自动控制原理与系统第七章
(优选)自动控制原理第七章非线性系统
1, x 0 signx 1, x 0
0
xa
y k( x asignx) x a
3 滞环特性
滞环特性表现为正向与反向特性不是重叠在一起,而是
在输入--输出曲线上出现闭合环路。其静特性曲线如图7-3
所示。其数学表达式为:
y
b
y
k(
x asignx) bsignx
y0 y0
-a
0a
x
(优选)自动控制原理第七章 非线性系统
7.1 典型非线性特性
在控制系统中,若控制装置或元件其输入输出间的静 特性曲线,不是一条直线,则称为非线性特性。如果这 些非线性特性不能采用线性化的方法来处理,称这类非 线性为本质非线性。为简化对问题的分析,通常将这些 本质非线性特性用简单的折线来代替,称为典型非线性 特性。 7.1.1 典型非线性特性的种类
描述函数法是非线性系统的一种近似分析方法。首先利用描 述函数将非线性元件线性化,然后利用线性系统的频率法对系统 进行分析。它是线性理论中的频率法在非线性系统中的推广,不 受系统阶次的限制。
分析内容主要是非线性系统的稳定性和自振荡稳态,一 般不给出时域响应的确切信息。 7.2.1 描述函数的定义
1.描述函数的应用条件
2.死区特性
死区又称不灵敏区,在死区内虽有输入信号,但其输
出为零,其静持性关系如图7-2所示。
y
其数学表达式为
k -a
0a
x
0,| x | a
y
k(x
a),
x
a
k( x a), x a
若引入符号函数
图7-2 死区特性
死区小时,可忽略;大 时,需考虑。工程中,为抗 干扰,有时故意引入。比如 操舵系统。
自动控制原理第7章线性离散控制系统
状态方程
状态方程是描述线性离散控制系统动态行为的数学模型,其形 式为 X(k+1) = A*X(k) + B*U(k),其中X(k)表示在时刻k的系统 状态向量,U(k)表示在时刻k的控制输入向量,A和B是系统矩 阵。
自动控制原理第7章 线性离散控制系统
目录
CONTENTS
• 引言 • 线性离散控制系统的数学模型 • 线性离散控制系统的稳定性分析 • 线性离散控制系统的性能分析 • 线性离散控制系统的设计方法 • 线性离散控制系统的应用案例
01
引言
线性离散控制系统的定义与特点
定义
线性离散控制系统是指系统的动态行为由差分方程或离散状态方程描述的一类控制系统。
适性。
常见的智能家居控制系统包括智 能照明、智能安防、智能环境监
测等。
案例三:工业自动化控制系统设计
工业自动化控制系统是线性离散 控制系统的另一个重要应用领域, 主要用于实现生产过程的自动化
和智能化。
工业自动化控制系统通常采用分 布式控制结构,通过各种传感器、 执行器和主控制器实现对生产设
备的监测和控制。
离散控制系统的稳定性判据
劳斯-赫尔维茨稳定性判据
通过计算离散控制系统的传递函数的极点和零点,判断系统的稳定性。如果所有极点都位于复平面的左半部分,则系 统稳定;否则系统不稳定。
奈奎斯特稳定性判据
通过分析离散控制系统的频率响应,判断系统的稳定性。如果频率响应的相位曲线在-π~π范围内,则系统稳定;否则系 统不稳定。
系统实现
将设计好的控制器应用于实际系统中,并进 行实验验证。
离散控制系统设计的常用方法
自动控制原理第七章
2013-12-13
<<自动控制原理>>第七章
9
4、非线性系统不适用叠加原理
在线性系统中,若干个信号作用于系统上,我们可以分 别求单独信号作用的响应,然后再叠加就可以求出总的响应。
这给分析综合线性系统带来了很大方便。通常在典型输入函
<<自动控制原理>>第七章
22
2013-12-13
<<自动控制原理>>第七章
23Leabharlann 二、相平面图的分析 1.线性系统奇点的类型 假设奇点在相平面的原点上, f ( x, x) 是解析函数,可用泰勒 级数将其在原点附近展开:
f ( x, x) f ( x, x) f ( x, x) f ( x, x) x 0 x 0 x x 0 x g ( x, x ) x x x 0 x 0 x 0 其中,g ( x, x) 是包含 x, x 二次以上的项,在原点附近,x, x 都很小,g ( x, x) 可以忽略。注意到在奇点处有
即
dx d ( x) dx dx
表示在 ( x, x) 点和 ( x, x) 点相轨迹曲线的斜率大小相等,符 号相反,故关于 x 轴对称。
2013-12-13 <<自动控制原理>>第七章 14
若 f ( x, x)是 x 的奇函数,即 f ( x, x) f ( x, x)
2013-12-13
<<自动控制原理>>第七章
17
c.系统的状态沿相轨迹曲线转移的方向
自动控制原理第七章采样控制系统
第三节 信号复现与零阶保持器
一. 信号保持 把离散信号转换为连续信号,称为信号保持,该装置称
保持器。 保持器:用离散时刻信号复现连续时刻信号。
二. 零阶保持器
1. 作用:把采样信号e*(t) 每一个采样瞬时值e(kT)一直保持到下一个采 样瞬间e[(k+1)T], 从而使采样信号 e*(t)变成 阶梯信号eh(t)。
一阶保持器比零阶保持器信号恢复更
0 T 2T 3T 4T 5T 6T t
精确, 但相位滞后增加, 对稳定性不利.
图7-11 一阶保持器输出特性
第四节 Z变换理论
同拉氏变换一样, 是一种数学变换. 离散信号e*(t)的 拉氏变换为:
E*(s) e(nT )enTs n0
各项均含有 esT 因子,为S的超越函数。为便于应用,对 离散系统的分析一般采用Z变换.
G 0 ( s ) 1 s [ 1 e s] T 1 s 1 e 1 s T 1 s 1 1 s 1 T 1 T sT
零阶保持器的频率特性
信号e(t)在t = nT 及t = (n+1)T 之间的数值可以用一个级数来描述
单位脉冲响应
G h(s)L [gh(t) ]S 1S 1e TS 1 Se TS
G 0(j
)1ejT2sin T/(2 )ejT2 j
幅频特性: G 0(j)Tsi( n/ / ( s)s)2 s si( n/ / ( s)s)
上式是 eTs 的有理函数. 但 eTs是含变量S的超越函数,不便进行分析和运算, 因此常用Z变换代替拉氏变换。
三. 采样定理
从理论上指明了从采样信号中不失真的复现原连续信号 所必需的理论上的最小采样周期T.
自动控制原理第七章非线性控制系统的分析
这里,M=3,h=1
负倒描述函数为
N 1 X
X
12 1 1 2
X
X 1
X 1, N 1 X , N 1
必有极值
d N 1X 令
0 dX
得 X 2
N 1 2
2
0.523
12
1
1 2
2
6
X: 1 2
-N-1(X): 0.523
2.自振的稳定性分析
在A点,振幅XA,频率A。
扰动:
X : A点 C点 C点被G(j)轨迹包围,不稳定,
振幅 ,工作点由C点向B点运动;
A点一个不稳 定的极限环。
X : A点 D点 D点不被G(j)轨迹包围,稳定,
振幅 ,工作点由D点左移。
在B点,振幅XB,频率B 。 扰动:
X : B点 E点 E点不被G(j) 轨迹包围,稳定,
振幅 ,工作点由E点到B点;
X : B点 F点 F点被G(j)轨迹包围,不稳定,
振幅 ,工作点由F回到B点。
B点呈现稳定的自激振荡:振幅XB ,频率B。
3.闭环系统稳定性判别步骤
1)绘制非线性部分的负倒描述函数曲线和线 性部分的频率特性曲线。
2)若G(j)曲线不包围“-N-1(X)”曲线,则系统稳定。 若G(j)曲线包围“-N-1(X) ”曲线,系统不稳定。 若G(j)曲线与“-N-1(X)”曲线相交,系统出现自振。
3)若G(j )曲线与“-N-1(X)”曲线有交点,做以 下性能分析:
(1)不稳定的极限环
(2)稳定的极限环 计算自振频率和幅值。
例1:非线性系统如图所示,其中非线性特性为 具有死区的继电器,分析系统的稳定性。
0e
自动控制原理第7章离散控制系统
Z变换
01
Z变换是分析离散时间信号和系统 的有力工具,它将离散时间信号 或系统转化为复平面上的函数或 传递函数。
02
Z变换的基本思想是通过将离散时 间信号或系统进行无限次加权和 ,将其转化为一个复数域上的函 数或传递函数。
离散状态方程
离散状态方程是描述离散控制系统动 态行为的数学模型,它的一般形式为 $mathbf{dot{x}}(k) = Amathbf{x}(k) + Bu(k)$,其中 $mathbf{x}(k)$表示在时刻$k$的系 统状态向量,$u(k)$表示在时刻$k$ 的输入向量,$A$和$B$是系统的系 数矩阵。
稳态误差主要来源于系统本身的结构 和参数,以及外部干扰和测量噪声。
离散控制系统的动态响应分析
动态响应定义
动态响应是指系统在输入信号作 用下,系统输出信号随时间变化 的特性。
动态响应的描述方
式
动态响应可以通过系统的传递函 数、频率特性、根轨迹图等方式 进行描述。
优化动态响应的方
法
通过调整系统参数、改变系统结 构、引入反馈控制等方法,可以 优化系统的动态响应。
离散控制系统的仿真工具与实例
仿真工具介绍
离散控制系统的仿真工具用于模拟和测试系统的性能和稳定性。常见的仿真工具包括MATLAB/Simulink、 LabVIEW等。这些工具提供了丰富的数学函数库和图形化界面,方便用户进行系统建模和仿真。
仿真实例分析
通过具体的仿真实例,可以深入了解离散控制系统的性能和特点。例如,可以设计一个温度控制系统,通过调整 系统参数和控制算法,观察系统在不同工况下的响应特性和稳定性。通过对比不同方案,可以评估各种参数和控 制策略对系统性能的影响,为实际应用提供参考和依据。
自动控制原理第7章离散系统题库习题
⾃动控制原理第7章离散系统题库习题7-1已知下列时间函数()c t ,设采样周期为T 秒,求它们的z 变换()C z 。
(a )2()1()c t t t = (b )()()1()c t t T t =- (c )()()1()c t t T t T =-- (d )()1()atc t t te -=(e )()1()sin atc t t et ω-= (f )()1()cos atc t t te t ω-=7-2已知()x t 的拉⽒变换为下列函数,设采样周期为T 秒,求它们的z 变换()X z 。
(a )21()C s s = (b )()()aC s s s a =+(c )2()()aC s s s a =+(d )1()()()()C s s a s b s c =+++(e )2221()()C s s s a =+(f )()1()1sT C s e s-=-7-3求下列函数的z 反变换。
(a )0.5(1)(0.4)zz z --(b )2()()T T zz e z e ----(c )22(1)(2)z z z ++7-4已知0k <时,()0c k =,()C z 为如下所⽰的有理分式120121212()1nn nn b b z b z b z C z a z a z a z------++++=++++L L 则有0(0)c b =以及[]1()()nk i i c kT b a c k i T ==--∑式中k n >时,0k b =。
(a )试证明上⾯的结果。
(b )设23220.5()0.5 1.5z z C z z z z +-=-+-应⽤(a )的结论求(0)c 、()c T 、(2)c T 、(3)c T 、(4)c T 、(5)c T 。
7-5试⽤部分分式法、幂级数法和反演积分法,求下列函数的z 反变换:(a )10()(1)(2) zE z z z =--(b )1123()12z E z z z ----+=-+(c )2()(1)(31)zE z z z =++(d )2()(1)(0.5)zE z z z =-+7-6⽤z 变换法求下⾯的差分⽅程(2)3(1)2()0,(0)0,(1)1x k x k x k x x ++++===并与⽤迭代法得到的结果(0)x 、(1)x 、(2)x 、(3)x 、(4)x 相⽐较。
自动控制原理与系统第7章直流调速系统
若略去平波电抗器Ld的电压降落ULd,则电枢电压Ua可近似等于
Ud(Ud=Ua+ULd)。当电枢电压Ua增加时,转速n将增加。因此,调节 给定电压Us,即可调节转速n的数值。
图 7-2 具有转速反馈的直流调速系统组成框图
• 当负载转矩TL发生变化时(今设TL增加),则 电动机的转速将下降(n ),则反馈环节的反
•Tn------速度调节器时间常数 T=RnCn ;
•Ke--------电动机电动势恒量 •Φ--------电动机工作磁通量(磁极磁通
•Ki------电流调节增益.Ki=Ri/R0 量) ;
•Ti-------电流调节器时间常数 Ti=RiCi ;
•JG--------电动机及机械负载折合到电 动机转轴上的机械转速惯量;
系统的动态性能分析
• 适当降低增益(即调低比例系数Kk),将使系 统的稳定性改善( 、 N ),但稳态误差
( ess )将有所增大。
实例分析
分析晶闸管调速系统线路的一般顺序是: 主电路→触发电路→控制电路→辅助电路
(包括保护、指示、报警等)
7.2 转速和电流双闭环直流调速系统
系统的组成:
假设 n Usn / ,其自动调节过程如下:
直至
n Usn
,Un 0
调节过程才结束
图 7-8 速度环的自动调节过程
图 7-9 转速、 电流双闭环直流调速系统框图
框图中的系统结构参数有共13个
•Kn-----速度调节增益。Kn=Rn/R0 ;•KT-------电动机电磁转矩恒量;
馈电压将减小( U fn ),于是偏差电压 将增U 大Us(Ufn ),经电压U放 大和功率放大后,整
流输出电压Ud也将增大,而
自动控制原理 第七章 非线性系统
实质上是应用谐波线性化的方法,将非线性特性线性化, 然后用频域法的结论来研究非线性系统,它是线性理论 中的频率法在非线性系统中的推广,不受系统阶次的限 制。
(2)相平面法(本质非线性):图解法。通过在相平 面上绘制相轨迹,可以求出微分方程在任何初始条件下 的解。是一种时域分析法,仅适用于一阶和二阶系统。
1
ωt
y1 (t ) B1 sint
由式(7-15)可得饱和特性的描述函数为
B1 2k a a a 2 N ( A) arcsin 1 ( ) A A A A
M sin td ( t )
yMFra bibliotek0 π2π
ωt
所以基波分量为:
y1 ( t )
4M
sin t
故理想继电器特性的描述函数为
Y1 4M N ( A) 1 A A
2.饱和特性
请牢记!
即 N(A)的相位角为零度,幅值是输入正弦信号A的函数.
当输入为x(t)=Asinωt,且A大于线性区宽度a 时, 饱和特性的输出波形如图7-10所示。
7.1.3
非线性系统的分析方法
非线性的数学模型为非线性微分方程,大多数尚无
法直接求解。到目前为止,非线性系统的研究还不成熟, 结论不能像线性系统那样具有普遍意义,一般要针对系 统的结构,输入及初始条件等具体情况进行分析。工程 上常用的方法有以下几种:
(1)描述函数法(本质非线性):是一种频域分析法,
r(t)=0 x
N
y
G(s)
c(t)
图7-8 非线性系统典型结构图
(2)非线性环节的输入输出静特性曲线是奇对称的,即 y(x)=-y(-x),以保证非线性元件在正弦信号作用下的输出不 包含直流分量。 (3)系统的线性部分具有良好的低通滤波特性。能较好的滤 除非线性环节在正弦输入下输出中的高次谐波,于是可以认 为在闭环通道中只有基波分量在流通,此时应用描述函数法 所得的分析结果才是比较准确的。实际系统基本都能满足。
自动控制原理第七章采样系统
n>m
pi— 极点
Ai— 待定系数
第二节 采样控制系统的数学基础
例 求F(s)的z变换F(z)。
F (s)=
1 S(S+1)
解:
F (s)=
1 S(S+1)
=
1 S
–
1 S+1
F (z)=
z z–1
–
z z–e –T
=
z(1–e –T ) (z–1)(z–e–T
)
第二节 采样控制系统的数学基础
例 求F(s)的z变换F(z)。
+
=Σ k=0
8
f
(kT)∫0∞δ(t
–
kT
)e–stdt
+
=Σ f(kT)e –kTS k=0
第二节 采样控制系统的数学基础
二、求Z变换的方法
1.级数求和法
根据定义式展开
+
F (z)= Σ f (kT) k=0
= f (0)z0 + f (T)z-1 + f (2T)z-2 + f (3T)z-3 + ··· 利用级数求和法可求得常用函数
+(S+2)
S+3 (S+1)(S+2)
z z–eST S=-2
F (z)=
2z z–e –T
–
z–e
z
–2T
=
z2+z(e-T -2e-2T z2-(e-T +e-2T )z+e
)
-3T
ቤተ መጻሕፍቲ ባይዱ
第二节 采样控制系统的数学基础
三、Z变换的基本定理
例 z变求换Z[的t –基T 本] 定理为z变换的运算 提供了方便。
自动控制原理(第三版)第七章线性离散系统分析与设计
要点二
离散系统稳态误差的计算方法
离散系统稳态误差的计算方法包括解析法和仿真法,其中 解析法是通过求解差分方程得到稳态误差,仿真法则是通 过模拟系统的动态过程得到稳态误差。
05
线性离散系统的控制器设计
离散系统的状态反馈控制
01
状态反馈控制
通过测量系统的状态变量,并利 用这些信息来产生控制输入,以 实现系统的期望性能。
THANKS
感谢观看
01
离散系统响应的分类
离散系统的响应可以根据不同的标准进行分类,如根据时间响应可以分
为瞬态响应和稳态响应,根据系统参数可分为超调和调节时间等。
02
离散系统响应的数学模型
离散系统的数学模型通常采用差分方程或状态方程表示,通过求解这些
方程可以得到系统的响应。
03
离散系统响应的分析方法
离散系统响应的分析方法包括时域分析和频域分析,其中时域分析主要
基于系统的输出方程和性能指标,通过设计适当的观测器来估计状 态变量,并利用这些估计值来设计输出反馈控制器。
输出反馈控制的局限性
对于非线性系统和不确定性可能存在较大的误差,并且对于状态变 量的测量可能存在噪声和延迟。
离散系统的最优控制
最优控制
01
通过优化性能指标来选择控制策略,以实现系统性能的最优化。
自动控制原理(第三版)第七章 线性离散系统分析与设计
• 线性离散系统概述 • 线性离散系统的数学模型 • 线性离散系统的稳定性分析 • 线性离散系统的动态性能分析
• 线性离散系统的控制器设计 • 线性离散系统设计案例分析
01
线性离散系统概述
定义与特点
《自动控制原理》第七章 离散控制系统
式中, ( z ) 称为离散信号e* (t ) 的z变换,记为 E( z) Z[e* (t )] E
7.3.2 z变换的方法
常用的求取离散函数的z变换方法有级数求和法、部分分式法和留数计算法。
1.级数求和法
根据z变换的定义,将连续信号 e(t ) 按周期 T 进行采样,级数展开可得
教学难点
离散时间函数的数学表达式及采样定理, 线性常系数差分方程与脉冲传递函数,采 样控制系统的时域分析,采样控制系统的 频域分析。
概述:
近年来,随着脉冲技术、数字式元器件、数字计算机,特别是微处理器
的迅速发展,数字控制器在许多场合取代了模拟控制器,比如微型数字 计算机在控制系统中得到了广泛的应用。离散系统理论的发展是非常迅 速的。 因此,深入研究离散系统理论,掌握分析与综合数字控制系统的基 础理论与基本方法,从控制工程特别是从计算机控制工程角度来看,是 迫切需要的。
图7-3 信号复现过程
7.1.2 数字控制系统
数字控制系统是一种以数字计算机为控制器去控制具有连续工作状态的 被控对象的闭环控制系统。 其原理方框图如图7-4所示。
图7-4 数字控制系统方框图
过程分析:A/D转换器将连续信号转换成数字序列,经数字控制器处理后生 成离散控制信号,再通过D/A转换器转换成连续控制信号作用于 被控对象。
第7章 离散控制系统
教学重点
了解线性离散系统的基本概念和基本定理,把握 线性连续系统与线性离散系统的区别与联系; 熟练掌握Z变换的方法、Z变换的性质和Z反变换; 了解差分方程的定义,掌握差分方程的解法; 了解脉冲传递函数的定义,熟练掌握开环与闭环 系统脉冲传递函数的计算方法; 与线性连续系统相对应,掌握线性离散系统的时 域和频域分析方法和原则。
自动控制原理第7章 离散控制系统
b(t )
H (s)
图7.5 数字控制系统的简化框图
2019/2/19
7
数字控制系统较之一般的连续控制系统具有如下一 些优点: 能够保证足够的计算精度; 在数字控制系统中可以采用高精度检测元件和执 行元件,从而提高整个系统的精度; 数字信号或脉冲信号的抗干扰性能好,可以提高 系统的抗干扰能力; 可以采用分时控制方式,提高设备的利用率,并 且可以采用不同的控制规律进行控制; 可以实现一些模拟控制器难以实现的控制律,特 别对复杂的控制过程,如自适应控制、最优控制、 智能控制等,只有数字计算机才能完成。
2019/2/19
9
7.2.1 采样过程及其数学描述
将连续信号通过采样开关(或采样器)变换成离 散信号的过程称为采样过程。相邻两次采样的时间 间隔称为采样周期T。 采样频率:f s 1/ T 采样角频率: s 2 /T 采样可分为:
等速采样:采样开关以相同的采样周期T动作,又 称为周期采样 多速采样:系统中有n个采样开关分别按不同周期 动作 随机采样:采样开关动作是随机的 本章仅限于讨论等速同步采样过程。
j t xj ( ) xt () e d t
1 X( s ) Xs ( j k s) T k
*
2019/2/19
(7-7)
15
X ( j )
max
2max
(a)
o
max
图7.7 连续信号及离散信号的频谱
式中ω s=2π/T为采样频率,X(s)为x(t)的拉氏变 换。若X*(s)的极点全都位于s左平面,可令s=jω , 求得x*(t)的傅氏变换为
离散控制系统最常见形式是数字控制系统。图 7.4是数字控制系统的结构图。图中用于控制的计算 机D工作在离散状态,被控对象G(s)工作在模拟状态。
自动控制原理第七章
基本思想
ɺ x
x
相平面分析法是分析非线性系统性能的一种图 示方法。 示方法。而相轨迹和相平面图的绘制为该分析方法的前提 条件。 条件。
x 1 (t), 2 (t) x
相平面定义:由两个线性无关的状态变量 作为坐标的平面称 为相平面。通常采用位移和位移的变化率作为状态变量用于描述一、二 阶系统的运动特性。
ɺɺ = -f(x, x ) ɺ x ⇒ ɺ ɺɺ = d x x = − f(x, x ) ɺ ɺ x dx ⇒ ɺ ɺ dx f(x, x ) = − ɺ dx x
ɺ x
x
相轨迹的绘制方法
解析法
消除变量法 直接积分法
等倾线法绘制相轨迹思 ɺɺ + f(x,ɺ ) = 0 x x 令: ⇒ 路: ɺ dx f(x,ɺ ) x =− ɺ x dx
E 0
Im
∞
Re
死区继电器的负倒描述函数曲线
Im
N(E) N(E)
4M = πE = 0
Δ2 1− E 2 (E ≤ Δ )
(E
≥ Δ)
∆ ∞
E Re
−
1 N(E)
= − 4M
πE
Δ2 1− E 2
(E
≥ Δ)
拐点参数:
E = 2 Δ 1 − N(E) E =
Y ϕ 非线性环节的描述函数 :N = 1 e j 1 = E
2 2 − A 1 + B 1 jtg 1 B 1 B A = 1+j 1 e E E E
A1
描述函数的自变量为输入正弦信号的幅值
求取描述函数应用举例
自动控制原理 第七章 第四讲 采样系统理论小结
e*(t)=e(t)δr(t),
e ( t ) = ∑ e( nT )δ ( t − nT )
* n= 0 ∞
δ T ( t ) = ∑ δ ( t − nT )
n= 0
∞
E ( s) = L[e (t )] = ∑ e(nT )e − nTs
D(z) = 1 − Φ e (z) Φ(z) = G ( z )Φ e ( z ) G ( z )Φ e ( z )
采样系统数字校正的过程: 是零阶保持器和被控对象所固有的, 由上两式,G(z)是零阶保持器和被控对象所固有的 不能改变, 是零阶保持器和被控对象所固有的 不能改变, 现在只需要根据采样系统性能指标的要求,确定 现在只需要根据采样系统性能指标的要求,确定Φ(z)或Φe(z), 根据采样系统性能指标的要求 或 , 就可以求得满足要求的D(z)。 。 就可以求得满足要求的
C(s)
G( z) =
C( z) = Z [G1 ( s )G2 ( s )] = G1G2 ( z ) = G2G1 ( z ) R( z )
2. 有零阶保持器的情况
G(z) C* (s) R(s) T R*(s)
− sT 1 − e X(s) GG1(s) = h (s) s
G (s G p2(s) )
由此可得典型输入信号Z变换的一般形式为: 由此可得典型输入信号 变换的一般形式为: 变换的一般形式为
R( z ) =
A( z ) (1 − z −1 ) m
(#)
其中, 是不包含(1-z-1)的z-1的多项式。 其中 A(z)是不包含 是不包含 的 的多项式。 将上式代入式(*), 则有 则有: 将上式代入式
自动控制原理-第7章 系统性能与校正
第7章系统的性能分析与校正控制系统良好的稳定性是其正常工作的必要条件,在进行系统设计时往往发现设计出来的系统不能满足指标的预期要求,且有时相互矛盾。
如当提高系统的稳定精度时,其稳定性下降;反之系统有了足够稳定性时,精度又可能达不到要求,这就要求调整系统中原有的某些参数,或者在原系统中加入某些环节使其全面满足给定的设计指标要求。
7.1 频域性能指标与时域性能指标关系一个控制系统可以分为被控制对象和控制器两大部分。
被控制对象包括了执行器,它是推动负载对象的基本部分,其结构在全工作过程中,结构形式和参数属于不可变的,通常称为系统的固有部分;如何设计出一个符合系统的性能指标要求的控制器,成为反馈控制系统研究的重要内容。
这一节侧重讨论系统性能指标,根据性能指标设计控制器将在本章中讨论。
控制系统的性能包括稳定性、快速性、准确性、抗干扰能力。
分别从以下五个方面说明:(1) 稳定性指在干扰去除后,系统恢复原有工作状态的能力。
稳定性与惯性不同,惯性是系统试图保持原有运动状态的能力。
(2) 瞬态性能指系统受到输入作用后,系统输出和内部状态参数在整个时间过程中表现出来的特性。
控制系统分析与设计中,对单输入单输出系统,通常关心系统在输入作用后较短时间内,输出的结果;侧重讨论响应过渡过程中各时间指标和动态误差的变化规律。
(3)准确性能指系统受到输入作用后,系统输出和内部状态参数在足够长的时间后表现出来的特性。
主要讨论足够长时间后,系统稳态误差与系统结构及输入信号形式的关系和特征。
(4) 对参数变化的不敏感性指当系统中结构参数变化时,系统保持原有运动状态的能力。
(5) 抗噪声能力指当系统承受噪声污染后,系统保持原有运动状态的能力。
抗噪声能力是系统抗外部干扰的能力;而对参数变化的不敏感性是系统抗内部干扰的能力。
抗噪声能力强调干扰的持续作用,这一点有别于稳定性。
从控制系统工程实现的基本要求上,设计出一个性能优越的系统,其基本任务是使系统的稳定性储备充足、快速性好且被控制量准确。
自动控制原理课件第七章4
极点分布 奇点 相迹图
稳定的 焦点 0 1
稳定的 节点 1
中心点 0
极点分布 奇点 相迹图
不稳定 的焦点 1 0
不稳定 的节点 1
鞍点 正反馈 且 0
3
极限环
相平面图上孤立的封闭相轨迹,而其附近的 相轨迹都趋向或发散于这个封闭的相轨迹
各
类
极
稳定的极限环
限
环
不稳定的极限环
半稳定的极限环
r (t )
e(t )
M
x(t )
K
c(t )
s(Ts 1)
e0
解:系统的微分方程为
Tc c Kx
c r e
饱和非线性输入输出关系为
e
x
M
M
e e0 e e0 e e0
2021/9/16
7
根据系统方程
Tc c Kx
c r e
以 e 为变量的运动方程为
Te e Kx Tr r
e 0
和Ⅱ区分界线上,是个虚奇点。
e •
A (R,0)
Te e K (e e0 ) 0 xee0 Tx x Kx 0
由于 T , K 0 ,因此奇点类型为稳定焦点或稳定节点。
14
(3)Ⅲ区: e e0 此时 x e e0 ,相应微分方程为 Te e K (e e0 ) 0
1
2、二阶线性系统中奇点的类型
r=1(t) E(S)
n2
C(S)
- s(s 2n )
e 2ne n2e 0
斜率: de = - 2ζωne + ωn2e
de
e
奇点:
e 0
2n
e
n2e
0
自动控制原理 第七章 采样系统理论
b0 b1 z b2 z bm z m 而 E( z) (m n) c0 c1z-1 c2z-2 1 a 1 z 1 a 2 z 2 a n z n
t 0 z
(7) 终值定理 若e (t)的z变换为E(z),函数序列e(nT)为有限值(n=0,1,2,…), 且极限 lim e ( nT ) 存在,则
n
lim[e( nT )] lim( z 1) E ( z )
n z 1
离散系统的数学模型
脉冲传递函数 脉冲传函定义
第七章
采样系统理论
离散系统的相关概念 离散系统的数学模型 离散系统的稳定性分析 离散系统的稳态误差计算
离散系统的校正
信号的采样与保持
采样过程与采样定理
采样过程
e(t) S e*(t) T e(t) e*(t)
0
t
0
T 2T
t
(a)
(b)
(c)
基本概念:
1)采样周期:采样开关经一定时间T,重复闭合,每次闭合时间为τ, τ<T,T称为采样周期。f=1/T为采样频率。 2)采样角频率:ωs=2π/T rad/s。 3)采样脉冲序列:连续时间函数经采样开关采样后变成重复周期T的时 间序列,称为采样脉冲序列。 4)采样过程:将连续时间函数经过采样开关的采样而变成脉冲序列的 过程,称为采样过程。
R(s) + - T
K s(s 4)
C(s)
K K 1 1 Z G(z) Z s( s 4) 4 s s 4 K z z K 1 e 4T 4T 4 z 1 z e 4 ( z 1)(z e 4T )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 这时如果UdF >UdR,两组晶闸管装置之间存在直流电压差 ΔU=UdF -UdR,由于回路直流电阻很小,也将在两组晶闸 管装置之间引起很大的环流。这种由两组晶闸管装置之间 直流电压差引起的环流,称为直流环流。
100%
磁场可逆线路
• 磁场可逆线路中,磁场回路容量较小(一般为电动机额 定容量的1%~5%),采用正反两组晶闸管装置进行切换, 投资减小。
• 但电动机的磁场回路电感较大,磁场的反向过程要慢得 多。另外,在磁场反向过程中,当磁通ф变化时,应使电 枢电压Ud为零,以防止电动机在反向过程中,因磁通减弱 而出现弱磁升速,甚至“飞车”的现象。
• 电枢可逆线路与磁场可逆线路比较,各有其优缺点。
• 电枢可逆线路中,由于电枢回路容量大,若采用正反两组 晶闸管装置,所用晶闸管功率大,数量多,投资较大。但 电枢回路电感小,切换速度快,适用于中小容量的,要求 过渡过程时间短,且起制动频繁的生产机械,如轧钢机、 龙门刨床等。
p%
Cmax C()
• 正向制动 如果电动机由正转电动状态进行制动,可让正组VF处
于阻断状态,而让反组VR处于逆变状态(αR>90°),且使 逆变电压UdR小于电动机的反电势E,电流Id按E的方向流 动,把制动过程的机械能回馈电网,如上图b)所示。
可逆系统的Leabharlann 种工作状态• 反向运行 电动机的反向运行与正向运行类似,只是两组晶闸管
运行,可以采用接触器来切换电动机电枢电流的方向 。
• 结构简单,造价低。 • 缺点:接触器切换速度低,
约为0.1~0.2s。正反转换向 时有一段死区。接触器噪声 大,电流大时产生火花,触 点寿命短。
• 只适用于不经常切换的小容 量生产机械。
晶闸管作为开关的电枢可逆线路
• VTHF一对晶闸管导通时,电动机正转; VTHR一对晶闸管导通时,电动机反转。
它只适用于不要求经常改变电动机旋转方向和快速停 车制动的生产机械。
可逆调速系统不仅能够实现电动机的正反向运行,在 制动时除了缩短制动时间以外,还能将拖动系统的机械能 转换成电能回馈电网,节约能量。
第一节 实现可逆运行的电路
• 由电动机的电磁转矩Td=KTΦId可知,改变电动机电磁转矩 的方向有两种方法:
一个交流电源;图b)为交叉连接线路,正反两组晶闸管 装置的交流电源是相互独立的,它们分别来自两台整 流变压器或是同一台整流变压器的两组不同的二次侧。
磁场可逆线路
• 在磁场可逆线路中,电动机的电枢回路用一组晶闸管装置 供电,而磁场绕组采用另一组晶闸管装置供电,利用接触 器或晶闸管作为开关进行磁场电流的切换,也可在磁场绕 组中采用正反两组晶闸装置供电,分别提供正反向的磁场 电流,从而达到改变电动机转向的目的。
• 即使是不可逆运行,为了实现回馈制动,也需采用可逆电 路。
• 可逆系统有四种工作状态。
可逆系统的四种工作状态
可逆系统的四种工作状态
• 正向运行 正组VF处于整流状态(αF<90°),反组VR处于阻断
状态,整流电压UdF大于电动机的反电势E,电流Id按UdF的 方向流动,电能转换成机械能,电动机工作在正转电动状 态,如上图a)所示。
第七章 可逆直流调速系统
主要内容
• 第一节 实现可逆运行的电路 • 第二节 可逆系统中的环流 • 第三节 可控环流可逆调速系统的工作原理 • 第四节 逻辑无环流可逆调速系统 • 本章小结
第七章 可逆直流调速系统
晶闸管装置供电的直流电动机调速系统,受晶闸管单 向导电性的限制,电枢电流不能改变方向,电动机的电磁 转矩不能改变方向,所以电动机的旋转只有一个方向,即 是不可逆的直流调速系统。
第二节 可逆系统中的环流
1. 直流环流 如下图a)所示,如果正组VF和反组VR均处于整流状态,
即αF<90°,αR<90°,这样输出电压UdF与UdR形成顺极性 串联,这将在两组晶闸管装置中产生很大的短路电流,足 以烧坏晶闸管元件。 • 两组晶闸管装置组成的可逆系统,不能同时处于整流状态。
可逆系统中的环流
装置的工作状态互相交换,正组VF处于阻断状态,反组 VR处于整流状态,如上图c)所示。
• 反向制动 如果电动机由反转电动状态进行制动,则让反组VR
阻断,让正组VF处于逆变状态,制动过程的机械能通过 正组VF回馈电网,如上图d)所示。
• 环流 环流不经过负载,而在两组晶闸管装置中流过。采用
两组晶闸管装置供电的可逆系统,存在环流问题。对环流 可以采取不同的控制方法,构成各种可逆调速系统。
• 线路简单,切换速度 快,调节维护方便, 工作可靠性高,多用 于中小容量的可逆系 统中。
• 缺点:作为开关的四 只晶闸管,对其耐压 和过流有较高的要求。
两组晶闸管装置组成的电枢可逆线路
• 采用正反两组晶闸管装置构成可逆线路。 • 正转时 正组晶闸管装置VF提供正向电枢电流。 • 反转时 反组晶闸管装置VR提供反向电枢电流。 • 图a)为反并联连接线路,正反两组晶闸管装置采用同
• 当α>90°时,晶闸管装置处于逆变状态,输出电压为负, 因受晶闸管单向导电性的限制,电流不能反向,在电动机 制动时,不能把能量回馈电网。
采用两组晶闸管装置供电的可逆系统,正组VF处在整流状态 时,电动机工作在正转电动状态,在电动机正向制动时, 可反电让势反E组时V,R处则于可逆通变过状VR态将,电当动其机逆旋变转电的压机U械d 能小回于馈电电动网机, 这种制动方式称为回馈制动。
• 这样不仅增加了反向过程的死区,也增加了控制系统逻 辑关系的复杂性。因此,磁场可逆线路只适用于正反转不 太频繁,大容量的生产机械。例如卷扬机、电力机车等。
可逆系统的四种工作状态
由一组晶闸管装置供电的直流电动机系统,控制角α<90°时, 晶闸管装置处于整流状态,输出电压为正,电动机正常运 行,把电能转换成机械能;
• 一是改变电动机电枢电流Id的方向,亦即改变电动机电枢 电压Ud的极性;
• 二是改变电动机励磁磁通ф的方向,亦即改变电动机磁场 电流的方向,也就是改变励磁电压的极性。
• 实现直流电动机的可逆运行的电路,相应有两种方式,一 种是电枢可逆线路,另一种是磁场可逆线路。
电枢可逆线路
接触器切换的电枢可逆线路 由一组晶闸管装置供电的直流电动机系统,要实现可逆