,所以⊥,又﹣=2+,﹣=+2,所以(﹣)•(﹣)=(2+)•(+2)=2+2+5•=2+2+0=4,|﹣|=|﹣|===,所以cos〈﹣,﹣〉===.故选:D.5.(5分)已知正项等比数列{a n}中,a1=1,S n为{a n}前n项和,S5=5S3﹣4,则S4=( )A.7B.9C.15D.30【答案】C【解答】解:等比数列{a n}中,设公比为q,a1=1,S n为{a n}前n项和,S5=5S3﹣4,显然q≠1,(如果q=1,可得5=15﹣4矛盾),可得=5•﹣4,解得q2=4,即q=2,S4===15.故选:C.6.(5分)有50人报名足球俱乐部,60人报名乒乓球俱乐部,70人报名足球或乒乓球俱乐部,若已知某人报足球俱乐部,则其报乒乓球俱乐部的概率为( )A.0.8B.0.4C.0.2D.0.1【答案】A【解答】解:根据题意,在报名足球或乒乓球俱乐部的70人中,设某人报足球俱乐部为事件A,报乒乓球俱乐部为事件B,则P(A)==,由于有50人报名足球俱乐部,60人报名乒乓球俱乐部,则同时报名两个俱乐部的由50+60﹣70=40人,则P(AB)==,则P(B|A)===0.8.故选:A.7.(5分)“sin2α+sin2β=1”是“sinα+cosβ=0”的( )A.充分条件但不是必要条件B.必要条件但不是充分条件C.充要条件D.既不是充分条件也不是必要条件【答案】B【解答】解:sin2α+sin2β=1,可知sinα=±cosβ,可得sinα±cosβ=0,所以“sin2α+sin2β=1”是“sinα+cosβ=0”的必要不充分条件,故选:B.8.(5分)已知双曲线的离心率为,其中一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,则|AB|=( )A.B.C.D.【答案】D【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得c=a,所以b=2a,所以双曲线的渐近线方程为:y=±2x,一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,圆的圆心(2,3),半径为1,圆的圆心到直线y=2x的距离为:=,所以|AB|=2=.故选:D.9.(5分)有五名志愿者参加社区服务,共服务星期六、星期天两天,每天从中任选两人参加服务,则两天中恰有1人连续参加两天服务的选择种数为( )A.120B.60C.40D.30【答案】B【解答】解:先从5人中选1人连续两天参加服务,共有=5种选法,然后从剩下4人中选1人参加星期六服务,剩下3人中选取1人参加星期日服务,共有=12种选法,根据分步乘法计数原理可得共有5×12=60种选法.故选:B.10.(5分)已知f(x)为函数向左平移个单位所得函数,则y=f(x)与的交点个数为( )A.1B.2C.3D.4【答案】C【解答】解:把函数向左平移个单位可得函数f(x)=cos(2x+)=﹣sin2x的图象,而直线=(x﹣1)经过点(1,0),且斜率为,且直线还经过点(,)、(﹣,﹣),0<<1,﹣1<﹣<0,如图,故y=f(x)与的交点个数为3.故选:C.11.(5分)在四棱锥P﹣ABCD中,底面ABCD为正方形,AB=4,PC=PD=3,∠PCA=45°,则△PBC的面积为( )A.B.C.D.【答案】C【解答】解:解法一:∵四棱锥P﹣ABCD中,底面ABCD为正方形,又PC=PD=3,∠PCA=45°,∴根据对称性易知∠PDB=∠PCA=45°,又底面正方形ABCD得边长为4,∴BD=,∴在△PBD中,根据余弦定理可得:=,又BC=4,PC=3,∴在△PBC中,由余弦定理可得:cos∠PCB==,∴sin∠PCB=,∴△PBC的面积为==.解法二:如图,设P在底面的射影为H,连接HC,设∠PCH=θ,∠ACH=α,且α∈(0,),则∠HCD=45°﹣α,或∠HCD=45°+α,易知cos∠PCD=,又∠PCA=45°,则根据最小角定理(三余弦定理)可得:,∴或,∴或,∴或,∴tanα=或tanα=,又α∈(0,),∴tanα=,∴cosα=,sinα=,∴,∴cosθ=,再根据最小角定理可得:cos∠PCB=cosθcos(45°+α)==,∴sin∠PCB=,又BC=4,PC=3,∴△PBC的面积为==.故选:C.12.(5分)已知椭圆=1,F1,F2为两个焦点,O为原点,P为椭圆上一点,cos∠F1PF2=,则|PO|=( )A.B.C.D.【答案】B【解答】解:椭圆,F1,F2为两个焦点,c=,O为原点,P为椭圆上一点,,设|PF1|=m,|PF2|=n,不妨m>n,可得m+n=6,4c2=m2+n2﹣2mn cos∠F1PF2,即12=m2+n2﹣mn,可得mn=,m2+n2=21,=(),可得|PO|2==(m2+n2+2mn cos∠F1PF2)=(m2+n2+mn)=(21+)=.可得|PO|=.故选:B.二、填空题:本题共4小题,每小题5分,共20分。
高三理科数学试卷(含答案)
理科数学试卷参考答案及评分标准本试卷分第Ⅰ卷和第Ⅱ卷两部分,共11页,满分150分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上,并将准考证号条形码粘贴在答题卡上指定位置.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集I 是实数集R , 3{|2}{|0}1x M x x N x x -=>=≤-与都是I 的子集(如图所示), 则阴影部分所表示的集合为A .{}2x x <B .{}21x x -≤<C .{}12x x <≤D .{}22x x -≤≤2.下列函数中既不是奇函数,又不是偶函数的是A .2xy = B . (lg y x =C . 22xxy -=+ D . 1lg1y x =+ 3.若曲线x x x f -=4)(在点P 处的切线平行于直线03=-y x ,则点P 的坐标为A .(1,0)B .(1,5)C .(1,-3)D .(-1,2)4.在ABC ∆中,a b 、分别是角A B 、所对的边,条件“a b <”是使 “cos cos A B >”成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.422142x x dx -⎛⎫-++= ⎪⎝⎭⎰ A .16 B .18 C .20 D .226. 已知函数),6cos()6sin()(ππ++=x x x f 则下列判断正确的是A .)(x f 的最小正周期为2π,其图象的一条对称轴为12π=xB .)(x f 的最小正周期为2π,其图象的一条对称轴为6π=xC .)(x f 的最小正周期为π,其图象的一条对称轴为12π=xD .)(x f 的最小正周期为π,其图象的一条对称轴为6π=x7. 一空间几何体的三视图如图所示,则该几何体的表面积为 A.2π+ B.42π+ C.6π+ D.62π+ 8. 若直线:10 l ax by ++=始终平分圆M :224210x y x y ++++=的周长,则()()2222a b -+-的最小值为AB .5C.D .109. 设b c 、表示两条直线,αβ、表示两个平面,下列命题中真命题是A .若c ∥α,c ⊥β,则αβ⊥B .若b α⊂,b ∥c ,则c ∥αC .若b α⊂,c ∥α,则b ∥cD .若c ∥α,αβ⊥,则c β⊥10.已知数列{}n x 满足3n n x x +=,21||()n n n x x x n N *++=-∈,若11x =,2 (1,0)x a a a =≤≠,则数列{}n x 的前2010项的和2010S 为A .669B .670C .1338D .134011. 在平面直角坐标系中,O 为坐标原点,设向量).3,1(),1,3(,,====其中若10,≤≤≤+=μλμλ且,C 点所有可能的位置区域用阴影表示正确的是俯视图正视图侧视图(第7题图)A .B .C .D .12.已知点F 是双曲线)0,0(12222>>=-b a by a x 的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A B 、两点,若ABE ∆是锐角三角形,则该双曲线的离心率e 的取值范围是A . ()1,+∞B .()1,2C.(1,1+D.(2,1+第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13. 对任意非零实数a b 、,若a b ⊗的运算原理如图所示,则()221log 82-⎛⎫⊗= ⎪⎝⎭___1___.14.在ABC ∆中,已知41AB AC ==,,ABCS AB AC ∆=⋅则的值为 ±2 .15. 设n S 表示等差数列{}n a 的前n 项和,且918S =,240n S =,若()4309n a n -=>,则n = 15 .16. 已知两个不相等的实数a b 、满足以下关系式:204a sin a cos πθθ⋅+⋅-=,204b sin b cos πθθ⋅+⋅-=,则连接A ()2a ,a 、 B ()2b ,b 两点的直线与圆心在原点的单位圆的位置关系是 相交 . 三、解答题:本大题共6个小题,共74分. 17.(本小题满分12分)已知函数2()sin cos f x x x x =. (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 解:(Ⅰ)∵2()sin cos f x x x x =+)12sin cos cos 212x x x =⋅++(第13题图)1sin 2cos 2222x x =++ ……………3分sin 23x π⎛⎫=++ ⎪⎝⎭ ……………5分 ∴ 函数()f x 的最小正周期22T ππ==. ……………6分 (Ⅱ)∵ 62x ππ-≤≤,40233x ππ≤+≤∴sin 213x π⎛⎫≤+≤ ⎪⎝⎭, ……………9分 ∴0sin 213x π⎛⎫≤++≤= ⎪⎝⎭, ∴ ()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值为22,最小值为0.……………12分 18.(本小题满分12分)已知等腰直角三角形RBC ,其中∠RBC =90º, 2==BC RB .点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△PAD 位置,使PA ⊥AB ,连结PB 、PC . (Ⅰ)求证:BC ⊥PB ;(Ⅱ)求二面角P CD A --的余弦值. 解:(Ⅰ)∵点D A 、分别是RB 、RC 的中点,∴ BC AD BC AD 21//=且. …… 2分∴ ∠090=∠=∠=RBC RAD PAD . ∴ AD PA ⊥又PA ⊥AB ,DA AB A =∴ ABCD PA 面⊥ ∴BC PA ⊥ ∵ A AB PA AB BC =⊥ ,,∴ BC ⊥平面PAB . …… 4分 ∵ ⊂PB 平面PAB ,∴ PB BC ⊥. …… 6分 (Ⅱ)法一:取RD 的中点F ,连结AF 、PF .PCADBR(第18题图)∵ 1==AD RA ,∴ RC AF ⊥.又由(Ⅰ)知ABCD PA 面⊥, 而⊂RC 平面ABCD ,∴ RC PA ⊥. ………………… 8分 ∵ ,A PA AF= ∴ ⊥RC 平面PAF .∴ ∠AFP 是二面角P CD A --的平面角. ………………10分 在Rt △RAD 中, 22212122=+==AD RA RD AF , 在Rt △PAF 中, 2622=+=AF PA PF , ∴ 332622cos ===∠PF AF AFP . ………………11分 ∴ 二面角P CD A --的平面角的余弦值是33. ………………12分 (Ⅱ)法二:建立如图所示的空间直角坐标系xyz A -. 则D (-1,0,0),C (-2,1,0),P (0,0,1).∴=(-1,1,0), =(1,0,1), ……8分 设平面PCD 的法向量为),,(z y x n =,则n DC x y n DP x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩……10分 令1=x ,得1,1-==z y , ∴ )1,1,1(-=n.FR ADBCP (第18题图)R(第18题图)显然,是平面ACD 的一个法向量=(,0,01-).∴ cos<n ,33131=⨯=. ∴ 二面角P CD A --的余弦值是33. ………………12分 19.(本小题满分12分)已知数列{}n a 的首项15a =,前n 项和为n S ,且125n n S S n +=++()n N *∈.(Ⅰ)设1n n b a =+,求数列{}n b 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S . 解:(Ⅰ)由125n n S S n +=++()n N *∈得 ()1215n n S S n -=+-+(,2)n N n *∈≥两式相减得 121n n a a +=+ ……………………………… 3分 ∴ ()1121n n a a ++=+即 n n b b 21=+(,2)n N n*∈≥ …………………………………… 4分 又1165111122=+=++=-=a S S S a ∴ 12122=+=a b ,6111=+=a b∴ 122b b = …………………………………… 6分 ∴ 数列{}n b 是首项为6,公比为2的等比数列 ∴ n n n b 23261⋅=⋅=- ………………………………… 8分(Ⅱ)法一由(Ⅰ)知321nn a =⋅- ……………………………… 9分 ∴ 12n n S a a a =++⋅⋅⋅+2323232nn =⨯+⨯+⋅⋅⋅+⋅- ……………………………10分()221321n n -=⨯--1626326n n n n +=⋅--=⋅--. ……………………… 12分(Ⅱ)法二由已知125n n S S n +=++()n N *∈ ① 设()()112n n S c n d S cn d ++++=++ 整理得 12n n S S cn d c +=++- ②对照① 、②,得 1,6c d == ……………………………………8分 即①等价于 ()()11626n n S n S n ++++=++∴ 数列{}6n S n ++是等比数列,首项为11161612S a ++=++=,公比为2q = ∴ 11612232n n n S n -+++=⋅=⋅∴ 1326n n S n +=⋅--. …………………………………… 12分20.(本小题满分12分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知3=AB 米,2=AD 米.(I )要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么范围内? (II )当DN 的长度是多少时,矩形花坛AMPN 的面积最小?并求出最小值. 解:(I )设DN 的长为x (0x >)米,则2AN x =+米∵AMDC ANDN =,∴()32x AM x+=, ……………………2分∴ ()232AMPN x S AN AM x+=⋅=由32>AMPN S 得()23232x x+> ,(第20题图)又0x >,得 2320120x x -+>,解得:2063x x <<> 或 即DN 长的取值范围是2(0)(6)3∞ ,,+ ……………………7分(II )矩形花坛AMPN 的面积为()22323121212312x x x y x xx x+++===++1224≥= ……………………10分 当且仅当1232x x ,x==即时矩形花坛AMPN 的面积取得最小值24. 故,DN 的长度是2米时,矩形AMPN 的面积最小,最小值为24平方米.…12分 21.(本小题满分12分)已知函数22()ln ()f x x a x ax a R =-+∈.(Ⅰ)当1a =时,证明函数()f x 只有一个零点;(Ⅱ)若函数()f x 在区间()1,+∞上是减函数,求实数a 的取值范围. 解:(Ⅰ)当1a =时,2()ln f x x x x =-+,其定义域是(0,)+∞∴ 2121()21x x f x x x x --'∴=-+=- …………2分令()0f x '=,即2210x x x ---=,解得12x =-或1x =. 0x >Q ,∴ 12x ∴=-舍去. 当01x <<时,()0f x '>;当1x >时,()0f x '<.∴ 函数()f x 在区间()01,上单调递增,在区间()1,+∞上单调递减 ∴ 当x =1时,函数()f x 取得最大值,其值为2(1)ln1110f =-+=. 当1x ≠时,()(1)f x f <,即()0f x <.∴ 函数()f x 只有一个零点. ……………………6分(Ⅱ)显然函数22()ln f x x a x ax =-+的定义域为(0,)+∞∴ 222121(21)(1)()2a x ax ax ax f x a x a x x x-++-+-'=-+== ………7分① 当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ② 当0a >时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即1x a≥ 此时()f x 的单调递减区间为1,a ⎡⎫+∞⎪⎢⎣⎭.依题意,得11,0.a a ⎧≤⎪⎨⎪>⎩解之得1a ≥.………10分③ 当0a <时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即12x a≥- 此时()f x 的单调递减区间为12,a ⎡⎫-+∞⎪⎢⎣⎭, ∴1120a a ⎧-≤⎪⎨⎪<⎩得12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 法二:①当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ②当0a ≠时,要使函数()f x 在区间()1,+∞上是减函数,只需()0f x '≤在区间()1,+∞上恒成立,0x > ∴只要22210a x ax --≥恒成立,2214210aa a a ⎧≤⎪∴⎨⎪--≥⎩解得1a ≥或12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 22.(本小题满分14分)已知椭圆C 中心在原点、焦点在x 轴上,椭圆C 上的点到焦点的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于不同的两点M N 、(M N 、不是左、右顶点),且以MN 为直径的圆经过椭圆的右顶点A .求证:直线l 过定点,并求出定点的坐标. 解:(Ⅰ)设椭圆的长半轴为a ,半焦距为c ,则31a c a c +=⎧⎨-=⎩ 解得 21a c =⎧⎨=⎩∴ 椭圆C 的标准方程为 22143x y +=. ………………… 4分(Ⅱ)由方程组22143x y y kx m⎧⎪+=⎨⎪=+⎩ 消去y ,得()2223484120k xk m x m +++-= 由题意:△()()()22284344120km km=-+->整理得:22340k m +-> ① ……7分 设()()1122,,M x y N x y 、,则122834kmx x k+=-+, 212241234m x x k -=+………………… 8分 由已知,AM AN ⊥ , 且椭圆的右顶点为A (2,0) ∴()()1212220x x y y --+=………………… 10分即 ()()()2212121240kx x km x x m++-+++=也即 ()()22222412812403434m km k km m k k--+⋅+-⋅++=++ 整理得: 2271640m mk k ++= 解得: 2m k =- 或 27km =-,均满足① ……………………… 12分 当2m k =-时,直线l 的方程为 2y kx k =-,过定点(2,0),舍去当27k m =-时,直线l 的方程为 27y k x ⎛⎫=- ⎪⎝⎭,过定点2(,0)7,故,直线l 过定点,且定点的坐标为2(,0)7.……………………… 14分。
高考全国卷数学理科试题及答案详解
2021年普通高等学校招生全国统一考试数学(全国新课标卷II)第一卷一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的. 1.(2021课标全国Ⅱ,理1)集合M ={x |(x -1)2<4,x ∈R },N ={-1,0,1,2,3},那么M ∩N =( ).A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}2.(2021课标全国Ⅱ,理2)设复数z 满足(1-i)z =2i ,那么z =( ).A .-1+iB .-1-IC .1+iD .1-i3.(2021课标全国Ⅱ,理3)等比数列{a n }的前n 项与为S n .S 3=a 2+10a 1,a 5=9,那么a 1=( ).A .13B .13-C .19D .19-4.(2021课标全国Ⅱ,理4)m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l α,l β,那么( ).A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l5.(2021课标全国Ⅱ,理5)(1+ax )(1+x )5的展开式中x 2的系数为5,那么a =( ).A .-4B .-3C .-2D .-16.(2021课标全国Ⅱ,理6)执行下面的程序框图,如果输入的N =10,那么输出的S =( ).A .1111+2310+++B .1111+2!3!10!+++C .1111+2311+++ D .1111+2!3!11!+++7.(2021课标全国Ⅱ,理7)一个四面体的顶点在空间直角坐标系O -xyz 中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,那么得到的正视图可以为( ).8.(2021课标全国Ⅱ,理8)设a =log 36,b =log 510,c =log 714,那么( ).A .c >b >aB .b >c >aC .a >c >bD .a >b >c 9.(2021课标全国Ⅱ,理9)a >0,x ,y 满足约束条件1,3,3.x x y y a x ≥⎧⎪+≤⎨⎪≥(-)⎩假设z =2x+y 的最小值为1,那么a =( ).A .14B .12 C .1 D .210.(2021课标全国Ⅱ,理10)函数f (x )=x 3+ax 2+bx +c ,以下结论中错误的选项是( ).A .∃x0∈R ,f(x0)=0B .函数y =f(x)的图像是中心对称图形C .假设x0是f(x)的极小值点,那么f(x)在区间(-∞,x0)单调递减D .假设x0是f(x)的极值点,那么f′(x0)=011.(2021课标全国Ⅱ,理11)设抛物线C :y 2=2px (p >0)的焦点为F ,点M 在C 上,|MF |=5,假设以MF 为直径的圆过点(0,2),那么C 的方程为( ).A .y2=4x 或y2=8xB .y2=2x 或y2=8xC .y2=4x 或y2=16xD .y2=2x 或y2=16x12.(2021课标全国Ⅱ,理12)点A (-1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两局部,那么b 的取值范围是( ).A .(0,1) B.112⎛⎫ ⎪ ⎪⎝⎭ C.113⎛⎤- ⎥ ⎝⎦ D .11,32⎡⎫⎪⎢⎣⎭ 第二卷本卷包括必考题与选考题两局部,第13题~第21题为必考题,每个试题考生都必须做答。
2023年全国统一高考数学试卷(理科)(乙卷)(解析版)
2023年全国统一高考数学试卷(理科)(乙卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=,则=( )A.1﹣2i B.1+2i C.2﹣i D.2+i【答案】B【解答】解:∵i2=﹣1,i5=i,∴z===1﹣2i,∴=1+2i.故选:B.2.(5分)设集合U=R,集合M={x|x<1},N={x|﹣1<x<2},则{x|x≥2}=( )A.∁U(M∪N)B.N∪∁U M C.∁U(M∩N)D.M∪∁U N【答案】A【解答】解:由题意:M∪N={x|x<2},又U=R,∴∁U(M∪N)={x|x≥2}.故选:A.3.(5分)如图,网格纸上绘制的是一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A.24B.26C.28D.30【答案】D【解答】解:根据几何体的三视图转换为直观图为:该几何体是由两个直四棱柱组成的几何体.如图所示:故该几何体的表面积为:4+6+5+5+2+2+2+4=30.故选:D.4.(5分)已知f(x)=是偶函数,则a=( )A.﹣2B.﹣1C.1D.2【答案】D【解答】解:∵f(x)=的定义域为{x|x≠0},又f(x)为偶函数,∴f(﹣x)=f(x),∴,∴,∴ax﹣x=x,∴a=2.故选:D.5.(5分)设O为平面坐标系的坐标原点,在区域{(x,y)|1≤x2+y2≤4}内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为( )A.B.C.D.【答案】C【解答】解:如图,PQ为第一象限与第三象限的角平分线,根据题意可得构成A的区域为圆环,而直线OA的倾斜角不大于的点A构成的区域为图中阴影部分,∴所求概率为=.故选:C.6.(5分)已知函数f(x)=sin(ωx+φ)在区间(,)单调递增,直线x=和x=为函数y=f(x)的图像的两条对称轴,则f(﹣)=( )A.﹣B.﹣C.D.【答案】D【解答】解:根据题意可知=,∴T=π,取ω>0,∴ω==2,又根据“五点法“可得,k∈Z,∴φ=,k∈Z,∴f(x)=sin(2x)=sin(2x﹣),∴f(﹣)=sin(﹣)=sin(﹣)=sin=.故选:D.7.(5分)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( )A.30种B.60种C.120种D.240种【答案】C【解答】解:根据题意可得满足题意的选法种数为:=120.故选:C.8.(5分)已知圆锥PO的底面半径为,O为底面圆心,PA,PB为圆锥的母线,∠AOB =120°,若△PAB的面积等于,则该圆锥的体积为( )A.πB.πC.3πD.3π【答案】B【解答】解:根据题意,设该圆锥的高为h,即PO=h,取AB的中点E,连接PE、OE,由于圆锥PO的底面半径为,即OA=OB=,而∠AOB=120°,故AB===3,同时OE=OA×sin30°=,△PAB中,PA=PB,E为AB的中点,则有PE⊥AB,又由△PAB的面积等于,即PE•AB=,变形可得PE=,而PE=,则有h2+=,解可得h=,故该圆锥的体积V=π×()2h=π.故选:B.9.(5分)已知△ABC为等腰直角三角形,AB为斜边,△ABD为等边三角形,若二面角C﹣AB﹣D为150°,则直线CD与平面ABC所成角的正切值为( )A.B.C.D.【答案】C【解答】解:如图,取AB的中点E,连接CE,DE,则根据题意易得AB⊥CE,AB⊥DE,∴二面角C﹣AB﹣D的平面角为∠CED=150°,∵AB⊥CE,AB⊥DE,且CE∩DE=E,∴AB⊥平面CED,又AB⊂平面ABC,∴平面CED⊥平面ABC,∴CD在平面ABC内的射影为CE,∴直线CD与平面ABC所成角为∠DCE,过D作DH垂直CE所在直线,垂足点为H,设等腰直角三角形ABC的斜边长为2,则可易得CE=1,DE=,又∠DEH=30°,∴DH=,EH=,∴CH=1+=,∴tan∠DCE===.故选:C.10.(5分)已知等差数列{a n}的公差为,集合S={cos a n|n∈N*},若S={a,b},则ab=( )A.﹣1B.﹣C.0D.【答案】B【解答】解:设等差数列{a n}的首项为a1,又公差为,∴,∴,其周期为=3,又根据题意可知S集合中仅有两个元素,∴可利用对称性,对a n取特值,如a1=0,,,•,或,,a3=π,•,代入集合S中计算易得:ab=.故选:B.11.(5分)设A,B为双曲线x2﹣=1上两点,下列四个点中,可为线段AB中点的是( )A.(1,1)B.(﹣1,2)C.(1,3)D.(﹣1,﹣4)【答案】D【解答】解:设A(x1,y1),B(x2,y2),AB中点为(x0,y0),,①﹣②得k AB==9×=9×,即﹣3<9×<3⇒,即或,故A、B、C错误,D正确.故选:D.12.(5分)已知⊙O的半径为1,直线PA与⊙O相切于点A,直线PB与⊙O交于B,C两点,D为BC的中点,若|PO|=,则•的最大值为( )A.B.C.1+D.2+【答案】A【解答】解:如图,设∠OPC=α,则,根据题意可得:∠APO=45°,∴==cos2α﹣sinαcosα==,又,∴当,α=,cos()=1时,取得最大值.故选:A.二、填空题:本题共4小题,每小题5分,共20分。
2022年高考全国乙卷数学(理科)真题+逐题解析
绝密★启用前2022年普通高等学校招生全国统一考试数学(理科)注意事项:1.答卷前,考生务必将自己的姓名和座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{1,2,3,4,5}U =,集合M 满足{1,3}U M =ð,则()A.2M ∈ B.3M∈ C.4M∉ D.5M∉【答案】A 【解析】【分析】先写出集合M ,然后逐项验证即可【详解】由题知{2,4,5}M =,对比选项知,A 正确,BCD 错误故选:A2.已知12z i =-,且0z az b ++=,其中a ,b 为实数,则()A.1,2a b ==- B.1,2a b =-= C.1,2a b == D.1,2a b =-=-【答案】A 【解析】【分析】先算出z ,再代入计算,实部与虚部都为零解方程组即可【详解】12iz =+12i (12i)(1)(22)iz az b a b a b a ++=-+++=+++-由0z az b ++=,得10220a b a ++=⎧⎨-=⎩,即12a b =⎧⎨=-⎩故选:A3.已知向量,a b 满足||1,||2|3a b a b ==-= ,则a b ⋅=()A.2-B.1- C.1D.2【答案】C 【解析】【分析】根据给定模长,利用向量的数量积运算求解即可.【详解】解:∵222|2|||44-=-⋅+a b a a b b ,又∵||1,||2|3,==-=a b a b ∴91443134=-⋅+⨯=-⋅ a b a b ,∴1a b ⋅= 故选:C.4.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则()A.15b b < B.38b b < C.62b b < D.47b b <【答案】D 【解析】【分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【详解】解:因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误;178b b b >>,故B 错误;26231111αααα>++…,得26b b <,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.故选:D.5.设F 为抛物线2:4C y x =的焦点,点A 在C 上,点(3,0)B ,若AF BF =,则AB =()A.2B. C.3D.【答案】B 【解析】【分析】根据抛物线上的点到焦点和准线的距离相等,从而求得点A 的横坐标,进而求得点A 坐标,即可得到答案.【详解】由题意得,()1,0F ,则2AF BF ==,即点A 到准线1x =-的距离为2,所以点A 的横坐标为121-+=,不妨设点A 在x 轴上方,代入得,()1,2A ,所以AB ==.故选:B6.执行下边的程序框图,输出的n =()A.3B.4C.5D.6【答案】B 【解析】【分析】根据框图循环计算即可.【详解】执行第一次循环,2123b b a =+=+=,312,12a b a n n =-=-==+=,222231220.0124b a -=-=>;执行第二次循环,2347b b a =+=+=,725,13a b a n n =-=-==+=,222271220.01525b a -=-=>;执行第三次循环,271017b b a =+=+=,17512,14a b a n n =-=-==+=,2222171220.0112144b a -=-=<,此时输出4n =.故选:B7.在正方体1111ABCD A B C D -中,E ,F 分别为,AB BC 的中点,则()A.平面1B EF ⊥平面1BDD B.平面1B EF ⊥平面1A BD C.平面1//B EF 平面1A ACD.平面1//B EF 平面11AC D【答案】A 【解析】【分析】证明EF ⊥平面1BDD ,即可判断A ;如图,以点D 为原点,建立空间直角坐标系,设2AB =,分别求出平面1B EF ,1A BD ,11AC D 的法向量,根据法向量的位置关系,即可判断BCD .【详解】解:在正方体1111ABCD A B C D -中,AC BD ⊥且1DD ⊥平面ABCD ,又EF ⊂平面ABCD ,所以1EF DD ⊥,因为,E F 分别为,AB BC 的中点,所以EF AC ,所以EF BD ⊥,又1BD DD D = ,所以EF ⊥平面1BDD ,又EF ⊂平面1B EF ,所以平面1B EF ⊥平面1BDD ,故A 正确;如图,以点D 为原点,建立空间直角坐标系,设2AB =,则()()()()()()()112,2,2,2,1,0,1,2,0,2,2,0,2,0,2,2,0,0,0,2,0B E F B A A C ,()10,2,2C ,则()()11,1,0,0,1,2EF EB =-= ,()()12,2,0,2,0,2DB DA ==,()()()1110,0,2,2,2,0,2,2,0,AA AC A C ==-=-设平面1B EF 的法向量为()111,,m x y z =,则有11111020m EF x y m EB y z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩ ,可取()2,2,1m =- ,同理可得平面1A BD 的法向量为()11,1,1n =--,平面1A AC 的法向量为()21,1,0n =,平面11AC D 的法向量为()31,1,1n =-,则122110m n ⋅=-+=≠,所以平面1B EF 与平面1A BD 不垂直,故B 错误;因为m 与2n uu r 不平行,所以平面1B EF 与平面1A AC 不平行,故C 错误;因为m 与3n不平行,所以平面1B EF 与平面11AC D 不平行,故D 错误,故选:A.8.已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =()A.14 B.12C.6D.3【答案】D 【解析】【分析】设等比数列{}n a 的公比为,0q q ≠,易得1q ≠,根据题意求出首项与公比,再根据等比数列的通项即可得解.【详解】解:设等比数列{}n a 的公比为,0q q ≠,若1q =,则250a a -=,与题意矛盾,所以1q ≠,则()31123425111168142a q a a a qa a a q a q ⎧-⎪++==⎨-⎪-=-=⎩,解得19612a q =⎧⎪⎨=⎪⎩,所以5613a a q ==.故选:D .9.已知球O 的半径为1,四棱锥的顶点为O ,底面的四个顶点均在球O 的球面上,则当该四棱锥的体积最大时,其高为()A.13B.12C.33D.22【答案】C 【解析】【分析】先证明当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r ,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.【详解】设该四棱锥底面为四边形ABCD ,四边形ABCD 所在小圆半径为r ,设四边形ABCD 对角线夹角为α,则2111sin 222222ABCD S AC BD AC BD r r r α=⋅⋅⋅≤⋅⋅≤⋅⋅=(当且仅当四边形ABCD 为正方形时等号成立)即当四棱锥的顶点O 到底面ABCD 所在小圆距离一定时,底面ABCD 面积最大值为22r 又22r h 1+=则212327O ABCDV r h -=⋅⋅=当且仅当222r h =即h =时等号成立,故选:C10.某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜的概率分别为123,,p p p ,且3210p p p >>>.记该棋手连胜两盘的概率为p ,则()A.p 与该棋手和甲、乙、丙的比赛次序无关B.该棋手在第二盘与甲比赛,p 最大C.该棋手在第二盘与乙比赛,p 最大D.该棋手在第二盘与丙比赛,p 最大【答案】D 【解析】【分析】该棋手连胜两盘,则第二盘为必胜盘.分别求得该棋手在第二盘与甲比赛且连胜两盘的概率p 甲;该棋手在第二盘与乙比赛且连胜两盘的概率p 乙;该棋手在第二盘与丙比赛且连胜两盘的概率p 丙.并对三者进行比较即可解决【详解】该棋手连胜两盘,则第二盘为必胜盘,记该棋手在第二盘与甲比赛,且连胜两盘的概率为p 甲则2132131231232(1)2(1)2()4p p p p p p p p p p p p p =-+-=+-甲记该棋手在第二盘与乙比赛,且连胜两盘的概率为p 乙则1231232131232(1)2(1)2()4p p p p p p p p p p p p p =-+-=+-乙记该棋手在第二盘与丙比赛,且连胜两盘的概率为p 丙则1321323121232(1)2(1)2()4p p p p p p p p p p p p p =-+-=+-丙则[]()1231232131231232()42()420p p p p p p p p p p p p p p p p p -=+--+-=-<甲乙[]()2131233121232312()42()420p p p p p p p p p p p p p p p p p -=+--+-=-<乙丙即p p <甲乙,p p <乙丙,则该棋手在第二盘与丙比赛,p 最大.选项D 判断正确;选项BC 判断错误;p 与该棋手与甲、乙、丙的比赛次序有关.选项A 判断错误.故选:D11.双曲线C 的两个焦点为12,F F ,以C 的实轴为直径的圆记为D ,过1F 作D 的切线与C 交于M ,N 两点,且123cos 5F NF ∠=,则C 的离心率为()A.2B.32C.2D.2【答案】C 【解析】【分析】依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,可判断N 在双曲线的右支,设12F NF α∠=,21F F N β∠=,即可求出sin α,sin β,cos β,在21F F N 中由()12sin sin F F N αβ∠=+求出12sin F F N ∠,再由正弦定理求出1NF ,2NF ,最后根据双曲线的定义得到23b a =,即可得解;【详解】解:依题意不妨设双曲线焦点在x 轴,设过1F 作圆D 的切线切点为G ,所以1OG NF ⊥,因为123cos 05F NF ∠=>,所以N 在双曲线的右支,所以OG a =,1OF c =,1GF b =,设12F NF α∠=,21F F N β∠=,由123cos 5F NF ∠=,即3cos 5α=,则4sin 5α=,sin a c β=,cos b c β=,在21F F N 中,()()12sin sin sin F F N παβαβ∠=--=+4334sin cos cos sin 555b a a bc c cαβαβ+=+=⨯+⨯=,由正弦定理得211225sin sin sin 2NF NF c cF F N αβ===∠,所以112553434sin 2252c c a b a b NF F F N c ++=∠=⨯=,2555sin 222c c a a NF c β==⨯=又12345422222a b a b aNF NF a +--=-==,所以23b a =,即32b a =,所以双曲线的离心率221312c b e a a ==+=故选:C12.已知函数(),()f x g x 的定义域均为R ,且()(2)5,()(4)7f x g x g x f x +-=--=.若()y g x =的图像关于直线2x =对称,(2)4g =,则221()k f k ==∑()A.21-B.22-C.23-D.24-【答案】D 【解析】【分析】根据对称性和已知条件得到()(2)2f x f x +-=-,从而得到()()()352110f f f +++=- ,()()()462210f f f +++=- ,然后根据条件得到(2)f 的值,再由题意得到()36g =从而得到()1f 的值即可求解.【详解】因为()y g x =的图像关于直线2x =对称,所以()()22g x g x -=+,因为()(4)7g x f x --=,所以(2)(2)7g x f x +--=,即(2)7(2)g x f x +=+-,因为()(2)5f x g x +-=,所以()(2)5f x g x ++=,代入得[]()7(2)5f x f x ++-=,即()(2)2f x f x +-=-,所以()()()()35212510f f f +++=-⨯=- ,()()()()46222510f f f +++=-⨯=- .因为()(2)5f x g x +-=,所以(0)(2)5f g +=,即()01f =,所以()(2)203f f =--=-.因为()(4)7g x f x --=,所以(4)()7g x f x +-=,又因为()(2)5f x g x +-=,联立得,()()2412g x g x -++=,所以()y g x =的图像关于点()3,6中心对称,因为函数()g x 的定义域为R ,所以()36g =因为()(2)5f x g x ++=,所以()()1531f g =-=-.所以()()()()()()()()221123521462213101024()k f f f f f f f f f k =+++++++++=----=-⎡⎤⎡⎤⎣⎦⎣⎦=∑ .故选:D【点睛】含有对称轴或对称中心的问题往往条件比较隐蔽,考生需要根据已知条件进行恰当的转化,然后得到所需的一些数值或关系式从而解题.二、填空题:本题共4小题,每小题5分,共20分.13.从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.【答案】310##0.3【解析】【分析】根据古典概型计算即可【详解】从5名同学中随机选3名的方法数为35C 10=甲、乙都入选的方法数为13C 3=,所以甲、乙都入选的概率310P =故答案为:31014.过四点(0,0),(4,0),(1,1),(4,2)-中的三点的一个圆的方程为____________.【答案】()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭;【解析】【分析】设圆的方程为220x y Dx Ey F ++++=,根据所选点的坐标,得到方程组,解得即可;【详解】解:依题意设圆的方程为220x y Dx Ey F ++++=,若过()0,0,()4,0,()1,1-,则01640110F D F D E F =⎧⎪++=⎨⎪+-++=⎩,解得046F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22460x y x y +--=,即()()222313x y -+-=;若过()0,0,()4,0,()4,2,则01640164420F D F D E F =⎧⎪++=⎨⎪++++=⎩,解得042F D E =⎧⎪=-⎨⎪=-⎩,所以圆的方程为22420x y x y +--=,即()()22215x y -+-=;若过()0,0,()4,2,()1,1-,则0110164420F D E F D E F =⎧⎪+-++=⎨⎪++++=⎩,解得083143F D E ⎧⎪=⎪⎪=-⎨⎪⎪=-⎪⎩,所以圆的方程为22814033x y x y +--=,即224765339x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭;若过()1,1-,()4,0,()4,2,则1101640164420D E F D F D E F +-++=⎧⎪++=⎨⎪++++=⎩,解得1651652F D E ⎧=-⎪⎪⎪=-⎨⎪=-⎪⎪⎩,所以圆的方程为2216162055x y x y +---=,即()2281691525x y ⎛⎫-+-= ⎪⎝⎭;故答案为:()()222313x y -+-=或()()22215x y -+-=或224765339x y ⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭或()2281691525x y ⎛⎫-+-= ⎪⎝⎭;15.记函数()()cos (0,0π)f x x ωϕωϕ=+><<的最小正周期为T ,若3()2f T =,9x π=为()f x 的零点,则ω的最小值为____________.【答案】3【解析】【分析】首先表示出T ,根据()32f T =求出ϕ,再根据π9x =为函数的零点,即可求出ω的取值,从而得解;【详解】解:因为()()cos f x x ωϕ=+,(0>ω,0πϕ<<)所以最小正周期2πT ω=,因为()()2π3cos cos 2πcos 2f T ωϕϕϕω⎛⎫=⋅+=+==⎪⎝⎭,又0πϕ<<,所以π6ϕ=,即()πcos 6f x x ω⎛⎫=+ ⎪⎝⎭,又π9x =为()f x 的零点,所以ππππ,Z 962k k ω+=+∈,解得39,Z k k ω=+∈,因为0>ω,所以当0k =时min 3ω=;故答案为:316.已知1x x =和2x x =分别是函数2()2e x f x a x =-(0a >且1a ≠)的极小值点和极大值点.若12x x <,则a 的取值范围是____________.【答案】1,1e ⎛⎫ ⎪⎝⎭【解析】【分析】由12,x x 分别是函数()22e xf x a x =-的极小值点和极大值点,可得()()12,,x x x ∈-∞⋃+∞时,()0f x '<,()12,x x x ∈时,()0f x '>,再分1a >和01a <<两种情况讨论,方程2ln 2e 0x a a x ⋅-=的两个根为12,x x ,即函数ln x y a a =⋅与函数e y x =的图象有两个不同的交点,构造函数()ln x g x a a =⋅,根据导数的结合意义结合图象即可得出答案.【详解】解:()2ln 2e xf x a a x '=⋅-,因为12,x x 分别是函数()22e xf x a x =-的极小值点和极大值点,所以函数()f x 在()1,x -∞和()2,x +∞上递减,在()12,x x 上递增,所以当()()12,,x x x ∈-∞⋃+∞时,()0f x '<,当()12,x x x ∈时,()0f x '>,若1a >时,当0x <时,2ln 0,2e 0x a a x ⋅><,则此时()0f x '>,与前面矛盾,故1a >不符合题意,若01a <<时,则方程2ln 2e 0x a a x ⋅-=的两个根为12,x x ,即方程ln e x a a x ⋅=的两个根为12,x x ,即函数ln x y a a =⋅与函数e y x =的图象有两个不同的交点,令()ln xg x a a =⋅,则()2ln ,01xg x a a a '=⋅<<,设过原点且与函数()y g x =的图象相切的直线的切点为()00,ln x x a a ⋅,则切线的斜率为()020ln xg x a a '=⋅,故切线方程为()0020ln ln x x y a a a a x x -⋅=⋅-,则有0020ln ln x x a a x a a -⋅=-⋅,解得01ln x a=,则切线的斜率为122ln ln eln aa aa ⋅=,因为函数ln x y a a =⋅与函数e y x =的图象有两个不同的交点,所以2eln e a <,解得1e ea <<,又01a <<,所以11ea <<,综上所述,a 的范围为1,1e ⎛⎫ ⎪⎝⎭.【点睛】本题考查了函数的极值点问题,考查了导数的几何意义,考查了转化思想及分类讨论思想,有一定的难度.三、解答题:共0分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+;(2)若255,cos 31a A ==,求ABC 的周长.【答案】(1)见解析(2)14【解析】【分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证;(2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c +,即可得解.【小问1详解】证明:因为()()sin sin sin sin C A B B C A -=-,所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C -=-,所以2222222222222a c b b c a a b c ac bc ab ac bc ab +-+-+-⋅-⋅=-⋅,即()22222222222a cb a bc b c a +-+--+-=-,所以2222a b c =+;【小问2详解】解:因为255,cos 31a A ==,由(1)得2250b c +=,由余弦定理可得2222cos a b c bc A =+-,则50502531bc -=,所以312bc =,故()2222503181b c b c bc +=++=+=,所以9b c +=,所以ABC 的周长为14a b c ++=.18.如图,四面体ABCD 中,,,AD CD AD CD ADB BDC ⊥=∠=∠,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设2,60AB BD ACB ==∠=︒,点F 在BD 上,当AFC △的面积最小时,求CF 与平面ABD 所成的角的正弦值.【答案】(1)证明过程见解析(2)CF 与平面ABD 所成的角的正弦值为7【解析】【分析】(1)根据已知关系证明ABD CBD ≌△△,得到AB CB =,结合等腰三角形三线合一得到垂直关系,结合面面垂直的判定定理即可证明;(2)根据勾股定理逆用得到BE DE ⊥,从而建立空间直角坐标系,结合线面角的运算法则进行计算即可.【小问1详解】因为AD CD =,E 为AC 的中点,所以AC DE ⊥;在ABD △和CBD 中,因为,,B A C D CD ADB DB DB D ∠=∠==,所以ABD CBD ≌△△,所以AB CB =,又因为E 为AC 的中点,所以AC BE ⊥;又因为,DE BE ⊂平面BED ,DE BE E ⋂=,所以AC ⊥平面BED ,因为AC ⊂平面ACD ,所以平面BED ⊥平面ACD .【小问2详解】连接EF ,由(1)知,AC ⊥平面BED ,因为EF ⊂平面BED ,所以AC EF ⊥,所以1=2AFC S AC EF ⋅△,当EF BD ⊥时,EF 最小,即AFC △的面积最小.因为ABD CBD ≌△△,所以2CB AB ==,又因为60ACB ∠=︒,所以ABC 是等边三角形,因为E 为AC 的中点,所以1AE EC ==,BE =,因为AD CD ⊥,所以112DE AC ==,在DEB 中,222DE BE BD +=,所以BE DE ⊥.以E 为坐标原点建立如图所示的空间直角坐标系E xyz -,则()()()1,0,0,,0,0,1A B D ,所以()()1,0,1,AD AB =-=-,设平面ABD 的一个法向量为(),,n x y z =,则00n AD x z n AB x ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩,取y =,则()n = ,又因为()31,0,0,0,44C F ⎛⎫- ⎪ ⎪⎝⎭,所以31,,44CF ⎛⎫= ⎪ ⎪⎝⎭ ,所以43cos ,7n CF n CF n CF⋅==,设CF 与平面ABD 所成的角的正弦值为02πθθ⎛⎫≤≤⎪⎝⎭,所以43sin cos ,7n CF θ== ,所以CF 与平面ABD 所成的角的正弦值为437.19.某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:2m )和材积量(单位:3m ),得到如下数据:样本号i12345678910总和根部横截面积i x 0.040.060.040.080.080.050.050.070.070.060.6材积量i y 0.250.400.220.540.510.340.360.460.420.403.9并计算得10101022iii i i=1i=1i=10.038, 1.6158,0.2474xy x y ===∑∑∑.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为2186m .已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.附:相关系数iii=122iii=1i=1( 1.896 1.377)()()nn nx x y y r x x y y --=≈--∑∑∑.【答案】(1)20.06m ;30.39m (2)0.97(3)31209m 【解析】【分析】(1)计算出样本的一棵根部横截面积的平均值及一棵材积量平均值,即可估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;(2)代入题给相关系数公式去计算即可求得样本的相关系数值;(3)依据树木的材积量与其根部横截面积近似成正比,列方程即可求得该林区这种树木的总材积量的估计值.【小问1详解】样本中10棵这种树木的根部横截面积的平均值0.60.0610x ==样本中10棵这种树木的材积量的平均值 3.90.3910y ==据此可估计该林区这种树木平均一棵的根部横截面积为20.06m ,平均一棵的材积量为30.39m 【小问2详解】()()1010iii i10x x y y x y xyr ---=∑∑0.01340.970.01377=≈则0.97r ≈【小问3详解】设该林区这种树木的总材积量的估计值为3m Y ,又已知树木的材积量与其根部横截面积近似成正比,可得0.06186=0.39Y,解之得3=1209m Y .则该林区这种树木的总材积量估计为31209m 20.已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过()30,2,,12A B ⎛--⎫ ⎪⎝⎭两点.(1)求E 的方程;(2)设过点()1,2P -的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT TH =.证明:直线HN 过定点.【答案】(1)22143y x +=(2)(0,2)-【解析】【分析】(1)将给定点代入设出的方程求解即可;(2)设出直线方程,与椭圆C 的方程联立,分情况讨论斜率是否存在,即可得解.【小问1详解】解:设椭圆E 的方程为221mx ny +=,过()30,2,,12A B ⎛--⎫ ⎪⎝⎭,则41914n m n =⎧⎪⎨+=⎪⎩,解得13m =,14n =,所以椭圆E 的方程为:22143y x +=.【小问2详解】3(0,2),(,1)2A B --,所以2:23+=AB y x ,①若过点(1,2)P -的直线斜率不存在,直线1x =.代入22134x y+=,可得26(1,)3M ,26(1,3N -,代入AB 方程223y x =-,可得263,)3T ,由MT TH =得到265,3H +.求得HN 方程:26(223y x =--,过点(0,2)-.②若过点(1,2)P -的直线斜率存在,设1122(2)0,(,),(,)kx y k M x y N x y --+=.联立22(2)0,134kx y k x y --+=⎧⎪⎨+=⎪⎩得22(34)6(2)3(4)0k x k k x k k +-+++=,可得1221226(2)343(4)34k k x x k k k x x k +⎧+=⎪⎪+⎨+⎪=⎪+⎩,12222228(2)344(442)34k y y k k k y y k -+⎧+=⎪⎪+⎨+-⎪=⎪+⎩,且1221224(*)34kx y x y k -+=+联立1,223y y y x =⎧⎪⎨=-⎪⎩可得111113(3,),(36,).2y T y H y x y ++-可求得此时1222112:()36y y HN y y x x y x x --=-+--,将(0,2)-,代入整理得12121221122()6()3120x x y y x y x y y y +-+++--=,将(*)代入,得222241296482448482436480,k k k k k k k +++---+--=显然成立,综上,可得直线HN 过定点(0,2).-【点睛】求定点、定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关;②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.21.已知函数()()ln 1exf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围.【答案】(1)2y x =(2)(,1)-∞-【解析】【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a 分类讨论,对x 分(1,0),(0,)-+∞两部分研究【小问1详解】()f x 的定义域为(1,)-+∞当1a =时,()ln(1),(0)0e xxf x x f =++=,所以切点为(0,0)11(),(0)21ex xf x f x ''-=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x=【小问2详解】()ln(1)e xax f x x =++()2e 11(1)()1e (1)e x xxa xa x f x x x '+--=+=++设()2()e 1xg x a x=+-1︒若0a >,当()2(1,0),()e 10x x g x a x ∈-=+->,即()0f x '>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意2︒若10a -,当,()0x ∈+∞,则()e 20x g x ax '=->所以()g x 在(0,)+∞上单调递增所以()(0)10g x g a >=+,即()0f x '>所以()f x 在(0,)+∞上单调递增,()(0)0f x f >=故()f x 在(0,)+∞上没有零点,不合题意3︒若1a <-(1)当,()0x ∈+∞,则()e 20xg x ax '=->,所以()g x 在(0,)+∞上单调递增(0)10,(1)e 0g a g =+<=>所以存在(0,1)m ∈,使得()0g m =,即()0'=f m 当(0,),()0,()x m f x f x '∈<单调递减当(,),()0,()x m f x f x '∈+∞>单调递增所以当(0,),()(0)0x m f x f ∈<=当,()x f x →+∞→+∞所以()f x 在(,)m +∞上有唯一零点又(0,)m 没有零点,即()f x 在(0,)+∞上有唯一零点(2)当()2(1,0),()e 1xx g x a x ∈-=+-设()()e 2x h x g x ax'==-()e 20x h x a '=->所以()g x '在(1,0)-单调递增1(1)20,(0)10eg a g ''-=+<=>所以存在(1,0)n ∈-,使得()0g n '=当(1,),()0,()x n g x g x '∈-<单调递减当(,0),()0,()x n g x g x '∈>单调递增,()(0)10g x g a <=+<又1(1)0eg -=>所以存在(1,)t n ∈-,使得()0g t =,即()0f t '=当(1,),()x t f x ∈-单调递增,当(,0),()x t f x ∈单调递减有1,()x f x →-→-∞而(0)0f =,所以当(,0),()0x t f x ∈>所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点即()f x 在(1,0)-上有唯一零点所以1a <-,符合题意所以若()f x 在区间(1,0),(0,)-+∞各恰有一个零点,求a 的取值范围为(,1)-∞-【点睛】方法点睛:本题的关键是对a 的范围进行合理分类,否定和肯定并用,否定只需要说明一边不满足即可,肯定要两方面都说明.(二)选考题,共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线C 的参数方程为322sin x t y t⎧=⎪⎨=⎪⎩,(t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为sin 03m πρθ⎛⎫ ⎪⎝+⎭+=.(1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围.【答案】(1320++=y m (2)195122-≤≤m 【解析】【分析】(1)根据极坐标与直角坐标的互化公式处理即可;(2)联立l 与C 的方程,采用换元法处理,根据新设a 的取值范围求解m 的范围即可.【小问1详解】因为l :sin 03m πρθ⎛⎫ ⎪⎝+⎭+=,所以13sin cos 022ρθρθ⋅+⋅+=m ,又因为sin ,cos y x ρθρθ⋅=⋅=,所以化简为13022++=y x m ,整理得l 20++=y m 【小问2详解】联立l 与C 的方程,即将2=x t ,2sin y t =代入20++=y m 中,可得3cos 22sin 20++=t t m ,所以23(12sin )2sin 20-++=t t m ,化简为26sin 2sin 320-+++=t t m ,要使l 与C 有公共点,则226sin 2sin 3=--m t t 有解,令sin =t a ,则[]1,1a ∈-,令2()623=--f a a a ,(11)a -≤≤,对称轴为16a =,开口向上,所以(1)623()5=-=+-=max f f a ,min 11219(()36666==--=-f f a ,所以19256-≤≤m m 的取值范围为195122-≤≤m .[选修4-5:不等式选讲]23.已知a ,b ,c 都是正数,且3332221a b c ++=,证明:(1)19abc ≤;(2)a b c b c a c a b ++≤+++;【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)利用三元均值不等式即可证明;(2)利用基本不等式及不等式的性质证明即可.【小问1详解】证明:因为0a >,0b >,0c >,则320a >,320b >,320c >,所以3332223a b c++≥,即()1213abc ≤,所以19abc ≤,当且仅当333222a b c ==,即a b c ===时取等号.【小问2详解】证明:因为0a >,0b >,0c >,所以b c +≥,a c +≥a b +≥,所以32a b c ≤=+32b a c ≤=+32c a b ≤=+333333222222a b c b c a c a b ++≤+++当且仅当a b c ==时取等号.。
2024年高考数学(理)试卷(全国甲卷)(解析)
2024年普通高等学校招生全国统一考试全国甲卷理科数学注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其它答案标号.3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上. 4.所有题目必须在答题卡上作答,在试题卷上答题无效. 5.考试结束后,只将答题卡交回.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设5i z =+,则()i z z +=( )A. 10iB. 2iC. 10D. 2−【答案】A 【解析】【分析】结合共轭复数与复数的基本运算直接求解.【详解】由5i 5i,10z z z z =+⇒=−+=,则()i 10i z z +=. 故选:A2. 集合{}{}1,2,3,4,5,9,A B A ==,则()A A B ⋂=ð( )A. {}1,4,9B. {}3,4,9C. {}1,2,3D. {}2,3,5【答案】D 【解析】【分析】由集合B 的定义求出B ,结合交集与补集运算即可求解.【详解】因为{}{}1,2,3,4,5,9,A B A ==,所以{}1,4,9,16,25,81B =,则{}1,4,9AB =,(){}2,3,5A A B =ð故选:D3. 若实数,x y 满足约束条件43302202690x y x y x y −−≥⎧⎪−−≤⎨⎪+−≤⎩,则5z x y =−的最小值为( )A. 5B.12C. 2−D. 72−【答案】D 【解析】【分析】画出可行域后,利用z 的几何意义计算即可得.【详解】实数,x y 满足43302202690x y x y x y −−≥⎧⎪−−≤⎨⎪+−≤⎩,作出可行域如图:由5z x y =−可得1155y x z =−, 即z 的几何意义为1155y x z =−的截距的15−,则该直线截距取最大值时,z 有最小值, 此时直线1155y x z =−过点A , 联立43302690x y x y −−=⎧⎨+−=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫⎪⎝⎭, 则min 375122z =−⨯=−. 故选:D.4. 等差数列{}n a 的前n 项和为n S ,若510S S =,51a =,则1a =( ) A. 2− B.73C. 1D. 2【答案】B 【解析】【分析】由510S S =结合等差中项的性质可得80a =,即可计算出公差,即可得1a 的值. 【详解】由105678910850S S a a a a a a −=++++==,则80a =,则等差数列{}n a 的公差85133a a d −==−,故151741433a a d ⎛⎫=−=−⨯−= ⎪⎝⎭. 故选:B.5. 已知双曲线的两个焦点分别为(0,4),(0,4)−,点(6,4)−在该双曲线上,则该双曲线的离心率为( ) A. 4 B. 3C. 2D.【答案】C 【解析】【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率. 【详解】设()10,4F −、()20,4F 、()6,4−P , 则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =−=−=,则28224c e a ===. 故选:C.6. 设函数()2e 2sin 1x xf x x+=+,则曲线()y f x =在()0,1处的切线与两坐标轴围成的三角形的面积为( ) A.16B.13C.12D.23【答案】A 【解析】【分析】借助导数的几何意义计算可得其在点()0,1处的切线方程,即可得其与坐标轴交点坐标,即可得其面积. 【详解】()()()()()222e 2cos 1e 2sin 21xx x x x xf x x ++−+⋅'=+,则()()()()()2e 2cos010e 2sin 000310f ++−+⨯'==+,即该切线方程为13y x −=,即31y x =+, 令0x =,则1y =,令0y =,则13x =-, 故该切线与两坐标轴所围成的三角形面积1111236S =⨯⨯−=. 故选:A.7. 函数()()2e esin xxf x x x −=−+−在区间[ 2.8,2.8]−的大致图像为( )A. B.C. D.【答案】B 【解析】【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D. 【详解】()()()()()22ee sin e e sin xx x x f x x x x x f x −−−=−+−−=−+−=,又函数定义域为[]2.8,2.8−,故该函数为偶函数,可排除A 、C , 又()11πe 11111e sin11e sin 10e e 622e 42ef ⎛⎫⎛⎫=−+−>−+−=−−>−> ⎪ ⎪⎝⎭⎝⎭, 故可排除D. 故选:B.8. 已知cos cos sin ααα=−πtan 4α⎛⎫+= ⎪⎝⎭( )A. 1+B. 1C.2D. 1−【答案】B 【解析】 【分析】先将cos cos sin αα−α弦化切求得tan α,再根据两角和的正切公式即可求解.【详解】因为cos cos sin ααα=−所以11tan =−α,tan 13⇒α=−,所以tan 1tan 11tan 4α+π⎛⎫==−α+ ⎪−α⎝⎭, 故选:B .9. 已知向量()()1,,,2a x x b x =+=,则( ) A. “3x =−”是“a b ⊥”的必要条件 B. “3x =−”是“//a b ”的必要条件C. “0x =”是“a b ⊥”的充分条件D. “1x =−”是“//a b ”的充分条件【答案】C 【解析】【分析】根据向量垂直和平行的坐标表示即可得到方程,解出即可. 【详解】对A ,当a b ⊥时,则0a b ⋅=,所以(1)20x x x ⋅++=,解得0x =或3−,即必要性不成立,故A 错误; 对C ,当0x =时,()()1,0,0,2a b ==,故0a b ⋅=, 所以a b ⊥,即充分性成立,故C 正确;对B ,当//a b 时,则22(1)x x +=,解得1x =±,即必要性不成立,故B 错误;对D ,当1x =−时,不满足22(1)x x +=,所以//a b 不成立,即充分性不立,故D 错误. 故选:C.10. 设αβ、是两个平面,m n 、是两条直线,且m αβ=.下列四个命题:①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥ 其中所有真命题的编号是( ) A. ①③ B. ②④C. ①②③D. ①③④【答案】A 【解析】【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③.【详解】对①,当n ⊂α,因为//m n ,m β⊂,则//n β, 当n β⊂,因为//m n ,m α⊂,则//n α,当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,故①正确; 对②,若m n ⊥,则n 与,αβ不一定垂直,故②错误;对③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s , 同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β, 因为s ⊂平面α,m αβ=,则//s m ,又因为//n s ,则//m n ,故③正确;对④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,故④错误; 综上只有①③正确, 故选:A.11. 在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A.32B.C.2D.2【答案】C 【解析】【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可.【详解】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==.由余弦定理可得:22294b ac ac ac =+−=, 即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=,因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin 2A C +=. 故选:C.12. 已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++−=交于,A B 两点,则AB 的最小值为( )A. 2B. 3C. 4D. 【答案】C 【解析】【分析】结合等差数列性质将c 代换,求出直线恒过的定点,采用数形结合法即可求解. 【详解】因为,,a b c 成等差数列,所以2b a c =+,2c b a =−,代入直线方程0ax by c ++=得20ax by b a ++−=,即()()120a x b y −++=,令1020x y −=⎧⎨+=⎩得12x y =⎧⎨=−⎩,故直线恒过()1,2−,设()1,2P −,圆化为标准方程得:()22:25C x y ++=,设圆心为C ,画出直线与圆的图形,由图可知,当PC AB ⊥时,AB 最小,1,PC AC r ===24AB AP ====.故选:C二、填空题:本题共4小题,每小题5分,共20分.13. 1013x ⎛⎫+ ⎪⎝⎭的展开式中,各项系数的最大值是______. 【答案】5 【解析】【分析】先设展开式中第1r +项系数最大,则根据通项公式有1091101010111101011C C 3311C C 33r rr r r rr r −−+−−−⎧⎛⎫⎛⎫≥⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩,进而求出r 即可求解.【详解】由题展开式通项公式为101101C 3rr r r T x −+⎛⎫= ⎪⎝⎭,010r ≤≤且r ∈Z ,设展开式中第1r +项系数最大,则1091101010111101011C C 3311C C 33rrr r r rr r −−+−−−⎧⎛⎫⎛⎫≥⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎛⎫⎛⎫⎪≥ ⎪ ⎪⎪⎝⎭⎝⎭⎩, 294334r r ⎧≥⎪⎪⇒⎨⎪≤⎪⎩,即293344r ≤≤,又r ∈Z ,故8r =, 所以展开式中系数最大的项是第9项,且该项系数为28101C 53⎛⎫= ⎪⎝⎭.故答案为:5.14. 已知甲、乙两个圆台上、下底面的半径均为1r 和2r ,母线长分别为()212r r −和()213r r −,则两个圆台的体积之比=V V 甲乙______.【答案】4【解析】【分析】先根据已知条件和圆台结构特征分别求出两圆台的高,再根据圆台的体积公式直接代入计算即可得解.【详解】由题可得两个圆台高分别为)12h r r ==−甲,)12h r r ==−乙,所以((212113143S S h r r V h V h S S h ++−====+甲甲甲乙乙乙. 故答案为:4. 15. 已知1a >,8115log log 42a a −=−,则=a ______. 【答案】64 【解析】【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解.【详解】由题28211315log log log 4log 22a a a a −=−=−,整理得()2225log 60log a a −−=, 2log 1a ⇒=−或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a == 故答案为:64.16. 有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 差的绝对值不超过12的概率是______. 【答案】715【解析】【分析】根据排列可求基本事件的总数,设前两个球的号码为,a b ,第三个球的号码为c ,则323a b c a b +−≤≤++,就c 的不同取值分类讨论后可求随机事件的概率.【详解】从6个不同的球中不放回地抽取3次,共有36A 120=种, 设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++−≤, 故2()3c a b −+≤,故32()3c a b −≤−+≤, 故323a b c a b +−≤≤++,若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种,若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4,()()()()()3,1,4,1,5,1,6,1,4,3,故有10种,当3c =,则39a b ≤+≤,则(),a b 为:()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5, ()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c =,则511a b ≤+≤,同理有16种, 当5c =,则713a b ≤+≤,同理有10种, 当6c =,则915a b ≤+≤,同理有2种, 共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++=, 故所求概率为56712015=. 故答案为:715三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17题~第21题为必考题,每个考题考生必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17. 某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:(1)填写如下列联表:能否有95%的把握认为甲、乙两车间产品的优级品率存在差异?能否有99%的把握认为甲,乙两车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率0.5p =,设p 为升级改造后抽取的n 件产品的优级品率.如果p p >+150件产品的数据,能否认12.247≈)附:22()()()()()n ad bc K a b c d a c b d −=++++【答案】(1)答案见详解 (2)答案见详解 【解析】【分析】(1)根据题中数据完善列联表,计算2K ,并与临界值对比分析; (2)用频率估计概率可得0.64p =,根据题意计算p +. 【小问1详解】 根据题意可得列联表:可得()2215026302470754.687550100965416K ⨯−⨯===⨯⨯⨯, 因为3.841 4.6875 6.635<<,所以有95%的把握认为甲、乙两车间产品的优级品率存在差异,没有99%的把握认为甲,乙两车间产品的优级品率存在差异. 【小问2详解】由题意可知:生产线智能化升级改造后,该工厂产品的优级品的频率为960.64150=, 用频率估计概率可得0.64p =,又因为升级改造前该工厂产品的优级品率0.5p =,则0.50.50.5 1.650.56812.247p +=+≈+⨯≈,可知p p >+, 所以可以认为生产线智能化升级改造后,该工厂产品的优级品率提高了. 18. 记n S 为数列{}n a 的前n 项和,且434n n S a =+. (1)求{}n a 的通项公式; (2)设1(1)n n n b na −=−,求数列{}n b 的前n 项和为n T .【答案】(1)14(3)n n a −=⋅−(2)(21)31nn T n =−⋅+ 【解析】【分析】(1)利用退位法可求{}n a 的通项公式. (2)利用错位相减法可求n T 【小问1详解】当1n =时,1114434S a a ==+,解得14a =.当2n ≥时,11434n n S a −−=+,所以1144433n n n n n S S a a a −−−==−即13n n a a −=−,而140a =≠,故0n a ≠,故13nn a a −=−, ∴数列{}n a 是以4为首项,3−为公比的等比数列,.所以()143n n a −=⋅−.【小问2详解】111(1)4(3)43n n n n b n n −−−=−⋅⋅⋅−=⋅,所以123n n T b b b b =++++0211438312343n n −=⋅+⋅+⋅++⋅故1233438312343n n T n =⋅+⋅+⋅++⋅所以1212443434343n n n T n −−=+⋅+⋅++⋅−⋅()1313444313n nn −−=+⋅−⋅−()14233143n n n −=+⋅⋅−−⋅(24)32n n =−⋅−,(21)31n n T n ∴=−⋅+.19. 如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB ==M 为AD 的中点.(1)证明://BM 平面CDE ;(2)求二面角F BM E −−的正弦值. 【答案】(1)证明见详解; (2)13【解析】【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD ,进而得证;(2)作BO AD ⊥交AD 于O ,连接OF ,易证,,OB OD OF 三垂直,采用建系法结合二面角夹角余弦公式即可求解. 【小问1详解】因为//,2,4,BC AD EF AD M ==为AD 的中点,所以//,BC MD BC MD =, 四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ;【小问2详解】如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =, 结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =, 所以ABM 为等边三角形,O 为AM中点,所以OB =,又因为四边形ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =, 四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF ==,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,以OB 方向为x 轴,OD 方向为y 轴,OF 方向为z 轴,建立O xyz −空间直角坐标系,()0,0,3F,)()(),0,1,0,0,2,3BM E ,()()3,1,0,3,0,3BM BF =−=−,()2,3BE =,设平面BFM 的法向量为()111,,m x y z =,平面EMB 的法向量为()222,,n x y z =,则00m BM m BF ⎧⋅=⎪⎨⋅=⎪⎩,即1111030y z ⎧+=⎪⎨+=⎪⎩,令1x =113,1y z ==,即()3,3,1m =,则00n BM n BE ⎧⋅=⎪⎨⋅=⎪⎩,即222220230y y z ⎧+=⎪⎨++=⎪⎩,令2x =,得223,1y z ==−, 即()3,3,1n =−,1111cos ,1313m n m n m n ⋅===⋅⋅,则43sin ,13m n =, 故二面角F BM E −−的正弦值为13.20. 设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.【答案】(1)22143x y +=(2)证明见解析 【解析】【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程.(2)设:(4)AB y k x =−,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y −,结合韦达定理化简前者可得10Q y y −=,故可证AQ y ⊥轴. 【小问1详解】设(),0F c ,由题设有1c =且232b a =,故2132a a −=,故2a =,故b =,故椭圆方程为22143x y +=.【小问2详解】直线AB 的斜率必定存在,设:(4)AB y k x =−,()11,A x y ,()22,B x y ,由223412(4)x y y k x ⎧+=⎨=−⎩可得()2222343264120k x k x k +−+−=, 故()()422Δ102443464120k kk =−+−>,故1122k −<<,又22121222326412,3434k k x x x x k k−+==++, 而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=− ⎪⎝⎭−,故22223325252Q y y y x x −−==−−, 所以()1222112225332525Q y x y y y y y x x ⨯−+−=+=−− ()()()12224253425k x x k x x −⨯−+−=−()222212122264123225825834342525k k x x x x k k k kx x −⨯−⨯+−++++==−− 2222212824160243234025k k k k k x −−+++==−,故1Q y y =,即AQ y ⊥轴.【点睛】方法点睛:利用韦达定理法解决直线与圆锥曲线相交问题的基本步骤如下: (1)设直线方程,设交点坐标为()()1122,,,x y x y ;(2)联立直线与圆锥曲线的方程,得到关于x (或y )的一元二次方程,注意∆的判断; (3)列出韦达定理;(4)将所求问题或题中的关系转化为12x x +、12x x (或12y y +、12y y )的形式; (5)代入韦达定理求解.21. 已知函数()()()1ln 1f x ax x x =−+−. (1)当2a =−时,求()f x 的极值;(2)当0x ≥时,()0f x ≥恒成立,求a 的取值范围. 【答案】(1)极小值为0,无极大值.(2)12a ≤− 【解析】【分析】(1)求出函数的导数,根据导数的单调性和零点可求函数的极值. (2)求出函数的二阶导数,就12a ≤−、102a −<<、0a ≥分类讨论后可得参数的取值范围.【小问1详解】当2a =−时,()(12)ln(1)f x x x x =++−, 故121()2ln(1)12ln(1)111x f x x x x x+'=++−=+−+++, 因为12ln(1),11y x y x=+=−++在()1,∞−+上为增函数, 故()f x '在()1,∞−+上为增函数,而(0)0f '=,故当10x −<<时,()0f x '<,当0x >时,()0f x '>, 故()f x 在0x =处取极小值且极小值为()00f =,无极大值. 【小问2详解】()()()()11ln 11ln 1,011a x axf x a x a x x x x+−=−+'+−=−+−>++, 设()()()1ln 1,01a x s x a x x x+=−+−>+,则()()()()()()222111211111a a x a aax a s x x x x x ++++−++=−=−=−+++'+, 当12a ≤−时,()0s x '>,故()s x 在()0,∞+上为增函数, 故()()00s x s >=,即()0f x '>,所以()f x 在[)0,∞+上为增函数,故()()00f x f ≥=. 当102a −<<时,当210a x a+<<−时,()0s x '<, 故()s x 在210,a a +⎛⎫− ⎪⎝⎭上为减函数,故在210,a a +⎛⎫− ⎪⎝⎭上()()0s x s <,即在210,a a +⎛⎫−⎪⎝⎭上()0f x '<即()f x 为减函数, 故在210,a a +⎛⎫−⎪⎝⎭上()()00f x f <=,不合题意,舍. 当0a ≥,此时()0s x '<在()0,∞+上恒成立, 同理可得()0,∞+上()()00f x f <=恒成立,不合题意,舍;综上,12a ≤−. 【点睛】思路点睛:导数背景下不等式恒成立问题,往往需要利用导数判断函数单调性,有时还需要对导数进一步利用导数研究其符号特征,处理此类问题时注意利用范围端点的性质来确定如何分类.(二)选考题:共10分,请考生在第22、23题中任选一题作答,并用2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分,如果多做,则按所做的第一题计分. [选修4-4:坐标系与参数方程]22. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+. (1)写出C 的直角坐标方程;(2)设直线l :x ty t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于AB 、两点,若2AB =,求a 的值. 【答案】(1)221y x =+ (2)34a = 【解析】【分析】(1)根据cos xρρθ⎧⎪=⎨=⎪⎩可得C 的直角方程.(2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值; 法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值. 【小问1详解】由cos 1ρρθ=+,将cos xρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+,在1x =+,两边平方后可得曲线的直角坐标方程为221y x =+. 【小问2详解】对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+. 法1:直线l 的斜率为1,故倾斜角为π4,故直线的参数方程可设为22x s y a s ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R .将其代入221y x =+中得()221)210s a s a +−+−=设,A B 两点对应的参数分别为12,s s,则)()212121,21s s a s s a +=−−=−,且()()22Δ818116160a a a =−−−=−>,故1a <,12AB s s ∴=−=2==,解得34a =法2:联立221y x ay x =+⎧⎨=+⎩,得22(22)10x a x a +−+−=,()22Δ(22)41880a a a =−−−=−+>,解得1a <,设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=−=−,则AB ==2=,解得34a =[选修4-5:不等式选讲]23. 实数,a b 满足3a b +≥. (1)证明:2222a b a b +>+; (2)证明:22226a b b a −+−≥. 【答案】(1)证明见解析 (2)证明见解析 【解析】【分析】(1)直接利用22222()a b a b +≥+即可证明. (2)根据绝对值不等式并结合(1)中结论即可证明..【小问1详解】因为()()2222222022a b a ab b a b b a −+=−−++=≥, 当a b =时等号成立,则22222()a b a b +≥+, 因为3a b +≥,所以22222()a b a b a b +≥+>+; 【小问2详解】222222222222()a b b a a b b a a b a b −+−≥−+−=+−+22222()()()()(1)326a b a b a b a b a b a b =+−+≥+−+=++−≥⨯=。
2020年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)
2020年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为( )A. 2B. 3C. 4D. 6【答案】C 【解析】 【分析】采用列举法列举出AB 中元素的即可.【详解】由题意,A B 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4), 故AB 中元素的个数为4.故选:C.【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题. 2.复数113i-的虚部是( ) A. 310-B. 110-C. 110D. 310【答案】D【解析】 【分析】利用复数的除法运算求出z 即可. 【详解】因为1131313(13)(13)1010i z i i i i +===+--+, 所以复数113z i =-的虚部为310. 故选:D.【点晴】本题主要考查复数的除法运算,涉及到复数的虚部的定义,是一道基础题.3.在一组样本数据中,1,2,3,4出现的频率分别为1234,,,p p p p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是( )A. 14230.1,0.4p p p p ====B. 14230.4,0.1p p p p ====C. 14230.2,0.3p p p p ====D. 14230.3,0.2p p p p ====【答案】B 【解析】 【分析】计算出四个选项中对应数据的平均数和方差,由此可得出标准差最大的一组. 【详解】对于A 选项,该组数据的平均数为()()140.1230.4 2.5A x =+⨯++⨯=, 方差为()()()()222221 2.50.12 2.50.43 2.50.44 2.50.10.65A s =-⨯+-⨯+-⨯+-⨯=;对于B 选项,该组数据的平均数为()()140.4230.1 2.5B x =+⨯++⨯=,方差为()()()()222221 2.50.42 2.50.13 2.50.14 2.50.4 1.85B s =-⨯+-⨯+-⨯+-⨯=;对于C 选项,该组数据的平均数为()()140.2230.3 2.5C x =+⨯++⨯=,方差为()()()()222221 2.50.22 2.50.33 2.50.34 2.50.2 1.05C s =-⨯+-⨯+-⨯+-⨯=;对于D 选项,该组数据的平均数为()()140.3230.2 2.5D x =+⨯++⨯=,方差为()()()()222221 2.50.32 2.50.23 2.50.24 2.50.3 1.45D s =-⨯+-⨯+-⨯+-⨯=.因此,B 选项这一组的标准差最大. 故选:B.【点睛】本题考查标准差的大小比较,考查方差公式的应用,考查计算能力,属于基础题.4.Logistic 模型是常用数学模型之一,可应用于流行病学领城.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:0.23(53)()=1e t I K t --+,其中K 为最大确诊病例数.当I (*t)=0.95K时,标志着已初步遏制疫情,则*t 约为( )(ln19≈3) A. 60 B. 63C. 66D. 69【答案】C 【解析】 【分析】将t t *=代入函数()()0.23531t KI t e--=+结合()0.95I t K *=求得t*即可得解.【详解】()()0.23531t K I t e--=+,所以()()0.23530.951t KI t K e**--==+,则()0.235319t e *-=,所以,()0.2353ln193t *-=≈,解得353660.23t *≈+≈. 故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.5.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p >0)交于D ,E 两点,若OD ⊥OE ,则C 的焦点坐标为( ) A. (14,0) B. (12,0) C. (1,0) D. (2,0)【答案】B 【解析】 【分析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4COx COx π∠=∠=,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果.【详解】因为直线2x =与抛物线22(0)y px p =>交于,C D 两点,且OD OE ⊥,根据抛物线的对称性可以确定4DOx COx π∠=∠=,所以(2,2)C ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B.【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.6.已知向量a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=+a a b ( )A. 3135-B. 1935-C.1735D.1935【答案】D 【解析】【分析】计算出()a ab ⋅+、a b +的值,利用平面向量数量积可计算出cos ,a a b <+>的值.【详解】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=.()2222257a b a ba ab b +=+=+⋅+=-=,因此,()1919cos ,5735a a ba ab a a b⋅+<+>===⨯⋅+. 故选:D.【点睛】本题考查平面向量夹角余弦值的计算,同时也考查了平面向量数量积的计算以及向量模的计算,考查计算能力,属于中等题. 7.在△ABC 中,cos C =23,AC =4,BC =3,则cos B =( ) A.19B. 13C. 12D.23【答案】A【解析】 【分析】根据已知条件结合余弦定理求得AB ,再根据222cos 2AB BC AC B AB BC+-=⋅,即可求得答案.【详解】在ABC 中,2cos 3C =,4AC =,3BC = 根据余弦定理:2222cos AB AC BC AC BC C =+-⋅⋅2224322433AB =+-⨯⨯⨯可得29AB = ,即3AB =由22299161cos 22339AB BC AC B AB BC +-+-===⋅⨯⨯故1cos 9B =. 故选:A.【点睛】本题主要考查了余弦定理解三角形,考查了分析能力和计算能力,属于基础题. 8.下图为某几何体的三视图,则该几何体的表面积是( )【答案】C 【解析】 【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积. 【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为的等边三角形根据三角形面积公式可得:211sin 6022ADB S AB AD =⋅⋅︒==△∴该几何体的表面积是:632=⨯++.故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题. 9.已知2tan θ–tan(θ+π4)=7,则tan θ=( ) A. –2B. –1C. 1D. 2【答案】D 【解析】 【分析】利用两角和的正切公式,结合换元法,解一元二次方程,即可得出答案. 【详解】2tan tan 74πθθ⎛⎫-+= ⎪⎝⎭,tan 12tan 71tan θθθ+∴-=-,令tan ,1t t θ=≠,则1271tt t+-=-,整理得2440t t -+=,解得2t =,即tan 2θ=. 故选:D.【点睛】本题主要考查了利用两角和的正切公式化简求值,属于中档题. 10.若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为( ) A. y =2x +1 B. y =2x +12C. y =12x +1 D. y =12x +12【答案】D 【解析】 【分析】根据导数的几何意义设出直线l 的方程,再由直线与圆相切的性质,即可得出答案. 【详解】设直线l在曲线y =上的切点为(0x ,则00x >,函数y =y '=,则直线l的斜率k =, 设直线l的方程为)0y x x -=-,即00x x -+=, 由于直线l 与圆2215x y +== 两边平方并整理得2005410x x --=,解得01x =,015x =-(舍), 则直线l 的方程为210x y -+=,即1122y x =+. 故选:D.【点睛】本题主要考查了导数的几何意义的应用以及直线与圆的位置的应用,属于中档题.11.设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( ) A. 1 B. 2C. 4D. 8【答案】A 【解析】 【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.【详解】5ca=,c ∴=,根据双曲线的定义可得122PF PF a -=, 12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=, 12F P F P ⊥,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A.【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.12.已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A. a <b <c B. b <a <cC. b <c <aD. c <a <b【答案】A 【解析】 【分析】由题意可得a 、b 、()0,1c ∈,利用作商法以及基本不等式可得出a 、b 的大小关系,由8log 5b =,得85b =,结合5458<可得出45b <,由13log 8c =,得138c =,结合45138<,可得出45c >,综合可得出a 、b 、c 的大小关系. 【详解】由题意可知a、b、()0,1c ∈,()222528log 3lg 3lg81lg 3lg8lg 3lg8lg 241log 5lg 5lg 522lg 5lg 25lg 5a b ⎛⎫⎛⎫++⎛⎫==⋅<⋅==< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,a b ∴<; 由8log 5b =,得85b =,由5458<,得5488b <,54b ∴<,可得45b <; 由13log 8c =,得138c =,由45138<,得451313c <,54c ∴>,可得45c >. 综上所述,a b c <<. 故选:A.【点睛】本题考查对数式大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分.13.若x ,y 满足约束条件0,201,x y x y x +≥⎧⎪-≥⎨⎪≤⎩,,则z =3x +2y 的最大值为_________. 【答案】7 【解析】 【分析】作出可行域,利用截距的几何意义解决. 【详解】不等式组所表示的可行域如图因为32z x y =+,所以322x zy =-+,易知截距2z 越大,则z 越大, 平移直线32x y =-,当322x zy =-+经过A 点时截距最大,此时z 最大, 由21y x x =⎧⎨=⎩,得12x y =⎧⎨=⎩,(1,2)A , 所以max 31227z =⨯+⨯= 故答案为:7.【点晴】本题主要考查简单线性规划的应用,涉及到求线性目标函数的最大值,考查学生数形结合的思想,是一道容易题.14.262()x x+的展开式中常数项是__________(用数字作答).【答案】240 【解析】 【分析】写出622x x ⎛⎫+ ⎪⎝⎭二项式展开通项,即可求得常数项. 【详解】622x x ⎛⎫+ ⎪⎝⎭ 其二项式展开通项:()62612rrr r C xx T -+⎛⎫⋅⋅ ⎪⎝⎭= 1226(2)r r r r x C x --⋅=⋅ 1236(2)r r r C x -=⋅当1230r -=,解得4r =∴622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240.【点睛】本题考查二项式定理,利用通项公式求二项展开式中的指定项,解题关键是掌握()na b +的展开通项公式1C rn rr r n T ab -+=,考查了分析能力和计算能力,属于基础题.15.已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】 【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值. 【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,的其中2,3BC AB AC ===,且点M 为BC 边上的中点, 设内切圆的圆心为O ,由于AM ==,故122S =⨯⨯=△ABC, 设内切圆半径为r ,则:ABC AOB BOC AOCS S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯ ()13322r =⨯++⨯= 解得:22r,其体积:343V r π==.. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径. 16.关于函数f (x )=1sin sin x x+有如下四个命题: ①f (x )的图像关于y 轴对称. ②f (x )的图像关于原点对称. ③f (x )的图像关于直线x =2π对称.④f (x )的最小值为2.其中所有真命题的序号是__________. 【答案】②③【解析】 【分析】利用特殊值法可判断命题①的正误;利用函数奇偶性的定义可判断命题②的正误;利用对称性的定义可判断命题③的正误;取0x π-<<可判断命题④的正误.综合可得出结论. 【详解】对于命题①,152622f π⎛⎫=+=⎪⎝⎭,152622f π⎛⎫-=--=- ⎪⎝⎭,则66f f ππ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象不关于y 轴对称,命题①错误;对于命题②,函数()f x 的定义域为{},x x k k Z π≠∈,定义域关于原点对称,()()()()111sin sin sin sin sin sin f x x x x f x x x x ⎛⎫-=-+=--=-+=- ⎪-⎝⎭,所以,函数()f x 的图象关于原点对称,命题②正确;对于命题③,11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫-=-+=+⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭, 11sin cos 22cos sin 2f x x x x x πππ⎛⎫⎛⎫+=++=+⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,则22f x f x ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭, 所以,函数()f x 的图象关于直线2x π=对称,命题③正确;对于命题④,当0x π-<<时,sin 0x <,则()1sin 02sin f x x x=+<<, 命题④错误. 故答案为:②③.【点睛】本题考查正弦型函数的奇偶性、对称性以及最值的求解,考查推理能力与计算能力,属于中等题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.设数列{a n }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .【答案】(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【解析】 【分析】(1)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可; (2)由错位相减法求解即可.【详解】(1)由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+, 证明如下:当1n =时,13a =成立; 假设n k =时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立. 则对任意的*n N ∈,都有21n a n =+成立; (2)由(1)可知,2(21)2nnn a n ⋅=+⋅231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅,① 23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅ ()21121262(21)212n n n -+-=+⨯-+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+. 【点睛】本题主要考查了求等差数列的通项公式以及利用错位相减法求数列的和,属于中档题.18.某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,【答案】(1)该市一天的空气质量等级分别为1、2、3、4的概率分别为0.43、0.27、0.21、0.09;(2)350;(3)有,理由见解析. 【解析】 【分析】(1)根据频数分布表可计算出该市一天的空气质量等级分别为1、2、3、4的概率; (2)利用每组的中点值乘以频数,相加后除以100可得结果;(3)根据表格中的数据完善22⨯列联表,计算出2K 的观测值,再结合临界值表可得结论.【详解】(1)由频数分布表可知,该市一天的空气质量等级为1的概率为216250.43100++=,等级为2的概率为510120.27100++=,等级为3的概率为6780.21100++=,等级为4的概率为7200.09100++=;(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为100203003550045350100⨯+⨯+⨯=(3)22⨯列联表如下:()221003383722 5.820 3.84155457030K ⨯⨯-⨯=≈>⨯⨯⨯,因此,有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.【点睛】本题考查利用频数分布表计算频率和平均数,同时也考查了独立性检验的应用,考查数据处理能力,属于基础题.19.如图,在长方体1111ABCD A B C D -中,点,EF 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值. 【答案】(1)证明见解析;(2. 【解析】 【分析】(1)连接1C E 、1C F ,证明出四边形1AEC F 为平行四边形,进而可证得点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立空间直角坐标系1C xyz -,利用空间向量法可计算出二面角1A EF A --的余弦值,进而可求得二面角1A EF A --的正弦值. 【详解】(1)在棱1CC 上取点G ,使得112C G CG =,连接DG 、FG 、1C E 、1C F ,在长方体1111ABCD A B C D -中,//AD BC 且AD BC =,11//BB CC 且11BB CC =,112C G CG =,12BF FB =,112233CG CC BB BF ∴===且CG BF =,所以,四边形BCGF 为平行四边形,则//AF DG 且AF DG =, 同理可证四边形1DEC G 为平行四边形,1//C E DG ∴且1C E DG =,1//C E AF ∴且1C E AF =,则四边形1AEC F 为平行四边形,因此,点1C 在平面AEF 内;(2)以点1C 为坐标原点,11C D 、11C B 、1C C 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系1C xyz -,则()2,1,3A 、()12,1,0A 、()2,0,2E 、()0,1,1F ,()0,1,1AE =--,()2,0,2AF =--,()10,1,2A E =-,()12,0,1A F =-,设平面AEF 的法向量为()111,,m x y z =,由0m AE m AF ⎧⋅=⎪⎨⋅=⎪⎩,得11110220y z x z --=⎧⎨--=⎩取11z =-,得111x y ==,则()1,1,1m =-,设平面1A EF 的法向量为()222,,n x y z =,由1100n A E n A F ⎧⋅=⎪⎨⋅=⎪⎩,得22222020y z x z -+=⎧⎨-+=⎩,取22z =,得21x =,24y =,则()1,4,2n =,3cos ,3m n m n m n⋅<>===⨯⋅, 设二面角1A EFA --的平面角为θ,则cos θ=,sin θ∴==因此,二面角1A EF A --. 【点睛】本题考查点在平面的证明,同时也考查了利用空间向量法求解二面角角,考查推理能力与计算能力,属于中等题.20.已知椭圆222:1(05)25x y C m m +=<<A ,B 分别为C 的左、右顶点. (1)求C 的方程;(2)若点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,求APQ 的面积.【答案】(1)221612525x y +=;(2)52. 【解析】 【分析】(1)因为222:1(05)25x y C m m +=<<,可得5a =,b m =,根据离心率公式,结合已知,即可求得答案; (2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥,过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N ,可得PMB BNQ ≅△△,可求得P 点坐标,求出直线AQ 的直线方程,根据点到直线距离公式和两点距离公式,即可求得APQ 的面积. 【详解】(1)222:1(05)25x y C mm +=<<∴5a =,bm =,根据离心率c e a ====, 解得54m =或54m =-(舍), ∴C 的方程为:22214255x y ⎛⎫ ⎪⎝⎭+=,即221612525x y +=;(2)点P 在C 上,点Q 在直线6x =上,且||||BP BQ =,BP BQ ⊥, 过点P 作x 轴垂线,交点为M ,设6x =与x 轴交点为N 根据题意画出图形,如图||||BP BQ =,BP BQ ⊥,90PMB QNB ∠=∠=︒,又90PBM QBN ∠+∠=︒,90BQN QBN ∠+∠=︒,∴PBM BQN ∠=∠,根据三角形全等条件“AAS ”, 可得:PMB BNQ ≅△△,221612525x y +=, ∴(5,0)B ,∴651PM BN ==-=,设P 点为(,)P P x y ,可得P 点纵坐标为1P y =,将其代入221612525x y+=,可得:21612525P x +=,解得:3P x =或3P x =-,∴P 点为(3,1)或(3,1)-,①当P 点为(3,1)时, 故532MB =-=,PMB BNQ ≅△△, ∴||||2MB NQ ==,可得:Q 点为(6,2), 画出图象,如图(5,0)A -,(6,2)Q ,可求得直线AQ 的直线方程为:211100x y -+=,根据点到直线距离公式可得P 到直线AQ的距离为:d =, 根据两点间距离公式可得:AQ ==,∴APQ面积为:1522⨯=;②当P 点(3,1)-时,故5+38MB ==,PMB BNQ ≅△△, ∴||||8MB NQ ==,为可得:Q点为(6,8),画出图象,如图(5,0)A-,(6,8)Q,可求得直线AQ的直线方程为:811400x y-+=,根据点到直线距离公式可得P到直线AQ的距离为:d=,根据两点间距离公式可得:AQ ==∴APQ面积为:1522=,综上所述,APQ面积为:52.【点睛】本题主要考查了求椭圆标准方程和求三角形面积问题,解题关键是掌握椭圆的离心率定义和数形结合求三角形面积,考查了分析能力和计算能力,属于中档题.21.设函数3()f x x bx c=++,曲线()y f x=在点(12,f(12))处的切线与y轴垂直.(1)求b.(2)若()f x有一个绝对值不大于1的零点,证明:()f x所有零点的绝对值都不大于1.【答案】(1)34b=-;(2)证明见解析【解析】【分析】(1)利用导数的几何意义得到'1()02f=,解方程即可;(2)由(1)可得'2311()32()()422f x x x x=-=+-,易知()f x在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c-=--=+=-=+,采用反证法,推出矛盾即可.【详解】(1)因为'2()3f x x b=+,由题意,'1()02f=,即21302b⎛⎫⨯+=⎪⎝⎭则34b=-;(2)由(1)可得33()4f x x x c=-+,'2311()33()()422f x x x x=-=+-,令'()0f x>,得12x>或21x<-;令'()0f x<,得1122x-<<,所以()f x在11(,)22-上单调递减,在1(,)2-∞-,1(,)2+∞上单调递增,且111111(1),(),(),(1)424244f c f c f c f c-=--=+=-=+,若()f x所有零点中存在一个绝对值大于1的零点x,则(1)0f->或(1)0f<,即14c>或14c<-.当14c>时,111111(1)0,()0,()0,(1)0424244f c f c f c f c-=->-=+>=->=+>,又32(4)6434(116)0f c c c c c c-=-++=-<,由零点存在性定理知()f x在(4,1)c--上存在唯一一个零点x,即()f x在(,1)-∞-上存在唯一一个零点,在(1,)-+∞上不存在零点,此时()f x不存在绝对值不大于1的零点,与题设矛盾;当14c<-时,111111(1)0,()0,()0,(1)0424244f c f c f c f c-=-<-=+<=-<=+<,又32(4)6434(116)0f c c c c c c-=++=->,由零点存在性定理知()f x在(1,4)c-上存在唯一一个零点x',即()f x (1,)+∞上存在唯一一个零点,在(,1)-∞上不存在零点,此时()f x 不存在绝对值不大于1的零点,与题设矛盾; 综上,()f x 所有零点的绝对值都不大于1.【点晴】本题主要考查利用导数研究函数的零点,涉及到导数的几何意义,反证法,考查学生逻辑推理能力,是一道有一定难度的题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分. [选修4—4:坐标系与参数方程](10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t ⎧=--⎨=-+⎩(t 为参数且t ≠1),C 与坐标轴交于A 、B 两点. (1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程. 【答案】(1)(2)3cos sin 120ρθρθ-+=【解析】 【分析】(1)由参数方程得出,A B 的坐标,最后由两点间距离公式,即可得出AB 的值; (2)由,A B 的坐标得出直线AB 的直角坐标方程,再化为极坐标方程即可.【详解】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A .令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -AB ∴==(2)由(1)可知12030(4)ABk -==--, 则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.【点睛】本题主要考查了利用参数方程求点的坐标以及直角坐标方程化极坐标方程,属于中档题.[选修4—5:不等式选讲](10分)23.设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c. 【答案】(1)证明见解析(2)证明见解析. 【解析】 【分析】(1)由2222()2220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bcbc+++=⋅==,结合基本不等式,即可得出证明. 【详解】(1)2222()2220a b c a b c ab ac bc ++=+++++=, ()22212ab bc ca a b c ∴++=-++. ,,a b c 均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<; (2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即3max{,,}4a b c .【点睛】本题主要考查了不等式的基本性质以及基本不等式的应用,属于中档题.在祝福语祝你考试成功!。
2024年普通高等学校招生全国统一考试数学(理科)试卷(全国甲卷)含部分答案
2024年普通高等学校招生全国统一考试数学(理科)试卷(全国甲卷)一、选择题1.若,则( )5i z =+i()z z +=A. B. C.10D.-210i2i2.已知集合,,则( ){1,2,3,4,5,9}A={}B A =()A A B = ðA. B. C. D.{1,4,9}{3,4,9}{1,2,3}{2,3,5}3.若实数x ,y 满足约束条件,则的最小值为( )4330,220,2690,x y x y x y --≥⎧⎪--≤⎨⎪+-≤⎩5z x y =-724.记等差数列的前n 项和,若,,则( )n S {}n a 510S S =51a =1a =7115.已知双曲线的两个焦点分别为,,点在该双曲线上,则该双曲线的离心率(0,4)(0,4)-(6,4)-为( )6.设函数在点处的切线与两坐标轴所围成的三角形的()f x =()y f x =(0,1)面积为( )7.函数在区间的大致图像为( )()2e e sin xx y x x -=-+-[ 2.8,2.8]-A. B.C. D.( )=π4α⎛⎫+= ⎪⎝⎭A. B.19.已知向量,,则( )(1,)x x =+a (,2)x =b A.是的必要条件 B.是的必要条件3x =-⊥a b 3x =-//a bC.是的充分条件D.是的充分条件0x =⊥a b 1x =-+//a b 10.设,为两个平面,m ,n 为两条直线,且.下述四个命题:αβm αβ= ①若,则或//m n //n α//n β②若,则或m n ⊥n α⊥n β⊥③若且,则//n α//n β//m n④若n 与,所成的角相等,则.αβm n ⊥其中所有真命题的编号是( )A.①③B.②④C.①②③D.①③④11.记的内角A ,B ,C 的对边分别为a ,b ,c ,已知,,则ABC △60B =︒294b ac =( )sin sin A C +=12.已知b 是a ,c 的等差中项,直线与圆交于A ,B 两点,则0ax by c ++=22410x y y ++-=A.1B.2C.4D.二、填空题13.的展开式中,各项系数中的最大值为_________.1013x ⎛⎫+ ⎪⎝⎭14.已知圆台甲、乙的上底面半径均为,下底面半径均为,圆台的母线长分别为,1r 2r ()212r r -,则圆台甲与乙的体积之比为_________.()213r r -15.已知_________.a >1log 4a -==16.有6个相同的球,分别标有数字1,2,3,4,5,6,从中无放回地随机取3次,每次取1个球.设m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 之差的三、解答题17.某工厂进行生产线智能化升级改造.升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:车间产品的优级品率存在差异?(2)已知升级改造前该工厂产品的优级品率p =p >+)12.247≈附:2K =(1)求的通项公式;{}n a(2)设,求数列的前n 项和.1(1)n n n b na -=-{}n b n T 19.如图,已知,//AB CD,,,//CD EF 2AB DE EF CF ====4CD =AD BC ==AE =点.(1)证明:平面BCF ;//EM (2)求二面角的正弦值.A EM B --20.已知函数.()(1)ln(1)f x ax x x =-+-(1)若,求的极值;2a =-()f x (2)当时,,求a 的取值范围.0x ≥()0f x ≥21.设椭圆的右焦点为F ,点在C 上,且轴.2222:1(0)x y C a b a b +=>>31,2M ⎛⎫⎪⎝⎭MF x ⊥(1)求C 的方程;(2)过点的直线交C 于A ,B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q .证(4,0)P 明:轴.AO y ⊥22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为.cos 1ρρθ=+(1)写出C 的直角坐标方程;(2)设直线l :(t 为参数),若C 与l 相交于A ,B 两点,且,求a .,x t y t a=⎧⎨=+⎩||2AB =23.[选修4-5:不等式选讲]已知实数a ,b 满足.3a b +≥(1)证明:;2222a b a b +>++-≥b b a226答案1.答案:A解析:因为,所以,故选A.5i z =+i()10i z z +=2.答案:D解析:因为,,所以,{1,2,3,4,5,9}A ={}{1,4,9,16,25,81}B A ==(){2,3,5}A A B = ð故选D.3.答案:D解析:将约束条件两两联立可得3个交点:,和,经检验都符合约束条件.代(0,1)-3,12⎛⎫ ⎪⎝⎭13,2⎛⎫⎪⎝⎭入目标函数可得:min z =4.答案:B解析:因为,所以,,又因为,所以公差510S S =718S S =80a =51a =d =187a a d =-=5.答案:C 解析:,故选C.12212F F c e a PF PF ===-6.答案:A解析:因为,所以,,563y x '=+3k =31y x =-11123S =⨯⨯=7.答案:B 解析:8.答案:B,故选=1α=πtan 1141tan ααα+⎛⎫+== ⎪-⎝⎭B.9.答案:C解析:,则,解得:或-3,故选C.⊥a b (1)20x x x ++=0x =10.答案:A 解析:11.答案:C解析:因为,所以B =294ac =24sin sin sin 9A C B ==,即:,22294b a c ac ac =+-=22134a c ac +=22sin sin A C +=222(sin sin )sin sin 2sin sin A C A C A C+=++=sin A +12.答案:C解析:因为a ,b ,c 成等差数列,所以,直线恒过.当20a b c -+=0ax by c ++=(1,2)P -,,故选C.PC ⊥|1PC =||4AB =13.答案:5解析:展开式中系数最大的项一定在下面的5项:、、、、55101C 3⎛⎫ ⎪⎝⎭46101C 3⎛⎫ ⎪⎝⎭37101C 3⎛⎫ ⎪⎝⎭28101C 3⎛⎫ ⎪⎝⎭,计算可得:系数的最大值为.19101C 3⎛⎫ ⎪⎝⎭28101C 53⎛⎫= ⎪⎝⎭h h ===15.答案:64,所以,而,221315log log 4log 22a a a -=-=-()()22log 1log 60a a +-=1a >故,.2log 6a =64a =解析:记前三个球的号码分别为a 、b 、c ,则共有种可能.令36A 120=可得:,根据对称性:或6时,2||0.5236a b a b c a b cm n ++++-=≤-=-|2|3a b c +-≤1c =均有2种可能;或5时,均有10种可能;或4时,均有16种可能;故满足条件的共有2c =3c =56种可能,56120P ==17.答案:(1)没有的把握99%(2)有优化提升解析:(1),没有的把握;22150(70242630) 6.635965450100x ⨯-⨯=<⨯⨯⨯99%p >+18.答案:(1)14(3)n n a -=⋅-(2)(21)31n n T n =-+解析:(1)因为,所以,434n n S a =+11434n n S a ++=+两式相减可得:,即:,11433n n n a a a ++=-13n n a a +=-又因为,所以,11434S a =+14a =故数列是首项为4,公比为-3的等比数列,;{}n a 14(3)n n a -=⋅-(2)解法1:,11(1)43n n n n b na n --=-=⋅所以,.()012141323333n n T n -=⋅+⋅+⋅++⋅ 12334(1323)333n n T n =⋅+⋅+⋅++⋅ 两式相减可得:,()12113241333343(24)3213n n nn n n T n n n -⎛⎫--=++++-⋅=-⋅=-- ⎪-⎝⎭.(21)31n n T n =-+解法2:,所以,11(1)43n n n n b na n --=-=⋅1143n n n T T n --=+⋅两边同时减去可得:,(21)3nn -11(21)3(23)3n n n n T n T n ----=--故为常数列,即:,.{}(21)3n n T n --(21)31n n T n --=(21)31n n T n =-+19.答案:(1)证明见解析解析:(1)由题意:,,//EF CM EF CM =而平面,平面ADO ,CF ÜADO EM Ú所以平面BCF ;//EM(2)取DM 的中点O ,连结OA ,OE ,则,,,,OA DM ⊥OE DM⊥3OA =OE =AE =故.OA OE ⊥以O 为坐标原点建立如图所示的空间直角坐标系,则,,,,,,(0,0,3)A E (0,1,0)M (0,2,3)B 3)AE =- (EM =,(0,1,3)MB =设平面AEM 的法向量为,(,,)n x y z =由可得:,00n AE n EM ⎧⋅=⎪⎨⋅=⎪⎩300z y -=+=⎪⎩令,则,1z =,1)3n =同理:取平面BEM 的法向量为,1)m =-则cos ,||||m n m n m n ⋅〈〉==,m n 〈〉= 故二面角A EM B --20.答案:(1)极小值为,无极大值(0)0f =(2)1,2⎛⎤-∞- ⎥⎝⎦解析:(1)当时,,.2a =-()(12)ln(1)f x x x x =++-1x >-时,,当时,,()2ln(1)f x x =+0>()0f x >10x -<<()0f x <所以在上递增,()f x (-)+∞故的极小值为,无极大值;()f x (0)0f =(2),()(1)ln(1)f x ax x x =-+-()ln(1)f x a x =-+-令,则.()()g x f x =21()1(1)a a g x x x +'=--++因为当时,,且,,0x ≥()0f x ≥(0)0f =(0)0f '=所以,(0)120g a '=--≥a ≤当,在上递增,a ≤2211()02(1)2(1)2(1)x g x x x x '≥-=≥+++()g x [0,)+∞,()()(0)0g x f x g =≥=故在上递增,恒成立,即a 的取值范围为.()f x [0,)+∞()(0)0f x f ≥=1,2⎛⎤-∞- ⎥⎝⎦213y =(2)证明见解析解析:(1)设椭圆C 的左焦点为,.F 23||2MF =因为,MF ⊥1MF =1||4a MF MF =+=解得:,,24a =2213b a =-=;213y =(2)解法1:设,,,()11,A x y ()22,B x y ,AP PB λ=则,即.12124101x x y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩212144x x y y λλ=+-⎧⎨=-⎩又由可得,()()22112222234123412x y x y λλλ⎧+=⎪⎨+=⎪⎩1212121234121111x x x x y y y y λλλλλλλλ+-+-⋅⋅+⋅=+-+-结合上式可得.25230x λλ-+=,,,则,故轴.(4,0)P (1,0)F 5,02N ⎛⎫⎪⎝⎭222122335252Q y y y y y x x λλλ===-=--AQ y ⊥解法2:设,,()11,A x y (22,B x y =()1221214y x y y y -=-所以()()2222122112211221x y x y x y x y x y x y -+=-,()()()()22221221212121122144444433y y y y y y y y y y x y x y ⎛⎫⎛⎫=+-+=-+=-+ ⎪ ⎪⎝⎭⎝⎭即:,.122121x y x y y y +=+2112253x y y y =-,,,则,故轴.(4,0)P (1,0)F 5,02N ⎛⎫ ⎪⎝⎭21212112335252Q y y y y y x y y x ===--AQ y ⊥22.答案:(1)221y x =+(2)34a =解析:(1)因为,所以,cos 1ρρθ=+22(cos 1)ρρθ=+故C 的直角坐标方程为:,即:;222(1)x y x +=+221y x =+(2)将代入可得:,x t y t a=⎧⎨=+⎩221y x =+222(1)10t a ta +-+-=,解得.2||2AB t ===34a =23.答案:(1)证明见解析(2)证明见解析解析:(1)因为,所以;3a b +≥22222()a b a b a b +≥+>+222222222222()b b a a b b a a b a b +-≥-+-=+-+.22222()()()()(1)6a b a b a b a b a b a b =+-+≥+-+=++-≥。
2020年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)
2020年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={(x,y)|x,y∈N*,y≥x},B={(x,y)|x+y=8},则A∩B中元素的个数为()A.2B.3C.4D.62.(5分)复数的虚部是()A .﹣B .﹣C .D .3.(5分)在一组样本数据中,1,2,3,4出现的频率分别为p1,p2,p3,p4,且p i=1,则下面四种情形中,对应样本的标准差最大的一组是()A.p1=p4=0.1,p2=p3=0.4B.p1=p4=0.4,p2=p3=0.1C.p1=p4=0.2,p2=p3=0.3D.p1=p4=0.3,p2=p3=0.24.(5分)Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:I(t )=,其中K为最大确诊病例数.当I(t*)=0.95K时,标志着已初步遏制疫情,则t*约为()(ln19≈3)A.60B.63C.66D.695.(5分)设O为坐标原点,直线x=2与抛物线C:y2=2px(p>0)交于D,E两点,若OD⊥OE,则C的焦点坐标为()A.(,0)B.(,0)C.(1,0)D.(2,0)6.(5分)已知向量,满足||=5,||=6,•=﹣6,则cos <,+>=()A .﹣B .﹣C .D .7.(5分)在△ABC中,cos C =,AC=4,BC=3,则cos B=()A .B .C .D .8.(5分)如图为某几何体的三视图,则该几何体的表面积是()A.6+4B.4+4C.6+2D.4+29.(5分)已知2tanθ﹣tan(θ+)=7,则tanθ=()A.﹣2B.﹣1C.1D.210.(5分)若直线l与曲线y =和圆x2+y2=都相切,则l的方程为()A.y=2x+1B.y=2x +C.y =x+1D.y =x +11.(5分)设双曲线C :﹣=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=()A.1B.2C.4D.812.(5分)已知55<84,134<85.设a=log53,b=log85,c=log138,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b二、填空题:本题共4小题,每小题5分,共20分。
2020年全国统一高考数学试卷(理科)(新课标ⅰ)(含解析版)
2020年全国统一高考数学试卷(理科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)若z=1+i,则|z2﹣2z|=()A.0B.1C.D.22.(5分)设集合A={x|x2﹣4≤0},B={x|2x+a≤0},且A∩B={x|﹣2≤x≤1},则a=()A.﹣4B.﹣2C.2D.43.(5分)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.4.(5分)已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=()A.2B.3C.6D.95.(5分)某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.y=a+bx B.y=a+bx2C.y=a+be x D.y=a+blnx 6.(5分)函数f(x)=x4﹣2x3的图象在点(1,f(1))处的切线方程为()A.y=﹣2x﹣1B.y=﹣2x+1C.y=2x﹣3D.y=2x+17.(5分)设函数f(x)=cos(ωx+)在[﹣π,π]的图象大致如图,则f(x)的最小正周期为()A.B.C.D.8.(5分)(x+)(x+y)5的展开式中x3y3的系数为()A.5B.10C.15D.209.(5分)已知α∈(0,π),且3cos2α﹣8cosα=5,则sinα=()A.B.C.D.10.(5分)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π11.(5分)已知⊙M:x2+y2﹣2x﹣2y﹣2=0,直线l:2x+y+2=0,P为l上的动点.过点P 作⊙M的切线P A,PB,切点为A,B,当|PM|•|AB|最小时,直线AB的方程为()A.2x﹣y﹣1=0B.2x+y﹣1=0C.2x﹣y+1=0D.2x+y+1=0 12.(5分)若2a+log2a=4b+2log4b,则()A.a>2b B.a<2b C.a>b2D.a<b2二、填空题:本题共4小题,每小题5分,共20分。
2021年高考数学试卷(理)(全国甲卷)(解析卷)
绝密★启用前2021年普通高等学校招生全国统一考试(甲卷)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}104,53M x x N xx ìü=<<=££íýîþ,则M N =I ( )A. 103x x ìü<£íýîþ B. 143x x ìü£<íýîþC. {}45x x £<D. {}05x x <£【答案】B 【解析】【分析】根据交集定义运算即可【详解】因为1{|04},{|5}3M x x N x x =<<=££,所以1|43M N x x ìüÇ=£<íýîþ,故选:B.【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.2.为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:根据此频率分布直方图,下面结论中不正确的是()A. 该地农户家庭年收入低于4.5万元的农户比率估计为6%B. 该地农户家庭年收入不低于10.5万元的农户比率估计为10%C. 估计该地农户家庭年收入的平均值不超过6.5万元D. 估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间【答案】C【解析】【分析】根据直方图的意义直接计算相应范围内的频率,即可判定ABD,以各组的中间值作为代表乘以相应的频率,然后求和即得到样本的平均数的估计值,也就是总体平均值的估计值,计算后即可判定C.【详解】因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.+==,故A正确;该地农户家庭年收入低于4.5万元的农户的比率估计值为0.020.040.066%+´==,故B正确;该地农户家庭年收入不低于10.5万元的农户比率估计值为0.040.0230.1010%该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为++´==>,故D正确;0.100.140.2020.6464%50%该地农户家庭年收入的平均值的估计值为30.0240.0450.1060.1470.2080.2090.10100.10110.04120.02130.02140.027.68´+´+´+´+´+´+´+´+´+´+´+´=(万元),超过6.5万元,故C 错误.综上,给出结论中不正确的是C.故选:C.【点睛】本题考查利用样本频率直方图估计总体频率和平均值,属基础题,样本的频率可作为总体的频率的估计值,样本的平均值的估计值是各组的中间值乘以其相应频率然后求和所得值,可以作为总体的平均值的估计值.注意各组的频率等于´频率组距组距.3. 已知2(1)32i z i -=+,则z =( )A. 312i --B. 312i -+C. 32i -+ D. 32i --【答案】B 【解析】【分析】由已知得322iz i+=-,根据复数除法运算法则,即可求解.【详解】2(1)232i z iz i -=-=+,32(32)23312222i i i i z i i i i ++×-+====-+--×.故选:B.4.青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 的满足5lg L V =+.已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( )( 1.259»)A. 1.5 B. 1.2C. 0.8D. 0.6【答案】C 【解析】分析】根据,L V 关系,当 4.9L =时,求出lg V ,再用指数表示V ,即可求解.【【详解】由5lg L V =+,当 4.9L =时,lg 0.1V =-,则10.110110100.81.259V --===»».故选:C .5. 已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF Ð=°=,则C 的离心率为( )【答案】A 【解析】【分析】根据双曲线的定义及条件,表示出12,PF PF ,结合余弦定理可得答案.【详解】因为213PF PF =,由双曲线的定义可得12222PF PF PF a -==,所以2PF a =,13PF a =;因为1260F PF Ð=°,由余弦定理可得2224923cos 60c a a a a =+-´××°,整理可得2247c a =,所以22274a c e ==,即e =.故选:A【点睛】关键点睛:双曲线的定义是入手点,利用余弦定理建立,a c 间的等量关系是求解的关键.6.在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A EFG -后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是( )A. B. C. D.【答案】D 【解析】【分析】根据题意及题目所给的正视图还原出几何体的直观图,结合直观图进行判断.【详解】由题意及正视图可得几何体的直观图,如图所示,所以其侧视图为故选:D7. 等比数列{}n a 的公比为q ,前n 项和为n S ,设甲:0q >,乙:{}n S 是递增数列,则( )A. 甲是乙的充分条件但不是必要条件B. 甲是乙的必要条件但不是充分条件C. 甲是乙的充要条件D. 甲既不是乙的充分条件也不是乙的必要条件【答案】B 【解析】【分析】当0q >时,通过举反例说明甲不是乙的充分条件;当{}n S 是递增数列时,必有0n a >成立即可说明0q >成立,则甲是乙的必要条件,即可选出答案.【详解】由题,当数列2,4,8,---L 时,满足0q >,为但是{}n S 不是递增数列,所以甲不是乙的充分条件.若{}n S 是递增数列,则必有0n a >成立,若0q >不成立,则会出现一正一负的情况,是矛盾的,则0q >成立,所以甲是乙的必要条件.故选:B .【点睛】在不成立的情况下,我们可以通过举反例说明,但是在成立的情况下,我们必须要给予其证明过程.8.2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m ),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A ,B ,C 三点,且A ,B ,C 在同一水平面上的投影,,A B C ¢¢¢满足45A C B Т¢¢=°,60A B C ¢¢Ð¢=°.由C 点测得B 点的仰角为15°,BB ¢与CC ¢的差为100;由B 点测得A 点的仰角为45°,则A ,C 两点到水平面A B C ¢¢¢的高度差AA CC ¢¢-约为(1.732»)( )A. 346B. 373C. 446D. 473【答案】B 【解析】【分析】通过做辅助线,将已知所求量转化到一个三角形中,借助正弦定理,求得''A B ,进而得到答案.详解】过C 作'CH BB ^,过B 作'BD AA ^,故()''''''100100AA CC AA BB BH AA BB AD -=--=-+=+,由题,易知ADB △为等腰直角三角形,所以AD DB =.所以''100''100AA CC DB A B -=+=+.因为15BCH Ð=°,所以100''tan15CH C B ==°在'''A B C V 中,由正弦定理得:''''100100sin 45sin 75tan15cos15sin15A B C B ===°°°°°,而sin15sin(4530)sin 45cos30cos 45sin 30°=°-°=°°-°°=,所以''1)273A B ==»,所以''''100373AA CC A B -=+».故选:B .【点睛】本题关键点在于如何正确将''AA CC -的长度通过作辅助线的方式转化为''100A B +.9. 若cos 0,,tan 222sin p a a a a æöÎ=ç÷-èø,则tan a =( )【答案】A 【解析】【分析】由二倍角公式可得2sin 22sin cos tan 2cos 212sin a a a a a a==-,再结合已知可求得1sin 4a =,利用同角三【角函数的基本关系即可求解.【详解】cos tan 22sin a a a=-Q 2sin 22sin cos cos tan 2cos 212sin 2sin a a a aa a a a\===--,0,2p a æöÎç÷èøQ ,cos 0a \¹,22sin 112sin 2sin a a a \=--,解得1sin 4a =,cos a \==sin tan cos a a a \==.故选:A.【点睛】关键点睛:本题考查三角函数的化简问题,解题的关键是利用二倍角公式化简求出sin a .10. 将4个1和2个0随机排成一行,则2个0不相邻的概率为( )A.13B.25C.23D.45【答案】C 【解析】【分析】采用插空法,4个1产生5个空,分2个0相邻和2个0不相邻进行求解.【详解】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C =种排法,若2个0不相邻,则有2510C =种排法,所以2个0不相邻的概率为1025103=+.故选:C.11.已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ^==,则三棱锥O ABC -的体积为( )【答案】A 【解析】【分析】由题可得ABC V 为等腰直角三角形,得出ABC V 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积.【详解】,1AC BC AC BC ^==Q ,ABC \V 为等腰直角三角形,AB \=,则ABC V ,又球的半径为1,设O d ,则d ==所以11111332O ABC ABC V S d -=×=´´´=V .故选:A.【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.12. 设函数()f x 的定义域为R ,()1f x +为奇函数,()2f x +为偶函数,当[]1,2x Î时,2()f x ax b =+.若()()036f f +=,则92f æö=ç÷èø( )A. 94-B. 32-C.74D.52【答案】D 【解析】【分析】通过()1f x +是奇函数和()2f x +是偶函数条件,可以确定出函数解析式()222f x x =-+,进而利用定义或周期性结论,即可得到答案.【详解】因为()1f x +是奇函数,所以()()11f x f x -+=-+①;因为()2f x +是偶函数,所以()()22f x f x +=-+②.令1x =,由①得:()()()024f f a b =-=-+,由②得:()()31f f a b ==+,因为()()036f f +=,所以()462a b a b a -+++=Þ=-,令0x =,由①得:()()()11102f f f b =-Þ=Þ=,所以()222f x x =-+.思路一:从定义入手.9551222222f f f f æöæöæöæö=+=-+=-ç÷ç÷ç÷ç÷èøèøèøèø1335112222f f f f æöæöæöæö-=-+=-+=-ç÷ç÷ç÷ç÷èøèøèøèø511322=2222f f f f æöæöæöæö-=-+=--+-ç÷ç÷ç÷ç÷èøèøèøèø所以935222f f æöæö=-=ç÷ç÷èøèø.思路二:从周期性入手由两个对称性可知,函数()f x 的周期4T =.所以91352222f f f æöæöæö==-=ç÷ç÷ç÷èøèøèø.故选:D .【点睛】在解决函数性质类问题的时候,我们通常可以借助一些二级结论,求出其周期性进而达到简便计算的效果.二、填空题:本题共4小题,每小题5分,共20分.13. 曲线212x y x -=+在点()1,3--处的切线方程为__________.【答案】520x y -+=【解析】【分析】先验证点在曲线上,再求导,代入切线方程公式即可.【详解】由题,当1x =-时,3y =-,故点在曲线上.求导得:()()()()222221522x x y x x +--==++¢,所以1|5x y =-=¢.故切线方程为520x y -+=.故答案为:520x y -+=.14. 已知向量()()3,1,1,0,a b c a kb ===+r r r r r .若a c ^r r ,则k =________.【答案】103-.【解析】【分析】利用向量的坐标运算法则求得向量c r的坐标,利用向量的数量积为零求得k 的值【详解】()()()3,1,1,0,3,1a b c a kb k ==\=+=+r r r r Q r,(),33110a c a c k ^\=++´=Q n r r r r ,解得103k =-,故答案为:103-.【点睛】本题考查平面向量的坐标运算,平面向量垂直的条件,属基础题,利用平面向量()()1122,,,p x y q x y ==r r垂直的充分必要条件是其数量积12120x x y y +=.15. 已知12,F F 为椭圆C :221164x y+=两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________.【答案】8【解析】【分析】根据已知可得12PF PF ^,设12||,||PF m PF n ==,利用勾股定理结合8m n +=,求出mn ,四边形12PFQF 面积等于mn ,即可求解.【详解】因为,P Q 为C 上关于坐标原点对称的两点,且12||||PQ F F =,所以四边形12PFQF 为矩形,设12||,||PF m PF n ==,则228,48m n m n +=+=,所以22264()2482m n m mn n mn =+=++=+,8mn =,即四边形12PFQF 面积等于8.故答案:8.16. 已知函数()2cos()f x x w j =+的部分图像如图所示,则满足条件74()()043f x f f x f p p æöæöæöæö--->ç÷ç÷ç÷ç÷èøèøèøèø的最小正整数x 为________.的为【答案】2【解析】【分析】先根据图象求出函数()f x 的解析式,再求出7(()43f f p 4p-的值,然后求解三角不等式可得最小正整数或验证数值可得.【详解】由图可知313341234T p p p =-=,即2T pp w ==,所以2w =;由五点法可得232ppj ´+=,即6pj =-;所以()2cos 26f x x p æö=-ç÷èø.因为7()2cos 143f p 11p æö-=-=ç÷èø,()2cos 032f 4p 5p æö==ç÷èø;所以由74(()())(()())043f x f f x f p p--->可得()1f x >或()0f x <;因为()12cos 22cos 1626f p p p æöæö=-<-=ç÷ç÷èøèø,所以,方法一:结合图形可知,最小正整数应该满足()0f x <,即cos 206x p æö-<ç÷èø,解得,36k x k k p 5p p +<<p +ÎZ ,令0k =,可得536x <<p p ,可得x 的最小正整数为2.方法二:结合图形可知,最小正整数应该满足()0f x <,又(2)2cos 406f p æö=-<ç÷èø,符合题意,可得x的最小正整数为2.故答案为:2.【点睛】关键点睛:根据图象求解函数的解析式是本题求解的关键,根据周期求解w,根据特殊点求解j.三、解答题:共70分.解答应写出交字说明、证明过程或演算步骤,第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品合计甲机床15050200乙机床12080200合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++()2P K k³0.0500.0100.001k 3.841 6.63510.828【答案】(1)75%;60%;(2)能.【解析】【分析】本题考查频率统计和独立性检验,属基础题,根据给出公式计算即可【详解】(1)甲机床生产的产品中的一级品的频率为15075% 200=,乙机床生产的产品中的一级品的频率为12060%200=.(2)()22400150801205040010 6.63527013020020039K ´-´==>>´´´,故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.18.已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a 是等差数列:②数列是等差数列;③213aa =.注:若选择不同的组合分别解答,则按第一个解答计分.【答案】答案见解析【解析】【分析】,n n a S 的关系求出n a ,利用{}n a 是等差数列可证213a a =;an b =+,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a 是等差数列.【详解】选①②作条件证明③:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ³时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n aa n =-,所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列,所以公差2112d a a a =-=,所以()21112n n n S na d n a -=+==,)1n -=+=所以是等差数列.选②③作条件证明①:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ³时,()()221n n n a S S an b an a b -=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43a b =-;当0b =时,()221,21n a a a a n ==-,当2n ³时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列;当43a b =-4=3an b an a =+-03a=-<不合题意,舍去.综上可知{}n a 为等差数列.【点睛】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,等差数列的证明通常采用定义法或者等差中项法.19.已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,D 为棱11A B 上的点.11BF A B ^(1)证明:BF DE ^;(2)当1B D 为何值时,面11BB C C 与面DFE 所成的二面角的正弦值最小?【答案】(1)见解析;(2)112B D =【解析】【分析】通过已知条件,确定三条互相垂直的直线,建立合适的空间直角坐标系,借助空间向量证明线线垂直和求出二面角的平面角的余弦值最大,进而可以确定出答案.【详解】因为三棱柱111ABC A B C -是直三棱柱,所以1BB ^底面ABC ,所以1BB AB ^因为11//A B AB ,11BF A B ^,所以BF AB ^,又1BB BF B Ç=,所以AB ^平面11BCC B .所以1,,BA BC BB 两两垂直.以B 为坐标原点,分别以1,,BA BC BB 所在直线为,,x y z 轴建立空间直角坐标系,如图.所以()()()()()()1110,0,0,2,0,0,0,2,0,0,0,2,2,0,2,0,2,2B A C B A C ,()()1,1,0,0,2,1E F .由题设(),0,2D a (02a ££).(1)因为()()0,2,1,1,1,2BF DE a ==--uuu v uuu v,所以()()0121120BF DE a ×=´-+´+´-=uuu v uuu v,所以BF DE ^.(2)设平面DFE 的法向量为(),,m x y z =u r,因为()()1,1,1,1,1,2EF DE a =-=--uuu v uuu v,所以00m EF m DE ì×=í×=îuuu v v uuu v v ,即()0120x y z a x y z -++=ìí-+-=î.令2z a =-,则()3,1,2m a a =+-v因为平面11BCC B 的法向量为()2,0,0BA =uuu r,设平面11BCC B 与平面DEF 的二面角的平面角为q ,则cos =.当12a =时,2224a a -+取最小值为272,此时cos q.所以()minsin q ==,此时112B D =.【点睛】本题考查空间向量的相关计算,能够根据题意设出(),0,2D a (02a ££),在第二问中通过余弦值最大,找到正弦值最小是关键一步.20. 抛物线C 的顶点为坐标原点O .焦点在x 轴上,直线l :1x =交C 于P ,Q 两点,且OP OQ ^.已知点()2,0M ,且M e 与l 相切.(1)求C ,M e 的方程;(2)设123,,A A A 是C 上的三个点,直线12A A ,13A A 均与M e 相切.判断直线23A A 与M e 的位置关系,并说明理由.【答案】(1)抛物线2:C y x =,M e 方程为22(2)1x y -+=;(2)相切,理由见解析【解析】【分析】(1)根据已知抛物线与1x =相交,可得出抛物线开口向右,设出标准方程,再利用对称性设出,P Q 坐标,由OP OQ ^,即可求出p ;由圆M 与直线1x =相切,求出半径,即可得出结论;(2)先考虑12A A 斜率不存在,根据对称性,即可得出结论;若121323,,A A A A A A 斜率存在,由123,,A A A 三点在抛物线上,将直线121223,,A A A A A A 斜率分别用纵坐标表示,再由1212,A A A A 与圆M 相切,得出2323,y y y y +×与1y 的关系,最后求出M 点到直线23A A 的距离,即可得出结论.【详解】(1)依题意设抛物线200:2(0),(1,),(1,)C y px p P y Q y =>-,20,1120,21OP OQ OP OQ y p p ^\×=-=-=\=uuu r uuu r Q ,所以抛物线C 的方程为2y x =,(0,2),M M e 与1x =相切,所以半径为1,所以M e 的方程为22(2)1x y -+=;(2)设111222333(),(,),(,)A x y A x y A x y 若12A A 斜率不存在,则12A A 方程为1x =或3x =,若12A A 方程为1x =,根据对称性不妨设1(1,1)A ,则过1A 与圆M 相切的另一条直线方程为1y =,此时该直线与抛物线只有一个交点,即不存在3A ,不合题意;若12A A 方程为3x =,根据对称性不妨设12(3,A A 则过1A 与圆M 相切的直线13A A为3)y x -=-,又131********A A y y k y x x y y -====\=-+,330,(0,0)x A =,此时直线1323,A A A A 关于x 轴对称,所以直线23A A 与圆M 相切;若直线121323,,A A A A A A 斜率均存在,则121323121323111,,A A A A A A k k k y y y y y y ===+++,所以直线12A A 方程为()11121y y x x y y -=-+,整理得1212()0x y y y y y -++=,同理直线13A A 的方程为1313()0x y y y y y -++=,直线23A A 的方程为2323()0x y y y y y -++=,12A A Q 与圆M相切,1=整理得22212121(1)230y y y y y -++-=,13A A 与圆M 相切,同理22213131(1)230y y y y y -++-=所以23,y y 为方程222111(1)230y y y y y -++-=的两根,2112323221123,11y y y y y y y y -+=-×=--,M 到直线23A A的距离为:=2121111y y +===+,所以直线23A A 与圆M 相切;综上若直线1213,A A A A 与圆M 相切,则直线23A A 与圆M 相切.【点睛】关键点点睛:(1)过抛物线上的两点直线斜率只需用其纵坐标(或横坐标)表示,将问题转化为只与纵坐标(或横坐标)有关;(2)要充分利用1213,A A A A 的对称性,抽象出2323,y y y y +×与1y 关系,把23,y y 的关系转化为用1y 表示.21. 已知0a >且1a ¹,函数()(0)ax x f x x a=>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.【答案】(1)20,ln2æùçúèû上单调递增;2,ln2éö+¥÷êëø上单调递减;(2)()()1,,e e È+¥.【解析】【分析】(1)求得函数的导函数,利用导函数的正负与函数的单调性的关系即可得到函数的单调性;(2)利用指数对数的运算法则,可以将曲线()y f x =与直线1y =有且仅有两个交点等价转化为方程ln ln x a x a =有两个不同的实数根,即曲线()y g x =与直线ln ay a=有两个交点,利用导函数研究()g x 的单调性,并结合()g x 的正负,零点和极限值分析()g x 的图象,进而得到ln 10a a e<<,发现这正好是()()0g a g e <<,然后根据()g x 的图象和单调性得到a 的取值范围.【详解】(1)当2a =时,()()()()22222ln 2222ln 2,242xx x x x x x x x x x f x f x ¢--===n n n ,令()'0f x =得2ln 2x =,当20ln 2x <<时,()0f x ¢>,当2ln 2x >时,()0f x ¢<,∴函数()f x 在20,ln2æùçúèû上单调递增;2,ln2éö+¥÷êëø上单调递减;(2)()ln ln 1ln ln a x a x x x af x a x x a a x a x a==Û=Û=Û=,设函数()ln x g x x =,则()21ln xg x x-¢=,令()0g x ¢=,得x e =,在()0,e 内()0g x ¢>,()g x 单调递增;在(),e +¥上()0g x ¢<,()g x 单调递减;()()1max g x g e e\==,又()10g =,当x 趋近于+¥时,()g x 趋近于0,所以曲线()y f x =与直线1y =有且仅有两个交点,即曲线()y g x =与直线ln a y a =有两个交点的充分必要条件是ln 10a a e<<,这即是()()0g a g e <<,所以a 的取值范围是()()1,,e e È+¥.【点睛】本题考查利用导数研究函数的单调性,根据曲线和直线的交点个数求参数的取值范围问题,属较难试题,关键是将问题进行等价转化,分离参数,构造函数,利用导数研究函数的单调性和最值,图象,利用数形结合思想求解.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22. 在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为r q =.(1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为()1,0,M 为C 上的动点,点P 满足AP =uuu r r ,写出Р的轨迹1C 的参数方程,并判断C 与1C 是否有公共点.【答案】(1)(222x y -+=;(2)P 的轨迹1C 的参数方程为32cos 2sin x y q q ì=ïí=ïî(q 为参数),C 与1C 没有公共点.【解析】【分析】(1)将曲线C 的极坐标方程化为2cos r q =,将cos ,sin x y r q r q ==代入可得;(2)设(),P x y ,设)M q q ,根据向量关系即可求得P 的轨迹1C 的参数方程,求出两圆圆心距,和半径之差比较可得.【详解】(1)由曲线C 的极坐标方程r q =可得2cos r q =,将cos ,sin x y r q r q ==代入可得22x y +=,即(222x y -+=,即曲线C 的直角坐标方程为(222x y +=;(2)设(),P x y ,设)M q qQAP =uuu r r ,())()1,22cos 2sin x y q q q q \-=-=+,则122cos 2sin x y q q ì-=+ïí=ïî32cos 2sin x y q qì=-+ïí=ïî,故P 的轨迹1C 的参数方程为32cos 2sin x y q q ì=+ïí=ïî(q 为参数)Q曲线C 的圆心为),曲线1C 的圆心为()3,半径为2,则圆心距为3-,32-<-Q ,\两圆内含,故曲线C 与1C 没有公共点.【点睛】关键点睛:本题考查参数方程的求解,解题的关键是设出M 的参数坐标,利用向量关系求解.[选修4-5:不等式选讲](10分)23. 已知函数()2,()2321f x x g x x x =-=+--.(1)画出()y f x =和()y g x =的图像;(2)若()()f x a g x +³,求a 的取值范围.【答案】(1)图像见解析;(2)112a ³【解析】【分析】(1)分段去绝对值即可画出图像;(2)根据函数图像数形结和可得需将()y f x =向左平移可满足同角,求得()y f x a =+过1,42A æöç÷èø时a 的值可求.【详解】(1)可得2,2()22,2x x f x x x x -<ì=-=í-³î,画出图像如下:34,231()232142,2214,2x g x x x x x x ì-<-ïïï=+--=+-£<íïï³ïî,画出函数图像如下:(2)()|2|f x a x a +=+-,如图,在同一个坐标系里画出()(),f x g x 图像,()y f x a =+是()y f x =平移了a 个单位得到,则要使()()f x a g x +³,需将()y f x =向左平移,即0a >,当()y f x a =+过1,42A æöç÷èø时,1|2|42a +-=,解得112a =或52-(舍去),则数形结合可得需至少将()y f x =向左平移112个单位,112a \³.【点睛】关键点睛:本题考查绝对值不等式的恒成立问题,解题的关键是根据函数图像数形结合求解.。
高考理科数学试题(带答案解析)
高考理科数学试题(带答案解析)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个备选项中,只有一项是符合题目要求的(1)在等差数列{}n a 中,241,5a a ==,则{}n a 的前5项和5S =(A)7(B)15(C)20(D)25【答案】:B【解析】:422514,d a a =-=-=2d =,1252121,3167a a d a a d =-=-=-=+=+=155()5651522a a S +⨯⨯===【考点定位】本题考查等差数列的通项公式及前n 项和公式,解题时要认真审题,仔细解答.(2)不等式1021x x -≤+的解集为(A)1,12⎛⎤-⎥⎝⎦(B)1,12⎡⎤-⎢⎥⎣⎦(C)[)1,1,2⎛⎫-∞-+∞ ⎪⎝⎭(D)[)1,1,2⎡⎤-∞-+∞⎢⎥⎣⎦(3)对任意的实数k ,直线1y kx =+与圆222x y +=的位置关系一定是(A)相离(B)相切(C)相交但直线不过圆心(D)相交且直线过圆心(4)8+的展开式中常数项为(A)3516(B)358(C)354(D)105【答案】B【解析】:8821881()2rrr r r r r T C C --+==令820r -=解得4r =展开式中常数项为4458135()28T C ==【考点定位】本题考查利用二项展开式的通项公式求展开式的常数项(5)设tan ,tan αβ是方程2320x x -+=的两根,则tan()αβ+的值(A)-3(B)-1(C)1(D)3【答案】:A【解析】:tan tan 3,tan tan 2αβαβ+==,则tan tan 3tan()31tan tan 12αβαβαβ++===---【考点定位】本此题考查学生灵活运用韦达定理及两角和的正切函数公式化简求值.(6)设,,x y R ∈向量(,1),(1,),(2,4)a x b y c ===- ,且,//a c b c ⊥ ,则||a b +=(C)(D)10(7)已知()f x 是定义在R 上的偶函数,且以2为周期,则“()f x 为[0,1]上的增函数”是“()f x 为[3,4]上的减函数”的(A)既不充分也不必要的条件(B)充分而不必要的条件(C)必要而不充分的条件(D)充要条件【答案】:D【解析】:由()f x 是定义在R 上的偶函数及[0,1]上的增函数可知在[-1,0]减函数,又2为周期,所以[3,4]上的减函数【考点定位】本题主要通过常用逻辑用语来考查函数的奇偶性和对称性,进而来考查函数的周期性.根据图象分析出函数的性质及其经过的特殊点是解答本题的关键.(8)设函数()f x 在R 上可导,其导函数为()f x ',且函数(1)()y x f x '=-的图像如题(8)图所示,则下列结论中一定成立的是(A )函数()f x 有极大值(2)f 和极小值(1)f (B )函数()f x 有极大值(2)f -和极小值(1)f (C )函数()f x 有极大值(2)f 和极小值(2)f -(D )函数()f x 有极大值(2)f -和极小值(2)f(9)设四面体的六条棱的长分别为1,1,1,1,2和a ,且长为a 的棱与长为2的棱异面,则a 的取值范围是(A )(0,2)(B )(0,3)(C )(1,2)(D )(1,3)【答案】:A【解析】:2221()22BE =-=,BF BE <,22AB BF =<,【考点定位】本题考查棱锥的结构特征,考查空间想象能力,极限思想的应用,是中档题.(10)设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x y B x y x y x⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则A B 所表示的平面图形的面积为(A )34π(B )35π(C )47π(D )2π[【答案】:D【解析】:由对称性:221,,(1)(1)1y x y x y x≥≥-+-≤围成的面积与221,,(1)(1)1y x y x y x≤≥-+-≤围成的面积相等得:A B 所表示的平面图形的面积为22,(1)(1)1y x x y ≤-+-≤围成的面积即2122R ππ⨯=25115112lim lim 555n n n n nn n→∞→∞++++===【考点定位】本题考查极限的求法和应用,n 都没有极限,可先分母有理化再求极限;(13)设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且35cos ,cos ,3,513A B b ===则c =【答案】:c =145【解析】:由35cos ,cos 513A B ==得412sin ,sin ,513A B ==由正弦定理sin sin a bA B=得43sin 13512sin 513b A a B ⨯===由余弦定理22a c =2+b -2cbcosA 得22590c -c+56=0则c =145【考点定位】利用同角三角函数间的基本关系求出sinB 的值本题的突破点,然后利用正弦定理建立已知和未知之间的关系.同时要求学生牢记特殊角的三角函数值.(14)过抛物线22y x =的焦点F 作直线交抛物线于,A B 两点,若25,,12AB AF BF =<则AF =。
全国统一高考数学试卷(理科)(全国卷2)(含解析版)a3word版
2021年全国统一高考数学试卷〔理科〕〔新课标n〕、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一个选项符合题A。
—B。
—C。
—D。
—27 9 27 37。
〔5分〕执行如下图的程序框图,假设输入的x, t均为2,那么输出的S二〔目要求。
1. 〔5 分〕设集合M={0, 1, 2}, N={x|x2—3x+20 0}, WJ M A N=〔〕A。
{1} B。
{2} C。
{0, 1} D。
{1,2}2. 〔5分〕设复数Z1,Z2在复平面内的对应点关于虚轴对称,Z1=2+i,那么Z1Z2=〔A。
- 5 B。
5 C。
— 4+i D。
- 4- i3. 〔5分〕设向量a,刚足| M£|二xflb,|目-匕|二依,那么a?b=〔〕A。
1 B。
2 C。
3 D。
54. 〔5分〕钝角三角形ABC的面积是4AB=1, BC啦,那么AC=〔〕A。
5 B。
二C。
2 D。
15. 〔5分〕某地区空气质量监测资料说明,一天的空气质量为优良的概率是,连续两天为优良的概率是,某天的空气质量为优良,那么随后一天的空气质量为优良的概率是〔〕A。
B。
C。
D。
6。
〔5分〕如图,网格纸上正方形小格的边长为1 〔表示1cm〕,图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,那么切削掉局部的体积与原来A。
4 B。
5 C。
6 D。
78. 〔5分〕设曲线y=ax-ln 〔x+1〕在点〔0, 0〕处的切线方程为y=2x,那么a=〔A。
0 B。
1 C。
2 D。
39. 〔5分〕设x, y满足约束条件,那么z=2x- y的最大值为〔〕A。
10B。
8C。
3D。
210。
〔5分〕设F为抛物线C: y2=3x的焦点,过F且倾斜角为30°的直线交C于A, B两点,。
为标原点,那么4 OAB的面积为〔C。
6332D。
11 。
〔5 分〕直三棱柱ABC- A1B1C1 中,/ BCA=90, M, N 分别是A1B1,A I C I的中点,BC=CA=CC那么BM与AN所成角的余弦值为〔A。
2020年全国统一高考数学试卷(理科)(新课标Ⅰ)(解析版)
22 12 直线 l 与圆相离. 依圆的知识可知,四点 A, P, B, M 四点共圆,且 AB MP ,所以
PM
AB
2S△PAM
2 1 PA 2
AM
2 PA ,而 PA
形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )
A. 5 1 4
B. 5 1 2
C. 5 1 4
D. 5 1 2
【答案】C
【解析】
【分析】
设 CD a, PE b ,利用 PO2 1 CD PE 得到关于 a, b 的方程,解方程即可得到答案. 2
C. a b2
D. a b2
【答案】B 【解析】
【分析】
设 f (x) 2x log2 x ,利用作差法结合 f (x) 的单调性即可得到答案.
【详解】设 f (x) 2x log2 x ,则 f (x) 为增函数,因为 2a log2 a 4b 2 log4 b 22b log2 b
在
y2 x
Tr 1
C5r x4r yr2 中,令 r
1,可得:
y2 x
T2
C51x3 y3 ,该项中
x3 y3 的系数为 5
所以 x3 y3 的系数为10 5 15
故选:C 【点睛】本题主要考查了二项式定理及其展开式的通项公式,还考查了赋值法、转化能力及分析能力,属 于中档题.
9.已知 (0, π) ,且 3cos2 8cos 5 ,则 sin ( )
,即12
9
p 2
,解得
p
=6
高考理科数学试卷及答案解析(文字版)
普通高等学校招生全国统一考试数学(理工农医类)(福建卷及详解)一.选择题:本小题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.函数()sin cos f x x x =最小值是A .-1 B.12-C.12D.12.已知全集U=R ,集合2{|20}A x x x =->,则C U A 等于A .{x ∣0≤x ≤2}B {x ∣0<x<2}C .{x ∣x<0或x>2}D {x ∣x ≤0或x ≤2}3.等差数列{}n a 的前n 项和为n S ,且3S =6,1a =4,则公差d 等于A .1B53C.-2D 34.22(1cos )x dx ππ-+⎰等于A .π B.2C.π-2D.π+25.下列函数()f x 中,满足“对任意1x ,2x ∈(0,+∞),当1x <2x 时,都有1()f x >2()f x 的是A .()f x =1xB.()f x =2(1)x -C .()f x =xe D()ln(1)f x x =+6.阅读右图所示的程序框图,运行相应的程序,输出的结果是A .2B .4C.8D .167.设m ,n 是平面α内的两条不同直线,1l ,2l 是平面β内的两条相交直线,则α//β的一个充分而不必要条件是A.m //β且l //α B.m //l 且n //l 2C.m//β且n //βD.m//β且n //l 28.已知某运动员每次投篮命中的概率低于40%。
现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果。
经随机模拟产生了20组随机数:907966191925271932812458569683431257393027556488730113537989据此估计,该运动员三次投篮恰有两次命中的概率为A .0.35B 0.25C 0.20D 0.159.设a ,b ,c 为同一平面内具有相同起点的任意三个非零向量,且满足a 与b 不共线,若a ⊥c 且∣a∣=∣c∣,则∣b •c∣的值一定等于A .以a ,b 为两边的三角形面积B 以b ,c 为两边的三角形面积C .以a ,b 为邻边的平行四边形的面积D 以b ,c 为邻边的平行四边形的面积10.函数()(0)f x ax bx c a =++≠的图象关于直线2bx a=-对称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
·江西卷(理科数学)1.[2019·江西卷] z 是z 的共轭复数, 若z +z =2, (z -z )i =2(i 为虚数单位), 则z =( ) A.1+i B.-1-i C.-1+i D.1-i 【测量目标】复数的基本运算【考查方式】给出共轭复数和复数的运算, 求出z 【参考答案】D 【难易程度】容易【试题解析】 设z =a +b i(a , b ∈R ), 则z =a -b i , 所以2a =2, -2b =2, 得a =1, b =-1, 故z =1-i.2.[2019·江西卷] 函数f (x )=ln(2x -x )的定义域为( )A.(0, 1]B.[0, 1]C.(-∞, 0)∪(1, +∞)D.(-∞, 0]∪[1, +∞) 【测量目标】定义域【考查方式】根据对数函数的性质, 求其定义域 【参考答案】C 【难易程度】容易【试题解析】由2x -x >0, 得x >1或x <0.3.[2019·江西卷] 已知函数f (x )=||5x , g (x )=2ax -x (a ∈R ).若f [g (1)]=1, 则a =( ) A.1 B.2 C.3 D.-1 【测量目标】复合函数【考查方式】给出两个函数, 求其复合函数 【参考答案】A 【难易程度】容易【试题解析】由g (1)=a -1, 由()1f g ⎡⎤⎣⎦=1, 得|1|5a -=1, 所以|a -1|=0, 故a =1.4.[2019·江西卷] 在△ABC 中, 内角A , B , C 所对的边分别是a , b , c .若22()c a b =-+6, C =π3, 则△ABC 的面积是( )A.3 D.【测量目标】余弦定理, 面积【考查方式】先利用余弦定理求角, 求面积 【参考答案】C 【难易程度】容易【试题解析】由余弦定理得, 222cos =2a b c C ab +-=262ab ab -=12, 所以ab =6, 所以ABC S V =1sin 2ab C. 5.[2019·江西卷] 一几何体的直观图如图所示, 下列给出的四个俯视图中正确的是( )第5题图LLJ73-77A B C D【测量目标】三视图【考查方式】给出实物图,判断俯视图【参考答案】B【难易程度】容易【试题解析】易知该几何体的俯视图为选项B中的图形.6.[2019·江西卷] 某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是()表1成绩性别不及格及格总计男61420女102232总计163652视力性别好差总计男41620女122032总计163652智商性别偏高正常总计男81220女82432总计163652阅读量性别丰富不丰富总计男14620女23032总计163652 A.成绩 B.视力 C.智商【测量目标】卡方分布的应用【考查方式】直接给出表格,观察最大变量与性别的关系【参考答案】D【难易程度】中等()()2222521651612521671636203216362032χ⨯⨯-⨯⨯⨯==⨯⨯⨯⨯⨯⨯, ()()222352248812521281636203216362032χ⨯⨯-⨯⨯⨯==⨯⨯⨯⨯⨯⨯, ()()222452143026526861636203216362032χ⨯⨯-⨯⨯⨯==⨯⨯⨯⨯⨯⨯.分析判断24χ最大, 所以选择D. 7.[2019·江西卷] 阅读如程序框图, 运行相应的程序, 则程序运行后输出的结果为( )第7题图 LLJ78A.7B.9C.10D.11【测量目标】循环结构的程序框图【考查方式】给定带有循环结构的算法程序框图, 分析每一次执行的结果并判断是否满足条件, 最后得出答案. 【参考答案】B 【难易程度】中等【试题解析】当1i =时, 10lglg33S =+=->-1,123i =+=,3lg3lg lg55S =-+=->-1, 325i =+=,5lg 5lg lg 77S =-+=->-1, 527i =+=,7lg 7lg lg 99S =-+=->-1 729i =+=,9lg9lg lg1111S =-+=-<-1所以输出9i =.8.[2019·江西卷] 若f (x )=x 2+2⎠⎛01f (x )d x , 则⎠⎛01f (x )d x =( )A.-1B.13- C.13D.1 【测量目标】定积分【考查方式】给出函数的表达式, 求积分 【参考答案】B 【难易程度】容易【试题解析】1()0f x dx ⎰=()211200x f x dx ⎡⎤+⎢⎥⎣⎦⎰⎰=130112()03x f x dx x ⎡⎤⎛⎫+⎢⎥ ⎪⎝⎭⎣⎦⎰=112()03f x dx +⎰,得1()0f x dx ⎰=13-. 9.[2019·江西卷] 在平面直角坐标系中, A , B 分别是x 轴和y 轴上的动点, 若以AB 为直径的圆C 与直线2xA.4π5B.3π4C.(625)π-D.5π4【测量目标】直线与圆的位置关系, 面积和最值 【考查方式】已知直线与圆的位置关系, 求圆的面积 【参考答案】A 【难易程度】中等【试题解析】由题意知, 圆C 必过点O (0, 0), 故要使圆C 的面积最小, 则点O 到直线l 的距离为圆C 的直径, 即2=5r ,所以=5r , 所以4=π5S10.[2019·江西卷] 如图所示, 在长方体ABCD 1111A B C D 中, AB =11, AD =7, 1AA =12.一质点从顶点A 射向点E (4, 3, 12), 遇长方体的面反射(反射服从光的反射原理), 将第i -1次到第i 次反射点之间的线段记为(234)i L i =,,, 1L =AE , 将线段1234L L L L ,,,竖直放置在同一水平线上, 则大致的图形是( )第10题图LLJ79A B C D 第10题图 LLJ80-83【测量目标】投影, 直线与面的关系【考查方式】利用光的反射原理求其长度并判断图形 【参考答案】C 【难易程度】中等【试题解析】由题意, 1L =AE =13.易知点E 在底面ABCD 上的投影为F (4, 3, 0), 根据光的反射原理知, 直线 AE 和从点E 射向点1E 的直线1E E 关于EF 对称, 因此1E (8, 6, 0), 且21L L ==13.此时, 直线1EE 和从点1E 射出所得的直线12E E 关于过点1E (8, 6, 0)和底面ABCD 垂直的直线对称, 得2E ' (12, 9, 12).因为12>11, 9>7, 所以这次射出的点应在面11CDD C 上, 设为2E , 求得31213==3L E E , 321L L L <=最后一次, 从点2E 射出, 落在平面1111A B C D 上, 求得4326>3L L =,故选C.【测量目标】不等式【考查方式】利用不等式的性质, 求最值 【参考答案】C 【难易程度】容易【试题解析】易知|x -1|+|x |≥1, 当且仅当0≤x ≤1时等号成立;|y -1|+|y +1|≥2, 当且仅当-1≤y ≤1时等号成立.故|x -1|+|x |+|y -1|+|y +1|≥3. [2019·江西卷] (2)(坐标系与参数方程选做题)若以直角坐标系的原点为极点, x 轴的非负半轴为极轴建立极坐标系, 则线段y =1-x (0≤x ≤1)的极坐标方程为( ) A.1cos sin ρθθ=+, π02θ剟 B.1cos sin ρθθ=+, π04θ剟 C.ρ=cos sin θθ+, π02θ剟 D.ρ=cos sin θθ+, π04θ剟 【测量目标】极坐标方程【考查方式】直接把直线方程转化成极坐标方程 【参考答案】A 【难易程度】容易【试题解析】依题意, 方程y =1-x 的极坐标方程为()cos sin ρθθ+=1, 整理得1cos sin ρθθ=+.因为0≤x ≤1, 所以 01y剟, 结合图形可知π02θ剟. 12.[2019·江西卷] 10件产品中有7件正品、3件次品, 从中任取4件, 则恰好取到1件次品的概率是________. 【测量目标】超几何分布【考查方式】根据超几何分布的表达式就可以求出概率 【参考答案】12【难易程度】容易【试题解析】由超几何分布的概率公式可得P (恰好取到一件次品)=1337410C 12C C = 13.[2019·江西卷] 若曲线y =ex-上点P 处的切线平行于直线2x +y +1=0, 则点P 的坐标是________.【测量目标】直线与曲线的位置关系【考查方式】根据直线与曲线的位置关系, 求其点的坐标 【参考答案】(-ln 2, 2) 【难易程度】容易【试题解析】设点P 的坐标为00()x y ,, exy '-=-又切线平行于直线2x +y +1=0, 所以0ex --=-2, 可得0ln 2x =-, 此时y =2, 所以点P 的坐标为(-ln 2, 2).14.[2019·江西卷] 已知单位向量1e 与2e 的夹角为α, 且1cos =α, 向量a =3122e e -与b =123e e -的夹角为β,【测量目标】平面向量的夹角【考查方式】根据平面向量求其夹角的余弦值【参考答案】3【难易程度】容易【试题解析】cos = ||||ab a b β2215.[2019·江西卷] 过点M (1, 1)作斜率为-12的直线与椭圆22:22=1(>>0)x y C a b a b +相交于A , B 两点, 若M是线段AB 的中点, 则椭圆C 的离心率等于________. 【测量目标】直线与椭圆的位置关系, 离心率【考查方式】利用交点, 联立方程找出关系, 求其离心率 【参考答案】=2e 【难易程度】中等【试题解析】设点A (11x y ,), 点B (22x y ,), 点M 是线段AB 的中点, 所以12x x +=2, 12y y +=2, 且2211222222221,1x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩两式作差可得22122x x a -=22122()y y b --, 即12122()()x x x x a +-=12122()()y y y y b +--, 所以1212y y x x --=y 1-y 2x 1-x 2=22b a -,即AB k =22b a -.由题意可知, 直线AB 的斜率为12-,所以22b a -=12-, 即a b .又222a b c =+,所以c =b , 2e =. 16. [2019·江西卷] 已知函数f (x )=sin(x+θ)+a cos(x +2θ), 其中a ∈R , ππ,22θ⎛⎫∈- ⎪⎝⎭. (1)当a , π4θ=时, 求f (x )在区间[0, π]上的最大值与最小值; (2)若π2f ⎛⎫⎪⎝⎭=0, (π)f =1, 求a , θ的值.【测量目标】三角函数最值, 参数【考查方式】先转化函数解析式, 在利用给定的定义域求其最值, 在求参数的值 【试题解析】(1)f (x )=sin π4x ⎛⎫+⎪⎝⎭+2cos π2x ⎛⎫+ ⎪⎝⎭=2(sin x +cos x )sin x=2cos x-2sin x =sin π4x ⎛⎫-⎪⎝⎭.因为x ∈[0, π], 所以π4-x ∈3ππ,44⎡⎤-⎢⎥⎣⎦, 故f (x )在区间[0, π]上的最大值为2, 最小值为- 1.(2)由()π02π1ff ⎧⎛⎫=⎪ ⎪⎝⎭⎨⎪=⎩得2cos (12sin )02sin sin 1.a a a θθθθ-=⎧⎨--=⎩又ππ,22θ⎛⎫∈- ⎪⎝⎭, 知cos 0θ≠,所以12sin 0(2sin 1)sin 1.a a a θθθ-=⎧⎨--=⎩ 解得1π6a θ=-⎧⎪⎨=-⎪⎩.17.[2019·江西卷] 已知首项都是1的两个数列{}n a , {}n b (*0n b n ≠∈N ,)满足1112n n n n n n a b a b b b +++-+=0.(1)令nn na cb =, 求数列{}n c 的通项公式; (2)若13n n b -=, 求数列{}n a 的前n 项和.n S【难易程度】容易【测量目标】等差数列, 错位相减【考查方式】先求出等差数列, 再利用错位相减求和【试题解析】(1)因为1112n n n n n n a b a b b b +++-+=0, *0)n b n ≠∈N ,(, 所以11n n a b ++-nna b =2, 即1n n c c +-=2, 所以数列{}n c 是以1c =1为首项, d =2为公差的等差数列, 故21.n c n =-(2)由13n n b -=, 知1(21)3n n a n -=-,于是数列{}n a 的前n 项和n S =0121133353(21)3n n ⨯⨯⨯⋯⨯-++++-,3n S =1211333(23)3(21)3n n n n ⨯⨯⨯⨯L -+++-+-,将两式相减得-2n S =1+1212(333)(2n n ⨯L -+++--1)32(22)3n n n ⨯⨯=---, 所以(1)31.n n S n =-+18. [2019·江西卷] 已知函数f (x )=()2x bx b ++∈R . (1)当b =4时, 求f (x )的极值;(2)若f (x )在区间10,3⎛⎫ ⎪⎝⎭上单调递增, 求b 的取值范围.【测量目标】极值, 单调性、函数的导数【考查方式】先利用求导求极值, 再利用单调性求参数的取值范围 【试题解析】(1)当b =4时, f ′(x )=12x-, 由f ′(x )=0, 得x =-2或x =0.所以当x ∈ (-∞, -2)时,f ′(x )<0, f (x )单调递减;当x ∈ (-2, 0)时, f ′(x )>0, f (x )单调递增;当x ∈10,2⎛⎫ ⎪⎝⎭时, ()0f x '<, f (x )单调递减, 故f (x )在x =-2处取得极小值f (-2)=0, 在x =0处取得极大值f (0)=4.(2) f ′(x )=12x-, 易知当x ∈10,3⎛⎫ ⎪⎝⎭时,<012x -, 依题意当x ∈10,3⎛⎫⎪⎝⎭时, 有5x +(3b -2)… 0, 从而53+(3b -2)… 0, 得1.9b …所以b 的取值范围为1,9⎛⎤-∞ ⎥⎝⎦.19.[2019·江西卷]如图, 四棱锥P ABCD 中, ABCD 为矩形, 平面P AD ⊥平面ABCD .(1)求证:AB ⊥PD .(2)若∠BPC =90︒, PB =2, PC =2, 问AB 为何值时, 四棱锥P ABCD 的体积最大?并求此时平面BPC 与平面DPC 夹角的余弦值.第19题图LLJ84【难易程度】中等【测量目标】线面、面面、线线位置关系, 夹角的余弦值, 法向量的应用【考查方式】先由线面位置关系来证线线位置关系, 在建立直角坐标系利用向量求夹角的余弦值【试题解析】(1)证明:因为ABCD 为矩形, 所以AB ⊥AD .又平面P AD ⊥平面ABCD , 平面P AD ∩平面ABCD =AD , 所以AB ⊥平面P AD , 故AB ⊥PD .(2)过P 作AD 的垂线, 垂足为O , 过O 作BC 的垂线, 垂足为G , 连接PG .故PO ⊥平面ABCD , BC ⊥平面POG , BC ⊥PG .在Rt △BPC 中, PG 23, GC 26, BG =63.设AB =m , 则OP =22PG OG -=243m -, 故四棱锥P -ABCD 的体积为2214=686333m V m m m -=-.因为2248686m m m m -=-2228633m ⎛⎫--+ ⎪⎝⎭, 所以当m =63 即AB =63四棱锥P -ABCD 的体积最大.此时, 建立如图所示的空间直角坐标系, 各点的坐标分别为O (0, 0, 0), B 66⎫⎪⎪⎝⎭,C626,,0⎛⎫⎪ ⎪⎝⎭,D⎝⎛⎭⎫0,263,0,P60,0,⎛⎫⎪⎪⎝⎭,故BPu u u r=6266,,⎛⎫⎪⎪⎝⎭,BCuuu r=(0,6,0),6,0,0CD⎛⎫=-⎪⎪⎝⎭u u u r.设平面BPC的法向量1(,,1),n x y=u u r则由1n PC⊥u u r u u u r,1n BC⊥u u r u u u r得626660x yy⎧+-=⎪⎨⎪=⎩,解得1,0,x y==1(1,0,1),n=u u r同理可求出平面DPC的法向量21(0,,1),2n=u u r,从而平面BPC与平面DPC夹角θ的余弦值为121210cos.||||1214n nn nθ⋅===⋅⋅+u u r u u ru u r u u r第19题图LLJ84b21.[2019·江西卷] 随机将()1,2,,2,2n n n*⋅⋅⋅∈N…这2n个连续正整数分成A,B两组,每组n个数,A组最小数为1a,最大数为2a;B组最小数为1b,最大数为2b,记2112,a ab bξη=-=-(1)当3n=时,求ξ的分布列和数学期望;(2)令C表示事件ξ与η的取值恰好相等,求事件C发生的概率()P C;(3)对(2)中的事件,C表示C的对立事件,判断()P C和()P C的大小关系,并说明理由.【难易程度】难【测量目标】分布列和数学期望,概率,数学归纳法【考查方式】先求出分布列和数学期望,在求出其概率,最后在利用数学归纳法【试题解析】(1)当3n=时,ξ所有可能值为2,3,4,5.将6个正整数平均分成A,B两组,不同的分组方法共有3620C=种,所以ξ的分布列为:ξ 2 3 4 5P 1531031015133172345.5101052Eξ=⨯+⨯+⨯+⨯=(2)ξ和η恰好相等的所有可能值为1,,1,,2 2.n n n n-+-L又ξ和η恰好相等且等于1n-时,不同的分组方法有2种;ξ和η恰好相等且等于n时,不同的分组方法有2种;ξ和η恰好相等且等于(1,2,,2),(3)n k k n n+=-L…时,不同的分组方法有22C kk种;所以当2n=时,42()63P C==;当3n…时,222(2C)nkk-+∑1()(),P C P C <等价于22214(2C )C n knk n k -=+<∑①.用数学归纳法来证明:1o 当3n =时, ①式左边124(2C )16,=+=①式右边36C 20,==所以①式成立.2o假设(3)n m m =…时①式成立, 即22214(2C )C m k mk m k -=+<∑成立.那么, 当1n m =+时,①式左边122112222222114(2C)4(2C )4C C 4C m m k k m m m kk m m m k k +--++++===+=++<+∑∑(2)!4(22)!(1)(2)(22)!(41)!!(1)!(1)!(1)!(1)!m m m m m m m m m m m m ⨯-+--=+=--++2112222(1)(2)(22)!(4)2(1)C C (1)!(1)!(21)(21)m m m m m m m m m m m m m m +++++-+<=⋅<+++-=①式右边.即当1n m =+时①式也成立,综合1o 2o 得, 对于3n …的所有正整数, 都有()()P C P C <成立.20. [2019·江西卷] 如图, 已知双曲线()22:210x C y a a-=>的右焦点F ,点,A B 分别在C 的两条渐近线上,AF OB ⊥, BF OA P (O 为坐标原点).(1)求双曲线C 的方程;(2)过C 上一点()()000,0P x y y ≠的直线0:021x y l y y a -=与直线AF 相交于点M , 与直线23=x 相交于点N , 证明点P 在C 上移动时,NFMF恒为定值, 并求此定值第20题图 LLJ85【难易程度】较难【测量目标】双曲线方程和离心率、焦点, 直线与曲线的位置关系【考查方式】先求出双曲线方程, 再利用直线与曲线的位置关系求第二问【试题解析】(1)设(,0)F c , 因为1b =, 所以21c a +直线OB 方程为1y x a =-, 直线BF 的方程为1()y x c a =-, 解得(,)22c c B a -,又直线OA 的方程为1y x a =, 则3(,),.AB c A c k a a =又因为AB ⊥OB , 所以31()1a a -=-, 解得23a =, 故双曲线C 的方程为22 1.3x y -=(2)由(1)知3a = 则直线l 的方程为0001(0)3x xy y y -=≠, 即0033x x y y -=,因为直线AF 的方程为2x =, 所以直线l 与AF 的交点0023(2,)3x M y -,直线l 与直线32x =的交点为003332(,)23x N y-,则220222004(23)9[(2)]x MF NF y x -=+-,因为是C 上一点, 则2200 1.3x y -=, 代入上式得222002222200004(23)4(23)49[(2)]39[1(2)]3x x MF x NF y x x --===+--+-, 所求定值为23MF NF =。