毕奥萨伐尔定律安培环路定律磁通连续原理

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安培力定律公式可改写为:
F Id l ( μ0 Id l eR )
l
4π l R2
IB
类比电场力计算式
F qE
认为: 磁场力 = 电流 磁感应强度
定义:磁感应强度 B (又称磁通密度)
B 0 4π
I 'd l eR l R2
0

I dl (r r) l r r 3 单位 T(Wb/m2)
m IS
B
0m 2 x3
3.2 安培环路定律
考虑磁场矢量线积分的特性。 3.2.1 真空安培环路定律
首先计算简单实例——无限长直导线的磁场环量, 然后推广——认为任意情形下磁场的环量都满足特例的结果 这一结果称为安培环路定理。
3.2.2 媒质的磁化及一般形式安培定律
引入磁场强度 H ,得到一般形式的安培环路定律。
L B dlLBC d o l0 0s2 0I d0
(4)安培环路与若干电流交链
B L
dl
0
Ik
安培环路定律:在真空中,磁感应强度 B 沿任何闭合路径 l
的线积分等于该闭合路径 l 所包围的电流强度的代数和的 o 倍。
2.安培环路定律的微分形式
对任意电流产生磁场沿闭合回路的环量,均满足安培环路定理
一.磁力和磁场 早期磁现象:磁铁
磁铁之间有相互作用。
(1)人造磁铁、天然磁铁有吸引铁、鈷、镍的性质—磁性。 (2) 磁铁有两个极:N,S。 (3) 磁极间存在相互作用力:同极相斥,异极相吸。
1820年,奥斯特发现通有 电流的导线能使附件的磁针发 生偏转,即电流的磁效应。
I
N S
同时,人们还发现: 磁铁对载流导线也有力的作用; 磁铁对运动电荷也有力的作用; 电流与电流之间也有力的相互作用。
3.2.1 真空中的安培环路定律
计算以无限长直导线为圆心的任意圆形环路的磁场环量。
长直导线的磁场
B
0 I 2
e
B
(1)安培环路与磁力线重合
Ñ LBdl
2
0
0Id 2
0 I 2
2
0
d
0I
(2)安培环路与磁力线不重合
Ñ LBdlLBCosdl dlcosd
2
0
0I 2
d
0I

(3)安培环路不交链电流
——毕奥—沙伐定律的积分形式
磁场对回路电流的作用力 磁场对运动电荷的作用力
F l Id l B
f qv B
安培力定律 洛伦兹力
毕奥—沙伐定律的微分形式 真空中,电流元 Idl 在 P点产生的磁场为 :
Idl Idl
B P
dB
o 4
Idl er r2
r
1.磁场的大小:
dB o Idlsin 4 r 2
Ñ B J Bdl 0I Ñ lB g d l S ( B )g d S 0 SJ g d S
0
说明:
A. 恒定磁场是有旋场,磁场的涡旋源是电流; B. 当 I 的方向与环路的方向满足右手螺旋法则时,I 取正; C. 安培环路定律中,I 是穿过以环路为边界交链电流,
B 是环路内外所有电流产生的总的磁感应强度的矢量和。
安培对这些实验事实进行分析,提出物质磁性本质假说:
一切磁现象都起源于电荷的运动(电流)。
物质间的磁力相互作用是以什么方式进行的呢? 近代的理论和实验都表明,物质间的磁力作用是通过 磁场传递的。即
运动电荷
磁场
运动电荷
✓磁场和电场一样,也是物质存在的一种形式。
3.1 磁感应强度
Magnetic Flux Density 3.1.1 安培力定律 (两电流回路之间的作用力 )
四川大学电气信息学院 电工电子基础教学实验中心
朱英伟
教案邮箱: 2015142536
第三章 恒定磁场
导体中通有直流电流时,在导体内部和它周围 的媒质中,不仅有电场还有不随时间变化的磁场, 称为恒定磁场。
恒定磁场和静电场是性质完全不同的两种场, 但在分析方法上却有许多共同之处。学习本章时, 注意类比法的应用。
B Bxex
0
4π(R2
I
x2
)
sin
dl
l
e
x
圆形载流回路轴线上的磁场分布
讨论:当 x = 0 时
B0
0I 2a
0
4π(R2
I
x2
)
R R2
x2
2πRex
当 x R时,r x
B
0IR 2 2x3
0 IR 2
2(R2 x2 )3/2
ex
定义磁偶极子 磁矩
磁偶极子产生的磁场
➢对于具有对称性分布的磁场,应用安培环路定律求解磁感应 强度 B 比毕奥-沙法尔定律简便。
例 3.2.2 试求载流无限长同轴电缆产生的磁感应强度。
解: 平行平面磁场, B B( )e
比较静电场与恒定磁场的知识结构和分析方法。
基本实验定律 (安培力定律) 磁感应强度(B)(毕奥—沙伐定律)
H 的旋度 基本方程 B 的散度
磁位(m) 分界面衔接条件 磁矢位(A)
数值法
边值问题
解析法
有限差分法 有限元法 分离变量法 镜像法
电感的计算 磁场能量及力 磁路及其计算
§3.0 磁力和磁场 磁感应强度
是 Idl 与 r 之间的夹角。
B
2.磁场方向:由右手螺旋法则确定。
例3.1.1 试求有限长直载流导线产生的磁感应强度。
解: 采用圆柱坐标系,取电流 I dl,
B 0 Idl eR 4π L R2
式中 R 2 2 z 2
dl eR dz sin e dz sin e R dze
实验测得电流回路 l’ 对电流回路 l 的作用力F
F 0
Idl (I 'dl ' eR )
4π l l'
R2
式中, 为真空中的磁导率 0
Idl 是元电流,R 是两电流元之间距离。
两载流回路间的相互作用力
上式就是真空中的安培力定律。 ➢ 安培力定律是多年经实验验证的,是电磁学基础定律。
3.1.2 毕奥—沙伐定律 、磁感应强度
解:元电流 Idl 在 P 点产生的 dB 为
dB
0

Idl er r2
(Idl
er )
dB
Biblioteka Baidu
0 Idl
sin
2
4π(R2 x2 )
圆形载流回路
根据圆环电流对 P 点的对称性, dBx dB sin dBy 0 sin θ R / r
dBx
0 Idl
sin
2
4π(R2 x2)
sin
B
0

L1 L2
(
2
I
z2)3
2
dz
0I [ L1 L2 ] 4π 2 L12 2 L22
0I 4π
(sin 1
sin
2)
当 L1 , L2
时,B
0I 2π
e
Idl
P
长直导线的磁场
例 3.1.2 真空中有一载流为 I,半径为 R 的圆环, 试求其轴线上 P 点的 磁感应强度 B 。
相关文档
最新文档