正方形[下学期]--华师大版-
华师大版八年级下册数学第19章 矩形、菱形与正方形含答案(学生专用)
华师大版八年级下册数学第19章矩形、菱形与正方形含答案一、单选题(共15题,共计45分)1、如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为点G,连接CG,下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值﹣1.其中正确的说法有()个.A.4B.3C.2D.12、顺次连结对角线互相垂直的四边形各边中点所构成的四边形一定是()A.矩形B.菱形C.正方形D.不确定3、已知一个四边形的对角线互相垂直,那么顺次连接这个四边形的四边中点所得的四边形是()A.矩形B.菱形C.等腰梯形D.正方形4、平行四边形ABCD的两条对角线相等,则平行四边形ABCD一定是().A.菱形B.矩形C.正方形D.等腰梯形5、如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D 重合,折痕为EF,则△ABE的面积为()A.6cmB.8cmC.10cmD.12cm6、如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是()A.7B.8C.9D.107、下列性质中,矩形不一定具有的是( )A.对角线相等B.对角线互相平分C.4个内角相等D.一条对角线平分一组对角8、学习了正方形之后,王老师提出问题:要判断一个四边形是正方形,有哪些思路?甲同学说:先判定四边形是菱形,再确定这个菱形有一个角是直角;乙同学说:先判定四边形是矩形,再确定这个矩形有一组邻边相等;丙同学说:判定四边形的对角线相等,并且互相垂直平分;丁同学说:先判定四边形是平行四边形,再确定这个平行四边形有一个角是直角并且有一组邻边相等.上述四名同学的说法中,正确的是()A.甲、乙B.甲、丙C.乙、丙、丁D.甲、乙、丙、丁9、用两个完全相同的直角三角形拼下列图形:(1)平行四边形,(2)矩形,(3)菱形,(4)正方形,(5)等腰三角形,(6)等边三角形,一定可以拼成的图形是( )A.(1)(4)(5)B.(2)(5)(6)C.(1)(2)(3)D.(1)(2)(5).10、如图,过矩形ABCD的四个顶点作对角线AC、BD的平行线,分别相交于E、F、G、H四点,则四边形EFGH为()A.平行四边形B.矩形C.菱形D.正方形11、如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE 折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为()A.1或2B.2或3C.3或4D.4或512、如图,是△EBD以正方形ABCD的对角线BD为边的正三角形,EF⊥DF,垂足为F,则∠AEF的度数是()A.15°B.30°C.45°D.60°13、平面内有一个角是60°的菱形绕它的中心旋转,使它与原来的菱形重合,那么旋转的角度至少是()A.90°B.180°C.270°D.360°14、如图,在△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF的中点,则PM的最小值为()A.1.2B.1.3C.1.4D.2.415、下列条件中,能判定一个四边形为矩形的条件是( )A.对角线互相平分的四边形B.对角线相等且平分的四边形C.对角线相等的四边形D.对角线相等且互相垂直的四边形二、填空题(共10题,共计30分)16、已知矩形的面积是,其中一边长为,则对角线长为________.17、如图,矩形中,,,是边上一点,将沿翻折,点恰好落在对角线上的点处,则的长为________.18、如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,若AB=4,AD=3,则CF的长为________.19、如图,长方形ABCD沿AE折叠,使D点落在BC边上的F点处,如果∠BAF=60°,则∠DAE等于________度20、已知菱形的边长为4,∠A=60°,则菱形的面积为________.21、如图,正方形ABCD中,扇形BAC与扇形CBD的弧交于点E,AB=2cm.则图中阴影部分面积为________ .22、如图,在平面直角坐标系中,矩形的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段上一点,将沿翻折,O点恰好落在对角线上的点P处,反比例函数经过点B.二次函数的图象经过、G、A三点,则该二次函数的解析式为________.(填一般式)23、如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为________24、如图,在中,,点的坐标为,点在轴上,轴.将沿翻折得到,直线过点,则四边形的面积为________.25、如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B 在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为________.三、解答题(共5题,共计25分)26、如图,点M、N在▱ABCD的对角线AC上,且AM=CN,求证:四边形BMDN是平行四边形.27、如图,科博会上某公司展示了研发的绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座AE⊥直线EL且AE=25 cm,手臂AB=BC =60 cm,末端操作器CD=35 cm,AF∥直线EL.当机器人运作时,∠BAF=45°,∠ABC=75°,∠BCD=60°,求末端操作器节点D到地面直线EL的距离.(结果保留根号)28、如图示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连接CF.①求证:△DAE≌△DCF;②求证:△ABG∽△CFG.29、如图,初三一班数学兴趣小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°.朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度为1:(即AB:BC=1:),且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测量器的高度忽略不计)30、在矩形中,已知,在边上取点,使,连结,过点作,与边或其延长线交于点.猜想:如图①,当点在边上时,写出线段与的大小关系。
华东师大版八年级下学期《第19章矩形、菱形与正方形》2022年单元测试卷2
华东师大版八年级下学期《第19章矩形、菱形与正方形》2022年单元测试卷2一.菱形的性质(共3小题)1.如图,点E在菱形ABCD的AB边上,点F在BC边的延长线上,连接CE,DF,对于下列条件:①BE=CF;②CE⊥AB,DF⊥BC;③CE=DF;④∠BCE=∠CDF.只选取其中一条添加,不能确定△BCE≌△CDF的是()A.①B.②C.③D.④2.已知一个菱形的周长为8,有一个内角为120°,则该菱形较短的对角线长为()A.4B.2√3C.2D.13.如图,四边形ABCD是菱形,AE⊥BC,AF⊥CD,分别交CB、CD的延长线于点E、点F.(1)求证:△ABE≌△ADF;(2)若CD=5,AE=3,则四边形AECF的面积为.二.菱形的判定(共3小题)4.已知平行四边形ABCD的对角线相交于点O,补充下列四个条件,能使平行四边形ABCD 成为菱形的是()A.AB=BD B.AC=BD C.∠DAB=90°D.∠AOB=90°5.如图,▱ABCD的对角线AC、BD相交于点O,则添加一个适当的条件:可使其成为菱形(只填一个即可).6.在▱ABCD 中,对角线AC 、BD 交于点O ,E 是边BC 延长线上的动点,过点E 作EF ⊥BD 于F ,且与CD 、AD 分别交于点G 、H ,连接OH .(1)如图,若AC ⊥AB ,OF =OC ,求证:FG =CG ;(2)若在点E 运动的过程中,存在四边形OCGH 是菱形的情形,试探究▱ABCD 的边和角需要满足的条件.三.菱形的判定与性质(共3小题)7.如图,若两条宽度为1的带子相交成30°的角,则重叠部分(图中阴影部分)的面积是( )A .2B .√32C .1D .12 8.如图,△ABC 中,BC =2AB ,点D 、E 分别是BC 、AC 的中点,过点A 作AF ∥BC 交线段DE 的延长线于点F ,取AF 的中点G ,连结DG 交AE 于点H .(1)求证:四边形ABDF 是菱形;(2)连接BE 交DG 于点M ,若AC ⊥AB ,AC =6,求BM .9.如图,在平行四边形ABCD 中,∠BAD 的平分线AE 交BC 于点E ,∠ABC 的平分线BF交AD于点F,AE与BF相交于点O,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=3,BF=4,CE=2,求平行四边形ABCD的面积.四.矩形的性质(共3小题)10.如图,在矩形ABCD中,两条对角线AC与BD相交于点O,AB=3,OA=2,则AD 的长为()A.5B.√13C.√10D.√711.如图,在矩形ABCD中,对角线AC,BD相交于点O,点E,F分别是AO,AD的中点,若EF=6cm,则AC的长是.12.已知:如图,矩形ABCD的对角线AC的垂直平分线EF与AD、AC、BC分别交于点E、O、F.(1)求证:四边形AFCE是菱形;(2)若AB=5,BC=12,求菱形AFCE的面积.五.矩形的判定(共3小题)13.在平行四边形ABCD中,对角线AC和BD相交于点O,则下面条件能判定平行四边形ABCD是矩形的是()A.AC=BD B.AC⊥BD C.OA=OC D.AB=AD14.如图,工人师傅在贴长方形的瓷砖时,为了保证所贴瓷砖的外缘边与上一块瓷砖的两边互相平行,一般将两块瓷砖的一边重合,然后贴下去.这样做的数学依据是.15.如图,在▱ABCD中,点O是边BC的中点,连接DO并延长,交AB延长线于点E,连接BD、EC.(1)求证:四边形BECD是平行四边形;(2)若∠A=40°,则当∠BOD=°时,四边形BECD是矩形.六.矩形的判定与性质(共3小题)16.如图,在△ABC中,AC=3、AB=4、BC=5,P为BC上一动点,PG⊥AC于点G,PH ⊥AB于点H,M是GH的中点,P在运动过程中PM的最小值为()A.2.4B.1.4C.1.3D.1.217.如图,在▱ABCD中,M为AD的中点,BM=CM.求证:(1)△ABM≌△DCM;(2)四边形ABCD是矩形.18.如图,在▱ABCD 中,AB >AD ,DE 平分∠ADC ,AF ⊥BC 于点F 交DE 于G 点,延长BC 至H 使CH =BF ,连接DH .(1)证明:四边形AFHD 是矩形;(2)当AE =AF 时,猜想线段AB 、AG 、BF 的数量关系,并证明.七.正方形的性质(共3小题)19.如图,在正方形ABCD 中,AB =6,点Q 是AB 边上的一个动点(点Q 不与点B 重合),点M ,N 分别是DQ ,BQ 的中点,则线段MN =( )A .3√2B .3√22C .3D .620.如图,工人师傅制作了一个正方形窗架,把窗架立在墙上之前,在上面钉了两块等长的木条GF 与GE ,E 、F 分别是AD 、BC 的中点.(1)钉这两块木条的作用是什么?(2)G 点一定是AB 的中点吗?说明理由.21.阅读分析过程,解决问题:如图,正方形ABCD(四条边都相等,四个角都是90°),点E、F在CD、BC上,并且∠EAF=45°,延长CD至点G,使DG=BF,并连接AG.(1)求证:EF=DE+BF;(2)若AB=2,则△EFC的周长=.八.正方形的判定(共3小题)22.如图,△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,DE⊥BC,DF⊥AC,垂足分别为E、F.问四边形CFDE是正方形吗?请说明理由.23.已知:如图,▱ABCD中,延长BC至点E,使CE=BC,连接AE交CD于点O.(1)求证:CO=DO;(2)取AB中点F,连接CF,△COE满足什么条件时,四边形AFCO是正方形?请说明理由.24.如图,在△ABC中,AB=AC,D是BC中点、F是AC中点,AN是△ABC的外角∠MAC 的平分线,延长DF交AN于点E.连接CE.(1)求证:四边形ADCE是矩形;(2)填空:①若AB=BC=3,则四边形ADCE的面积为;②当△ABC满足四边形ADCE是正方形.九.正方形的判定与性质(共3小题)25.在下列4个判断中正确的是()A.如果四边形的两组对角分别相等,那么这个四边形是矩形B.对角线互相垂直的四边形是菱形C.正方形具有矩形的性质,又具有菱形的性质D.四边相等的四边形是正方形26.如图,正方形ABCD边长为6.菱形EFGH的三个顶点E、G、H分别在正方形ABCD 的边AB、CD、DA上,且AH=2,连接CF.(1)当DG=2时,求证:菱形EFGH为正方形;(2)设DG=x,试用含x的代数式表示△FCG的面积.27.如图,已知点E,F,M,N分别是正方形ABCD四条边上的点,并且AE=BF=CM=DN.(1)求证:四边形EFMN是正方形;(2)若AB=4,当点E在什么位置时,四边形EFMN的周长最小?并求四边形EFMN 周长的最小值.。
华东师大版八年数学下知识点归纳
华师大版八年级数学下册各章知识汇总精编第16章分式1、形如AB(A、B都是整式,且B中含有字母,B≠0)的式子叫做分式。
整式和分式统称有理式。
2、分母≠0时,分式有意义。
分母=0时,分式无意义。
3、分式的值为0,要同时满足两个条件:分子=0,而分母≠0。
4、分式基本性质:分式的分子、分母都乘以或除以同一个不为0的整式,分式的值不变。
5、分式、分子、分母的符号,任意改变其中两个的符号,分式的值不变。
6、分式四则运算1)分式加减的关键是通分,把异分母的分式,转化为同分母分式,再运算.2)分式乘除时先把分子分母都因式分解,然后再约去相同的因式。
3)分式的混合运算,注意运算顺序及符号的变化,4)分式运算的最后结果应化为最简分式或整式.7、分式方程1)分式化简与解分式方程不能混淆.分式化简是恒等变形,不能随意去分母.2)解分式方程的步骤:第一、化分式方程为整式方程;第二,解这个整式方程;第三,验根,通过检验去掉增根。
3)解有关应用题的步骤和列整式方程解应用题的步骤是一样的:设、列、解、验、答。
第17章函数及图象1、规定了原点、正方向和单位长度的直线叫数轴。
数轴上的点与实数一一对应。
数轴上的点A、B的坐标为x1、x2, 则AB=。
2、具有公共原点且互相垂直的两条数轴就构成平面直角坐标系。
坐标平面内的点与有序实数对一一对应。
3、坐标轴上的点不属于任何象限。
x轴上的点纵坐标y=0;y轴上的点横坐标x=0。
第一象限内的点x>0,y>0;第二象限内的点x<0,y>0;第三象限内的点x<0,y<0;第四象限内的点x>0,y<0;由此可知,x轴上方的点,纵坐标y>0;x轴下方的点,纵坐标y<0;y轴左边的点,横坐标x<0;y轴右边的点,横坐标x>0.4、关于某坐标轴对称的点,这个轴的坐标不变,另一个轴的坐标互为相反数。
关于原点对称的点,纵、横坐标都互为相反数。
关于第一、三象限角平分线对称的点,横纵坐标交换位置;关于第二、四象限角平分线上对称的点,不但横纵坐标交换位置,而且还要变成相反数。
19.3正方形(2)课件华东师大版数学八年级下册
看一看,选一选
1.正方形具有而菱形不具有的性质是(C)
A.对角线互相垂直 B.四条边都相等
C.对角线相等
D.对角线互相平分
2.下列说法正确的是( B)
A.四条边相等的四边形是正方形
B.两条对角线互相垂直的矩形是正方形
C.两条对角线相等且互相垂直的四边形是正方形
D.两条对角线分别平分一组对角的四边形是正方形
路,使得两条直的小路将花坛平均分成面积相等 的四部分(不考虑道路的宽度),你有几种方法? (至少说出三种)
思考:这三种分法有什么特点?
结论:过正方形对称中心且互相垂直的两条直线必将正 方形平均分成面积相等的四部分.
所学特殊四边形的性质
对
性质
平行四 矩
象
边形 形
边 对边平行且相等
√
√
四边相等
角 对角相等,邻角互 √
又∵S正ABCD = 6×6=36 ∴S△BEF = 36-6-6-9=15
练习
1线互相垂直 B.对角线互相平分
C.对角线相等 D.对角线平分一组对角 2.从四边形内能找一点,使该点到各边距离都相等的
图形可能是 ( D)
A.平行四边形、矩形、菱形 B.菱形、矩形 、正方形
(第二课时)
复习
想想:什么叫正方形?
A
D
O
1有一组邻边相等且有一个角是直角的平行四边形。B
C
2有一个角是直角的菱形
3有一组邻边相等的矩形
再想:正方形有哪些性质?
对称性:正方形是轴对称图形(4条对称轴),也是中 心对称图形; 边:四条边都相等,对边平行
角:四个角都是直角 对角线:正方形的 两条对角线互相垂直平分且相等, 每 条对角线平分一组对角
华师大版八年级下册第19.3正方形与旋转变换综合题专训(有答案).doc
华师大版八年级下册第19.3正方形与旋转变换综合题专训一、围绕正方形的屮心旋转试题1、(2016贵阳模拟)将五个边长都为2cm的正方形按如图所示摆放,点A、B、C • 6cm2 D. 8cm2C、D分别是山个正方形的中心,则图中以块阴影面积的和为(B )试题2、如图,在正方形ABCD中,对角线AC, BD相交于点O,点E, F为BC边上的两点,且ZEOF=45°,过点O作OE的垂线OG,交AB于点G,连接FG,下列结论:©ACOE^ABOG;②ACOE竺ABOF;③CE+BF>EF;④CE2+BF2=EF2.其中正确的冇C. 3个D. 4个试题3、如图,以RtAABC的斜边BC为一•边作正方形BCDE,设正方形的中心为O,连,那么AC的长等于(B )c. VH试题4、下列命题:如图,正方形ABCD中,E、F分别为AB、D. 6>/2AD上的点,AF=BE,CE、BF交于H, BF交AC于M, O为AC的屮点,OB交CE于N,连OH.卜-列结论2个B. 3C. 4D. 5'P :①BF 丄CE ;②OM 二ON ;③OH^Ch ;④Q^OH+BH 二CH.其屮正确的命题有试题5、如图,在正方形ABCD 中,对角线AC-L/BD 相交于点O, E 、F 分别在OB 、0A 上,若ZEAO=25°, OE=OF,则 ZDFO 的度数是 65°.二、围绕止方形的顶点旋转试题1、如图,在正方形ABCD'p, E 、F 分别是边BC 、CD±的点,ZEAF=45°, AECF 的周长为4,则正方形ABCD 的边长为(A )C.只有①④D.①②③④A. 2试题2、如图,边长为4的正方形ABCD 中,E 、F 分别为边BC 、DC ±的点,且ZEAF=45°,以下结论中正确的个数为(B )®S AA BE +S AADF=S AAEF ;② BE+DF 二 EF ;③ 当△ ABE^AADF 时,EF 长为8匹-8;④ 当EF=4吋,ACEF 是等腰直角三角形.ED 于点P.若AE=AP=1, PB=V5,下列结论:①AAPD 竺AAEB ;②点B 到直线AE 的距离为返;③EB 丄ED ;④S 正方形ABCD =4+雄;C. 2个试题3、如图,在正方形ABCD 外取一点E, 连接AE, BE, DE.过点A 作AE 的垂线交D. 1个B. 3个⑤ ^AAPD+^AAPB= 1+V6 •其中正确结论的序号是(A )C.①④⑤D.①③⑤A. <5B.警D ・VI2“5试题4、如图,正方形ABCD 的边长为2,点E 、F 分别为边AD 、BC ±的点,EF 二运, 点G 、H 分别为AB 、CD 边上的点,连接GH,若线段GH 与EF 的夹角为45。
正方形的判定-华东师大版八年级数学下册教案
正方形的判定-华东师大版八年级数学下册教案一、教学目标:1.理解正方形的定义;2.掌握判定一个图形是否为正方形的方法;3.进一步推理、解决实际问题。
二、教学重点:1.正方形的定义及性质;2.此外,正方形的三个在视觉上相等的角度是90°。
三、教学难点:判定正方形的方法。
四、教学方法:教师讲授、示范演练、小组讨论、课堂练习、实例演示。
五、教学过程:导入教师用展示板先展示正方形的图片,让学生对正方形有一个初步的印象,进而让学生讨论正方形的性质以及定义。
学习1.正方形的定义教师向学生讲解正方形的定义,如下:正方形是一种四边相等,四角都是直角的特殊的矩形。
这里要将特殊的矩形和矩形的定义区分开,并且要指出特殊在哪里。
要反复强调正方形四边相等、四角都是直角是正方形的最基本特征。
2.判定正方形(1)方法一:根据定义判定方法:判断几何图形是否是矩形,同时判断矩形的四条边是否相等。
如果是矩形并且四条边相等,则这个几何图形就是正方形。
否则,就不是正方形。
(2)方法二:根据性质判定方法:几何图形内部的任意一条对角线,若能把几何图形分成两个面积相等的直角三角形,则这个几何图形就是正方形。
总结教师总结本课所学的内容,即正方形的定义和判定方法,并让学生再次练习。
再次讨论针对一些学生出现的问题,老师在学生完成整个练习后,再次进行讨论和解答。
作业教师布置相关练习,并要求学生明天上课前完成。
六、教学内容适用情况:本次课程适用于中学生,国内各地均适用。
华师大版八年级下册数学第19章 矩形、菱形与正方形含答案
华师大版八年级下册数学第19章矩形、菱形与正方形含答案一、单选题(共15题,共计45分)1、如图,在矩形ABCD中,M是BC边上一点,连接AM,过点D作,垂足为若,,则BM的长为A.1B.C.D.2、如图,∠BAC=∠ACD=90°,∠ABC=∠ADC,CE⊥AD,且BE平分∠ABC,则下列结论:①AD=BC;②∠ACE=∠ABC;③∠ECD+∠EBC=∠BEC;④∠CEF=∠CFE.其中正的是()A.①②B.①③④C.①②④D.①②③④3、下列说法正确的是()A.有两个角为直角的四边形是矩形B.矩形的对角线相等C.平行四边形的对角线相等D.对角线互相垂直的四边形是菱形4、如图,在边长为1的菱形ABCD中,∠DAB=60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC=60°,连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC1=60°;…,按此规律所作的第六个菱形的边长为()A.9B.9C.27D.275、如图,是北京第24届国际数学家大会会徽,由4个全等的直角三角形拼合而成,如果大正方形的面积是13,小正方形的面积是1,直角三角形的短直角边为a,较长直角边为b,那么(a+b)2的值为()A.13B.19C.25D.1696、如图,已知平行四边形ABCD的对角线的交点是0,直线EF过O点,且平行于AD,直线GH过0点且平行于AB,则图中平行四边形共有()A.15个B.16个C.17个D.18个7、如图,四边形ACED为平行四边形,DF垂直平分BE甲乙两虫同时从A点开始爬行到点F,甲虫沿着A﹣D﹣E﹣F的路线爬行,乙虫沿着A﹣C﹣B﹣F的路线爬行,若它们的爬行速度相同,则()A.甲虫先到B.乙虫先到C.两虫同时到D.无法确定8、如图,网格中的四个格点组成菱形ABCD,则tan∠DBC的值为()A. B. C. D.39、下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.两条对角线垂直且平分的四边形是正方形D.四条边都相等的四边形是菱形10、如图,矩形ABCD中,点G,E分别在边BC,DC上,连接AG,EG,AE,将△ABG和△ECG分别沿AG,EG折叠,使点B,C恰好落在AE上的同一点,记为点F.若CE=3,CG=4,则DE的长度为()A. B. C.3 D.11、如图,平行四边形ABCD对角线AC、BD交于点O,∠ADB=20°,∠ACB=50°,过点O的直线交AD于点E,交BC于点F当点E从点A向点D移动过程中(点E与点A、点D不重合),四边形AFCE的形状变化依次是()A.平行四边形→矩形→平行四边形→菱形→平行四边形B.平行四边形→矩形→平行四边形→正方形→平行四边形C.平行四边形→菱形→平行四边形→矩形→平行四边形D.平行四边形→矩形→菱形→正方形→平行四边形12、如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是( )A.四边形AEDF是平行四边形B.若∠BAC=90°,则四边形AEDF是矩形 C.若AD⊥BC且AB=AC,则四边形AEDF是菱形 D.若AD平分∠BAC,则四边形AEDF是矩形13、如图,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是()A.3 :4B.5 :8C.9 :16D.1 :214、如图,在△ABC中,∠A=∠B=45 ,AB=4,以AC为边的阴影部分图形是一个正方形,则这个正方形的面积为()A.2B.4C.8D.1615、如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠,折叠后顶点D 恰好落在边OC上的点F处.若点D的坐标为,则点E的坐标为()A. B. C. D.二、填空题(共10题,共计30分)16、工人师傅在做矩形零件时,常用测量平行四边形的两条对角线是否相等来检查直角的精确度,这是根据________.17、阅读下面材料:小明遇到这样一个问题:如图1,在△ABC中,DE∥BC分别交AB于D,交AC于E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.小明发现,过点E作E F∥DC,交BC延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图2).请回答:BC+DE的值为________参考小明思考问题的方法,解决问题:如图3,已知▱ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠AGF的度数________18、如图,O是边长为4的正方形ABCD的中心,将一块足够大,圆心角为直角的扇形纸板的圆心放在点O处,并将纸板的圆心绕点O旋转,则正方形ABCD被纸板覆盖部分的面积为 ________。
华东师大版2019-2020学年八年级数学第二学期第19章 矩形、菱形、正方形 单元测试题(含答案)
19章矩形、菱形、正方形单元试卷一、选择题 (共1.在平行四边形、矩形、菱形、正方形中,不是轴对称图形的有( )A. 1个B. 2个C. 3个D. 4个2.如图,矩形ABCD 中,E 点在DC 上,且AE 平分 BAC ;若DE=4,AC =15,则 AEC 面积为( )A. 15B. 45C. 60D. 303.如图,菱形ABCD 中,∠B =60°,AB =4,则以AC 为边长的正方形ACEF 的周长为( )A.14B.15C.16D.174. 正方形ABCD 的边长为4cm ,则正方形的对角线长为( )A. 4cmB.24cmC.34cmD.32cm5.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是( ) A .20 B .24 C .40 D .486. 小明和小亮在做一道习题,若四边形ABCD 是平行四边形,请补充条件 ,使得四边形ABCD 是菱形.小明补充的条件是AB=BC ;小亮补充的条件是AC=BD ,你认为下列说法正确的是( )A .小明、小亮都正确B .小明正确,小亮错误C .小明错误,小亮正确D .小明、小亮都错误7.如图,矩形ABCD 沿AE 折叠,使D 点落在BC 边上的F 点处,如果∠BF A =30°,那么∠CEF 的度数是( )A .60° B.45° C . 40° D.30°8.如图,在矩形ABCD 中,E 、F 、G 、H 分别为边AB 、DA 、CD 、BC 的中点.若AB =2,AD =4,则图中阴影部分的面积为( )A.3B.4C.6D.89.如图,在正方形ABCD 外侧作等边△ADE ,AC 、BE 相交于点F ,则∠BFC 的度数是( )A.45°B.55°C.60°D.75°10.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为( )A.2B.2.2C.2.4D.2.5二、填空题(共6小题,每小题4分,满分24分)11. 已知四边形ABCD中,∠A=∠B=∠C=90°,若再添加一个条件,使得该四边形是正方形,那么这个条件可以是.12. 如图,矩形ABCD的周长是56cm,对角线AC、BD相交于O,△OAB与△OBC周长差是4cm,则矩形ABCD中较短边长是_________cm.13.如图,以正方形ABCD的对角线AC为边长作菱形AEFC,则∠EAF的度数是度.14.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是.15.如图,在矩形ABCD中,E是AB的中点,连接DE、CE.若AB=6,AD=4,则△CDE的周长为.16.如图,正方形ABCD的边长为8,点M在DC上,且CM=3DM,N是AC上的一动点,则DN+MN的最小值为.三、解答题(共9小题,满分86分)17.(8分)如图,在菱形ABCD中,对角线AC与BD交于点O.把△AOB平移到△DEC的位置,求证:四边形OCED是矩形.18.(8分)如图,菱形ABCD的对角线交于点O,AC=16cm,BD=12cm. 求菱形的高DM的长.19.(8分)把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB =3cm ,BC =5cm ,求EDF S .20.(8分)如图,在 ABCD 中,E ,F 分别是AD ,BC 上的点,EF 垂直平分AC .求证:四边形AECF 是菱形.21.(8分)如图,在正方形ABCD 中,E 是边AB 的中点,F 是边BC 的中点,连结CE 、DF .猜想图中C E 和DF 的关系,并证明你的猜想.22.(10分)如图,AB=CD=ED ,AD=EB ,BE ⊥DE ,垂足为E .(1)求证:△ABD ≌△EDB ;(2)只需添加一个..条件:_______________,可使四边形ABCD 为矩形,并加以证明.23.(10分)如图,四边形ABCD 是菱形,E 是BD 延长线上一点,F 是DB延长线上一点,且DE =BF .请你以F 为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并说明它和图中已有的某一条线段相等(只需说明一组线段相等即可):(1)连接_______;猜想:_________=________;(2)试证明你的猜想.24.(12分)如图,在矩形ABCD 中,对角线AC 与BD 交于点O .设点P 是AB 上的一点,将△OPD 沿边OP 翻折得到△OPG ,若△OPG 与△OPB 重叠部分△OPM 的面积是△PBD 的面积的41. (1)求证:四边形OPGB 是平行四边形;(2)若AD =10,AB =24,求AP 的长.25(14分)如图,在△ABC 中,D 是AC 的中点,E 是线段BC 延长线上一点,过点A 作BE 的平行线与线段ED 的延长线交于点F ,连接AE,CF .(1)求证:AF=CE ;(2)若AC ⊥EF ,试判断四边形AFCE 是什么样的四边形,并证明你的结论.(3)在第(2)小题中,还需加上一个什么条件,才能使四边形AFCE 成为正方形?不必说明理由.参考答案第19章矩形、菱形、正方形一、选择题1.A. 2. D 3.C 4. B 5. A .6. B 7. D 8. B 9.C 10. C二、填空题11.AB =BC 或AC ⊥BD , 12. 12cm ,13.22.5 ,14.(-5,4) 15.16. 16. 10.三、解答题17.证明:由平移的特征得:CE ∥OD ,DE ∥OC ,∴四边形OCED 是平行四边形,∵四边形ABCD 是菱形,∴AC ⊥BD ,∴∠COD =90°.∴平行四边形OCED 是矩形;18. 解:∵四边形ABCD 是菱形 ∴621,821,====⊥BD OB AC AO BD AC , 在Rt △AOB 中,1022=+=OB AO AB∵ABCD 菱形S =BD AC DM AB ⋅=⋅21 ∴12162110⨯⨯=⋅DM ∴6.9=DM cm 19.解:设ED=x ,则AE=5-x由折叠重合可知:A ’E=AE=5-x,A ’D=AB=3cm在Rt △A ’ED 中22'2'ED D A E A =+即222)5(3x x =-+ 解得:517=x 过F 做FH ⊥ED ,垂足为H∵四边形ABCD 是矩形,∴AD ∥BC∴FH=AB=3 ∴)(1051351721212cm FH ED S EDF =⨯⨯=⋅=∆ 20.证明:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∵DE=BF ,∴AE=CF ,∵AE ∥CF ,∴四边形AECF 是平行四边形, ∵AC ⊥EF ,∴四边形AECF 是菱形.21. 猜想CE=DF ,CE ⊥DF证明:∵四边形ABCD 是正方形, ∴AB=BC=CD ,∠EBC =∠FCD =90°. 又∵E 、F 分别是AB 、BC 的中点, ∴BE=CF ,∴△CEB ≌△DFC ,∴CE=DF .∠BCE =∠CDF∵∠BCE +∠ECD=∠FCD =90°∴∠CDF +∠ECD =90°∴CE ⊥DF∴CE=DF ,CE ⊥DF22.(1)证明:在ABD ∆与EDB ∆中, ∵AB=ED ,AD=EB ,BD=DB ; ∴ABD EDB △≌△(S.S.S )(2)添加的条件:AD=BC理由:∵AB=CD ,AD=BC∴ 四边形ABCD 是平行四边形 ∵BE DE ⊥∴︒=∠90E∵ABD EDB △≌△∴︒=∠=∠90E A∴平行四边形ABCD 是矩形23.(1)如图,连接AF ,AF = AE .(2)∵ 四边形ABCD 是菱形,∴AB=AD ,∴ ∠ABD=∠ADB ,∴ ∠ABF=∠ADE.在△ABF 和△ADE 中,⎪⎩⎪⎨⎧=∠=∠=,,,DE BF ADE ABF AD AB∴ △ABF ≌△ADE ,∴AE AF = .24.证明:∵四边形ABCD 是矩形 ∴OB=OD ∴PBD POB POD S S S 21==∆∆ ∵PBD POM S S 41=∆∴POB POM S S 21=∆ ∴PM=MB , 由折叠重合可知:PBD POD POG S S S 21==∆∆ ∴POG POM S S 21=∆ ∴OM=MG∴四边形OPGB 是平行四边形;(2)∵四边形ABCD 是矩形∴090=∠DAB ∴2624102222=+=+=AB AD BD ∴OB=OD=13由(1)得四边形OPGB 是平行四边形; ∴PG=OB=13由折叠重合可知:PD=PG =136910132222=-=-=AD PD AP25.(1)证明:∵AF ∥BE∴CED AFD ∠=∠∵D 是AC 的中点 ∴DC AD = ∵CDE ADF ∠=∠∴ADF ∆≌CDE ∆∴AF CE =(2)若EF AC ⊥,四边形AFCE 是菱形 理由:∵AF ∥CE ,AF=CE ∴ 四边形AFCE 是平行四边形 ∵EF AC ⊥∴平行四边形AFCE 是菱形(3)如AC =EF (答案不唯一)。
华师大版数学八年级下册《正方形的性质》教学设计
华师大版数学八年级下册《正方形的性质》教学设计一. 教材分析《正方形的性质》是华师大版数学八年级下册的一章内容。
本章主要让学生掌握正方形的性质,包括正方形的定义、性质、判定和应用。
在本章的学习中,学生将更深入地了解正方形的特点,以及如何运用正方形的性质解决实际问题。
二. 学情分析学生在学习本章内容前,已经掌握了矩形、菱形等四边形的性质,具备了一定的几何基础。
但正方形作为特殊的矩形和菱形,其性质更具特色,需要学生进一步理解和掌握。
此外,学生需要在学习过程中培养观察、思考和解决问题的能力。
三. 教学目标1.了解正方形的定义和性质。
2.学会运用正方形的性质解决实际问题。
3.培养学生的观察能力、思考能力和解决问题的能力。
四. 教学重难点1.正方形的性质及其应用。
2.学生对正方形性质的深入理解和灵活运用。
五. 教学方法1.采用问题驱动法,引导学生主动探究正方形的性质。
2.运用实例分析法,让学生通过观察、操作和思考,理解正方形的性质。
3.采用合作学习法,培养学生团队合作、交流分享的能力。
六. 教学准备1.准备相关正方形的图片、实物模型等教学资源。
2.设计有针对性的练习题,用于巩固和拓展学生的知识。
七. 教学过程1.导入(5分钟)利用图片、实物模型等引导学生回顾矩形和菱形的性质,为新课的学习做好铺垫。
同时,提出问题:“正方形是特殊的矩形还是特殊的菱形?它有哪些独特的性质?”激发学生的学习兴趣。
2.呈现(10分钟)展示正方形的定义和性质,引导学生观察、思考,并尝试用自己的语言总结正方形的性质。
教师在学生总结的基础上,给予归纳和提炼,确保学生对正方形性质的准确理解。
3.操练(10分钟)设计一系列练习题,让学生运用正方形的性质进行解答。
教师在学生解答过程中给予指导,帮助学生巩固正方形的性质。
4.巩固(10分钟)通过小组合作学习,让学生运用正方形的性质解决实际问题。
教师在学生合作学习过程中,关注学生的解题思路和方法,及时给予反馈和指导。
新华东师大版八年级数学下册《19章 矩形、菱形与正方形 19.1 矩形 阅读材料 完美矩形》教案_4
《完美矩形》教学设计
一、教学内容:
华师版数学八年级下册第十九章阅读材料:完美矩形。
二、教学目标:
1. 能借助正方形各边之间的关系并利用一元一次方程推算完美矩形各正方形的边长.
2. 经历方程思想解决几何问题的过程,体会数形结合的数学思想方法,积累数学活动经验.
三、教学重点、难点:
重点:探索用方程解决完美矩形的方法与过程。
难点:探索完美矩形时,如何利用设出未知量表示所有正方形的边长。
四、教具、学具准备:
教具:课件、电脑投影、实物展台、导学案等。
学具:大小不一正方形纸片、透明胶、草稿纸等。
五、教学过程:
六、作业布置:
思考并推算两个猜想:
1、存在更高阶的完美矩形吗?你能找到么?能将它在生活中变成现实吗?
2、存在更低阶的完美矩形吗?最低阶的完美矩形是多少阶?
、
七、板书设计:
完美矩形
步骤:1、设:正方形的边长为x
2、表:表其余各正方形的边长
3、列:一边多表。
华东师大版八年级数学下册第19章《矩形、菱形与正方形》教案设计
华东师大版八年级数学下册第19章《矩形、菱形与正方形》教案设计19.1矩形第1课时一、教材分析矩形是最为常见的平行四边形,本节教材先利用平行四边形活动木框进行演示,让学生以直观感知与操作确认为基础,通过适当的类比迁移,数学说理,分析矩形与平行四边形的联系与区别,揭示矩形的概念与所具有的性质。
进而通过例题,练习题的分析与解答,让学生学会运用己得的矩形性质解决简单的推理与计算问题。
本节教材注意强化对图形变换的理解,把矩形性质的形成、发展、应用的过程展现在学生面前,让学生通过动手实践、理性思考获得新知,给学生提供探索与交流的空间,培养学生提出问题、探究问题和解决问题的能力。
二、教学目标:1.知识目标: 掌握矩形的概念与有关性质,并会利用这些知识进行简单的推理与计算。
2.能力目标:在了解矩形与平行四边形之间的关系,掌握、运用矩形性质的过程中,渗透数形结合、转化化归与方程思想,进一步提高学生的分析问题与解决问题的能力。
3.情感目标:通过动手操作、观察比较、合作交流,激发学生的学习兴趣,让学生增强学习信心,体验探索与创造的快乐。
三、教学重点:(一)矩形概念的理解;(二)掌握、运用矩形的性质。
四、教学难点:(一)了解矩形与平行四边形的联系与区别。
(二)运用矩形的性质进行简单的推理与计算。
五、教学用具:(一)学生:方格纸、小刀。
(二)教师:平行四边形活动木框、多媒体课件。
六、教学过程:(一)复习引入1.实物演示:展示平行四边形活动木框。
问题:它具有什么性质? (平行四边形的性质:①中心对称图形;②两组对边平行且相等;③对角相等;④对角线互相平分)2.推动平行四边形活动木框上边的D 点问题:你发现什么?(提问)(1)木框随四个内角大小发生变动,但仍保持平行四边形形状。
(为什么?)(2)在推动过程中,当一个内角变为直角时,木框形状为特殊的平行四边形,即为小学已学过的长方形,现称为矩形。
(二)探究新知1. 矩形与平行四边形的联系由上面教学过程知:有一个角是直角的平行四边形是矩形。
最新-八年级数学下册 218正方形的判定 教案 华师大版
20.4正方形判定课型:新授课学习目的1.探究正方形的判定方法.2.通过运用正方形的判定解题,培养学生的分析能力和观察能力.3.通过正方形有关知识的学习,感受完美的正方形的图形美和语言美教学设计:小结、归纳、提高学习重点:正方形的判定方法.学习难点:正方形判定方法的应用.教学过程设计:一.温故互查1.矩形、菱形是怎样的特殊平行四边形,它们比平行四边形多些什么性质?2.正方形是怎样的特殊平行四边形?正方形,菱形有什么关系?正方形有什么性质?二.设问导读阅读教材P118的内容,完成下列各题。
(一)我们已经知道,正方形是一个中心对称图形,也是一个轴对称图形,具有如下的性质:1.四条边都相等;2.四个角都是直角.因此,正方形可以看作为:有一个角是直角的菱形;有一组邻边相等的矩形.这些实际上就是判定正方形的方法.(二)阅读P118例题,把你的不同方法、思路与同伴交流。
(三)阅读P118“讨论”,与同学交流你的既快又准确的检验方法。
三.自我检测判断题:1:对角线相等的菱形是正方形()2:对角线互相垂直的矩形是正方形()3:对角线垂直且相等的四边形是正方形()4:四条边都相等的四边形是正方形()5:四个角相等的四边形是正方形()6.有一个角是直角的菱形是正方形。
()7有一组邻边相等的矩形是正方形。
()四.巩固训练1.已知如图,已知正方形ABCD,延长AB到E,连结EC,作AG⊥EC于G,AG交BC于F,求证:AF=CE五.拓展探究:已知如图正方形ABCD的边长为1,AB.AD上都有一点P.Q,如果△APQ周长为2,求∆PCQ度数.六.小结:(1)判定一个四边形为正方形的基本方法:定义法,矩形菱形法.(2)正方形的性质较多,在证题时要灵活应用.七.布置作业:教材P118.1-3。
正方形的判定-华东师大版八年级数学下册教案
正方形的判定-华东师大版八年级数学下册教案教学目标1.能够正确辨别和判定一个图形是否为正方形。
2.能够应用正方形的性质解决简单问题。
3.能够灵活运用平移、旋转和对称的概念处理正方形问题。
4.培养学生的观察能力、逻辑思维和几何想象能力。
教学重点学生能够正确辨别和判定一个图形是否为正方形,能够灵活运用正方形的性质解决简单问题。
教学难点学生能够灵活运用平移、旋转、对称的概念处理正方形问题。
教学过程1.观察视频:播放数学形象视频,让学生自主观察,了解正方形的性质和特点。
2.讲解正方形的定义和判定方法:通过具体的例子,让学生了解正方形的定义和判定方法,强调正方形的四条边相等,两个相邻角相等且为直角,对角线相等且互相平分。
3.练习判定正方形:在黑板上画出几个图形,并要求学生判定哪些是正方形,哪些不是正方形,并让学生自己给出判定的理由。
4.分组讨论:将学生分为小组,让他们自己设计几个简单的题目,让其他小组来判定,同时要求判定理由必须合理。
5.练习运用正方形的性质:讲解正方形的性质后,通过简单的例子来解决问题,让学生理解和掌握正方形的性质的应用。
6.做一些简单的题目:根据教材的要求选择一些简单的习题,让学生巩固和应用所学知识。
7.运用平移、旋转和对称的概念:讲解平移、旋转和对称的概念后,通过几个简单的例子来让学生加深对这些概念的理解,并且灵活运用这些概念来解决正方形问题。
教学方法1.观察视频法;2.讲解与演示相结合法;3.小组讨论法;4.动手操作法。
教学评估1.学生对正方形的认知程度,包括正方形的定义和判定方法;2.学生对正方形的性质的掌握程度,能否灵活应用正方形的性质解决简单问题;3.课上小组讨论的结果,判定正方形的理由是否合理;4.课堂练习的效果,是否能够做出简单的正方形习题。
总结本课程主要讲解了正方形的定义和判定方法、正方形的性质及应用、平移、旋转和对称的概念在正方形中的应用。
通过观察视频、小组讨论、课堂练习等多种教学手段,让学生逐步掌握正方形的相关知识,并通过练习和应用来加深对正方形相关知识的理解和掌握。
华师大版八年级数学下册:19.3.2《正方形的判定与性质》同步训练(含答案)
19.3.2正方形的判定与性质农安县合隆中学徐亚惠一.选择题(共5小题)1.下列说法错误的是()A.有一个角为直角的菱形是正方形B.有一组邻边相等的矩形是正方形C.对角线相等的菱形是正方形D.对角线相等且互相垂直的四边形是正方形2.在正方形ABCD的边AB、BC、CD、DA上分别任意取点E、F、G、H.这样得到的四边形EFGH中,是正方形的有()A.1个B.2个C.4个D.无穷多个3.如图,四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB,若四边形ABCD面积为16,则DE的长为()A.3 B.2 C.4 D.84.△ABC中,∠C=90°,点O为△ABC三条角平分线的交点,OD⊥BC于D,OE⊥AC于E,OF⊥AB于F,且AB=10cm,BC=8cm,AC=6cm,则点O到三边AB、AC、BC的距离为()A.2cm,2cm,2cm B.3cm,3cm,3cm C.4cm,4cm,4cm D.2cm,3cm,5cm5.如图,在一个大正方形内,放入三个面积相等的小正方形纸片,这三张纸片盖住的总面积是24平方厘米,且未盖住的面积比小正方形面积的四分之一还少3平方厘米,则大正方形的面积是(单位:平方厘米)()A.40 B.25 C.26 D.36二.填空题(共4小题)6.现有一张边长等于a(a>16)的正方形纸片,从距离正方形的四个顶点8cm处,沿45°角画线,将正方形纸片分成5部分,则阴影部分是_________(填写图形的形状)(如图),它的一边长是_________.7.如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt△ADE,∠AED=90°,连接OE,DE=6,OE=8,则另一直角边AE的长为_________.8.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是_________.9.四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,则在下列推理不成立的是_________A、①④⇒⑥;B、①③⇒⑤;C、①②⇒⑥;D、②③⇒④三.解答题(共11小题)10.如图,已知点E、F、G、H分别在正方形ABCD的各边上,且AE=BF=CG=DH,AF、BG、CH、DE分别相交于点A′、B′、C′、D′.求证:四边形A′B′C′D′是正方形.11.如图,在正方形ABCD中,点M在边AB上,点N在边AD的延长线上,且BM=DN.点E为MN的中点,DE的延长线与AC相交于点F.试猜想线段DF与线段AC的关系,并证你的猜想.12.如图,正方形ABCD边长为6.菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,且AH=2,连接CF.(1)当DG=2时,求证:菱形EFGH为正方形;(2)设DG=x,试用含x的代数式表示△FCG的面积.13.如图,正方形ABCD,动点E在AC上,AF⊥AC,垂足为A,AF=AE.(1)求证:BF=DE;(2)当点E运动到AC中点时(其他条件都保持不变),问四边形AFBE是什么特殊四边形?说明理由.14.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.(1)若DG=2,求证四边形EFGH为正方形;(2)若DG=6,求△FCG的面积;(3)当DG为何值时,△FCG的面积最小.15.如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC 上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系;并加以证明;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,请证明你的猜想.16.如图,已知四边形ABCD是正方形,分别过A、C两点作l1∥l2,作BM⊥l1于M,DN⊥l1于N,直线MB、ND分别交l2于Q、P.求证:四边形PQMN是正方形.17.在正方形ABCD各边上一次截取AE=BF=CG=DH,连接EF,FG,GH,HE.试问四边形EFGH是否是正方形?18.如图,四边形ABCD是正方形,点P是BC上任意一点,DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,BF的延长线交CH于点G.(1)求证:AF﹣BF=EF;(2)四边形EFGH是什么四边形?并证明;(3)若AB=2,BP=1,求四边形EFGH的面积.19.如图,△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,DE⊥BC,DF⊥AC,垂足分别为E、F.问四边形CFDE是正方形吗?请说明理由.20.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,DE⊥AB,DF⊥AC垂足分别为E,F.求证:四边形DEAF是正方形.19.3.2正方形的判定与性质参考答案与试题解析一.选择题(共5小题)1.下列说法错误的是()A.有一个角为直角的菱形是正方形B.有一组邻边相等的矩形是正方形C.对角线相等的菱形是正方形D.对角线相等且互相垂直的四边形是正方形考点:正方形的判定.分析:正方形:四个角都是直角,四条边都相等,对角线相等,且互相垂直平分的平行四边形;菱形:四条边都相等,对角线互相垂直平分的平行四边形;矩形:四个角都相等,对角线相等的平行四边形.解答:解:A、有一个角为直角的菱形的特征是:四条边都相等,四个角都是直角,则该菱形是正方形.故本选项说法正确;B、有一组邻边相等的矩形的特征是:四条边都相等,四个角都是直角.则该矩形为正方形.故本选项说法正确;C、对角线相等的菱形的特征是:四条边都相等,对角线相等的平行四边形,即该菱形为正方形.故本选项说法正确;D、对角线相等且互相垂直的平行四边形是正方形.故本选项说法错误;故选D.点评:本题考查了正方形的判定.正方形集矩形、菱形的性质于一身,是特殊的平行四边形.2.在正方形ABCD的边AB、BC、CD、DA上分别任意取点E、F、G、H.这样得到的四边形EFGH中,是正方形的有()A.1个B.2个C.4个D.无穷多个考点:正方形的判定与性质;全等三角形的判定.专题:计算题.分析:在正方形四边上任意取点E、F、G、H,若能证明四边形EFGH为正方形,则说明可以得到无穷个正方形.解答:解:无穷多个.如图正方形ABCD:AH=DG=CF=BE,HD=CG=FB=EA,∠A=∠B=∠C=∠D,有△AEH≌△DHG≌△CGF≌△BFE,则EH=HG=GF=FE,另外很容易得四个角均为90°则四边形EHGF为正方形.故选D.点评:本题考查了正方形的判定与性质,难度适中,利用三角形全等的判定证明EH=HG=GF=FE.3.如图,四边形ABCD中,AD=DC,∠ADC=∠ABC=90°,DE⊥AB,若四边形ABCD面积为16,则DE的长为()A. 3 B.2 C.4 D.8考点:正方形的判定与性质.专题:证明题.分析:如图,过点D作BC的垂线,交BC的延长线于F,利用互余关系可得∠A=∠FCD,又∠AED=∠F=90°,AD=DC,利用AAS可以判断△ADE≌△CDF,∴DE=DF,S四边形ABCD=S正方形DEBF=16,DE=4.解答:解:过点D作BC的垂线,交BC的延长线于F,∵∠ADC=∠ABC=90°,∠CDF+∠EDC=90°,∴∠A=∠FCD,又∠AED=∠F=90°,AD=DC,∴△ADE≌△CDF,∴DE=DF,S四边形ABCD=S正方形DEBF=16,∴DE=4.故选C.点评:本题运用割补法,或者旋转法将四边形ABCD转化为正方形,根据面积保持不变,来求正方形的边长.4.△ABC中,∠C=90°,点O为△ABC三条角平分线的交点,OD⊥BC于D,OE⊥AC于E,OF⊥AB于F,且AB=10cm,BC=8cm,AC=6cm,则点O到三边AB、AC、BC的距离为()A.2cm,2cm,2cm B.3cm,3cm,3cm C.4cm,4cm,4cm D. 2cm,3cm,5cm考点:正方形的判定与性质.分析:连接OA,OB,OC,利用角的平分线上的点到角的两边的距离相等可知△BDO≌△BFO,△CDO≌△CEO,△AEO≌△AFO,∴BD=BF,CD=CE,AE=AF,又因为点O到三边AB、AC、BC的距离是CD,∴AB=8﹣CD+6﹣CD=10,解得CD=2,所以点O到三边AB、AC、BC的距离为2.解答:解:连接OA,OB,OC,则△BDO≌△BFO,△CDO≌△CEO,△AEO≌△AFO,∴BD=BF,CD=CE,AE=AF,又∵∠C=90,OD⊥BC于D,OE⊥AC于E,且O为△ABC三条角平分线的交点∴四边形OECD是正方形,则点O到三边AB、AC、BC的距离=CD,∴AB=8﹣CD+6﹣CD=﹣2CD+14,又根据勾股定理可得:AB=10,即﹣2CD+14=10∴CD=2,即点O到三边AB、AC、BC的距离为2cm.故选A点评:本题主要考查垂直平分线上的点到线段两段的距离相等的性质和边的和差关系.5.如图,在一个大正方形内,放入三个面积相等的小正方形纸片,这三张纸片盖住的总面积是24平方厘米,且未盖住的面积比小正方形面积的四分之一还少3平方厘米,则大正方形的面积是(单位:平方厘米)()A.40 B.25 C.26 D.36考点:正方形的判定与性质.专题:计算题.分析:设小正方形的边长为a,大正方形的边长为b,由正方形的面积公式,根据题意列出方程组解方程组得出大正方形的边长,则可求出面积.解答:解:设小正方形的边长为a,大正方形的边长为b,由这三张纸片盖住的总面积是24平方厘米,可得ab+a(b﹣a)=24 ①,由未盖住的面积比小正方形面积的四分之一还少3平方厘米,可得(b﹣a)2=a2﹣3,②将①②联立解方程组可得:a=4,b=5,∴大正方形的边长为5,∴面积是25.故选B.点评:本题考查了正方形的性质及面积公式,难度较大,关键根据题意列出方程.二.填空题(共4小题)6.现有一张边长等于a(a>16)的正方形纸片,从距离正方形的四个顶点8cm处,沿45°角画线,将正方形纸片分成5部分,则阴影部分是正方形(填写图形的形状)(如图),它的一边长是cm.考点:正方形的判定与性质.专题:压轴题.分析:延长小正方形的一边交大正方形于一点,连接此点与距大正方形顶点8cm处的点,构造直角边长为8的等腰直角三角形,将小正方形的边长转化为等腰直角三角形的斜边长来求解即可.解答:解:如图,作AB平行于小正方形的一边,延长小正方形的另一边与大正方形的一边交于B点,∴△ABC为直角边长为8cm的等腰直角三角形,∴AB=AC=8,∴阴影正方形的边长=AB=8 cm.故答案为:正方形,cm.点评:本题考查了正方形的性质与勾股定理的知识,题目同时也渗透了转化思想.7.如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt△ADE,∠AED=90°,连接OE,DE=6,OE=8,则另一直角边AE的长为10.考点:正方形的判定与性质;全等三角形的判定与性质;勾股定理.分析:首先过点O作OM⊥AE于点M,作ON⊥DE,交ED的延长线于点N,易得四边形EMON是正方形,点A,O,D,E共圆,则可得△OEN是等腰直角三角形,求得EN的长,继而证得Rt△AOM≌Rt△DON,得到AM=DN,继而求得答案.解答:解:过点O作OM⊥AE于点M,作ON⊥DE,交ED的延长线于点N,∵∠AED=90°,∴四边形EMON是矩形,∵正方形ABCD的对角线交于点O,∴∠AOD=90°,OA=OD,∴∠AOD+∠AED=180°,∴点A,O,D,E共圆,∴=,∴∠AEO=∠DEO=∠AED=45°,∴OM=ON,∴四边形EMON是正方形,∴EM=EN=ON,∴△OEN是等腰直角三角形,∵OE=8,∴EN=8,∴EM=EN=8,在Rt△AOM和Rt△DON中,,∴Rt△AOM≌Rt△DON(HL),∴AM=DN=EN﹣ED=8﹣6=2,∴AE=AM+EM=2+8=10.故答案为:10.点评:此题考查了正方形的判定与性质、全等三角形的判定与性质以及等腰直角三角形性质.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.8.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P.若四边形ABCD的面积是18,则DP的长是3.考点:正方形的判定与性质;全等三角形的判定与性质.分析:过点D作DE⊥DP交BC的延长线于E,先判断出四边形DPBE是矩形,再根据等角的余角相等求出∠ADP=∠CDE,再利用“角角边”证明△ADP和△CDE全等,根据全等三角形对应边相等可得DE=DP,然后判断出四边形DPBE是正方形,再根据正方形的面积公式解答即可.解答:解:如图,过点D作DE⊥DP交BC的延长线于E,∵∠ADC=∠ABC=90°,∴四边形DPBE是矩形,∵∠CDE+∠CDP=90°,∠ADC=90°,∴∠ADP+∠CDP=90°,∴∠ADP=∠CDE,∵DP⊥AB,∴∠APD=90°,∴∠APD=∠E=90°,在△ADP和△CDE中,,∴△ADP≌△CDE(AAS),∴DE=DP,四边形ABCD的面积=四边形DPBE的面积=18,∴矩形DPBE是正方形,∴DP==3.故答案为:3.点评:本题考查了正方形的判定与性质,全等三角形的判定与性质,熟记各性质并作辅助线构造出全等三角形和正方形是解题的关键.9.四边形ABCD的对角线AC和BD相交于点O,设有下列条件:①AB=AD;②∠DAB=90°;③AO=CO,BO=DO;④矩形ABCD;⑤菱形ABCD,⑥正方形ABCD,则在下列推理不成立的是CA、①④⇒⑥;B、①③⇒⑤;C、①②⇒⑥;D、②③⇒④考点:正方形的判定与性质;全等三角形的判定与性质;菱形的判定与性质;矩形的判定与性质.专题:证明题.分析:根据矩形、菱形、正方形的判定定理,对角线互相平分的四边形为平行四边形,再由邻边相等,得出是菱形,和一个角为直角得出是正方形,根据已知对各个选项进行分析从而得到最后的答案.解答:解:A、由①④得,一组邻边相等的矩形是正方形,故正确;B、由③得,四边形是平行四边形,再由①,一组邻边相等的平行四边形是菱形,故正确;C、由①②不能判断四边形是正方形;D、由③得,四边形是平行四边形,再由②,一个角是直角的平行四边形是矩形,故正确.故选C.点评:此题用到的知识点是:矩形、菱形、正方形的判定定理,如:一组邻边相等的矩形是正方形;对角线互相平分且一组邻边相等的四边形是菱形;对角线互相平分且一个角是直角的四边形是矩形.灵活掌握这些判定定理是解本题的关键.三.解答题(共11小题)10.如图,已知点E、F、G、H分别在正方形ABCD的各边上,且AE=BF=CG=DH,AF、BG、CH、DE分别相交于点A′、B′、C′、D′.求证:四边形A′B′C′D′是正方形.考点:正方形的判定与性质;全等三角形的判定与性质.专题:证明题.分析:依据三角形的内角和定理可以判定四边形A′B′C′D′的三个角是直角,则四边形是矩形,然后证明一组邻边相等,可以证得四边形是正方形.解答:证明:在正方形ABCD中,∵在△ABF和△BCG中,∴△ABF≌△BCG(SAS)∴∠BAF=∠GBC,∵∠BAF+∠AFB=90°,∴∠GBC+∠AFB=90°,∴∠BB′F=90°,∴∠A′B′C′=90°.∴同理可得∠B′C′D′=∠C′D′A′=90°,∴四边形A′B′C′D′是矩形.∵在△AB′B和△BC′C中,∴△AB′B≌△BC′C(AAS),∴AB′=BC′∵在△AA′E和△BB′F中,∴△AA′E≌△BB′F(AAS),∴AA′=BB′∴A′B′=B′C′∴矩形A′B′C′D′是正方形.点评:本题考查了正方形的判定,判定的方法是证明是矩形同时是菱形.11.如图,在正方形ABCD中,点M在边AB上,点N在边AD的延长线上,且BM=DN.点E为MN的中点,DE的延长线与AC相交于点F.试猜想线段DF与线段AC的关系,并证你的猜想.考点:正方形的判定与性质;全等三角形的判定与性质;线段垂直平分线的性质.专题:探究型.分析:猜想:线段DF垂直平分线段AC,且DF=AC,过点M作MG∥AD,与DF的延长线相交于点G,作GH⊥BC,垂足为H,连接AG、CG.根据正方形的性质和全等三角形的证明方法证明△AMG≌△CHG即可.解答:猜想:线段DF垂直平分线段AC,且DF=AC,证明:过点M作MG∥AD,与DF的延长线相交于点G.则∠EMG=∠N,∠BMG=∠BAD,∵∠MEG=∠NED,ME=NE,∴△MEG≌△NED,∴MG=DN.∵BM=DN,∴MG=BM.作GH⊥BC,垂足为H,连接AG、CG.∵四边形ABCD是正方形,∴AB=BC=CD=DA,∠BAD=∠B=∠ADC=90°,∵∠GMB=∠B=∠GHB=90°,∴四边形MBHG是矩形.∵MG=MB,∴四边形MBHG是正方形,∴MG=GH=BH=MB,∠AMG=∠CHG=90°,∴AM=CH,∴△AMG≌△CHG.∴GA=GC.又∵DA=DC,∵∠ADC=90°,DA=DC,∴DF=AC即线段DF垂直平分线段AC,且DF=AC.点评:本题综合考查了矩形的判定和性质、正方形的判定和性质,垂直平分线的判定和性质,全等三角形的性质和判定等知识点,此题综合性比较强,难度较大,但题型较好,训练了学生分析问题和解决问题以及敢于猜想的能力.12.如图,正方形ABCD边长为6.菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,且AH=2,连接CF.(1)当DG=2时,求证:菱形EFGH为正方形;(2)设DG=x,试用含x的代数式表示△FCG的面积.考点:正方形的判定与性质;全等三角形的判定与性质;菱形的性质.分析:(1)由于四边形ABCD为正方形,四边形HEFG为菱形,那么∠D=∠A=90°,HG=HE,而AH=DG=2,易证△AHE≌△DGH,从而有∠DHG=∠HEA,等量代换可得∠AHE+∠DHG=90°,易证四边形HEFG为正方形;(2)欲求△FCG的面积,由已知得CG的长易求,只需求出GC边的高,通过证明△AHE≌△MFG可得.解答:(1)证明:在△HDG和△AEH中,∵四边形ABCD是正方形,∴∠D=∠A=90°,∵四边形EFGH是菱形,∴HG=HE,∵DG=AH=2,∴Rt△HDG≌△AEH,∴∠DHG=∠AEH,∴∠DHG+∠AHE=90°∴∠GHE=90°,∴菱形EFGH为正方形;(2)解:过F作FM⊥CD,垂足为M,连接GE∵CD∥AB,∴∠AEG=∠MGE,∵GF∥HE,∴∠HEG=∠FGE,∴∠AEH=∠FGM,∵,∴Rt△AHE≌Rt△GFM,∴MF=2,∵DG=x,∴CG=6﹣x.∴S△FCG=CG•FM=6﹣x.点评:本题考查了正方形的性质、菱形的性质、全等三角形的判定和性质,解题的关键是作辅助线:过F 作FM⊥DC,交DC延长线于M,连接GE,构造全等三角形和内错角.13.如图,正方形ABCD,动点E在AC上,AF⊥AC,垂足为A,AF=AE.(1)求证:BF=DE;(2)当点E运动到AC中点时(其他条件都保持不变),问四边形AFBE是什么特殊四边形?说明理由.考点:正方形的判定与性质;全等三角形的判定与性质.分析:(1)根据正方形的性质判定△ADE≌△ABF后即可得到BF=DE;(2)利用正方形的判定方法判定四边形AFBE为正方形即可.解答:(1)证明:∵正方形ABCD,∴AB=AD,∠BAD=90°,∵AF⊥AC,∴∠EAF=90°,∴∠BAF=∠EAD,在△ADE和△ABF中∴△ADE≌△ABF(SAS),∴BF=DE;(2)解:当点E运动到AC的中点时四边形AFBE是正方形,理由:∵点E运动到AC的中点,AB=BC,∴BE⊥AC,BE=AE=AC,∴BE=AF=AE,又∵BE⊥AC,∠FAE=∠BEC=90°,∴BE∥AF,∵BE=AF,∴得平行四边形AFBE,∵∠FAE=90°,AF=AE,∴四边形AFBE是正方形.点评:本题考查了正方形的判定和性质,解题的关键是正确的利用正方形的性质.14.已知,如图,矩形ABCD中,AD=6,DC=7,菱形EFGH的三个顶点E,G,H分别在矩形ABCD的边AB,CD,DA上,AH=2,连接CF.(1)若DG=2,求证四边形EFGH为正方形;(2)若DG=6,求△FCG的面积;(3)当DG为何值时,△FCG的面积最小.考点:正方形的判定与性质;全等三角形的判定与性质;菱形的性质;矩形的性质.专题:计算题;压轴题.分析:(1)由于四边形ABCD为矩形,四边形HEFG为菱形,那么∠D=∠A=90°,HG=HE,而AH=DG=2,易证△AHE≌△DGH,从而有∠DHG=∠HEA,等量代换可得∠AHE+∠DHG=90°,易证四边形HEFG为正方形;(2)过F作FM⊥DC,交DC延长线于M,连接GE,由于AB∥CD,可得∠AEG=∠MGE,同理有∠HEG=∠FGE,利用等式性质有∠AEH=∠MGF,再结合∠A=∠M=90°,HE=FG,可证△AHE≌△MFG,从而有FM=HA=2(即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2),进而可求三角形面积;(3)先设DG=x,由第(2)小题得,S△FCG=7﹣x,在△AHE中,AE≤AB=7,利用勾股定理可得HE2≤53,在Rt△DHG 中,再利用勾股定理可得x2+16≤53,进而可求x≤,从而可得当x=时,△GCF的面积最小.解答:解:(1)∵四边形ABCD为矩形,四边形HEFG为菱形,∴∠D=∠A=90°,HG=HE,又AH=DG=2,∴Rt△AHE≌Rt△DGH(HL),∴∠DHG=∠HEA,∵∠AHE+∠HEA=90°,∴∠AHE+∠DHG=90°,∴∠EHG=90°,∴四边形HEFG为正方形;(2)过F作FM⊥DC,交DC延长线于M,连接GE,∵AB∥CD,∴∠AEG=∠MGE,∴∠HEG=∠FGE,∴∠AEH=∠MGF,在△AHE和△MFG中,∠A=∠M=90°,HE=FG,∴△AHE≌△MFG,∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离始终为定值2,因此;(3)设DG=x,则由第(2)小题得,S△FCG=7﹣x,在△AHE中,AE≤AB=7,∴HE2≤53,∴x2+16≤53,∴x≤,∴S△FCG的最小值为,此时DG=,∴当DG=时,△FCG的面积最小为().点评:本题考查了矩形、菱形的性质、全等三角形的判定和性质、勾股定理.解题的关键是作辅助线:过F作FM⊥DC,交DC延长线于M,连接GE,构造全等三角形和内错角.15.如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC 上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系;并加以证明;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,请证明你的猜想.考点:正方形的判定与性质;全等三角形的判定与性质.分析:(1)过P作PE⊥BC,PF⊥CD,证明Rt△PQF≌Rt△PBE,即可;(2)证明思路同(1)解答:(1)PB=PQ,证明:过P作PE⊥BC,PF⊥CD,∵P,C为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四边形PECF为正方形,∵∠BPE+∠QPE=90°,∠QPE+∠QPF=90°,∴Rt△PQF≌Rt△PBE,∴PB=PQ;(2)PB=PQ,证明:过P作PE⊥BC,PF⊥CD,∵P,C为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四边形PECF为正方形,∵∠BPF+∠QPF=90°,∠BPF+∠BPE=90°,∴∠BPE=∠QPF,∴Rt△PQF≌Rt△PBE,∴PB=PQ.点评:此题考查了正方形,角平分线的性质,以及全等三角形判定与性质.此题综合性较强,注意数形结合思想.16.如图,已知四边形ABCD是正方形,分别过A、C两点作l1∥l2,作BM⊥l1于M,DN⊥l1于N,直线MB、ND分别交l2于Q、P.求证:四边形PQMN是正方形.考点:正方形的判定与性质.专题:证明题;压轴题.分析:可由Rt△ABM≌Rt△DAN,AM=DN同理可得AN=NP,所以MN=PN,进而可得其为正方形.解答:证明:l1∥l2,BM⊥l1,DN⊥l2,∴∠QMN=∠P=∠N=90°,∵AB=AD,∠M=∠N=90°∠ADN+∠NAD=90°,∠NAD+∠BAM=90°,∴∠ADN=∠BAM,又∵AD=BA,∴Rt△ABM≌Rt△DAN(AAS),∴AM=DN同理AN=DP,∴AM+AN=DN+DP,即MN=PN.∴四边形PQMN是正方形.点评:本题考查了矩形的判定和性质、全等三角形的判定和性质以及正方形的判定,解题的关键是熟练掌握各种几何图形的性质和判定方法.17.在正方形ABCD各边上一次截取AE=BF=CG=DH,连接EF,FG,GH,HE.试问四边形EFGH是否是正方形?考点:正方形的判定与性质.分析:根据正方形的性质可得AB=BC=CD=AD,∠A=∠B=∠C=∠D,然后求出BE=CF=DG=AH,再利用“边角边”证明△AHE和△BEF和△CFG和△DGH全等,根据全等三角形对应边相等可得EF=FG=GH=EH,全等三角形对应角相等可得∠AHE=∠BEF=∠CFG=∠DGH,再求出∠EFG=∠FGH=∠GHE=∠FEH=90°,从而得到四边形EFGH是正方形.解答:解:四边形EFGH是正方形.理由如下:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠A=∠B=∠C=∠D,∵AE=BF=CG=DH,∴AB﹣AE=BC﹣BF=CD﹣CG=AD﹣DH,即BE=CF=DG=AH,∴△AHE≌△BEF≌△CFG≌△DGH,∴EF=FG=GH=EH,∠AHE=∠BEF=∠CFG=∠DGH,∴∠EFG=∠FGH=∠GHE=∠FEH=90°,∴四边形EFGH是正方形.点评:本题考查了正方形的判定与性质,全等三角形的判定与性质,熟记各性质并求出被截取的四个小直角三角形全等是解题的关键.18.如图,四边形ABCD是正方形,点P是BC上任意一点,DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,BF的延长线交CH于点G.(2)四边形EFGH是什么四边形?并证明;考点:正方形的判定与性质;全等三角形的判定与性质;分析:(1)利用全等三角形的判定首先得出△AED≌△BFA,进而得出AE=BF,即可证明结论;(2)首先得出四边形EFGH是矩形,再利用△AED≌△BFA,同理可得:△AED≌△DHC,进而得出EF=EH,即可得出答案;解答:(1)证明:∵DE⊥AP于点E,BF⊥AP于点F,CH⊥DE于点H,∴∠AFB=∠AED=∠DHC=90°,∴∠ADE+∠DAE=90°,又∵∠DAE+∠BAF=90°,∴∠ADE=∠BAF,在△AED和△BFA中,,∴△AED≌△BFA,∴AE=BF,∴AF﹣AE=EF,即AF﹣BF=EF;(2)证明:∵∠AFB=∠AED=∠DHC=90°,∴四边形EFGH是矩形,∵△AED≌△BFA,同理可得:△AED≌△DHC,∴△AED≌△BFA≌△DHC,∴DH=AE=BF,AF=DE=CH,∴DE﹣DH=AF﹣AE,∴EF=EH,∴矩形EFGH是正方形;19.如图,△ABC中,∠C=90°,∠BAC、∠ABC的平分线相交于点D,DE⊥BC,DF⊥AC,垂足分别为E、F.问四边形CFDE是正方形吗?请说明理由.分析:首先利用垂直的定义证得四边形CFDE是矩形,然后利用角平分线的性质得到DE=DF,从而判定该四边形是正方形.解答:证明:∵∠C=90°,DE⊥BC于点E,DF⊥AC于点F,∴四边形DECF为矩形,∵∠A、∠B的平分线交于点D,∴DF=DE,∴四边形CFDE是正方形.点评:本题主要考查了角平分线的性质,三角形的内切圆与内心,解题的关键是利用正方形的判定方法证得四边形CFDE是正方形.20.如图,在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,DE⊥AB,DF⊥AC垂足分别为E,F.求证:四边形DEAF是正方形.考点:正方形的判定;全等三角形的判定与性质.专题:证明题.分析:由题意先证明□AEDF是矩形,再根据两角及其一角的对边对应相等来证△BDE≌△CDF,根据有一组对边相等的矩形证明□AEDF是正方形.解答:证明:∵DE⊥AB,DF⊥AC∴∠AED=90°,∠AFD=90°∵∠BAC=90°∴∠EDF=90°∴□AEDF是矩形在△BDE和△CDF中∵AB=AC∴∠ABC=∠ACB∵DE⊥AB,DF⊥AC∴∠DEB=∠DFC又∵D是BC的中点∴BD=DC∴△BDE≌△CDF∴DE=DF∴□AEDF是正方形点评:本题考查的是正方形的判定方法,考查了矩形、全等三角形等基础知识的灵活运用,判别一个四边形是正方形主要是根据正方形的定义及其性质.初中数学试卷。
华师大版八下数学19矩形、菱形与正方形课题正方形说课稿
华师大版八下数学19矩形、菱形与正方形课题正方形说课稿一. 教材分析华师大版八下数学19矩形、菱形与正方形课题正方形说课稿,主要介绍了正方形的性质及判定方法。
本节内容是在学生已经掌握了矩形、菱形的性质的基础上进行学习的,是进一步深化对四边形性质的理解。
二. 学情分析学生在学习本节内容前,已经掌握了矩形、菱形的性质,能够识别和判断矩形和菱形。
但正方形与矩形、菱形既有联系又有区别,学生需要通过学习,进一步理解正方形的特殊性质。
三. 说教学目标1.知识与技能目标:学生能够掌握正方形的性质,能够运用正方形的性质解决实际问题。
2.过程与方法目标:通过观察、操作、推理等活动,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生勇于探究、积极进取的精神。
四. 说教学重难点1.教学重点:正方形的性质及其判定方法。
2.教学难点:正方形性质的推导和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、探究法、小组合作法等,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、实物模型等,辅助教学,提高学生的学习兴趣和效果。
六. 说教学过程1.导入:通过展示正方形的实物模型,引导学生观察正方形的特点,激发学生的学习兴趣。
2.新课导入:介绍正方形的定义,引导学生理解正方形的特殊性质。
3.性质探究:引导学生通过观察、操作、推理等活动,探究正方形的性质,如四条边相等、四个角都是直角等。
4.性质应用:通过例题,引导学生运用正方形的性质解决实际问题。
5.巩固练习:设计一些练习题,让学生巩固所学内容。
6.课堂小结:引导学生总结正方形的性质,提高学生的归纳能力。
七. 说板书设计板书设计如下:正方形的性质1.四条边相等2.四个角都是直角3.对角线互相垂直且平分八. 说教学评价教学评价主要通过学生的课堂表现、作业完成情况、练习题的正确率等方面进行。
同时,注重对学生过程性评价的记录,如学生在小组合作中的表现、在探究活动中的参与度等。
2022年最新华东师大版八年级数学下册第十九章矩形、菱形与正方形难点解析试题(精选)
八年级数学下册第十九章矩形、菱形与正方形难点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在菱形ABCD 中,P 是对角线AC 上一动点,过点P 作PE BC ⊥于点E .PF AB ⊥于点F .若菱形ABCD 的周长为24,面积为24,则PE PF +的值为( )A .4B .245C .6D .4852、如图,正方形ABCD 的对角线相交于点O ,以点O 为顶点的正方形OEGF 的两边OE ,OF 分别交正方形ABCD 的两边AB ,BC 于点M ,N ,记AOM 的面积为1S ,CON 的面积为2S ,若正方形的边长10AB =,116S =,则2S 的大小为( )A.6 B.7 C.8 D.93、如图,把一张长方形纸片ABCD沿对角线AC折叠,点B的对应点为点B′,AB′与DC相交于点E,则下列结论正确的是()A.∠DAB′=∠CAB′B.∠ACD=∠B′CDC.AD=AE D.AE=CE4、如图,把矩形纸片ABCD沿对角线折叠,若重叠部分为EBD∆,那么下列说法错误的是()A.EBD∆是等腰三角形B.EBA∆全等∆和EDC∠相等C.折叠后得到的图形是轴对称图形D.折叠后ABE∠和CBD5、如图,边长为1的正方形ABCD绕点A逆时针旋转45°后,得到正方形AB′C′D′,边B'C′与DC交于点O,则∠DOB'的度数为()A.125°B.130°C.135°D.140°6、如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.DE⊥DC C.∠ADB=90°D.CE⊥DE7、如图,将矩形纸片ABCD沿BD折叠,得到△BC′D,C′D与AB交于点E,若∠1=40°,则∠2的度数为()A.25°B.20°C.15°D.10°=;再分别以点A,B为圆心,OA长为半8、如图,在MON∠的两边上分别截取OA,OB,使OA OBOC=,则四边形AOBC的面积是径作弧,两弧交于点C;再连接AC,BC,AB,OC.若2AB=,4( )A .B .8C .4D .529、如图,矩形ABCD 中,两条对角线AC 与BD 相交于点O ,AB =6,OA =4.则这个矩形的面积为( )A .24B .48C .D .10、如图,已知在正方形ABCD 中,10AB BC CD AD ====厘米,90A B C D ∠=∠=∠=∠=︒,点E 在边AB 上,且4AE =厘米,如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CD 上以a 厘米/秒的速度由C 点向D 点运动,设运动时间为t 秒.若存在a 与t 的值,使BPE 与CQP 全等时,则t 的值为( )A .2B .2或1.5C .2.5D .2.5或2第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题4分,共计40分)1、如图,菱形OABC 在直角坐标系中,点A 的坐标为5,02⎛⎫ ⎪⎝⎭,对角线OB =()0,0k y k x x=≠>经过点C .则k 的值为______.2、如图,已知矩形ABCD 中,AD =3,AB =5,E 是边DC 上一点,将ADE 绕点A 顺时针旋转得到AD E ''△,使得点D 的对应点D 落在AE 上,如果D E ''的延长线恰好经过点B ,那么DE 的长度等于_____.3、在菱形ABCD 中,60A ∠=︒,其所对的对角线长为2,则菱形ABCD 的面积是__.4、如图,矩形ABCD 的两条对角线相交于点O ,已知120AOD ∠=︒, 2.5cm AB =,则矩形对角线BD 的长为_______cm .5、如图,矩形纸片ABCD ,AD =4,AB =3.如果点E 在边BC 上,将纸片沿AE 折叠,使点B 落在点F 处,如果直线EF 经过点D ,那么线段BE 的长是____.6、如图,正方形ABCD 中,点E 为BC 边的中点,点P 为边AB 上一个动点,连接PE ,以PE 为对称轴折叠PBE △得到PFE △,点B 的对应点为点F ,若2AB ,当射线EF 经过正方形ABCD 边的中点(不包括点E )时,BP 的长为_____________.7、如图,矩形ABCD 的对角线AC ,BD 交于点O ,M 在BC 边上,连接MO 并延长交AD 边于点N .若BM = 1,∠OMC = 30°,MN = 4,则矩形ABCD 的面积为 _________ .8、(1)有一个角是直角的_______是矩形.几何语言:∵四边形ABCD 是平行四边形,∠A =90°,∴四边形ABCD 是矩形.(2)_______相等的平行四边形是矩形.几何语言:∵ 四边形ABCD 是平行四边形,AC =BD (或OA =OC =OB =OD ),∴四边形ABCD 是矩形.(3)有三个角是_______的四边形是矩形.几何语言:∵ ∠A =∠B =∠C =90°,∴四边形ABCD 是矩形.9、如图,在矩形ABCD 中,5AB =,3BC =.将矩形ABCD 绕点B 按顺时针方向旋转得到矩形HBEF ,点H 落在矩形ABCD 的边CD 上,则CH 的长是 __.10、如图,点 A 、B 、C 为平面内不在同一直线上的三点.点D 为平面内一个动点.线段AB ,BC ,CD ,DA 的中点分别为M 、N 、P 、Q .在点D 的运动过程中,有下列结论:①存在无数个中点四边形MNPQ 是平行四边形;②存在无数个中点四边形MNPQ 是菱形③存在无数个中点四边形MNPQ 是矩形④存在无数个中点四边形MNPQ 是正方形所有正确结论的序号是___.三、解答题(5小题,每小题6分,共计30分)1、已知,将水平向右平移AD的长度得到其中点C与点D对应,点B与点A对应,点F与点E对应),过点E作BD的垂线,垂足为M,连接AM.(1)根据题意补全图形,并证明MB ME;(2)①用等式表示线段AM与CF的数量关系,并证明;②用等式表示线段AM,BM,DM之间的数量关系(直接写出即可)2、菱形ABCD的对角线AC、BD相交于点O,过点B作BE⊥AB交AC于点E.已知点F是AB边上一点,且BF=BE,过点F作PF⊥AB交BD延长线于点P,交AD于点Q.(1)如图(1),若F是AB的中点,且BE=2,求PD的长;(2)如图(2),求证:AQ=BE+PQ;(3)如图(3),在菱形ABCD中,已知∠BAD=60°,AB=6.点P是对角线上的动点,过点B作BM垂直直线AP 于点M .点N 是CD +MN 的最小值. 3、如图,四边形ABCD 是菱形,DE ⊥AB 、DF ⊥BC ,垂足分别为E 、F .求证:BE =BF .4、如图,D 、E 、F 分别是△ABC 各边的中点,连接DE 、EF 、AE .(1)求证:四边形ADEF 为平行四边形;(2)加上条件 后,能使得四边形ADEF 为菱形,请从①∠BAC =90°;②AE 平分∠BAC ;③AB =AC 这三个条件中选择1个条件填空(写序号),并加以证明.5、如图,四边形ABCD 中,AD BC ∥,90A D ∠=∠=︒,点E 是AD 的中点,连接BE ,将△ABE 沿BE 折叠后得到△GBE ,且点G 在四边形ABCD 内部,延长BG 交DC 于点F ,连接EF .(1)求证:四边形ABCD 是矩形;(2)求证:GF DF =;(3)若点6AB =,8BC =,求DF 的长.-参考答案-一、单选题1、A【解析】【分析】连接BP ,通过菱形ABCD 的周长为24,求出边长,菱形面积为24,求出ABC S 的面积,然后利用面积法,=+ABC ABP CBP S S S ,即可求出PE PF +的值.【详解】解:如图所示,连接BP ,∵菱形ABCD 的周长为24,∴2446AB BC ==÷=,又∵菱形ABCD 的面积为24,∴24212=÷=ABCS , ∴12=+=ABC ABP CBP SS S , ∴111222⋅+⋅=AB PF BC PE ,∵AB BC =,∴()1122⋅+=AB PE PF ,∵6AB =,∴4PE PF +=,故选:A .【点睛】本题主要考查菱形的性质,解题关键在于添加辅助线,通过面积法得出等量关系.2、D【解析】【分析】由题意依据全等三角形的判定得出△BOM ≌△CON ,进而根据正方形的性质即可得出2S 的大小.【详解】解:∵正方形ABCD 的对角线AC ,BD 交于点O ,∴OC =OD =BO =AO ,∠ABO =∠ACB =45°,AC ⊥BD .∵∠MOB +∠BON =90°,∠BON +∠CON =90°∴∠BOM =∠CON ,且OC =OB ,∠ABO =∠ACB =45°,∴△BOM ≌△CON (ASA ),2S =S △BOM ,∴121BOM AOB S S S S S ==++,∵AOB S =14S 正方形ABCD ,正方形的边长10AB =,116S =, ∴2S =14S 正方形ABCD -1S =110101694⨯⨯-=. 故选:D.【点睛】本题考查正方形的性质以及全等三角形的判定和性质等知识,灵活运用这些性质进行推理是解答本题的关键.3、D【解析】【分析】根据翻折变换的性质可得∠BAC=∠CAB′,根据两直线平行,内错角相等可得∠BAC=∠ACD,从而得到∠ACD=∠CAB′,然后根据等角对等边可得AE=CE,从而得解.【详解】解:∵矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,∴∠BAC=∠CAB′,∵AB∥CD,∴∠BAC=∠ACD,∴∠ACD=∠CAB′,∴AE=CE,∴结论正确的是D选项.故选D.【点睛】本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键.4、D【解析】【分析】根据题意结合图形可以证明EB=ED,进而证明△ABE≌△CDE;此时可以判断选项A、B、D是成立的,问题即可解决.解:由题意得:△BCD≌△BFD,∴DC=DF,∠C=∠F=90°;∠CBD=∠FBD,又∵四边形ABCD为矩形,∴∠A=∠F=90°,DE∥BF,AB=DF,∴∠EDB=∠FBD,DC=AB,∴∠EDB=∠CBD,∴EB=ED,△EBD为等腰三角形;在△ABE与△CDE中,∵BE DE AB CD=⎧⎨=⎩,∴△ABE≌△CDE(HL);又∵△EBD为等腰三角形,∴折叠后得到的图形是轴对称图形;综上所述,选项A、B、C成立,∴不能证明D是正确的,故说法错误的是D,故选:D.本题主要考查了翻折变换及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图中隐含的等量关系;借助矩形的性质、全等三角形的判定等几何知识来分析、判断、推理或解答.5、C【解析】【分析】连接B ′C ,根据题意得B ′在对角线AC 上,得∠B 'CO =45°,由旋转的性质证出∠OB 'C 是直角,得=45B CO '∠︒,即可得出答案.【详解】解:连接B ′C ,如图所示,∵四边形ABCD 是正方形,∴AC 平分∠BAD ,∵旋转角∠BAB ′=45°,∠BAC =45°,∴B ′在对角线AC 上,∴∠B 'CO =45°,由旋转的性质得:90AB C B ''∠=∠=︒,AB '=AB =1,∴45B OC '∠=︒∴18045135DOB '∠=︒-︒=︒故选:C .【点睛】本题考查了正方形的性质、旋转的性质等知识;熟练掌握正方形的性质和旋转的性质是解题的关键.6、B【解析】【分析】先证明四边形BCED为平行四边形,再根据矩形的判定进行解答.【详解】解:∵四边形ABCD为平行四边形,∴AD∥BC,且AD=BC,又∵AD=DE,∴DE∥BC,且DE=BC,∴四边形BCED为平行四边形,A、∵AB=BE,DE=AD,∴BD⊥AE,∴□DBCE为矩形,故本选项不符合题意;B、∵DE⊥DC,∴∠EDB=90°+∠CDB>90°,∴四边形DBCE不能为矩形,故本选项符合题意;C、∵∠ADB=90°,∴∠EDB=90°,∴□DBCE为矩形,故本选项不符合题意;D、∵CE⊥DE,∴∠CED=90°,∴□DBCE为矩形,故本选项不符合题意.故选:B.【点睛】本题考查了平行四边形的判定和性质、矩形的判定等知识,判定四边形BCED为平行四边形是解题的关键.7、D【解析】【分析】根据矩形的性质,可得∠ABD=40°,∠DBC=50°,根据折叠可得∠DBC′=∠DBC=50°,最后根据∠2=∠DB C′−∠DBA进行计算即可.【详解】解:∵四边形ABCD是矩形,∴∠ABC=90°,CD∥AB,∴∠ABD=∠1=40°,∴∠DBC=∠ABC-∠ABD=50°,由折叠可得∠DB C′=∠DBC=50°,∴∠2=∠DB C′−∠DBA=50°−40°=10°,故选D.【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出∠DBC′和∠DBA 的度数.8、C【解析】【分析】根据作法判定出四边形OACB 是菱形,再根据菱形的面积等于对角线乘积的一半计算即可得解.【详解】根据作图,AC BC OA ==,∵OA OB =,∴OA OB BC AC ===,∴四边形OACB 是菱形,∵2AB =,4OC =, ∴12442OACB S =⨯⨯=菱形.故选:C .【点睛】本题主要考查菱形的性质与判定,熟练掌握菱形的性质与判定是解题的关键.9、C【解析】【分析】根据矩形的性质,对角线相等且互相平分,可得28AC OA ==,进而勾股定理求得BC ,再根据AB BC ⨯即可求得矩形的面积. 【详解】 解:四边形ABCD 是矩形,12OA AC ∴=,90ABC ∠=︒ AB =6,OA =4BC ∴∴矩形ABCD的面积为:6⨯=⨯AB BC故选C【点睛】本题考查了矩形的性质,勾股定理,掌握矩形的性质是解题的关键.10、D【解析】【分析】根据题意分两种情况讨论若△BPE≌△CQP,则BP=CQ,BE=CP;若△BPE≌△CPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】a=,即点Q的运动速度与点P的运动速度都是2厘米/秒,若△BPE≌△CQP,则BP=CQ,解:当2BE=CP,∵AB=BC=10厘米,AE=4厘米,∴BE=CP=6厘米,∴BP=10-6=4厘米,∴运动时间t=4÷2=2(秒);当2a≠,即点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,∵∠B=∠C=90°,∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.BP÷=÷=(秒).∴点P,Q运动的时间t=252 2.5综上t的值为2.5或2.故选:D.【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等.同时要注意分类思想的运用.二、填空题1、3【解析】【分析】根据菱形的性质可知菱形的四条边都相等,点A 的坐标为5(2,0),对角线OB =(k 0,x 0)k y x =≠>经过点C ,可设点C 的坐标为(,)a b ,从而可以表示出点B 的坐标,然后列出相应的方程组,即可得a 、b 的值,从而可以得到k 的值.【详解】四边形OABC 是菱形,OA AB BC CO ∴===,设点C 的坐标为(,)a b ,点A 的坐标为5(2,0),对角线OB =∴点B 的坐标为5(2a +,)b ,52OC =, ∵52OC =,OB =∴2222225()25()2a b a b ⎧+=⎪⎪⎨⎪++=⎪⎩, 解得32a =,2b =,3232ab ∴=⨯=, 反比例函数(k 0,x 0)k y x =≠>经过点C ,点C 的坐标为(,)a b ,k b a ∴=, 3k ab ∴==.故答案为:3.【点睛】本题考查反比例函数图象上点的坐标特征、菱形的性质,解题的关键是根据数形结合的思想找到各边之间的关系,k 与点C 的坐标的关系.2、94【解析】【分析】如图,连接BE 、BE ′,根据矩形的性质和旋转变换的性质可得:AD ′=AD =3,∠AD ′E =∠D =90°,利用勾股定理可得BD ′=4,再运用等面积法可得:AB •AD =AE •BD ′,求出AE =154,再运用勾股定理即可求得答案.【详解】解:如图,连接BE 、BE ′,∵矩形ABCD 中,AD =3,AB =5,∴∠D =90°,由旋转知,△AD ′E ′≌△ADE ,∴AD ′=AD =3,∠AD ′E =∠D =90°,∵D ′E ′的延长线恰好经过点B ,∴∠AD′B=90°,在Rt△ABD′中,BD4,∵S△ABE=12AB•AD=12AE•BD′,∴AE=AB ADBD'⋅=534⨯=154,在Rt△ADE中,DE 94,故答案为:94.【点睛】本题考查矩形的性质、旋转性质、勾股定理、三角形的面积,熟练掌握矩形性质和旋转性质,会利用等面积法求解是解答的关键.3、【解析】【分析】根据菱形的性质证得△ABD是等边三角形,得到OB,利用勾股定理求出OA,由菱形的性质求出菱形的面积.【详解】解:如图所示:在菱形ABCD 中,60BAD ∠=︒,其所对的对角线长为2,AD AB ∴=,AC BD ⊥,BO DO =,AO CO =,ABD ∴∆是等边三角形,则2AB AD ==,故1BO DO ==,则AO =AC =则菱形ABCD 的面积122=⨯⨯故答案为:【点睛】此题主要考查了菱形的性质以及勾股定理,正确得出菱形的另一条对角线的长是解题关键. 4、5【解析】【分析】由矩形的性质可证△AOB 为等边三角形,可求BO =AB 的长,即可求BD 的长.【详解】解:∵四边形ABCD 是矩形,∴AO =CO =BO =DO ,∵∠AOD =120°,∴∠AOB=60°,且AO=BO,∴△ABO为等边三角形,∴AO=BO=AB=2.5,∴BD=5,故答案为:5.【点睛】本题考查矩形的性质,熟练掌握矩形的性质是本题的关键,①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分.5、4【解析】【分析】根据题意作出图形,根据矩形的性质与折叠的性质证明AD DB=,进而勾股定理求得DF,即可求得=,即可求解.EF,根据折叠BE EF【详解】解:如图∵将纸片沿AE折叠,使点B落在点F处,3,90,∴==∠=∠=︒∠=∠AB AF B AFE AEB AED四边形ABCD是矩形∴AD BC∥∴∠=∠DAE AEB∴∠=∠DAE AED∴==4AD DE在Rt ADF中,DF∴=-=4EF DE DF∴==BE EF4故答案为:4【点睛】本题考查了矩形与折叠问题,勾股定理,掌握勾股定理是解题的关键.6、11【解析】【分析】分EF经过正方形ABCD另三边三种情况求解即可【详解】解:①EF经过CD边中点O时,∵四边形ABCD是正方形,∴AB=BC=CD=DA ,90C B ∠=∠=︒,∵点O 是CD 边中点,点E 是BC 边中点, ∴11,22OC CD EC BC ==.∵CE=CO =1,∴45CEO ∠=︒, 由折叠得11(180)((18045)67.522FEP BEP CEO ∠=∠=︒-∠=︒-︒=︒, ∴22.5FPE BPE ∠=∠=︒.∴45FPB FPE BPE ∠=∠+∠=︒,作FG ⊥AB 于G ,作EH ⊥FG 于H ,如图,设FH=x ,则BG=EH=FH=x ,∵45BPF ∠=︒,∴PG =FG=x +1,∴BP =2x +1,由勾股定理得1)PF x =+,由折叠得PB=PF ,∴211)x x +=+,解得2x =.∴12BP =>,∴点P 在AB 外,不符合题意;②EF 经过AD 边中点O ',如图,此时,190452FEP BEP ∠=∠=⨯︒=︒,∴BP=BE =1;③EF 经过AB 中点O '',如图,∵O ''B=BE ,∴45EO B ''∠=︒.由折叠得90PFE B ∠=∠=︒,设PF=x ,则,O P PB x ''==,1x +=,∴1,即1,综上,BP 的长为11,故答案为:11.【点睛】此题考查了正方形的性质,折叠的性质,勾股定理,灵活运用分类讨论思想是解答本题的关键.7、4+4【解析】【分析】过点N 作NE BC ⊥交于点E ,由矩形ABCD 得OB OD =,OBM ODN ∠=∠,根据ASA 可证BOM DON ≅△△,故可得1CE DN BM ===,由直角三角形30角所对的边为斜边的一半得出122CD EN MN ===,根据勾股定理求出ME ,从而得出BC ,由矩形的面积公式即可得出答案. 【详解】如图,过点N 作NE BC ⊥交于点E ,∵四边形ABCD 是矩形,∴OB OD =,OBM ODN ∠=∠,∵BOM DON ∠=∠,∴()BOM DON ASA ≅,∴1CE DN BM ===,∵30OMC ∠=︒, ∴122CD EN MN ===,∴ME ==∴112BC =+=+∴(224ABCD S =+⨯=+矩形.故答案为:4+【点睛】本题考查矩形的性质,全等三角形的判定与性质,直角三角形的性质以及勾股定理,掌握相关知识点的应用是解题的关键.8、 平行四边形 对角线 直角【解析】略9、4【解析】【分析】根据矩形的性质和旋转性质得出BH=AB=5,∠C=90°,再根据勾股定理求解即可.【详解】解:由题意知:5BH AB ==,∠C=90°,∴在Rt△BCH 中,BC =3,∴4CH ,故答案为:4.【点睛】本题考查矩形的性质、旋转性质、勾股定理,熟练掌握旋转性质和勾股定理是解答的关键.10、①②③【解析】【分析】根据中点四边形的性质:一般中点四边形是平行四边形,对角线相等的四边形的中点四边形是菱形,对角线垂线的中点四边形是矩形,对角线相等且垂直的四边形的中点四边形是正方形,由此即可判断.【详解】解:∵一般中点四边形是平行四边形,对角线相等的四边形的中点四边形是菱形,对角线垂线的中点四边形是矩形,对角线相等且垂直的四边形的中点四边形是正方形,∴存在无数个中点四边形MNPQ 是平行四边形,存在无数个中点四边形MNPQ 是菱形,存在无数个中点四边形MNPQ 是矩形.故答案为:①②③【点睛】本题考查中点四边形,平行四边形的判定,矩形的判定,菱形的判定,正方形的判定等知识,解题的关键是理解题意,灵活运用所学知识解决问题.三、解答题1、 (1)见解析FC =,理由见解析 ②2222DM BM AM +=【解析】【分析】(1)如图所示,根据四边形ABCD 是正方形,BD 是对角线,得出45ABD ∠=︒,根据EM BD ⊥,可证BEM △是等腰直角三角形即可;(2)①先证AEM △≌FBM 得AM FM =,由AE BF =知EF BC AB ==,证MEF ≌MBC △得EMF BMC ∠=∠,FM MC =,由90FMC ∠=︒知FCM △是等腰直角三角形,从而得FC =;②连接DE ,证四边形CDEF 是平行四边形得DE CF =,由CF =,MF AM =知DE =,结合BM EM =,90DME ∠=︒得222DM EM DE +=,从而得出答案.(1)如图所示,∵DC=AB=AD=BC,∴四边形ABCD为菱形,∵∠DAE=90°∴四边形ABCD为正方形,BD是正方形ABCD对角线,ABD∴∠=︒,45EM BD,∴∠EMB=90°,∠MEB=180°-∠EMB-∠ABD=180°-90°-45°=45°,∴∠MEB=∠MBE=45°,∴是等腰直角三角形,BEM∴=;MB ME(2)①如图所示,连接CM、FM,BEM 是等腰直角三角形,MB ME ∴=,45ABM BEM ∠=∠=︒,135AEM FBM ∴∠=∠=︒,又AE FB =,在△AEM 和△FBM 中,AE FB AEM FBM ME MB =⎧⎪∠=∠⎨⎪=⎩, AEM ∴△≌FBM SAS (), AM FM ∴=,AE BF =,EF BC AB ∴==,∵BD 为对角线,∴∠MBC =45°,∴∠MBC =∠MEF =45°,在△MEF 和△MBC 中,ME MB MEF MBC EF BC =⎧⎪∠=∠⎨⎪=⎩, MEF ∴≌MBC SAS (), EMF BMC ∴∠=∠,FM MC =,AM CM FM ∴==,∴∠CMF =∠CMB -∠BMF =∠EMF -∠BMF =∠EMB =90°,∴△CMF 为等腰直角三角形,∴CF=;2222DM BM AM +=②,如图, AE BF =,AE BE BF BE EF ∴+=+=,又//DC AB 且DC AB =,DC EF ∴=,//DC EF ,∴四边形CDEF 是平行四边形,DE CF ∴=, 2CF =,MFAM =,DE ∴,又BM EM =,90DME ∠=︒,222DM EM DE ∴+=,则2222DM BM AM +=.【点睛】本题是四边形的综合问题,解题的关键是掌握正方形的性质、全等三角形与等腰直角三角形及平行四边形的判定与性质、勾股定理等知识点.2、(2)见解析(3)3 【解析】【分析】(1)利用全等三角形的性质证明AE PB =,利用勾股定理求出AE ,再利用面积法求出OB ,可得结论;(2)如图2中,连接DE ,EQ ,过点EZz 作EK QF ⊥于点K ,作//Q BD 交AB 于点J ,在AB 上取一点T ,使得PQ AT =,连接KT .利用全等三角形的性质证明AB PF =,DQ QK =,证明四边形BEKF 是正方形,推出FT QK =,再证明DQ BJ =,可得结论;(3)如图3中,取AB 的中点O ,连接OD ,延长OD 到J ,使得DJ DC =,连接CJ ,过点N 作NW CJ ⊥于点W ,过点O 作OW CJ '⊥于W ',交O 于点M ',交CD 于点N '.由NW ,推出MN MN NW =+,由OM MN NW OW ++',推出MN 的最小值OW OM ='-,求出OW ',OM '即可解决问题.(1)解:如图1中,四边形ABCD 是菱形,AC BD ∴⊥,OB OD =,AF FB =,2BE BF ==,4AB ∴=,BE AB ⊥,PF AB ⊥,90PFB ABE BOE ∴∠=∠=∠=︒,90ABO EBO ∴∠+∠=︒,90EBO AEB ∠+∠=︒,AEB PBF ∴∠=∠,()ABE PFB ASA ∴∆≅∆,AE PB ∴=,1122AEB S AB BE AE BO ∆=⋅⋅=⋅⋅,BO ∴,OD OB ∴==PD PB BD ∴=-== (2)证明:如图2中,连接DE ,EQ ,过点E 作EK QF ⊥于点K ,作//QJ BD 交AB 于点J ,在AB 上取一点T ,使得PQ AT =.由(1)可知,ABE PFB ∆≅∆,AB PF ∴=,AT PQ =,BT QF ∴=,EK PF ⊥,PF AB ⊥,BE AB ⊥,90EKF KFB FBE ∴∠=∠=∠=︒,∴四边形BEKF 是矩形,BE BF =,∴四边形BEKF 是正方形,BF KF ∴=,FT QK ∴=,四边形ABCD 是菱形,ABE ∴∆,ADE ∆关于AC 对称,90ABE ADE ∴∠=∠=︒,EB ED =,90EDQ EKQ ∠=∠=︒,EQ EQ =,EK EB ED ==,Rt EQK Rt EQD(HL)∴∆≅∆,DQ BJ ∴=,//QJ BD ,AD AB =, ∴AQ AJ AD AB =,AQ AJ ∴=,DQ BJ QK FJ ∴===,TJ BF BE ∴==,AQ AJ AT TJ PA BE∴==+=+.(3)如图3中,取AB的中点O,连接OD,延长OD到J,使得DJ DC=,连接CJ⊥,BM AP90∴∠=︒,AMB∴点M在以AB为直径的圆上运动,四边形ABCD是菱形,60∠=︒,BADABD∴∆是等边三角形,=,AO OB∴⊥,OD ABAB CD,//∴⊥,DJ DC=,DJ DCDJC ∴∆是等腰直角三角形,过点N 作NW CJ ⊥于点W ,过点O 作OW CJ '⊥于W ',交O 于点M ',交CD 于点N '.NW CW ⊥,45NCW ∠=︒,NW ∴,MN MN NW ∴=+, OM MN NW OW ++',MN ∴的最小值OW OM ='-, ADB ∆是等边三角形,6AB =,OD ∴=6DJ DC AB ===,6OJ ∴=+OJW ∆'是等腰直角三角形,OW ∴'= 132OM AB '==,3OW OM ∴'-'=,MN ∴的最小值为3. 【点睛】本题属于四边形综合题,考查了菱形的性质,全等三角形的判定和性质,等边三角形的判定和性质,解直角三角形等知识,解题的关键是学会利用垂线段最短,解决最短问题,属于中考压轴题.3、见解析【解析】【分析】根据菱形的性质,可得AD=DC,AB=BC,∠A=∠C.从而得到△AED≌△CFD.从而得到AE=CF.即可求证.【详解】证明:∵四边形ABCD是菱形,∴AD=DC,AB=BC,∠A=∠C.∵DE⊥AB,DF⊥BC,∴∠AED=∠CFD=90°.∴△AED≌△CFD(AAS).∴AE=CF.∴AB﹣AE=BC﹣CF.即:BE=BF.【点睛】本题主要考查了菱形的性质,全等三角形的判定和性质,熟练掌握菱形的对角相等,对边相等是解题的关键.4、 (1)见解析(2)②,证明见解析【解析】【分析】(1)根据三角形中位线定理可证;(2)若选②AE平分∠BAC:则在(1)中ADEF为平行四边形基础上,再证一组邻边相等即证明AF=EF.(1)证明:已知D、E、F为AB、BC、AC的中点,∴DE为△ABC的中位线,∴DE//AC,且DE=12AC=AF.即DE//AF,DE=AF,∴四边形ADEF为平行四边形.(2)选②AE平分∠BAC,∵AE平分∠BAC,∴∠DAE=∠FAE,又∵ADEF为平行四边形,∴EF//DA,∴∠DAE=∠AEF,∴∠FAE=∠AEF,∴AF=EF,∴平行四边形ADEF为菱形.故答案为:②.【点睛】本题考查了平行四边形的判定与性质,三角形中位线性质定理,菱形的判定定理.认真分析图中的几何关系,熟练掌握平行四边形以及菱形的判定定理是解题关键.5、 (1)证明见解析;(2)证明见解析;(3)83 DF【解析】【分析】(1)利用平行线的性质可得∠C=90°,再根据三个角是直角的四边形是矩形即可判定;(2)根据折叠的性质和中点的定义得出EG=ED,再用HL定理证明Rt△EGF≌Rt△EDF即可;(3)利用DF分别表示BF和FC,再在Rt△BCF中利用勾股定理求解即可.(1)∥,证明:∵AD BC∴∠D+∠C=180°,∵90∠=∠=︒,A D∴90∠=∠=∠=︒,C A D∴四边形ABCD为矩形;(2)证明:∵将△ABE沿BE折叠后得到△GBE,∴△ABE≌△GBE,∴∠BGE=∠A,AE=GE,∵∠A=∠D=90°,∴∠EGF=∠D=90°,∵点E是AD的中点,∴EA=ED,∴EG=ED,在Rt△EGF和Rt△EDF中,EF EF EG ED=⎧⎨=⎩, ∴Rt △EGF ≌Rt △EDF (HL );∴GF DF =;(3)解:∵四边形ABCD 为矩形,△ABE ≌△GBE ,∴∠C =90°,BG =CD =AB =6,∵GF DF =;∴6BF BG GF DF =+=+,6CF DC DF DF =-=-,∴在Rt △BCF 中,根据勾股定理,222BF CF BC =+,即222(6)(6)8DF DF +=-+, 解得83DF =. 即83DF =.【点睛】本题考查矩形的性质和判定,全等三角形的判定定理,折叠的性质,勾股定理等.(1)掌握矩形的判定定理是解题关键;(2)能结合重点和折叠的性质得出EG =ED 是解题关键;(3)中能利用DF 正确表示Rt △BCF 中,BF 和CF 的长度是解题关键.。
2020—2021年华东师大版八年级数学下册《正方形与特殊三角形》专题综合训练及答案.docx
(新课标)2017-2018学年华东师大版八年级下册19.3正方形与特殊的三角形综合题专训一、正方形与等腰三角形综合试题1、(2011常熟市模拟)如图,正方形ABCD,动点E在AC 上,AF⊥AC,垂足为A,AF=AE.(1)求证:BF=DE;(2)当点E运动到AC中点时(其他条件都保持不变),问四边形AFBE是什么特殊四边形?说明理由.【分析】(1)根据正方形的性质判定△ADE≌△ABF后即可得到BF=DE;(2)利用正方形的判定方法判定四边形AFBE为正方形即可.【解答】(1)证明:∵正方形ABCD,∴AB=AD,∠BAD=90°,∵AF⊥AC,∴∠EAF=90°,∴∠BAF=∠EAD,在△ADE和△ABF中∴△ADE≌△ABF(SAS),∴BF=DE;(2)解:当点E运动到AC的中点时四边形AFBE是正方形,理由:∵点E运动到AC的中点,AB=BC,∴BE⊥AC,BE=AE=AC,∵AF=AE,∴BE=AF=AE,又∵BE⊥AC,∠FAE=∠BEC=90°,∴BE∥AF,∵BE=AF,∴得平行四边形AFBE,∵∠FAE=90°,AF=AE,∴四边形AFBE是正方形.【点评】本题考查了正方形的判定和性质,解题的关键是正确的利用正方形的性质.试题2、(2015黑龙江二模)如图,在正方形ABCD中,点E、F分别为BC,CD的中点,则下列结论:①AF⊥DE;②AF=DE;③AD=BP;④PE+PF=PC.其中结论正确的有()A.1个B.2个C.3个D.4个【分析】先证明△ADF≌△DCE得到AF=DE,则可对②进行判断;由全等性质得∠DAF=∠CDE,则利用∠DAF+∠DFA=90°可得∠CDE+∠DFA=90°,则可对①进行判断;作BG∥DE交AF于M,交AD于G,如图1,证明BM垂直平分AP得到BP=BA=AD,则可对③进行判断;延长DE到N使EN=PF,连结CN,如图2,先证明△CFP≌△CEN得到CP=CN,∠1=∠2,再证明△PCN为等腰直角三角形,然后根据等腰直角三角形的性质对④进行判断.【解答】解:∵四边形ABCD为正方形,∴AD=CD=BC,∠ADC=∠BCD=90°,而点E、F分别为BC,CD的中点,∴DF=CE,在△ADF和△DCE中,,∴△ADF≌△DCE,∴AF=DE,所以②正确,∠DAF=∠CDE,而∠DAF+∠DFA=90°,∴∠CDE+∠DFA=90°,∴∠DPF=90°,∴AF⊥DE,所以①正确;作BG∥DE交AF于M,交AD于G,如图1,则四边形BEDG为平行四边形,∴BE=DG=AD,∴GM为△APD的中位线,∴AM=MP,∵AP⊥DE,∴AP⊥BG,∴BM垂直平分AP,∴BP=BA=AD,所以③正确;延长DE到N使EN=PF,连结CN,如图2,∵∠CFP=90°+∠3,∠CEN=90°+∠3,∴∠CFP=∠CEN,在△CFP和△CEN中,,∴△CFP≌△CEN,∴CP=CN,∠1=∠2,∵∠1+∠PCE=90°,∴∠2+∠PCE=90°,即∠PCN=90°,∴△PCN为等腰直角三角形,∴PN=PC,∴PE+EN=PE+PF=PC,所以④正确.故选D.【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.两条对角线将正方形分成四个全等的等腰直角三角形.也考查了全等三角形的判定与性质.试题3、(2015春天河区期末)如图,E是边长为4的正方形ABCD 的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BR于点R,则PQ+PR的值是()A.2B.2C.2D.【分析】连接BP,设点C到BE的距离为h,然后根据S△BCE=S△BCP+S△BEP求出h=PQ+PR,再根据正方形的性质求出h即可.【解答】解:如图,连接BP,设点C到BE的距离为h,则S△BCE=S△BCP+S△BEP,即BEh=BCPQ+BEPR,∵BE=BC,∴h=PQ+PR,∵正方形ABCD的边长为4,∴h=4×=2.故答案为:2.【点评】本题考查了正方形的性质,三角形的面积,熟记性质并作辅助线,利用三角形的面积求出PQ+PR等于点C到BE的距离是解题的关键.试题4、(2015秋乐清市校级期中)如图,在正方形ABCD中,BD=BE,CE∥BD,BE交CD于F点,则∠DFE的度数为()A.45°B.60°C.75°D.90°【分析】把△BCE逆时针旋转90°得到△BAG,连接DG、AC、AG;则∠BAG=∠BCE,BG=BE,∠GBE=90°,先证出C、A、G三点共线,得出∠DAG135°,∠BAG=∠DAG,由SAS证明△BAG≌△DAG,得出BG=DG,证出BG=DG=BE,即△BDG是等边三角形,得出∠GBD=60°,∠DBE=30°,再由三角形的外角性质求出∠DFE即可.【解答】解:把△BCE逆时针旋转90°得到△BAG,连接DG、AC、AG;如图所示:则∠BAG=∠BCE,BG=BE,∠GBE=90°,∵四边形ABCD是正方形,∴∠BCD=90°,∠BAC=∠DAC=∠BDC=45°,AB=AD,∵CE∥BD,∴∠DCE=∠BDC=45°,∴∠BCE=90°+45°=135°,∴∠BAG=135°,∴∠BAG=135°,∴∠BAG+∠BAC=135°+45°=180°,∴点C、A、G三点共线,∴∠DAG=180°﹣45°=135°,∴∠BAG=∠DAG,在△BAG和△DAG中,,∴△BAG≌△DAG(SAS),∴BG=DG,∵BD=BE,∴BG=DG=BE,即△BDG是等边三角形,∴∠GBD=60°,∴∠DBE=90°﹣60°=30°,∴∠DFE=∠DBE+∠BDC=°+45°=75°.故选:C.【点评】本题考查了正方形的性质、全等三角形的判定与性质、三点共线、等边三角形的判定与性质、三角形的外角性质;熟练掌握正方形的性质,并能进行推理论证与计算是解决问题的关键.试题5、(2015春建瓯市校级月考)如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A.35°B.45°C.55°D.60°【分析】由正方形的性质得出AB=AD,∠BAD=90°,再根据等腰三角形的性质得出∠ABE=∠AEB,∠AED=∠ADE,然后由三角形内角和定理求出∠AEB+∠AED=135°,即可得出∠BEF.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠BAD=90°,∵AE=AB,∴AE=AB=AD,∴∠ABE=∠AEB,∠AED=∠ADE,∠ABE+∠AEB+∠BAE=180°,∠AED+∠ADE+∠DAE=180°,∵∠BAE+∠DAE=∠BAD=90°,∴∠ABE+∠AEB+∠AED+∠ADE=270°,∴∠AEB+∠AED=135°,即∠BED=135°,∴∠BEF=180°﹣135°=45°.故选:B.【点评】本题考查了正方形的性质、等腰三角形的性质、三角形内角和定理;熟练掌握正方形和等腰三角形的性质,弄清各个角之间的数量关系是解决问题的关键.试题6、(2014秋沙坪坝区校级期中)如图,正方形ABCD中,P在对角线BD上,E在CB的延长线上,且PE=PC,过点P作PF⊥AE于点F,若BE=1,AB=3,则PF的长为.【分析】连接AP.根据四边形ABCD是正方形的性质得出AB=BC,∠ABP=∠CBP=45°,证△ABP≌△CBP,推出PA=PC,∠3=∠4,求出∠3=∠5,得出△APE是等腰直角三角形,求出AE,即可求出PE.【解答】解:连接AP.∵四边形ABCD是正方形,∴AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠3=∠4,∵PE=PC,∴PA=PE,∵PE=PC,∴∠4=∠5,∴∠3=∠5,又∵∠ANP=∠ENB,∴∠3+∠ANP=∠5+∠ENB=90°,∴AP⊥PE,即△APE是等腰直角三角形,∵BE=1,AB=3,∴AE==,∴PE===.∴PF=PE=.故答案是:.【点评】本题考查了正方形的性质和判定,勾股定理,等腰三角形性质,等腰直角三角形性质,全等三角形的性质和判定的应用,主要考查学生综合运用性质进行推理的能力.二、正方形与等边三角形综合试题1、(2015咸宁模拟)如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠BFC为()A.75°B.60°C.55°D.45°【分析】由正方形的性质和等边三角形的性质得出∠BAE=150°,AB=AE,由等腰三角形的性质和内角和得出∠ABE=∠AEB=15°,再运用三角形的外角性质即可得出结果.【解答】解:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∠BAF=45°,∵△ADE是等边三角形,∴∠DAE=60°,AD=AE,∴∠BAE=90°+60°=150°,AB=AE,∴∠ABE=∠AEB=(180°﹣150°)=15°,∴∠BFC=∠BAF+∠ABE=45°+15°=60°;故选:B.【点评】本题考查了正方形的性质、等边三角形的性质、等腰三角形的判定与性质、三角形的外角性质;熟练掌握正方形和等边三角形的性质,并能进行推理计算是解决问题的关键.试题2、(2015春和平区期末)如图为等边三角形ABC与正方形DEFG的重叠情形,其中D,E两点分别在AB,BC上,且BD=BE.若AC=18,GF=6,则点F到AC的距离为()A.6﹣6B.6﹣6C.2D.3【分析】过点B作BH⊥AC于H,交GF于K,根据等边三角形的性质求出∠A=∠ABC=60°,然后判定△BDE是等边三角形,再根据等边三角形的性质求出∠BDE=60°,然后根据同位角相等,两直线平行求出AC∥DE,再根据正方形的对边平行得到DE∥GF,从而求出AC∥DE∥GF,再根据等边三角形的边的与高的关系表示出KH,然后根据平行线间的距离相等即可得解.【解答】解:如图,过点B作BH⊥AC于H,交GF于K,∵△ABC是等边三角形,∴∠A=∠ABC=60°,∵BD=BE,∴△BDE是等边三角形,∴∠BDE=60°,∴∠A=∠BDE,∴AC∥DE,∵四边形DEFG是正方形,GF=6,∴DE∥GF,∴AC∥DE∥GF,∴KH=18×﹣6×﹣6=9﹣3﹣6=6﹣6,∴F点到AC的距离为6﹣6,故选B.【点评】本题考查了正方形的对边平行,四条边都相等的性质,等边三角形的判定与性质,等边三角形的高线等于边长的倍,以及平行线间的距离相等的性质,综合题,但难度不大,熟记各图形的性质是解题的关键.试题3、(2013宜宾模拟)如图,已知:△AEC是以正方形ABCD 的对角线为边的等边三角形,EF⊥AB,交AB延长线于F,则∠BEF 度数为45 °.【分析】根据正方形的四条边都相等和等边三角形的三条边都相等,AB=CB,AE=CE,而BE是△ABE和△CBE的公共边,所以两三角形全等,再根据全等三角形对应角相等,∠AEB=∠CEB,所以∠AEB=30°,再根据三角形的外角性质求出∠EBF等于45°,又EF⊥AB,所以∠BEF度数为45°.【解答】解:在正方形ABCD中,AB=CB,∠BAC=90°÷2=45°,在等边三角形AEC中,AE=CE,∠EAC=∠AEC=60°,∴∠EAB=60°﹣45°=15°,在△ABE和△CBE中,,∴△ABE≌△CBE(SSS),∴∠AEB=∠CEB=60°÷2=30°,∴∠EBF=∠AEB+∠EAB=30°+15°=45°,∵EF⊥AB,∴∠BEF=90°﹣∠EBF=90°﹣45°=45°.故答案为45.【点评】本题考查正方形的性质,等边三角形的性质,三角形全等的判定和全等三角形的性质,熟练掌握各定理和性质并灵活运用是解题的关键.试题4、(2012南昌)如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是15°或165°.【分析】利用正方形的性质和等边三角形的性质证明△ABE≌△ADF (SSS),有相似三角形的性质和已知条件即可求出当BE=DF时,∠BAE的大小,应该注意的是,正三角形AEF可以再正方形的内部也可以在正方形的外部,所以要分两种情况分别求解.【解答】解:①当正三角形AEF在正方形ABCD的内部时,如图1,∵正方形ABCD与正三角形AEF的顶点A重合,当BE=DF时,∴,∴△ABE≌△ADF(SSS),∴∠BAE=∠FAD,∵∠EAF=60°,∴∠BAE+∠FAD=30°,∴∠BAE=∠FAD=15°,②当正三角形AEF在正方形ABCD的外部时.∵正方形ABCD与正三角形AEF的顶点A重合,当BE=DF时,∴AB=AD BE=DF AE=AF,∴△ABE≌△ADF(SSS),∴∠BAE=∠FAD,∵∠EAF=60°,∴∠BAE=(360°﹣90°﹣60°)×+60°=165°,∴∠BAE=∠FAD=165°故答案为:15°或165°.【点评】本题考查了正方形的性质、等边三角形的性质、旋转的性质以及全等三角形的判定和全等三角形的性质和分类讨论的数学思想,题目的综合性不小.试题5、(2012秋江阴市校级期中)如图,S正方形ABCD=8,△ADE为等边三角形,F为DE的中点,BE、AF相交于点M,连接DM,则DM= 2 .【分析】先根据正方形的面积求出边长AD,再求出EF,然后根据正方形的性质与等边三角形的性质求出∠BAE,AB=AD=AE,再根据等腰三角形两底角相等求出∠AEB=15°,然后求出∠DAM=45°,再根据等边三角形的性质可得AF垂直平分DE,根据线段垂直平分线上的点到线段两端点的距离相等可得DM=EM,再求出△EFM是等腰直角三角形,然后根据等腰直角三角形斜边等于直角边的倍列式进行计算即可得解.【解答】解:∵S正方形ABCD=8,∴AD==2,在正方形ABCD和等边△ADE中,∠BAE=∠BAD+∠DAE=90°+60°=150°,AB=AD=AE,∴∠AEB=(180°﹣∠BAE)=(180°﹣150°)=15°,∴∠DEM=∠AED﹣∠AEB=60°﹣15°=45°,∵F为DE的中点,∴AF垂直平分DE,EF=DE=×2=,∴DM=EM,△EFM是等腰直角三角形,∴EM=EF=×=2,∴DM=2.故答案为:2.【点评】本题考查了正方形的性质,等边三角形的性质,等腰直角三角形的判定与性质,以及等腰三角形的性质,综合性较强,但难度不大,熟练掌握并灵活运用正方形的性质,等边三角形的性质是解题的关键试题5、(2016长春模拟)【阅读发现】如图①,在正方形ABCD 的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M,则图中△ADE≌△DFC,可知ED=FC,求得∠DMC= 90°读.【拓展应用】如图②,在矩形ABCD(AB>BC)的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.(1)求证:ED=FC.(2)若∠ADE=20°,求∠DMC的度数.【分析】阅读发现:只要证明∠DFC=∠DCF=∠ADE=∠AED=15°,即可证明.拓展应用:(1)欲证明ED=FC,只要证明△ADE≌△DFC即可.(2)根据∠DMC=∠FDM+∠DFC=∠FDA+∠ADE+∠DFC即可计算.【解答】解:如图①中,∵四边形ABCD是正方形,∴AD=AB=CD,∠ADC=90°,∵△ADE≌△DFC,∴DF=CD=AE=AD,∵∠FDC=60°+90°=150°,∴∠DFC=∠DCF=∠ADE=∠AED=15°,∴∠FDE=60°+15°=75°,∴∠MFD+∠FDM=90°,∴∠FMD=90°,故答案为90°(1)∵△ABE为等边三角形,∴∠EAB=60°,EA=AB.∵△ADF为等边三角形,∴∠FDA=60°,AD=FD.∵四边形ABCD为矩形,∴∠BAD=∠ADC=90°,DC=AB.∴EA=DC.∵∠EAD=∠EAB+∠BAD=150°,∠CDF=∠FDA+∠ADC=150°,∴∠EAD=∠CDF.在△EAD和△CDF中,,∴△EAD≌△CDF.∴ED=FC;(2)∵△EAD≌△CDF,∴∠ADE=∠DFC=20°,∴∠DMC=∠FDM+∠DFC=∠FDA+∠ADE+∠DFC=60°+20°+20°=100°.【点评】本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.三、正方形与直角三角形综合试题1、(2015春宝应县期中)在Rt△AEB中,∠AEB=90°,以斜边AB为边向Rt△AEB形外作正方形ABCD,若正方形ABCD的对角线交于点O(如图1)(1)求证:EO平分∠AEB.(2)试猜想线段OE与EB,EA之间的数量关系,请写出结论并证明.(3)过点C作CF⊥EB于F,过点D作DH⊥EA于H,CF和DH的反向延长线交于点G(如图2),求证:四边形EFGH为正方形.【分析】(1)先根据正方形的性质得出OA⊥OB,故可得出A、O、B、E四点共圆,再由圆周角定理即可得出结论;(2)延长EA至点F,使AF=BE,连接OF,先根据SAS定理得出△OBE≌△OAF,故可得出OE=OF,再判断出△OEF的形状,根据勾股定理即可得出结论;(3)先根据ASA定理得出△ABE≌△ADH,△ADH≌△DCG,△DCG≌△CBF,故可得出CG+FG=BF+BE=AE+AH,由此可得出结论.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠BAD=90°,AC⊥BD,∠ABO=∠BAO=45°,∴∠AOB=90°,∴∠AEB+∠AOB=90°+90°=180°,∴A、O、B、E四点共圆,∵OA=OB,∴∠OEB=∠OEA,即EO平分∠AEB;(2)解:AE+BE=OE.理由:如图1,延长EA至点F,使AF=BE,连接OF,∵由(1)知,∠OBE+∠OAE=180°,∠OAE+∠OAF=180°,∴∠OBE=∠OAE,在△OBE与△OAF中,,∴△OBE≌△OAF(SAS),∴OE=OF,∠BOE=∠AOF.∵∠BOE+∠AOE=90°,∴∠AOF+∠AOE=90°,∴∠EOF=90°,∴△EOF是等腰直角三角形,∴2OE2=EF2,即2OE2=(AE+BE)2,∴AE+BE=OE.(3)证明:如图2所示,∵ABCD是正方形,∠E=∠H=90°,∴AB=AD.∵∠EAB+∠DAH=90°,∠EAB+∠ABE=90°,∠ADH+∠DAH=90°,∴∠EAB=∠HAD,∠ABE=∠DAH.在△ABE与△ADH中,,∴△ABE≌△ADH(ASA).同理可得,△ABE≌△ADH,△ADH≌△DCG,△DCG≌△CBF,∴CG+FG=BF+BE=AE+AH,∴四边形EFGH为正方形.【点评】本题考查的是正方形的判定与性质,涉及到全等三角形的判定与性质、直角三角形的判定与性质等知识,难度适中.试题2、(2012许昌一模)已知,四边形ABCD是正方形,∠MAN=45°,它的两边AM、AN分别交CB、DC与点M、N,连接MN,作AH⊥MN,垂足为点H(1)如图1,猜想AH与AB有什么数量关系?并证明;(2)如图2,已知∠BAC=45°,AD⊥BC于点D,且BD=2,CD=3,求AD的长;小萍同学通过观察图①发现,△ABM和△AHM关于AM对称,△AHN和△ADN关于AN对称,于是她巧妙运用这个发现,将图形如图③进行翻折变换,解答了此题.你能根据小萍同学的思路解决这个问题吗?【分析】(1)延长CB至E使BE=DN,连接AE,由三角形全等可以证明AH=AB;(2)作△ABD关于直线AB的对称△ABE,作△ACD关于直线AC的对称△ACF,延长EB、FC交于点G,则四边形AEGF是矩形,又AE=AD=AF,所以四边形AEGF是正方形,设AD=x,则EG=AE=AD=FG=x,所以BG=x﹣2;CG=x﹣3;BC=2+3=5,在Rt△BGC中,(x﹣2)2+(x﹣3)2=52解之得x1=6,x2=﹣1,所以AD的长为6.【解答】(1)答:AB=AH,证明:延长CB至E使BE=DN,连接AE,∵四边形ABCD是正方形,∴∠ABC=∠D=90°,∴∠ABE=180°﹣∠ABC=90°又∵AB=AD,∵在△ABE和△ADN中,,∴△ABE≌△ADN(SAS),∴∠1=∠2,AE=AN,∵∠BAD=90°,∠MAN=45°,∴∠2+∠3=90°﹣∠MAN=45°,∴∠1+∠3=45°,即∠EAM=45°,∵在△EAM和△NAM中,,∴△EAM≌△NAM(SAS),又∵EM和NM是对应边,∴AB=AH(全等三角形对应边上的高相等);(2)作△ABD关于直线AB的对称△ABE,作△ACD关于直线AC的对称△ACF,∵AD是△ABC的高,∴∠ADB=∠ADC=90°∴∠E=∠F=90°,又∵∠BAC=45°∴∠EAF=90°延长EB、FC交于点G,则四边形AEGF是矩形,又∵AE=AD=AF∴四边形AEGF是正方形,由(1)、(2)知:EB=DB=2,FC=DC=3,设AD=x,则EG=AE=AD=FG=x,∴BG=x﹣2;CG=x﹣3;BC=2+3=5,在Rt△BGC中,(x﹣2)2+(x﹣3)2=52解得x1=6,x2=﹣1,故AD的长为6.【点评】本题主要考查正方形的性质和三角形全等的判断,题目的综合性很强,难度中等.试题3、(2010石家庄二模)在图1到图3中,点O是正方形ABCD对角线AC的中点,△MPN为直角三角形,∠MPN=90°.正方形ABCD保持不动,△MPN沿射线AC向右平移,平移过程中P点始终在射线AC上,且保持PM垂直于直线AB于点E,PN垂直于直线BC于点F.(1)如图1,当点P与点O重合时,OE与OF的数量关系为OE=OF ;(2)如图2,当P在线段OC上时,猜想OE与OF有怎样的数量关系与位置关系?并对你的猜想结果给予证明;(3)如图3,当点P在AC的延长线上时,OE与OF的数量关系为OE=OF ;位置关系为OE⊥OF .【分析】(1)根据利用正方形的性质和直角三角形的性质即可判定四边形BEOF为正方形,从而得到结论;(2)当移动到点P的位置时,可以通过证明四边形BEPF为矩形来得到两条线段的数量关系;(3)继续变化,有相同的关系,其证明方法也类似.【解答】(1)解:由题意得:∠BAC=∠BCA=45°,AO=PA,∠AEO=∠AFO,在△AEO和△CFO中,∴△AEO≌△CFO(AAS)∴OE=OF(相等);(1分)(2)解:OE=OF,OE⊥OF;(3分)证明:连接BO,∵在正方形ABCD中,O为AC中点,∴BO=CO,BO⊥AC,∠BCA=∠ABO=45°,(4分)∵PF⊥BC,∠BCO=45°,∴∠FPC=45°,PF=FC.∵正方形ABCD,∠ABC=90°,∵PF⊥BC,PE⊥AB,∴∠PEB=∠PFB=90°.∴四边形PEBF是矩形,∴BE=PF.∵∠COF+∠BOF=90°,∴∠BOE+∠BOF=90°,∴∠EOF=90°,∴OE⊥OF.OE=OF(相等),OE⊥OF(垂直).(10分)【点评】本题考查了正方形的性质,解题的关键是抓住动点问题,化动为静,还要大胆的猜想.试题4、(2009路南区一模)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系;并加以证明;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ 满足的数量关系,请证明你的猜想.【分析】(1)过P作PE⊥BC,PF⊥CD,证明Rt△PQF≌Rt△PBE,即可;(2)证明思路同(1)【解答】(1)PB=PQ,证明:过P作PE⊥BC,PF⊥CD,∵P,C为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四边形PECF为正方形,∵∠BPE+∠QPE=90°,∠QPE+∠QPF=90°,∴∠BPE=∠QPF,∴Rt△PQF≌Rt△PBE,∴PB=PQ;(2)PB=PQ,证明:过P作PE⊥BC,PF⊥CD,∵P,C为正方形对角线AC上的点,∴PC平分∠DCB,∠DCB=90°,∴PF=PE,∴四边形PECF为正方形,∵∠BPF+∠QPF=90°,∠BPF+∠BPE=90°,∴∠BPE=∠QPF,∴Rt△PQF≌Rt△PBE,∴PB=PQ.【点评】此题考查了正方形,角平分线的性质,以及全等三角形判定与性质.此题综合性较强,注意数形结合思想.试题5、(2015武进区一模)如图,在正方形ABCD中,AD=5,点E、F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为()A.B.C.D.【分析】延长AE交DF于G,再根据全等三角形的判定得出△AGD 与△ABE全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF的长.【解答】解:延长AE交DF于G,如图:∵AB=5,AE=3,BE=4,∴△ABE是直角三角形,∴同理可得△DFC是直角三角形,可得△AGD是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE,∴∠GAD=∠EBA,同理可得:∠ADG=∠BAE,在△AGD和△BAE中,,∴△AGD≌△BAE(ASA),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=,故选D.【点评】此题考查正方形的性质,关键是根据全等三角形的判定和性质得出EG=FG=1,再利用勾股定理计算.试题6、(2014春巴南区校级期末)如图,正方形ABCD,点P是对角线AC上一点,连接BP,过P作PQ⊥BP,PQ交CD于Q,连接BQ交AC于G,若AP=,Q为CD中点,则下列结论:①∠PBC=∠PQD;②BP=PQ;③∠BPC=∠BQC;④正方形ABCD的面积是16;其中正确结论的个数是()A.4B.3C.2D.1【分析】根据对角互补的四边形,则四边形共圆,根据圆周角定理得出∠BPC=∠BQC,根据∠PBC=∠PQD,过P作PM⊥AD于M,PE⊥AB于E,PF⊥DC于F,则E、P、F三点共线,推出正方形AEPM,根据勾股定理求出AE=PE=PM=AM=DF=1,证△BEP≌△PFQ,推出PE=FQ=1,BP=PQ,求出DQ、DC,即可.【解答】解:∵四边形ABCD是正方形,∴∠BCQ=90°,∵PQ⊥PB,∴∠BPQ=90°,∴∠BPQ+∠BCQ=180°,∴B、C、Q、P四点共圆,∴∠PBC=∠PQD,∠BPC=∠BQC,∴①正确;③正确;过P作PM⊥AD于M,PE⊥AB于E,PF⊥DC于F,则E、P、F三点共线,∵四边形ABCD是正方形,∴AB=AD=DC=BC,∠DAC=∠BAC,∠DAB=90°,∴∠MAE=∠PEA=∠PMA=90°,PM=PE,∴四边形AMPE是正方形,∴AM=PM=PE=AE,∵AP=,∴在Rt△AEP中,由勾股定理得:AE2+PE2=()2,解得:AE=AM=PE=PM=1,∴DF=1,设AB=BC=CD=AD=a,则BE=PF=a﹣1,∵∠BEP=∠PFQ=∠BPQ=90°,∴∠BPE+∠EBP=90°,∠EPB+∠FPQ=90°,∴∠EBP=∠FPQ,在△BEP和△PFQ中,∴△BEP≌△PFQ(ASA),∴PE=FQ=1,BP=PQ,∴②正确;∴DQ=1+1=2,∵Q为CD中点,∴DC=2DQ=4,∴正方形ABCD的面积是4×4=16,∴④正确;故选A.【点评】本题考查了正方形的性质和判定,全等三角形的性质和判定,勾股定理,三角形的内角和定理等知识点,主要考查学生的推理能力,题目综合性比较强,有一定的难度.四、正方形与等腰直角三角形综合试题1、(2016春海口校级月考)已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)求证:EG=CG;EG⊥CG.(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.【分析】(1)根据直角三角形斜边中线的性质以及三角形外角定理即可证明.(2)作GM⊥BC于M,⊥AB于N交CD于H,只要证明△GNE≌△GMC即可解决问题.【解答】证明:(1)如图①中,∵四边形ABCD是正方形,∴∠BCD=∠ADC=90°,∠BDC=,∵EF⊥BD,∴∠DEF=90°,∵GF=GD,∴EG=DG=GF=DF,GC=DG=GF=DF,∴EG=GC,∠GED=∠GDE,∠GCD=∠GDC,∵∠EGF=∠GED+∠GDE=2∠EDG,∠CGF=∠GCD+∠GDC=2∠GDC,∴∠EGC=∠EGF+∠CGF=2∠EDG+2∠GDC=2(∠EDG+∠GDC)=90°,∴EG⊥GC.(2)图②中,结论仍然成立.理由:作GM⊥BC于M,⊥AB于N交CD于H.∵四边形ABCD是正方形,∴∠A=∠ADC=90°,∠ABD=∠DBC=∠BDC=45°∴GM=GN,∵∠A=∠ANG=∠ADH=90°,∴四边形ANHD是矩形,∴∠DHN=90°,∠GDH=∠HGD=45°,∴HG=DH=AN,同理GH=CM,∵∠ENG=∠A=∠BEF=90°,∴EF∥GN∥AD,∵GF=GD,∴AN=NE=GH=MC,在△GNE和△GMC中,,∴△GNE≌△GMC,∴GE=GC,∠NGE=∠MGC,∴∠EGC=∠NGM=90°,∴EG⊥GC.【点评】本题考查全等三角形的判定和性质、正方形的性质、矩形的判定和性质等知识,添加辅助线构造全等三角形是解决问题的关键,属于中考常考题型.试题2、(2015重庆模拟)如图,正方形ABCD的边长为6,点E在边AB上,连接ED,过点D作FD⊥DE与BC的延长线相交于点F,连接EF与边CD相交于点G、与对角线BD相交于点H.(1)若BD=BF,求BE的长;(2)若∠2=2∠1,求证:HF=HE+HD.【分析】(1)在正方形ABCD中,由FD与DE垂直,利用等式的性质得到一对角相等,再由一对直角相等,且AD=DC,利用AAS得到三角形DAE与三角形DCF全等,利用全等三角形对应边相等得到AE=CF,进而求出BE的长;(2)在HF上取一点P,使FP=EH,连接DP,利用SAS得到三角形DEH与三角形DFP全等,利用全等三角形对应边相等,对应角相等得到DH=DP,∠EDH=∠FDP,进而确定出三角形DHP为等边三角形,利用等边三角形的性质即可得证.【解答】(1)解:∵四边形ABCD是正方形,且FD⊥DE,∴∠ADE=90°﹣∠EDC=∠CDF,AD=DC,∠A=∠DCF=90°,在△DAE和△DCF中,,∴Rt△DAE≌Rt△DCF(AAS),∴AE=CF,∵CF=BF﹣BC=BD﹣BC=6﹣6,∴BE=AB﹣AE=AB﹣CF=6﹣(6﹣6)=12﹣6;(2)证明:在HF上取一点P,使FP=EH,连接DP,由(1)Rt△DAE≌Rt△DCF得△EDF是等腰直角三角形,∴DE=DF,∠DEF=∠DFE=45°,∴△DEH≌△DFP(SAS),∴DH=DP,∠EDH=∠FDP,在△DHE和△FHB中,∵∠DEF=∠HBF=45°,∠EHD=∠BHF(对顶角),∴∠EDH=∠1=∠2=(45°﹣∠EDH),∴∠EDH=15°,∠FDP=15°,∴∠HDP=90°﹣15°﹣15°=60°,∴△DHP是等边三角形,∴HD=HP,HF=HE+HD.【点评】此题考查了正方形的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.试题3、(2015春垫江县期末)如图,在正方形ABCD 中,点F是BC延长线上一点,过点B作BE⊥DF于点E,交CD于点G,连接CE.(1)若正方形ABCD边长为3,DF=4,求CG的长;(2)求证:EF+EG=CE.【分析】(1)根据正方形的性质可得∠BCG=∠DCB=∠DCF=90°,BC=DC,再根据同角的余角相等求出∠CBG=∠CDF,然后利用“角边角”证明△CBG和△CDF全等,根据全等三角形对应边相等可得BG=DF,再利用勾股定理列式计算即可得解;(2)过点过点C作CM⊥CE交BE于点M,根据全等三角形对应边相等可得CG=CF,全等三角形对应角相等可得∠F=∠CGB,再利用同角的余角相等求出∠MCG=∠ECF,然后利用“角边角”证明△MCG和△ECF全等,根据全等三角形对应边相等可得MG=EF,CM=CE,从而判断出△CME是等腰直角三角形,再根据等腰直角三角形的性质证明即可.【解答】(1)解:∵四边形ABCD是正方形,∴∠BCG=∠DCB=∠DCF=90°,BC=DC,∵BE⊥DF,∴∠CBG+∠F=∠CDF+∠F,∴∠CBG=∠CDF,在△CBG和△CDF中,,∴△CBG≌△CDF(ASA),∴BG=DF=4,∴在Rt△BCG中,CG2+BC2=BG2,∴CG==;(2)证明:如图,过点C作CM⊥CE交BE于点M,∵△CBG≌△CDF,∴CG=CF,∠F=∠CGB,∵∠MCG+∠DCE=∠ECF+∠DCE=90°,∴∠MCG=∠ECF,在△MCG和△ECF中,,∴△MCG≌△ECF(ASA),∴MG=EF,CM=CE,∴△CME是等腰直角三角形,∴ME=CE,又∵ME=MG+EG=EF+EG,∴EF+EG=CE.【点评】本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,等腰直角三角形的判定与性质,难点在于(2)根据CE考虑作出以CE为直角边的等腰直角三角形.试题4、(2015春扬州校级月考)如图1,在正方形ABCD中,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)若点E是BC边上的中点,求证:AE=EF;(2)如图2,若点E是BC的延长线上(除C点外)的任意一点,其他条件不变,那么结论“AE=EF”是否仍然成立,若成立,请写出证明过程;若不成立,请说明理由;(3)如图3,若点E是BC边上的任意点一,在AB边上是否存在点M,使得四边形DMEF是平行四边形?若存在,请给予证明;若不存在,请说明理由.【分析】(1)取AB的中点H,连接EH,根据已知及正方形的性质利用ASA判定△AHE≌△ECF,从而得到AE=EF;(2)成立,延长BA到M,使AM=CE,根据已知及正方形的性质利用ASA判定△AHE≌△ECF,从而得到AE=EF;(3)存在,作DM⊥AE于AB交于点M,则有:DM∥EF,连接ME、DF,证明△ADM≌△BAE(ASA),得到DM=AE,由(1)AE=EP,所以DM=EP,所以四边形DMEP为平行四边形.【解答】(1)证明:取AB的中点H,连接EH;如图1所示∵四边形ABCD是正方形,AE⊥EF;∴∠1+∠AEB=90°,∠2+∠AEB=90°∴∠1=∠2,∵BH=BE,∠BHE=45°,且∠FCG=45°,∴∠AHE=∠ECF=135°,AH=CE,在△AHE和△ECF中,,∴△AHE≌△ECF(ASA),∴AE=EF;(2)解:AE=EF成立,理由如下:如图2,延长BA到M,使AM=CE,∵∠AEF=90°,∴∠FEG+∠AEB=90°.∵∠BAE+∠AEB=90°,∴∠BAE=∠FEG,∴∠MAE=∠CEF.∵AB=BC,∴AB+AM=BC+CE,即BM=BE.∴∠M=45°,∴∠M=∠FCE.,∴△AME≌△ECF(ASA),∴AE=EF.(3)存在,理由如下:如图3,作DM⊥AE于AB交于点M,则有:DM∥EF,连接ME、DF,在△ADM与△BAE中,,∴△ADM≌△BAE(ASA),∴DM=AE,∵由(1)AE=EP,∴DM=EP,∴四边形DMEP为平行四边形.【点评】此题考查学生对正方形的性质及全等三角形判定的理解及运用,解决本题的关键是作出辅助线.试题5、(2014云阳县校级模拟)如图,正方形ABCD的对角线相交于点O.点E是线段DO上一点,连接CE.点F是∠OCE的平分线上一点,且BF⊥CF与CO相交于点M.点G是线段CE上一点,且CO=CG.(1)若OF=4,求FG的长;(2)求证:BF=OG+CF.【分析】(1)根据条件证明△OCF≌△GCF,由全等的性质就可以得出OF=GF而得出结论;(2)在BF上截取BH=CF,连接OH.通过条件可以得出△OBH≌△OCF.可以得出OH=OF,从而得出OG∥FH,OH∥FG,进而可以得出四边形OHFG是平行四边形,就可以得出结论.【解答】(1)解:∵CF平分∠OCE,∴∠OCF=∠ECF.∵OC=CG,CF=CF,∵在△OCF和△GCF中,,∴△OCF≌△GCF(SAS).∴FG=OF=4,即FG的长为4.(2)证明:在BF上截取BH=CF,连接OH.∵四边形ABCD为正方形,∴AC⊥BD,∠DBC=45°,∴∠BOC=90°,∴∠OCB=180°﹣∠BOC﹣∠DBC=45°.∴∠OCB=∠DBC.∴OB=OC.∵BF⊥CF,∴∠BFC=90°.∵∠OBH=180°﹣∠BOC﹣∠OMB=90°﹣∠OMB,∠OCF=180°﹣∠BFC﹣∠FMC=90°﹣∠FMC,且∠OMB=∠FMC,∴∠OBH=∠OCF.∵在△OBH和△OCF中,∴△OBH≌△OCF(SAS).∴OH=OF,∠BOH=∠COF.∵∠BOH+∠HOM=∠BOC=90°,∴∠COF+∠HOM=90°,即∠HOF=90°.∴∠OHF=∠OFH=(180°﹣∠HOF)=45°.∴∠OFC=∠OFH+∠BFC=135°.∵△OCF≌△GCF,∴∠GFC=∠OFC=135°,∴∠OFG=360°﹣∠GFC﹣∠OFC=90°.∴∠FGO=∠FOG=(180°﹣∠OFG)=45°.∴∠GOF=∠OFH,∠HOF=∠OFG.∴OG∥FH,OH∥FG,∴四边形OHFG是平行四边形.∴OG=FH.∵BF=FH+BH,∴BF=OG+CF.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,平行四边形的判定及性质的运用,解答时采用截取法作辅助线是关键.试题6、(2014揭西县校级模拟)如图①,已知△ABC是等腰直角三角形,∠BAC=90°,点D是BC的中点.作正方形DEFG,使点A,C分别在DG、DE上,连接AE、BG.(1)试猜想线段BG和AE的数量关系,请直接写出你得到的结论;(2)将正方形DEFG绕点D逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图②,(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由.。
【华师大版初中数学八年级下册 第19章 矩形、菱形与正方形说课稿】菱形的判定
19.2.2菱形的判定尊敬的各位领导老师:大家好!我说课的题目是《菱形的判定》。
我针对本节课的教学内容主要从教材地位作用、学情分析、教学目标分析、教学方法分析、教学过程分析、板书设计等几方面逐一加以说明。
一、教材的地位和作用本节课选自华师大版八年级下册第十九章第二节第2课时,主要内容是菱形的判定,让学生尝试从不同角度寻求菱形的判定方法,并能有效地解决实际问题。
它是在探究平行四边形和矩形的判定方法之后,又一个特殊四边形判定方法的探索,它不仅是三角形、四边形知识的延伸,更为探索正方形的性质与判定指明了方向。
本节课通过学生观察猜想,小组讨论合作交流后归纳证明得出结论,培养学生的推理能力和演绎能力,为以后圆等知识的学习奠定基础。
二、学情分析我从初一开始就对学生进行数学理念数学思考数学意识的培养,所以在新知识的接受方面学生还有一些优势,本节课根据这些特点适当的进行了难度的设计和环节上的考虑。
从认知状况来说,学生在此之前已经学习了平行四边形的判定,对判定有了初步的认识,这为顺利完成本节课的教学任务打下了基础,学生可能会产生一定的困难,所以教学中应予以简单明白,深入浅出的分析。
从心理特征来说,初中阶段的学生逻辑思维从经验型逐步向理论型发展,观察能力,记忆能力和想象能力也随着迅速发展。
但同时,这一阶段的学生好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以自己在教学中应抓住这些特点,一方面运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面,要创造条件和机会,让学生发表见解,发挥学生学习的主动性,让学生愉快地学习。
三、教学目标分析根据本节课的教学内容,结合新课标理念, 我从四个方面制定了教学目标:(一)知识技能:经历菱形的判定方法的探究过程,掌握菱形的三种判定方法. (二)过程方法:经历利用菱形的定义探究菱形其他判定方法的过程,培养学生的动手实验、观察、推理意识,发展学生的形象思维和逻辑推理能力.根据菱形的判定定理进行简单的证明,培养学生的逻辑推理能力和演绎能力.尝试从不同角度寻求菱形的判定方法,并能有效的解决问题,尝试评价不同判定方法之间的差异.通过对菱形判定过程的反思,获得灵活判定四边形是菱形的经验.(三)情感态度:在探究菱形的判定方法的活动中获得成功的体验,从成功中体会研究数学问题的乐趣,让学生学会主动寻求解决问题的途径,从而增强学生学习数学的兴趣,树立学好数学的信心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
轮下来犯难的是票钱,我身上根本没有零钱,别误会,更不会有整的。那时都吃饭堂,一学期一起交,不需要每顿再花钱,家里也没有要给孩子钱的想法,最根本的是每个人家里都没什么多余的钱。
那部电影热映时,我在一个小镇读初中。一天,我们几个女生相约准备逃避晚自习去看这部电影,几个女生一整天心怀小鹿,七上八下的。我的父亲就是中学语文教师,也许是由于想严格管理,也 许是出于对自己乡村知识分子身份的自信,我被直接分到父亲任班主任的班级,每天都在他眼皮底下晃动。88真人
晚上到底用什么借口请假不参加晚自习,大家七嘴八舌,不得要领,有个年龄大我两岁的女生想了个主意,说她妈妈喊她叫几个同学帮缝被子。过去缝被子是家里的大事,天气好赶紧拆下来洗了, 洗后有些讲究的还用米汤浆一次,然后要铺平整用粗纱线缝起来。这个借口显然很粗糙,虽然缝被子需要人打下手,不过一般来说主妇们都会就星期日做这些事。但电影在小镇上演的时间这么仓促,我 们一群十几岁的少女能有什么老谋深算的借口?