三角形内角和定理教案

合集下载

三角形的内角和定理教案

三角形的内角和定理教案

三角形的内角(一)(一)教学目标1.知识与技能(1)会证明三角形内角和定理。

(2)简单运用三角形内角和定理。

(3)通过添加辅助线证题,增强观察、猜想和理论证明的能力。

2. 过程与方法(1)通过拼图实践、合作探索、相互交流,培养学生的逻辑推理、敢于猜想、动手实践等能力。

(2)感受探索三角形内角和定理的证明过程。

(3)通过渗透数学的转化思想,培养学生解决数学问题的基本方法。

3. 情感、态度与价值观(1)通过师生的共同探究活动,培养学生的概括、总结能力,激发学生探索问题的兴趣。

(2)通过确认“三角形内角和是180度”体会学习数学的价值是发现和确认数学规律。

(二)教学重点、难点教学重点:理解三角形内角和定理以及简单的应用.教学难点:初步学会辅助线的添加.教学准备教师准备多媒体演示两幅,学生每人准备一个硬纸片三角板。

教学过程(一)创设情境、激发情趣在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结。

可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷(二)动手实践、感受探究的快感[师]同学们,我们做这样的实验:将三角形纸片的三个角剪下,随意将它们拼凑在一起,恰好得到一个什么角?[生]平角。

从而大家得出三角形的三个内角和等于180°。

[让学生自己动手探究,体会数学研究的乐趣.][师]现在,我们来看两个电脑的动画演示,验证这个结论是不是正确的。

1.动画演示一[师]先将△ABC中的∠A通过平移和旋转到如上图所示的位置,再将图中的∠B通过平移到上图所示的位置。

拖动点A,改变△ABC的形状,三角形的三个内角和总等于180°2.动画演示二[师]先将三角形纸片(图(1))一角折向其对边,使顶点落在对边上,折线与对边平行(图(2)),然后把另外两角相向对折,使其顶点与已折角的顶点相重合(图(3) (4)。

《三角形内角和》数学教案【优秀6篇】

《三角形内角和》数学教案【优秀6篇】

《三角形内角和》数学教案【优秀6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《三角形内角和》数学教案【优秀6篇】作为一位不辞辛劳的人·民教师,常常要根据教学需要编写教学设计,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。

三角形内角和教学设计(通用6篇)

三角形内角和教学设计(通用6篇)

三角形内角和教学设计三角形内角和教学设计(通用6篇)作为一名教师,总不可避免地需要编写教学设计,教学设计是把教学原理转化为教学材料和教学活动的计划。

那么优秀的教学设计是什么样的呢?下面是小编帮大家整理的三角形内角和教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。

三角形内角和教学设计1【教学目标】1、学生动手操作,通过量、剪、拼、折的方法,探索并发现“三角形内角和等于180度”的规律。

2、在探究过程中,经历知识产生、发展和变化的过程,通过交流、比较,培养策略意识和初步的空间思维能力。

3、体验探究的过程和方法,感受思维提升的过程,激发求知欲和探索兴趣。

【教学重点】探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

【教学难点】对不同探究方法的指导和学生对规律的灵活应用。

【教具准备】课件、表格、学生准备不同类型的三角形各一个,量角器。

【教学过程】一、激趣引入。

1、猜谜语师:同学们喜欢猜谜语吗?生:喜欢。

师:那么,下面老师给大家出个谜语。

请听谜面:形状似座山,稳定性能坚,三竿首尾连,学问不简单。

(打一图形)大家一起说是什么?生:三角形2、介绍三角形按角的分类师:真聪明!!板书“三角形”!那么,三角形按角分可以分为钝角三角形、直角三角形和锐角三角形这几类师分别出示卡片贴于黑板。

3、激发学生探知心里师:大家会不会画三角形啊?生:会师:下面请你拿出笔在本子上画出一个三角形,但是我有个要求:画出一个有两个直角的三角形。

试一试吧!生:试着画师:画出来没有?生:没有师:画不出来了,是吗?生:是师:有两个直角的三角形为什么画不出来呢?这就是三角形中角的奥秘!这节课我们就来学习有关三角形角的知识“三角形内角和”(板书课题)二、探究新知。

1、认识三角形的内角看看这三个字,说说看,什么是三角形的内角?生:就是三角形里面的角。

师:三角形有几个内角啊?生:3个。

师:那么为了研究的时候比较方便,我们把这三个内角标上角1角2角3,请同学们也拿出桌子上三角形标出(教师标出)师:你知道什么是三角形“内角和”吗?生:三角形里面的角加起来的度数。

三角形的内角和教案

三角形的内角和教案

三角形的内角和教案一、教学目标:知识与技能:1. 让学生掌握三角形内角和定理,理解三角形内角和为180度的概念。

2. 能够运用三角形内角和定理解决实际问题。

过程与方法:1. 通过观察、操作、推理等过程,引导学生发现三角形的内角和定理。

2. 培养学生的逻辑思维能力和解决问题的能力。

情感态度与价值观:1. 激发学生对数学的兴趣,培养学生的探索精神。

2. 培养学生合作学习、积极思考的良好学习习惯。

二、教学重点与难点:重点:1. 三角形内角和定理的理解和运用。

难点:1. 三角形内角和定理的推导过程。

三、教学准备:教师准备:1. 三角形模型、量角器等教具。

2. 教学课件或黑板。

学生准备:1. 学习三角形相关知识。

2. 准备三角板或其他三角形教具。

四、教学过程:环节一:导入1. 引导学生回顾三角形的相关知识,如三角形的定义、特性等。

2. 提问:你们知道三角形内角和是多少度吗?环节二:探究三角形内角和1. 让学生拿出三角板或其他三角形教具,观察并测量三角形的内角。

2. 引导学生发现并总结三角形内角和的特点。

环节三:推导三角形内角和定理1. 引导学生通过量角器测量多个三角形的内角,记录数据。

2. 让学生观察数据,发现规律,推导出三角形内角和定理。

环节四:验证三角形内角和定理1. 让学生分组讨论,设计实验验证三角形内角和定理。

2. 各小组汇报实验结果,确认三角形内角和定理的正确性。

环节五:运用内角和定理解决问题1. 出示例题,让学生运用内角和定理解决问题。

2. 学生互相讨论,解答例题,分享解题思路。

五、作业布置:1. 请学生运用内角和定理,解决一些关于三角形的实际问题。

2. 总结本节课的学习内容,思考三角形内角和定理在实际生活中的应用。

六、教学反思:本节课通过引导学生观察、操作、推理等活动,发现了三角形内角和定理,并运用该定理解决了一些实际问题。

在教学过程中,注重培养学生的动手操作能力、逻辑思维能力和解决问题的能力。

《三角形内角和》数学教案(优秀6篇)

《三角形内角和》数学教案(优秀6篇)

《三角形内角和》数学教案(优秀6篇)4、演示任意一个三角形的内角和都是180度。

出示一些三角形,让学生指出内角和。

师:你有什么发现?(无论是什么样的三角形他的内角和都是180度,与三角形的形状大小没有关系。

)(板书三角形的内角和是180度。

)师:那我们再看看刚刚汇报的结果。

为什么之前测量的时候并没有得到这样得到结果呢?(测量的不够精确,存在误差)师:如果测量仪器再精密一些,测量的更准确一些都可以得到三角形内角和是180度。

现在确定这个结论了吗?(25分钟)师:除了这节课大家想到的方法,还有很多方法也能证明三角形的内角和是180°到初中我们还有更严密的方法证明三角形的内角和是180°。

早在300多年前就有一位法国有名的科学家帕斯卡,他在12岁时就验证了任何三角形的内角和都是180°师:你们能用今天的发现做一些练习吗?五、测评反馈1、判断。

(1)直角三角形的两个锐角的和是90°。

(2)一个等腰三角形的底角可能是钝角。

(3)三角形的内角和都是180°,与三角形的大小无关。

4、剪一剪。

把一个三角形纸板沿直线剪一刀,剩下的纸板的内角和是多少度?六、课后作业69页第1题、第3题。

七、板书设计《三角形内角和》教学设计篇四【教材分析】《三角形内角和》是北师大版《数学》四年级下册的内容。

是在学生学习了三角形的概念及特征之后进行的,它是掌握多边形内角和及其他实际问题的基础,因此,掌握“三角形的内角和是180度”这一规律具有重要意义。

教材首先出示了两个三角形比内角和这一情境,让学生通过测量、折叠、拼凑等方法,发现三角形的内角和是180度。

教材还安排了“试一试”,“练一练”的内容。

已知三角形两个内角的度数,求出第三个角的度数。

【学生分析】经过近四年的课改实验,孩子们已经有了一定的自主探究,合作交流的能力。

他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。

四年级数学教案《三角形的内角和》(精选10篇)

四年级数学教案《三角形的内角和》(精选10篇)

四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》〔精选10篇〕四年级数学教案《三角形的内角和》篇1教学目的⑴探究并发现三角形的内角和是180°,能利用这个知识解决实际问题。

⑵学生在经历观察、猜测、验证的过程中,提升自身动手动脑及推理、归纳总结的才能。

⑶在参与学习的过程中,感受数学独特的魅力,获得成功体验,并产生学习数学的积极情感。

教学重点:检验三角形的内角和是180°。

教学难点:引导学生通过实验探究得出三角形的内角和是180度。

教学环节:问题情境与老师活动:学生活动媒体应用设计意图目的达成导入新课一、复习旧知,导入新课。

1、复习三角形分类的知识。

师出示三角形,生快速说出它的名称。

2、什么是三角形的内角?我们通常所说的角就是三角形的内角。

为了便于称呼,我们习惯用∠A、∠B、∠c来表示。

什么是三角形的内角和?三角形“三个内角的度数之和”就是三角形的内角和。

用一个含有∠A、∠B、∠c的式子来表示应该如何写?∠A+∠B+∠c。

3、今天这节课啊我们就一起来研究三角形的内角和。

〔揭题:三角形的内角和〕由三角形的内角引出三角形的内角和,“∠A+∠B+∠c”的表示形式形象的表达出三内角求和的关系二、动手操作,探究新知1、出示三角板,猜一猜。

师:这个三角形的内角和是多少度?熟悉这副三角板吗?请拿出形状与这块一样的三角板,并同桌互相指一指各个角的度数把三角形三个内角的度数合起来就叫三角形的内角和。

是不是所有的三角形的内角和都是180°呢?你能肯定吗?我们得想个方法验证三角形的内角和是多少?可以用什么方法验证呢?3.学生测量4.汇报的测量结果除了我们这节课大家想到的方法,还有很多方法也能验证三角形的内角和是180°到初中我们还要更严密的方法证明三角形的内角和是180°5、稳固知识。

一个三角形中能不能有两个直角?能不能有2个钝角?三、应用所学,解决问题。

教案及反思-三角形的内角和

教案及反思-三角形的内角和

教案及反思-三角形的内角和一、教学目标1.让学生掌握三角形内角和定理,理解三角形的内角和是180°。

2.培养学生运用三角形内角和定理解决实际问题的能力。

3.培养学生的观察、分析和推理能力。

二、教学重难点1.教学重点:三角形内角和定理的理解和应用。

2.教学难点:三角形内角和定理的证明。

三、教学过程1.导入新课师:同学们,我们之前学习了三角形的分类和性质,那么大家知道三角形的内角和是多少度吗?生:不知道。

师:今天我们就来学习三角形的内角和,相信通过本节课的学习,大家一定能找到答案。

2.探索三角形内角和(1)分组讨论师:请同学们分成小组,每组准备一角形纸片,用量角器测量三角形的三个内角,然后将测量结果记录在黑板上。

师:请大家观察黑板上的数据,发现了什么规律?生:三角形的内角和是180°。

师:很好,这就是我们今天要学习的三角形内角和定理。

3.证明三角形内角和定理师:那么大家有没有想过,为什么三角形的内角和是180°呢?下面我们来证明这个定理。

(1)作辅助线①画出三角形ABC;②在BC边上任取一点D,连接AD;③作∠BAC的角平分线,交AD于点E。

(2)观察角的关系师:请大家观察图形,可以发现∠BAC、∠BDE和∠CDE有什么关系?生:∠BAC=∠BDE+∠CDE。

(3)证明三角形内角和定理师:由于∠BDE和∠CDE是∠BAC的角平分线,所以∠BDE=∠CDE。

又因为∠BAC+∠BDE+∠CDE=180°,所以∠BAC+2∠BDE=180°。

将∠BDE=∠CDE代入,得到∠BAC+∠BDE+∠CDE=180°,即三角形ABC的内角和是180°。

4.应用三角形内角和定理(1)已知一个三角形的两个内角分别是30°和60°,求第三个内角的度数。

(2)如果一个三角形的两个内角分别是90°和45°,那么这个三角形是什么三角形?师:通过本节课的学习,我们知道了三角形的内角和是180°,并且学会了运用三角形内角和定理解决实际问题。

三角形内角和教案3篇

三角形内角和教案3篇

三角形内角和教案3篇三角形内角和教案篇1探究与发觉:三角形内角和课型新授课设计说明本节课是在同学已经掌控了钝角、锐角、直角、平角及三角形分类的基础上,让同学通过直观操作来认识和学习的。

1.重视知识的探究与发觉。

在教学中,概念的形成没有径直给出,而是整节课都是在引导同学的试验操作、活动探究中进行。

在探究活动中,不但重视知识的形成过程,而且留意留给同学充分进行主动探究和沟通的空间,让同学归纳出三角形内角和等于180°。

2.重视同学的合作探究学习。

使同学能够积极主动地参加到数学活动中,能在实践中感知、发表自己的见解,同学感受到通过自己的努力取得胜利所带来的满意感,同时也培育了同学的探究技能和创新技能。

课前预备老师预备:PPT课件量角器直尺三角尺同学预备:量角器三角尺教学过程一、常识导入。

(3分钟)1.介绍帕斯卡:早在300多年前有一个科学家,他在12岁时验证了任意三角形的内角和都是180°,他就是法国科学家、物理学家帕斯卡。

2.导入新课:这节课我们也来验证一下三角形的内角和。

1.倾听老师的介绍,了解帕斯卡。

2.明确本节课的学习内容。

1.填空。

(1)有一个角是钝角的三角形是( )三角形;有一个角是直角的三角形是( )三角形;三个角都是锐角的三角形是( )三角形。

(2)平角=( )°直角=( )°周角=( )°二、合作沟通,探究新知。

(18分钟)(一)量算法。

1.探究非常三角形的内角和。

(1)出示一副三角尺,引导同学说一说各个角的度数。

(2)引导同学算一算它们的内角和各是多少度。

(3)引导同学得出结论。

2.探究一般三角形的内角和。

(1)引导同学猜一猜其他三角形的内角和是多少度。

(2)组织同学验证一般三角形的内角和是180°。

①引导同学量出每个内角的度数,再计算三个内角的和。

②引导同学分工合作,把结果填入记录表中。

③引导同学说说自己的发觉。

(3)引导同学明确由于测量有误差,事实上三角形的内角和是180°。

数学教案-三角形的内角和

数学教案-三角形的内角和

数学教案-三角形的内角和一、教学目标1.让学生理解三角形的内角和定理。

2.培养学生运用内角和定理解决实际问题的能力。

3.激发学生对几何学的兴趣,提高学生的空间想象力和逻辑思维能力。

二、教学重难点1.教学重点:理解并掌握三角形的内角和定理。

2.教学难点:运用内角和定理解决实际问题。

三、教学过程1.导入新课师:同学们,大家好!今天我们要学习一个新的几何知识——三角形的内角和。

在此之前,请大家回忆一下我们学过的三角形的基本知识,比如三角形的定义、分类等。

生(齐):三角形是由三条线段首尾相连组成的图形。

师:很好!那我们来探讨一下,三角形内的角度有什么特点呢?2.探究三角形内角和(1)自主探究师:请大家拿出一张白纸,画出一个任意的三角形,并用量角器测量三个角的度数。

生(操作):画三角形,测量角度。

师:请大家将自己的测量结果告诉小组内的同学,然后汇总一下。

生(小组讨论):我们小组的三角形内角分别是60°、70°和50°。

师:很好!其他小组呢?生(小组汇报):我们小组的三角形内角分别是40°、60°和80°。

师:通过大家的测量,我们发现三角形的内角和是180°。

这是一个非常重要的定理,叫做三角形的内角和定理。

3.应用内角和定理(1)求解三角形内角度数师:现在我们知道了三角形的内角和是180°,那么如果已知三角形的两个角度,我们就可以求出第三个角度。

请大家来做一道题目:已知一个三角形,其中两个角分别是30°和60°,求第三个角的度数。

生(解答):第三个角的度数是180°30°60°=90°。

(2)解决实际问题师:我们来看一个实际问题。

请大家观察这张图片,这是一个等腰三角形,底边长为8厘米,顶角为40°。

请问,这个等腰三角形的腰长是多少?生(思考):因为这是一个等腰三角形,所以底角相等,设底角为x,那么有2x+40°=180°。

《三角形的内角和》教案

《三角形的内角和》教案

《三角形的内角和》教案《三角形的内角和》教案1一、学生知识状况分析学生技能基础:学生在以前的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,也熟悉三角形内角和定理的内容,而本节课是建立在学生掌握了平行线的性质及严格的证明等知识的基础上展开的,因此,学生具有良好的基础。

活动经验基础:本节课主要采取的活动形式是学生非常熟悉的自主探究与合作交流的学习方式,学生具有较熟悉的活动经验.二、教学任务分析上一节课的学习中,学生对于平行线的判定定理和性质定理以及与平行线相关的简单几何证明是比较熟悉的,他们已经具有初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排《三角形内角和定理的证明》旨在利用平行线的相关知识来推导出新的定理以及灵活运用新的定理解决相关问题。

为此,本节课的教学目标是:知识与技能:(1)掌握三角形内角和定理的证明及简单应用。

(2)灵活运用三角形内角和定理解决相关问题。

数学能力:用多种方法证明三角形定理,培养一题多解的能力。

情感与态度:对比过去撕纸等探索过程,体会思维实验和符号化的理性作用.三、教学过程分析本节课的设计分为四个环节:情境引入探索新知反馈练习课堂小结第一环节:情境引入活动内容:(1)用折纸的方法验证三角形内角和定理.实验1:先将纸片三角形一角折向其对边,使顶点落在对边上,折线与对边平行(图6-38(1))然后把另外两角相向对折,使其顶点与已折角的顶点相嵌合(图(2)、(3)),最后得图(4)所示的结果(1) (2) (3) (4)试用自己的语言说明这一结论的证明思路。

想一想,还有其它折法吗?(2)实验2:将纸片三角形三顶角剪下,随意将它们拼凑在一起。

试用自己的语言说明这一结论的证明思路。

想一想,如果只剪下一个角呢?活动目的:对比过去撕纸等探索过程,体会思维实验和符号化的理性作用。

将自己的操作转化为符号语言对于学生来说还存在一定困难,因此需要一个台阶,使学生逐步过渡到严格的证明.教学效果:说理过程是学生所熟悉的,因此,学生能比较熟练地说出用撕纸的方法可以验证三角形内角和定理的原因。

三角形的内角和教案

三角形的内角和教案

三角形的内角和教案一、教学目标1.让学生掌握三角形内角和定理,能够运用该定理解决相关问题。

2.培养学生的观察能力、推理能力和实际应用能力。

3.增强学生对数学的兴趣和信心。

二、教学重点与难点重点:三角形内角和定理的应用。

难点:三角形内角和定理的证明。

三、教学准备1.教学课件或黑板。

2.学生作业本。

3.三角板、直尺等教学工具。

四、教学过程1.导入新课(1)引导学生回顾已学的三角形知识,如三角形的定义、分类等。

(2)提出问题:三角形内角和是多少度?大家有没有想过为什么?2.探索三角形内角和(1)让学生分组讨论,用三角板和直尺测量不同类型三角形的内角和。

(2)学生汇报测量结果,引导发现:无论什么类型的三角形,内角和都是180度。

3.证明三角形内角和定理(1)引导学生观察三角形的内角和,尝试用数学方法证明。

(2)讲解证明过程,让学生跟随思路进行推理。

4.应用三角形内角和定理(1)讲解三角形内角和定理在实际问题中的应用。

(2)举例说明如何利用三角形内角和定理解决实际问题。

(3)让学生分组讨论,提出实际问题,运用三角形内角和定理解决。

5.巩固练习(1)布置课堂练习题,让学生独立完成。

(2)教师批改作业,对错误进行讲解和纠正。

(2)引导学生思考:如何将所学知识运用到生活中?五、课后作业1.复习三角形内角和定理,理解其证明过程。

2.完成课后练习题,巩固所学知识。

六、教学反思本节课通过引导学生动手操作、观察、讨论、证明和应用,使学生掌握了三角形内角和定理,并能够运用该定理解决实际问题。

在教学过程中,要注意关注学生的个体差异,引导学生积极参与课堂活动,提高他们的学习兴趣和信心。

同时,要加强课堂练习和课后作业的布置与批改,及时了解学生的学习情况,为下一节课的教学做好准备。

重难点补充:1.教学重点与难点重点补充:通过实际操作和讨论,让学生理解并记忆三角形内角和定理,能够独立证明该定理,并运用到解决实际问题中。

难点补充:三角形内角和定理的证明过程,以及如何将定理灵活运用到不同的几何问题中。

三角形内角和定理教学设计

三角形内角和定理教学设计

三角形内角和定理教学设计教学目标:1.理解三角形内角和定理的概念和含义;2.运用三角形内角和定理求解三角形内角的度数;3.熟练使用三角形内角和定理解决相关的几何问题。

教学准备:1.教学工具:黑板、白板、彩色粉笔、三角板等;2.教学资源:课本、练习册、作业纸等。

教学过程:第一步:引入知识(10分钟)1.教师在黑板上绘制一个任意的三角形,并标记出三个内角;2.教师引导学生思考,问学生三角形的三个内角之和是多少?是否有规律可循?第二步:讲解概念(15分钟)1.教师简要讲解三角形内角和定理的概念和含义:三角形的三个内角之和等于180度;2.教师用白板和三角板演示验证三角形内角和定理,告诉学生如何利用角度标记和三角板求解角度;3.教师强调三角形内角和定理的重要性和应用场景。

第三步:练习巩固(20分钟)1.教师在黑板上写下几个三角形,让学生用三角板或直尺测量三角形的三个内角,并求出它们之和;2.学生互相核对答案,并进行讨论和纠错;3.学生在作业纸上完成一些三角形内角和定理的练习题,教师对学生的答题情况进行评价和指导。

第四步:知识拓展(15分钟)1.教师讲解三角形的特殊情况下的内角和定理,如等腰三角形、等边三角形等;2.教师引导学生思考和讨论:在什么情况下三角形的内角和可能不等于180度?学生回答后教师给予评价和补充。

第五步:拓展应用(20分钟)1.教师提供一些实际问题,让学生运用三角形内角和定理解决问题;2.学生分组讨论和解答问题,然后向全班展示解决思路和答案;3.教师对学生的解答过程和答案进行评价和点评,加强学生对三角形内角和定理的应用能力。

第六步:课堂总结(5分钟)1.教师对本节课的内容进行总结,并强调三角形内角和定理的重要性和应用价值;2.老师鼓励学生继续练习和应用三角形内角和定理,加强自己的几何推理和问题解决能力。

扩展延伸:1.学生可以通过在周围环境中寻找并绘制出各种三角形,并利用角度标记和三角板测量和计算三角形的内角和;2.学生可以设计一些有趣的几何问题,并利用三角形内角和定理进行求解,进一步锻炼自己的几何思维和解决问题的能力。

八年级数学上册《三角形内角和定理》教案、教学设计

八年级数学上册《三角形内角和定理》教案、教学设计
1.针对不同学生的学习特点,采取分层教学,使每个学生都能在原有基础上得到提高。
2.注重启发引导,激发学生的求知欲和探究精神,帮助他们建立几何直观。
3.创设生活情境,让学生在实际问题中感受三角形内角和定理的价值,提高学习的积极性。
4.加强对学生的个别辅导,关注他们的学习困惑,及时给予指导和鼓励,帮助他们克服学习难题,增强自信心。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握角形内角和定理。
2.学会运用三角形内角和定理解决实际问题。
3.掌握三角形内角和定理的证明方法。
(二)教学设想
1.创设情境,导入新课
通过展示生活中的三角形实例,如自行车三角架、衣架等,引导学生观察、思考三角形内角和的特点,激发学生的学习兴趣。
2.自主探究,发现规律
4.总结、归纳三角形内角和定理的运用方法,提高解决问题的能力。
(三)情感态度与价值观
1.增强对数学美的感受,认识到数学在生活中的重要性。
2.养成主动探究、合作学习的良好习惯,提高自主学习能力。
3.培养严谨、踏实的科学态度,树立正确的价值观。
4.在解决实际问题的过程中,体验数学带来的成就感,增强自信心。
(四)课堂练习,500字
课堂练习环节,教师设计难易程度不同的题目,让学生独立完成。题目包括:计算给定三角形的内角和、解决实际问题等。学生在解题过程中,可以巩固所学知识,提高解题能力。教师巡回指导,针对学生的疑问给予及时解答,帮助他们克服困难。
(五)总结归纳,500字
在总结归纳环节,教师首先引导学生回顾本节课所学内容,对三角形内角和定理进行总结。学生分享自己在课堂上的收获和感悟,教师给予积极评价。接着,教师对本节课的重点知识进行梳理,强调三角形内角和定理在几何学中的重要性。最后,教师布置课后作业,要求学生在课后巩固所学知识,为下一节课的学习打下基础。

《三角形的内角和》教学设计(优秀7篇)

《三角形的内角和》教学设计(优秀7篇)

《三角形的内角和》教学设计(优秀7篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!《三角形的内角和》教学设计(优秀7篇)作为一名辛苦耕耘的教育工作者,很有必要精心设计一份教学设计,教学设计是教育技术的组成部分,它的功能在于运用系统方法设计教学过程,使之成为一种具有操作性的程序。

《三角形内角和》数学教案(优秀3篇)

《三角形内角和》数学教案(优秀3篇)

《三角形内角和》数学教案(优秀3篇)作为一名默默奉献的教育工作者,可能需要进行教学设计编写工作,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。

那么优秀的教学设计是什么样的呢?读书破万卷,下笔如有神,这里是漂亮的编辑帮大伙儿找到的《三角形内角和》数学教案【优秀3篇】,希望大家能够喜欢。

《三角形内角和》教学设计篇一【教学内容】《人教版九年义务教育教科书数学》四年级下册《三角形的内角和》【教学目标】1.使学生知道三角形的内角和是180 ,并能运用三角形的内角和是180 解决生活中常见的问题。

2.让学生经历量一量、折一折、拼一拼等动手操作的过程。

通过观察、判断、交流和推理探索用多种方法证明三角形的内角和是180 。

3.培养学生自主学习、互动交流、合作探究的能力和习惯,培养学习数学的兴趣,感受学习数学的乐趣。

【教学重点】使学生知道三角形的内角和是180 ,并能运用它解决生活中常见的问题。

【教学难点】通过多种方法验证三角形的内角和是180 。

【教学准备】课件。

四组教学用三角板。

铅笔。

大帆布兜子。

固体胶。

剪刀。

筷子若干。

【教学过程】一、激趣导入,提炼学习方法1.课程开始,教师耳朵上别着一根铅笔,肩背大帆布兜子,里面装着一个量角器和几把缺了直角的三角板,手拿一张不规则的白纸,以一位老木匠的身份出现在学生面前。

激发学生的好奇心。

然后自述:“你们好,我是一个有三十多年工作经验的老木匠了。

我收了三个徒弟,他们已经从师学艺三年了,今天我想让他们下山挣钱,可又不放心,想出几道题考验考验他们,又不知我的题合不合适,大家想不想先当一会我的徒弟试试这几道题呢?”2.继续以老木匠的身份说:前几天我造了一架柁,徒弟们能不能用我手中的工具验证一下横木和立柱是不是成直角的。

3.选择工具,总结方法。

让选择不同工具的同学用自己的方法验证。

教师随机板书:量一量、拼一拼、折一折。

师:你们真是爱动脑筋的好徒弟,那么请听好师傅的第二个问题。

7.5三角形内角和定理(教案)

7.5三角形内角和定理(教案)
2.教学难点
-理解三角形内角和定理的证明过程:对于初中生来说,几何证明是一个难点,尤其是运用平行线性质、同位角相等等方法的推理过程。
-解决实际问题时的灵活运用:学生在解决具体问题时,可能会对如何运用三角形内角和定理感到困惑,不知道从何入手。
-对特殊三角形内角和的理解:如等边三角形、直角三角形等,它们的内角和同样遵循三角形内角和定理,但学生可能会对此产生疑惑。
五、教学反思
在上完这节关于三角形内角和定理的课后,我对整个教学过程进行了深入思考。首先,我发现学生们对于三角形内角和的概念接受度较高,他们能够通过测量和观察,较快地理解并接受三角形内角和为180°这一事实。然而,在定理的证明过程中,学生们遇到了一些困难,尤其是对于几何证明的逻辑推理部分。
我意识到,几何证明对于初中阶段的学生来说是一个难点,因此在讲解证明过程时,我应该更加耐心,逐步引导学生理解每一步的推理,而不是直接给出结论。此外,我应该多设计一些互动环节,让学生参与到证明过程中来,比如通过小组讨论、上台演示等方式,增强他们的参与感和体验感。
举例:在讲解三角形内角和定理的证明过程时,可以采用逐步引导、分步骤讲解的方式,让学生逐步理解证明过程中的每一步。在解决实际问题时,教师可以给出多个不同类型的例子,引导学生分析问题、找出解题思路,提高学生的解题能力。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“7.5三角形内角和定理”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算三角形内角度数的情况?”(如拼图、建筑设计等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三角形内角和的奥秘。
7.5三角形内角和定理(教案)

教案三角形内角和(大全五篇)[修改版]

教案三角形内角和(大全五篇)[修改版]

第一篇:教案三角形内角和教学目标:1、通过操作活动探索发现和验证“三角形的内角和是180度”的规律。

2、在操作活动中,培养学生的合作能力、动手实践能力,发展学生的空间观念。

并运用新知识解决问题。

3.使学生有科学实验态度,激发学生主动学习数学的兴趣,体验数学学习成功的喜悦。

教学重点:探究发现和验证“三角形的内角和180度”这一规律的过程,并归纳总结出规律。

教学难点:对不同探究方法的指导和学生对规律的灵活应用。

教具学具准备:课件、学生准备不同类型的三角形各一个,量角器。

教学过程:一、创设情景,引出问题1、猜谜语:(课件)形状似山,稳定性坚。

三竿首尾连,学问不简单。

(打一图形名称)三角形(板书)2、观察三角形(三角板)师:老师这有个三角形,大家观察一下,你发现这三角形有几个角?师:三角形的三个角叫做三角形的内角。

你们接下来还想了解什么有关三角形教的知识?(引导学生开始对“三角形的内角和是多少”进行思索。

)3、引出课题。

师:看来三角形里角一定藏有一些奥秘,这节课我们就来研究有关三角形角的知识“三角形内角和”。

(板书课题)二、探究新知1、三角形的内角、内角和(1)什么是三角形内角(课件)三角形里面的三个角都是三角形的内角。

为了方便研究,我们把每个三角形的3个内角分别标上∠1、∠2、∠3。

(2)三角形内角和师:内角和指的是什么?生:三角形的三个角的度数的和,就是三角形的内角和。

(多让几个学生说一说)2、猜一猜。

师:这个三角形的内角和是多少度?师:是不是所有的三角形的内角和都是180°呢?你能肯定吗?预设1师:大家意见不统一,我们得想个办法验证三角形的内角和是多少?可以用什么方法验证呢?3操作验证:小组合作。

选1个自己喜欢的三角形,选喜欢的方法进行验证。

(老师首先为学生提供充分的研究材料,如三种类型的三角形若干个(小组之间的三角形大小都不相同),剪刀,量角器,白纸,直尺等,以及充裕的时间,保证学生能真正地试验,操作和探索,通过量一量、折一折、拼一拼、画一画等方式去探究问题。

三角形的内角和数学教学设计(精选4篇)

三角形的内角和数学教学设计(精选4篇)

三角形的内角和数学教学设计(精选4篇)三角形的内角和,即三个内角的和。

三角形内角和定理:三角形三个内角和等于180°。

用数学符号表示为:在△ABC中,△1+△2+△3=180°。

奇文共欣赏,疑义相如析,该页是漂亮的小编给大家收集整理的三角形的内角和数学教学设计【精选4篇】,欢迎借鉴,希望能够帮助到大家。

《三角形内角和》数学教案篇一大家好!今天我很高兴也很荣幸能有这个机会与大家共同交流,在深入钻研教材,充分了解学生的基础上,我准备从以下几个方面进行说课:一、教材分析“三角形的内角和”是三角形的一个重要性质,它有助于学生理解三角形内角之间的关系,是进一步学习几何的基础。

二、教学目标1、知识与技能:明确三角形的内角的概念,使学生自主探究发现三角形内角和等于180°,并运用这一规律解决问题。

2、过程和方法:通过学生猜、量、拼、折、观察等活动,培养学生发现问题、提出问题、分析问题和解决问题的能力。

3、情感与态度:使学生感受数学图形之美及转化思想,体验数学就在我们身边。

三、教学重难点教学重点:动手操作、自主探究发现三角形的内角和是180°,并能进行简单的运用。

教学难点:采用多种途径验证三角形的内角和是180°。

四、学情分析通过前面的学习,学生已经掌握了三角形的一些基础知识,会量角,部分学生已经知道三角形内角和是180°,但不知道怎样得出这个结论。

五、教学法分析本节课采用自主探索、合作交流的教学方法,学生自主参与知识的构建。

领悟转化思想在解决问题中的应用。

六、课前准备1、教师准备:多媒体课件、三角形教具。

2、学生准备:锐、直、钝角三角形各两个,量角器、剪刀。

七、教学过程(一)、创设情境,激趣导入导入:“同学们,有三位老朋友已经恭候我们多时了。

“(出示三角形动画课件),让学生依次说出各是什么三角形。

课件分别闪烁三角形三个内角,并介绍:“这三个角叫做三角形的内角,把三个角的度数加起来,就是三角形的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【课题】三角形内角和定理
【教学类型】新知课
【教学目的】
1.知识与技能目标:掌握三角形内角和定理的证明和简单应用,初步学会作辅助线证明的基本方法,培养学生观察、猜想、和推理论证能力。

2.过程与方法目标:
(1)对比过去折纸、撕纸等探索过程,体会思维实验和符号化的理性作用。

(2)通过一题多证、一题多变体会思维的多向性。

(3)引导学生应用运动变化的观点认识数学。

3.情感与态度目标:通过一题多证、一题多变激发学生勇于探索、合作交流的精神,体验成功的乐趣,引导学生的个性发展。

感悟逻辑推理的价值。

【教学方法】引导发现法、尝试探究法
【教学重点】探索证明三角形内角和定理的不同方法,利用三角形内角和定理进行简单的计算或证明。

【教学难点】应用运动变化的观点认识数学。

从拼图过程中发现并正确引入辅助线是本节课的关键。

【教具】尺规,三角板
【教学过程】
一、创设情境,自然引入
把问题作为教学的出发点,创设问题情境,激发学生学习兴趣和求知欲,为发现新知识创造一个最佳的心理和认知环境。

1. 三角形三条边的关系我们已经明确了,而且利用三边关系解决了一些几何问题,那么三角形的三个内角有何关系呢?
答:三角形的三个内角的和等于180°。

2.这个结论从哪里来?
在纸上任意画一个三角形,并将它的内角减下来拼合在一起。

(1)观察:三个内角拼成了一个什么角?
(2)此实验给我们一个什么启示?(把三角形的三个内角之和转化为一个平角)
(3)由图中AB 与CD 的关系,启发我们画一条什么样的线,作为解决问题的桥梁?
二、讲授新课,深入了解
三角形内角和定理:三角形的三个内角的和等于180°。

即:△ABC 中, ∠A +∠B +∠C=180 °
如何证明这个结论的正确性?
结论:三角形的内角和等于180 °
已知:如图,△ABC
求证:∠A+∠B+∠C=180°
证法一:
证明:作BC 的延长线CD ,过点C 作射线CE ∥BA .
∵CE ∥BA
∴∠B=∠ECD (两直线平行,同位角相等),
∠A=∠ACE (两直线平行,内错角相等)
∵∠BCA+∠ACE+∠ECD=180°
∴∠A+∠B+∠ACB=180°(等量代换)
证法二:
证明:过A 作E F ∥B C.
∵ E F ∥B C.
∴∠E A B =∠B
∠F A C = ∠C ﹙两直线平行,内错角相等﹚ A B C E
D
又∵∠F A C,∠BAC,∠E A B组成平角,
∴∠F A C +∠B A C +∠EA B =180°﹙平角定义﹚
∴∠B +∠B A C +∠C= 180°﹙等量代换)
注:(1)证明:是由题设(已知)出发,经过一步步的推理,最后推出结论(求证)正确的过程
(2)辅助线:为了证明的需要在原来图形上添画的线叫辅助线且辅助线须用虚线.
三、例题解析,强化重点
已知:如图, AB∥CD。

求证:∠ABE+∠BED+∠EDC=360°(用两种方法证明)。

四、应用知识,深化主题
学习了以上定理,我们来看看特殊三角形内角和有什么特殊的地方?
问题:“直角三角形的两锐角之和是多少度?等边三角形的一个内角是多少度?请证明你的结论。


五、理解巩固,反馈练习
(1)△ABC中,∠C=90°,∠A=30°,∠B=?
(2)∠A=50°,∠B=∠C,则△ABC中∠B=?
(3)三角形中三角之比为1∶2∶3,则三个角各为多少度?(4)课本239页随堂练习2
六、课堂小结
这堂课,我们证明了一个很有用的三角形内角和定理。

证明的基本思想是:运用辅助线将原三角形中处于不同位置的三个内角集中在一起,拼成一个平角。

辅助线是联系命题的条件和结论的桥梁,今后我们还要学习使用它。

七、布置作业(略)
【设置悬念·思考难题】
证明三角形内角和定理时,是否可以把三角形的三个角“凑”到BC边上的一点P?(如图9(1))如果把这三个角“凑”到三角形内一点呢?(如图9(2))“凑”到三角形外一点呢?(如图9(3)),你还能想出其他证法吗?
(1)(2)(3)
图9
设题原因:学生在证明这个题的过程中,进一步了解三角形内角和定理的证明思路,并且了解一题的多种证法,从而拓宽学生的思路。

答案:证明三角形内角和定理时,既可以把三角形的三个角“凑”到BC边上的一点P,也可以把三个角“凑”到三角形内一点,还可以把这三个角“凑”到三角形外一点。

(注:文档可能无法思考全面,请浏览后下载,供参考。

可复制、编制,期待你的好评与关注)。

相关文档
最新文档