小升初之数论专题

合集下载

小升初专练-数论问题-带余除法通用版(含答案)

小升初专练-数论问题-带余除法通用版(含答案)

小升初专练-数论问题-带余除法【知识点归纳】如:16÷3=5…1,即16=5×3+1,此时,被除数除以除数出现了余数,我们称之为带余数的除法.一般地,如果a是整数,b是整数(b≠0),那么一定有另外两个整数q和r,0≤r<b,使得a=q×b+r.当r=0时,我们称a能被b整除当r≠0时,我们称a不能被b整除,r为a除以b的余数,q为a除以b的不完全商(亦简称为商).【常考题型】例1:所有被4除余1的两位数的和为( )A、1200B、1208C、1210D、1224E、1229分析:本题中,由整除的意义可知,除以4后余1的最小两位数是:12+1=13.除以4后余1的最大两位数是:96+1=97.由此我们想除以4后余1的两位数一共有多少个?即所有除以4后余1的数组成的数列:13+17+21+…+97的项数有多少?由题意知数列的公差是4,那么计算项数得:(97-13)÷4+1=22.然后利用公式求它们的和就行了.解:除以4后余1的最小两位数是:12+1=13,除以4后余1的最大两位数是:96+1=97,那么除以4后余1的两位数一共有:(97-13)÷4+1=22(个),所有除以4后余1的两位数的和为:13+17+21+…+97=(13+97)×22÷2=110×11=1210.答:一切除以4后余1的两位数的和是1210.故选:C.点评:本题考查余数的性质与等差数列求和.本题的解题关键是由除以4余1这一特点,想到满足条件的最小的两位数是13,最大的两位数是97,是一个公差为4的等差数列.例2:一本书如果每天读80页,那么4天读不完,5天又有余;如果每天读90页,那么3天读不完,4天又有余;如果每天读N页,恰好N(N是自然数)天读完,这本书是()页.分析:设页数为x,①由“一本书如果每天读80页,那么4天读不完,5天又有余”得320<x<400;②由“如果每天读90页,那么3天读不完,4天又有余”得270<x<360;③由①②得320<x <360.满足上述条件的只有n=18.320<18×18=324<36.解:设页数为x,①320<x<400;②270<x<360;③由①②得:320<x<360,满足上述条件的只有n=18.320<18×18=324<360.故答案为:324.点评:此题考查了带余除法的知识,以及分析问题的能力.【解题思路】对任意整数a,b且b≠0,存在唯一的数对q,r,使a=bq+r,其中0≤r<|b|.这个事实称为带余除法定理,是整除理论的基础.若c|a,c|b,则称c是a,b的公因数.若d是a,b的公因数,d≥0,且d可被a,b的任意公因数整除,则称d是a,b的最大公因数.若a,b的最大公因数等于1,则称a,b互素.累次利用带余除法可以求出a,b的最大公因数,这种方法常称为辗转相除法.又称欧几里得算法.一.选择题1.有四个自然数A、B、C、D,它们的和不超过400,并且A除以B商是5余5,A除以C商是6余6,A除以D商是7余7。

小升初数学-数论-基础篇-整数专题解析必考知识点总结

小升初数学-数论-基础篇-整数专题解析必考知识点总结

小升初数学-数论-基础篇-整数专题解析必考知识点总结整数的认识1. 自然数整数02. 计数单位数位位数3. 数级4. 读法写法5. 改写省略四舍五入保留几位小数6. 近似数准确数7. 连续自然数8. 和积关系一自然数整数0自然数:定义:个数,极限:基本单位:意义:整数:定义:个数,极限:分类:0:作用:归类:例1. 判断:-3,-1,0,2,5都是自然数。

1. 判断:-6,-3,0,8,19都是整数。

()0既是自然数,也是整数。

()整数就是自然数。

()例2. 最小的自然数是(),最大的自然数是()自然数的基本单位是()1 . 最小的整数是(),最大的整数是(),整数有()个例3. 下列选项中的数是序数的是()A. 6只鸡B. 5支铅笔C. 2幢楼D. 第6节课例4. 判断:7067中的0表示百位上一个计数单位都没有。

二计数单位数位位数计数单位:数位:位数:最小的1位数是:最大的1位数是:最小的两位数是:最大的两位数是:最小的三位数是:最大的三位数是:数位:1. 从个位起,第六位是()位,第九位是()位,第七位是()位。

2. 与万位相邻的数位是()和()。

3.判断: 整数的最高位是千亿位。

()计数单位:1. 与百万相邻的计数单位是()和()。

位数:1. 60606000是一个()位数,最高位是(),从左往右数第二个6在()位上,第三个6表示6个()2. 一个数,它的最高位是十亿位,这个数是()位数。

3. 最小的一位数是(),最小的三位数是(),最小的四位数是(),最大的五位数是(),最大的两位数是()4. 最大的四位数与最小的三位数差(),最大的三位数比最小的三位数大(),比最小的六位数少1的数是()。

5.判断:最小的四位数缩小到它的1/10 是最小的三位数。

()6. 用最小的三位数与最大的两位数之差去乘最大的三位数与最小的四位数之和,积为()三数级个级数位:计数单位:表示:万级数位:计数单位:表示:亿级数位:计数单位:表示:1. 个级的计数单位有()2. 万级的数位有()3. 亿级的计数单位有()个,表示()四读法写法读法:写法:读法,写法:例1. 二百零三亿四千五百万六千写作()1. 二百零四亿零六十万零二十写作()例2. 128226200 ,读作()1. 6060076440,读作()例3. 一个数由5个亿,6个千万,3个万,9个百,4个一组成,这个数写作(),读作()1.你知道全国小学生的人数吗?这个数是由1个亿,2个千万,8个百万,9个十万,5个千组成的,这个数写作()例4.一个数,十位和百位上的数字都是5,这个数写作()1.写出一个最小的十位数,要使每个数位上的数字都不相同,这个数是()2. 一个九位数,最高位上是9,百万位上是2,万位上是4,千位上是6,其余各位上都是0,这个数写作()读作()3.一个数,千万位上的数字是最小的质数,十万位上的数字是最大的一位合数,个位上的数字是0.5的倒数,其余各位上都是最小的自然数,这个数写作(),读作()4.一个数,十万位上是最大的一位数,万位上是最小的合数,百位上是最小的质数,其余各位上都是0,这个数写作()读作()例5.一个多位数,第九位上的数是1,第五位上的数是5,其余各位上的数都是0,这个数写作()读作()1. 一个数,亿级上是78,个级上是78,这个数是()读作()2. 一个多位数,第八位上的数是1,第五位上的数是6,其余各位上的数都是0,这个数写作()读零:1. 90000604001读作()2. 下面各数不需要读出零的是()A. 3006210B. 6210300C.1206003.下面三个数中,两个0都读出来的是()A. 33030B. 33003C.303034.下面各数中,三个0都读出来的是()A. 60504032B. 60540320C.650403025.用两个0和三个8组成五位数,其中只读出一个0的数是()两个0都读出来的数是()两个0都不读出来的数是()6.用3个0和3个6组成一个六位数只读一个零的有(),读两个零的有(),一个零也不读的有()其中最大的一个数是(),最小的一个数是()两数相差()7.用5,7,8和四个0组成的七位数中,一个零也读不出来的最大数是()只读出一个零的最小数是()读出两个零的最大数是()读出两个零的最小数是()五改写,省略,四舍五入,保留几位小数改写改写的方法:1.改写成用“万”作单位的数改写成用“亿”作单位的数20345006000 ()()94063506000 ()()128226200 ()()320000500 ()()1950703000 ()()2.把0.42亿改写成用“万”作单位的数是()省略尾数省略尾数的方法:1. 省略万位后面的尾数约是省略亿位后面的尾数约是140900002 ()()94063506000 ()()700700070 ()()174500000 ()()1950703000 ()()四舍五入1. 四舍五入到万位约是四舍五入到亿位约是四舍五入法精确到万位约是四舍五入法精确到亿位约是85473870 ()()84001000 ()()700700070 ()()保留几位小数:1.3720600000改写成用“亿”作单位的数是()亿保留两位小数是()亿980064000 改写成用“亿”作单位的数是()亿保留两位小数是()128226200 保留一位小数是()亿1370000000 保留一位小数记作()亿六近似数,准确数例1.在下面的()中填上适当的数字,使第一个数最接近50亿,第二个数最接近15万。

2023年小升初第三讲专题训练之数论问题

2023年小升初第三讲专题训练之数论问题

小升初专题训练---数论数论在数学中旳地位是独特旳,高斯曾经说过“数学是科学旳皇后,数论是数学中旳皇冠”。

翻开任何一本数学辅导书,数论旳内容都占据了不少旳版面。

在小升初择校考试及小学各类数学竞赛中,直接运用数论知识解题旳题目分值大概占据整张试卷总分旳12%左右,小学阶段旳数论知识点重要有:1、质数与合数、因数与倍数、分解质因数2、数旳整除特性及整除性质3、余数旳性质、同余问题4、位值原理5、最值问题知识点一:质数与合数、因数与倍数、分解质因数1.质数与合数突破要点——质数合数分清晰,2是唯一偶质数(1)质数:一种数除了1和它自身以外,没有其他旳因数,这样旳数统称质数。

(2)合数:一种数除了1和它自身以外,尚有其他旳因数,这样旳数统称合数。

例如:4、6、8、10、12、14,…都是合数。

在100以内有2、3、5、7、11、13、17、19、23、29、31、37、41、47、53、59、61、67、71、73、79、83、89、97共25个质数2约数与倍数公因数短除法到一种不能除为止,公倍数除到海枯石烂为止,因数有限个,倍数无穷多。

假如一种自然数a能被自然数b整除,那么称a为b旳倍数,b为a旳约数。

假如一种自然数同步是若干个自然数旳约数,那么称这个自然数是这若干个自然数旳公约数。

在所有公约数中最大旳一种公约数,称为这若干个自然数旳最大公约数。

自然数a1,a2,…,an旳最大公约数一般用符号(a1,a2,…,an)表达,例如,(6,9,15)=3。

3.质因数与分解质因数(1)假如一种质数是某个数旳约数,那么就是说这个质数是这个数旳质因数。

(2)把一种合数用质因数相乘旳形式表达出来,叫做分解质因数。

例如,把42分解质因数,即是42=2×3×7。

其中2、3、7叫做42旳质因数。

又如,50=2×5×5,2、5都叫做50旳质因数。

4、要注意如下几条:(1)1既不是质数,也不是合数。

小升初专练-数论问题-数的整除特征通用版(含答案)

小升初专练-数论问题-数的整除特征通用版(含答案)

小升初专练-数论问题-数的整除特征【知识点归纳】整除是整数问题中一个重要的基本概念.如果整数a除以自然数b,商是整数且余数为0,我们就说a能被b整除,或b能整除a,或b整除a,记作b丨a.此时,b是a的一个因数(约数),a是b 的倍数数的整除特征(1)能被2整除的数的特征:如果一个整数的个位数是偶数,那么它必能被2整除.(2)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么它必能被5整除.(3)能被3(或9)整除的数的特征:如果一个整数的各位数字之和能被3(或9)整除,那么它必能被3(或9)整除.(4)能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么它必能被4(或25)整除.(5)能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么它必能被8(或125)整除.(6)能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除.【经典题型】例1:下列4个数都是六位数,A是大于0小于10的自然数,B是0,一定能同时被2、3、5整除的数是( )A、AAABAAB、ABABABC、ABBABBD、ABBABA 分析:这个六数个位上的数字是0,能被2和5整除,不管A是比10小的哪个自然数,A+A+A的和一定是3的倍数,所以ABABAB一定能被3整除解:B=0,ABABAB能被2和5整除,A+A+A的和一定是3的倍数,ABABAB也一定能被3整除,故选:B.点评:此题主要考查能被2、3、5整除的数的特征:一个数个位上是0或5,这个数就能被5整除;个位是0、2、4、6、8的数能倍2整除;一个数各数位上的数字之和是3的倍数,这个数就能被3整除.【常考题型】例2:有一个四位数3AA1能被9整除,A是().分析:已知四位数3AA1能被9整除,那么它的数字和(3+A+A+1)一定是9的倍数然后再根据题意进一步解答即可.因为A是一个数字,只能是0、1、2、3、…、9中的某一个整数,最大值只能是9.若A=9,那么3+A+A+1=22,22<27,所以3AA1的各位数字和只能是9的1倍或2倍,即9或18.解:根据题意可得:四位数3AA1,它能被9整除,那么它的数字和(3+A+A+1)一定是9的倍数;因为A是一个数字,只能是0、1、2、3、…、9中的某一个整数,最大值只能是9;若A=9,那么3+A+A+1=3+9+9+1=22,22<27,所以,3AA1的各位数字和只能是9的1倍或2倍,即9或18;当3+A+A+1=9时,A=2.5,不合题意;当3+A+A+1=18时,A=7,符合题意;所以,A代表7,这个四位数是3771.答:A是7,故答案为:7.点评:本题主要考查能被9整除数的特征,即一个数能被9整除,那么这个数的数字和一定是9的倍数,然后在进一步解答即可.一.选择题1.下面四个数都是六位数,N是比10小的自然数,S是0,一定能被3和5整除的数是( )A.NNNSNN B.NSNSNS C.NSSNSS D.NSSNSN2.某班有一个小图书馆,共有300多本,从1开始,图书按自然数的顺序编号,即1,2,3…,小光看了这图书馆里都被2,3和8整除的书号,共16本,这个图书馆里至少有( )本图书.A.381B.382C.383D.3843.四位数同时是2、3和5的倍数,第一个里最大能填( )A.9B.8C.7D.64.用0,3,4,5四个数字组成的所有四位数都能被( )整除.A.2B.3C.55.用1~8八个数字组成两个四位数,每个数字只用1次.已知两个四位数都是9的整数倍,则两个四位数的差的最大值为( )A.5286B.4184C.7531D.70656.下列各数中是11的倍数的是( )A.75087B.117208C.632599D.4563517.从1,2,3,4,5这五个数字中选取四个组成一个四位数,使它能同时被3、5、7整除,这个四位数是( )A.1235B.1245C.2415二.填空题8.有一个号码是六位数,前四位是2857,后两位忘记了,但是这个六位数能被11和13整除,那么这个号码是 。

小升初数论专项训练数学

小升初数论专项训练数学

小升初数论专项训练数学数论是数学中的一个重要分支,它研究整数的性质和整数之间的关系。

对于小升初的学生来说,掌握数论的基础知识和解题技巧对于提高数学能力至关重要。

以下是一些数论专项训练的内容,帮助学生在小升初考试中取得好成绩。

1. 整数的奇偶性- 奇数与偶数:整数可以被分为奇数和偶数。

奇数是不能被2整除的整数,而偶数是能被2整除的整数。

- 奇偶性的性质:奇数加奇数等于偶数,偶数加偶数也等于偶数,奇数加偶数等于奇数。

2. 整数的因数与倍数- 因数:如果整数a能被b整除,那么b就是a的一个因数。

- 倍数:如果整数a是b的倍数,那么b是a的一个因数。

- 质因数分解:将一个合数分解成几个质数相乘的形式。

3. 最大公约数与最小公倍数- 最大公约数(GCD):两个或多个整数共有约数中最大的一个。

- 最小公倍数(LCM):两个或多个整数的公倍数中最小的一个。

- 求法:使用辗转相除法求最大公约数,用两个数的乘积除以它们的最大公约数得到最小公倍数。

4. 素数与合数- 素数:大于1的自然数,且除了1和它本身外,不能被其他自然数整除的数。

- 合数:大于1的自然数,除了1和它本身外,还能被其他自然数整除的数。

5. 整数的整除规则- 2的整除规则:末位为0, 2, 4, 6, 8的数能被2整除。

- 3的整除规则:各位数字之和能被3整除的数能被3整除。

- 5的整除规则:末位为0或5的数能被5整除。

- 9的整除规则:各位数字之和能被9整除的数能被9整除。

6. 同余与同余方程- 同余:如果两个整数a和b除以同一个正整数m后,得到的余数相同,那么a和b关于m同余。

- 同余方程:形如ax ≡ b (mod m)的方程。

7. 中国剩余定理- 定理内容:如果m1, m2, ..., mk是两两互质的正整数,那么对于任意的整数a1, a2, ..., ak,存在唯一的整数x,使得x ≡ ai (mod mi),对所有的i。

8. 数字的位值问题- 位值:数字在不同数位上代表的值不同,例如在十进制中,100代表1个百和0个十与个位。

小升初之数论专题

小升初之数论专题

[知识要点]小学升初考试中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。

主要的结论有:1 •带余除法:若a, b是两个整数,b>0,则存在两个整数q, r,使得a=bq+r (0<r v b), 且q, r是唯一的。

特别地,如果r=0,那么a=bq。

这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数。

2. 若a|c , b|c,且a, b 互质,则ab|c。

3•唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即PJp# …用, (1)其中pl v p2v・・・v pk为质数,a1, a2,…,ak为自然数,并且这种表示是唯一的。

(1)式称为n的质因数分解或标准分解。

4. 约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d (n)= (a1+1)(a2+1)・・・(ak+1)。

5. 整数集的离散性:n与n+1之间不再有其他整数。

因此,不等式x v y与x < y-1是等价的。

下面,我们将按数论题的内容来分类讲解。

第一节整除【专题简析】:在数的整除中要熟记数整除的特点,在用整除的知识来解决相关试题的时候要注意首先确定末尾那个数字,在确定其他的数字。

数整除的特征【例题精讲】例1.老师买了72本相同价格的书,当时没有记住书的单价,只用铅笔记下了用的总钱数,回到学校后其中有两个数字已经模糊不清了,总钱数成了口13.7 □元, 你能帮忙补上□中数字吗?练习1.马虎的采购员,买了72只桶,洗衣服时将购货发票洗烂了,只能依稀看到72只桶共□ 67.9 □元,□内的字迹已经看不清楚,请帮他算一下一共多少钱?例2.在算式labcde 3二abcdel中,不同字母代表不同的数,相同的字母代表相同的数,求abcde这个五位数是多少?练习2. 一个六位数,他的个位数字是6,将6移动到最前面,所得的数是原数的4倍,求这个六位数例3.从0,3,5,7,这4个数中任选3个,组成没有重复数字的三位数,在组成的数中能同时被2、3、5整除的数有多少个?练习3.从1、2、3、4、5中任取3个数组成没有重复数字的三位数,在这些三位数中能同时被2和9整除的数有多少个?【综合练习】1. 学校李老师一共买了28支价格相同的钢笔,共付人民币9口. 2 □元,已知□处的数字相同,请问每支铅笔多少钱?2. 已知x1993y是45的倍数,求所有满足条件的六位数x1993y。

小升初真题之数论篇(含答案)

小升初真题之数论篇(含答案)

小升初真题之数论篇数论篇一1 (人大附中考题)有____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。

2 (101中学考题)如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数是__。

3(人大附中考题)甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。

4 (人大附中考题)下列数不是八进制数的是( )A、125B、126C、127D、128预测1.在1~100这100个自然数中,所有不能被9整除的数的和是多少?预测2.有甲、乙、丙三个网站,甲网站每3天更新一次,乙网站每五5天更新一次,丙网站每7天更新一次。

2004年元旦三个网站同时更新,下一次同时更新是在____月____日?预测3、从左向右编号为1至1991号的1991名同学排成一行.从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的同学留下,其余的同学出列;留下的同学第三次从左向右1至1l报数,报到11的同学留下,其余同学出列.那么最后留下的同学中,从左边数第一个人的最初编号是______.数论篇二1 (清华附中考题)有3个吉利数888,518,666,用它们分别除以同一个自然数,所得的余数依次为a,a+7,a+10,则这个自然数是_____.2 (三帆中学考题)140,225,293被某大于1的自然数除,所得余数都相同。

2002除以这个自然数的余数是 .3 (人大附中考题)某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______.4 (101中学考题)一个八位数,它被3除余1,被4除余2,被11恰好整除,已知这个八位数的前6位是257633,那么它的后两位数字是__________。

5 (实验中学考题)(1)从1到3998这3998个自然数中,有多少个能被4整除?(2)从1到3998这3998个自然数中,有多少个各位数字之和能被4整除?预测1. 如果1=1!,1×2=2!,1×2×3=3!……1×2×3×……×99×100=100!那么1!+2!+3!+……+100!的个位数字是多少?预测2.(★★★★)公共汽车票的号码是一个六位数,若一张车票的号码的前3个数字之和等于后3个数字之和,则称这张车票是幸运的。

小升初数学数轮专题小升初考试所有题型都在这里(质数合数约数余数倍数公约数)图文详解

小升初数学数轮专题小升初考试所有题型都在这里(质数合数约数余数倍数公约数)图文详解

详解
小升初数学
例题4.小华往一个水池里扔石子.第一次扔1颗石子,第二次 扔2颗石子,第三次扔3颗石子,第四次扔4颗石子……他准备扔 到水池的石子总数是111的倍数,那么小华最少需要扔 次
详解
小升初数学
例题4.小华往一个水池里扔石子.第一次扔1颗石子,第二次 扔2颗石子,第三次扔3颗石子,第四次扔4颗石子……他准备扔 到水池的石子总数是111的倍数,那么小华最少需要扔 次
详解
小升初数学
例题4.小华往一个水池里扔石子.第一次扔1颗石子,第二次 扔2颗石子,第三次扔3颗石子,第四次扔4颗石子……他准备扔 到水池的石子总数是111的倍数,那么小华最少需要扔 次
点评:解题此题的关键是运用高斯求和公式,把数列的和 表示为106的整数倍
详解
小升初数学
2.质数与合数
(一)质数与合数的定义 质数是只能被1和自身整除的数;合数是除了1和它自身外, 还能被其他数整除的数. (二)分解质因数 分解质因数是指把一个数写成质因数相乘的形式.例如
详解
小升初数学
例题2.已知七位数92AB4329能被99整除,那么两位数 AB=________
解:在92AB4329中, 奇数位上的数是9、3、B、2,则它们的和是9+3+2+B=14+B, 偶数位上的数是2、4、A、9,则它们的和是,2+4+A+9=15+A, 又因为一个整数的数字和能被9整除,一个整数的奇位数字之和与偶位 数字之和的差(包括0)能被11整除, 所以14+A+15+B=29+A+B=9的倍数,(14+B)-(15+A)=11倍数, 由29+A+B可知,式子的值可能是36、45,由(14+B)-(15+A)是11的 倍数可知45不合适, 所以29+A+B=36,A+B=7,则(14+B)-(15+A)=0, 由此可推出A=3,B=4,

小升初数学知识点之数论

小升初数学知识点之数论

千里之行,始于足下。

小升初数学学问点之数论数论是数学中的一个分支,主要争辩整数的性质和关系,涉及到整数的整除性、素数性质、同余关系等内容。

在小升初数学中,数论也是一个重要的学问点,以下是数学学问点之数论的主要内容。

一、整数的整除性1. 整数的定义及性质:整数是指正整数、0和负整数的统称。

整数有加法、减法、乘法运算,但并非全部整数都可以进行除法运算。

2. 整除与倍数:整数a除以整数b得到整数c,可以表示为a能整除b,记作a|b;假如b能整除a,也就是存在整数c,使得b=ac,则称a是b的倍数,b是a的约数。

3. 因数与倍数的关系:一个数的因数是指能整除这个数的整数,而这个数称为这些因数的倍数。

二、素数与合数1. 素数的定义:素数是大于1且只能被1和自身整除的整数。

2. 基本性质:素数只有两个因数,即1和自身;除了2之外的素数都是奇数。

3. 求解素数的方法:试除法、素数筛法等。

4. 合数的定义:合数是指除了1和本身之外还有其他因数的整数。

三、最大公约数与最小公倍数1. 公约数的定义:假如a和b都能被c整除,则称c是a和b的公约数。

2. 最大公约数的定义:最大公约数是指a和b的公约数中最大的那个数,记作gcd(a,b)。

3. 求解最大公约数的方法:辗转相除法、质因数分解法等。

4. 公倍数的定义:假如a和b都能被c整除,则称c是a和b的公倍数。

第1页/共2页锲而不舍,金石可镂。

5. 最小公倍数的定义:最小公倍数是指a和b的公倍数中最小的那个数,记作lcm(a,b)。

6. 最大公约数与最小公倍数的关系:对于任意两个整数a和b,有gcd(a,b) * lcm(a,b) = a * b。

四、同余关系1. 同余关系的定义:设a、b、n为整数,假如n能整除a-b,则称a和b 对模n同余,记作a ≡ b (mod n)。

2. 同余定理:若a≡b (mod n),c≡d (mod n),则有a±c≡b±d (mod n),ac≡bd (mod n)。

2022年小升初冲刺(数论整理汇总)

2022年小升初冲刺(数论整理汇总)

2022年小升初冲刺数论问题独家原创最新最全命中模块一:奇数与偶数题型一例1(广益)三个连续奇数的和是 129,其中最大的那个奇数是?演练1(雅礼)7 个连续奇数的和是 161,其中最小的是()。

演练2三个奇数的和是63,则中间的奇数是()题型二例2 三个连续偶数的乘积是960,这三个数是多少?演练1三个连续的偶数,中间的一个数是A+3,其余两个数是()。

演练2(附中)已知九个连续自然偶数,其中最大数是最小数的 9 倍,则这九个数中最大数是()。

题型三例2(雅礼)有一串数 1,4,7,10,13,16,19......,问这串数的前 2017 个数中,有()个偶数。

演练1(中雅)有一串数 1,4,7,10,13,16,19,22......,问这串数的前 2024 个数中,有()个偶数。

演练2一列数前两个都是1,从第三个开始,每个数是前两个的和。

即1,1,2,3,5,8,13...到第2000个数为止,共有()个奇数。

题型四例3(GY)有13个不同正整数,它们的和是100,其中偶数最多有()个。

演练1 50个不同的正整数,它们的总和是2011,那么这些数里奇数至多有()。

个。

演练2两个两位数,若他们的乘积恰由连续的奇数组成(从小到大排列),则这两个两位数就称为一对“金鸡数”,比如 17×21=357,因此(17,21)就是一对“金鸡数”,“金鸡数”共有()对。

题型五例5 (麓山) 2413111=++()()()(要求三个加数的分母是连续偶数) 演练1 已知abc 都是整数,则下列三个数2b a +,2c b +,2a c +整数的个数有( )个。

演练2 8盏灯,从1到8编号,开始时3,6,7,编号的灯是亮的.如果一个小朋友按1到8拉开关,再从1到8拉开关,一共拉动500次,此时( )个编号的灯是亮着的.模块二:质数与合数题型一例1 (附中)小丽和读初三哥哥的岁数是互质数,积是 144,小丽岁数是多少岁?演练1 有三个不同的质数和是14,这三个质数的积是( )演练2 有两个不同的质数之和是13,积是22,那么他们的差是( )题型二例2(ZY )三个不同的质数 m 、n 、p ,满足 m +n =p ,则 mnp 的最小值是多少?演练1(中雅)三个数 p 、p+1、p+3都是质数,它们的倒数和的倒数是( )。

小升初数论重点考查内容————(余数问题——余数三宝)

小升初数论重点考查内容————(余数问题——余数三宝)

千里之行,始于足下。

第 1 页/共 3 页
【例】一个数除以4余2,除以5余3,则这个数最小是?
【例】一个数除以3余2,除以4余1,则这个数最小是?
(★★★)
两位天然数ab 与ba 除以7都余1,并且a >b ,求ab ba ⨯
小升初数论重点考查内容
朽木易折,金石可镂。

(★★★) (2005年全国小学数学奥林匹克试题)
有一个整数,用它去除70,110,160所得到的3个余数之和是50,那么这个整数是________。

(★★★) (2008年第十二届香港保良局小学数学世界邀请赛个人赛)
试求22008+20082除以7的余数。

(★★★)(2009年第十届中环杯五年级试题)
有一个数除以3余数是2,除以5余数是3,那么这个数除以15的余数是( )
(★★★★)(1998年小学数学奥林匹克预赛B卷)
一个小于200的数,它除以11余8,除以13余10,那么这个数是______。

(★★★★)( 1998年小学数学奥林匹克预赛)
某数除以11余8,除以13余10,除以17余12,那么这个数的最小可能值是______。

千里之行,始于足下。

第 3 页/共 3 页。

小升初数学-数论-基-小数专题解析 必考知识点总结

小升初数学-数论-基-小数专题解析 必考知识点总结

千里之行,始于足下。

小升初数学-数论-基-小数专题解析必考学问点总结小升初数学中,数论是一个重要的考点。

而基-小数专题是数论中的一个重要分支,包括基本概念、性质、运算规章等内容。

下面是关于基-小数专题的必考学问点总结。

一、基本概念1. 整数:正整数、负整数、零。

2. 有理数:整数、分数。

3. 小数:有限小数、无限循环小数、无限不循环小数。

二、进制与位权1. 进制:二进制、八进制、十进制、十六进制等。

2. 位权:十进制中,各位上数字的位权依次是个位、十位、百位等。

其他进制下也有类似概念。

三、位权运算1. 加法:同进制下的数相加,按位相加,留意进位。

2. 减法:同进制下的数相减,按位相减,留意借位。

3. 乘法:同进制下的数相乘,按位相乘,留意进位。

4. 除法:同进制下的数相除,按位相除,留意进位和余数的计算。

四、小数的运算1. 加法:小数的十进制数相加,按位相加,留意进位。

2. 减法:小数的十进制数相减,按位相减,留意借位。

3. 乘法:小数的十进制数相乘,按位相乘,留意进位。

4. 除法:小数的十进制数相除,按位相除,留意进位和余数的计算。

第1页/共2页锲而不舍,金石可镂。

五、小数与分数的关系1. 有限小数可以表示为有限小数,例如 0.75=3/4。

2. 无限循环小数可以表示为无限不循环小数,例如0.999 (1)3. 无限不循环小数可以近似表示为分数,例如π≈22/7。

六、题型与解法1. 进制转换题:例如二进制转换为十进制。

2. 位权运算题:例如十进制数相加、相乘等。

3. 小数与分数的相互转换题:例如小数化分数、分数化小数。

4. 小数的四则运算题:例如小数的加减乘除。

5. 近似表示题:例如求一个无限不循环小数的近似分数。

以上是小升初数学数论基-小数专题的必考学问点总结。

这些学问点在小升初数学考试中经常消灭,把握好这些学问点,可以挂念我们在考试中取得好成果,同时也对我们今后的学习有很大的挂念。

所以,我们要认真学习并把握这些学问点,做好相应的习题,加深理解,提高解题力量。

小升初真题之数论篇(含答案)

小升初真题之数论篇(含答案)

小升初真题之数论篇(含答案)小升初真题之数论篇数论篇一1 (人大附中考题)有____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。

2 (101中学考题)如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数是__。

3(人大附中考题)甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。

4 (人大附中考题)下列数不是八进制数的是( )A、125B、126C、127D、128预测1.在1~100这100个自然数中,所有不能被9整除的数的和是多少?预测2.有甲、乙、丙三个网站,甲网站每3天更新一次,乙网站每五5天更新一次,丙网站每7天更新一次。

2004年元旦三个网站同时更新,下一次同时更新是在____月____日?预测3、从左向右编号为1至1991号的1991名同学排成一行.从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的同学留下,其余的同学出列;留下的同学第三次从左向右1至1l报数,报到11的同学留下,其余同学出列.那么最后留下的同学中,从左边数第一个人的最初编号是______.数论篇二1 (清华附中考题)有3个吉利数888,518,666,用它们分别除以同一个自然数,所得的余数依次为a,a+7,a+10,则这个自然数是_____.2 (三帆中学考题)140,225,293被某大于1的自然数除,所得余数都相同。

2002除以这个自然数的余数是 .3 (人大附中考题)某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______.4 (101中学考题)一个八位数,它被3除余1,被4除余2,被11恰好整除,已知这个八位数的前6位是257633,那么它的后两位数字是__________。

数论综合(小升初)

数论综合(小升初)

小升初数论综合知识概要一、奇数与偶数:1、判断一个多位数奇数还是偶数,只要看这个数的个位,个位是奇数,这个数就是奇数,个位是偶数,这个数就是偶数。

2、加减法结果的奇偶性判断方法:只看算式中奇数的个数,个数是奇数,结果就是奇数;个数是偶数,结果就是偶数。

(奇数个奇数的和或差还是奇数)3、乘法结果的奇偶性判断方法:只看有没有偶数,有偶数,结果就是偶数;无偶数,结果就是奇数。

(有偶则偶,无偶为奇)4、数列与奇偶数个数结合时,利用周期问题的知识解决。

二、因数与倍数:(一)最大公约数与最小公倍数如果一个自然数a 能被自然数b (不为零)整除,则称a 是b 的倍数,b 是a 的约数。

1、 几个自然数公有的约数,叫做这几个自然数的公约数。

公约数中最大的一个公约数,称为这几个自然数的最大公约数。

一般用符号()a b ,表示a 、b 的最大公约数。

公约数只有1的两个数,这两个数互质。

2、 几个自然数公有的倍数,叫做这几个自然数的公倍数。

公倍数中最小的一个大于零的公倍数,叫做这几个数的最小公倍数。

一般用符号[]a b ,表示a 、b 的最小公倍数。

3、最大公约数和最小公倍数之间的关系设a 、b 为两个正整数,则()a b ,和[]a b ,有如下关系(,)[,][,]=(,)ab ab a b a b a b a b =⨯或 4、求最大公约数和最小公倍数常用的方法:(1)分解质因数法;(2)短除法;(3)辗转相除法。

(二)最大公约数与最小公倍数的常用性质两个自然数分别除以它们的最大公约数,所得的商互质。

如果m 为A 、B 的最大公约数,且A ma =,B mb =,那么a b 、互质,所以A 、B 的最小公倍数为mab ,所以最大公约数与最小公倍数有如下一些基本关系:①A B ma mb m mab ⨯=⨯=⨯,这两个数的积等于两个数的最大公约数与最小公倍数之积;②两个数的和等于最大公约数乘这两个数独有因数的和③两个数的差等于最大公约数乘这两个数独有因数的差;④两个数的最小公倍数除以最大公约数等于两个数独有因数的乘积;⑤两个数的最小公倍数等于两个数的最大公约数乘两个数的独有因数。

小升初数学-数论部分

小升初数学-数论部分

一般题型整除,分解题型最大公约数,最小公倍数,奇偶性比较大小分数,比及比例的性质一.一般题型:知识点:1.掌握自然数,小数,分数的奇数单位;2.一个分苏化成最简分数后,如果分母中只含有质因数2或5,那么这个分数就可以化成有限小数,否则就不能化成有限小数;3.在除法中,被除数和除数同时扩大或缩小相同的倍数,商不变,但是余数也要扩大或缩小相同的倍数;例如:a÷b=c……d,那么(100a)÷(100b)=c……(100d)练习:1.一个九位数,最高位上是最小的合数,千万位上是最小的质数,百位上是最小的奇数,其余各位上都是0,这个数写作(),读作(),把这个数改写成以“万”做单位的数是(),省略亿后面的尾数约是()2.由1、2、3这三个数字能组成数字不重复的三位数一共有()个,它们的和是()。

3.一道除式,商是22,余数是6,被除数与除数的和是259,这道除式的除数是(),被除数是()。

4.一个数三位小数的近似数是0.05这个数必须大于或等于()且小于()。

5.(成都西川中学2011年试题)一个小数的小数点向右移动一位后,比原来的数大28.26,那么原来的数是()6.五个连续偶数中最大数是248,那么这五个数的平均数是().7.两个连续自然数的和乘以它们的差,积是99,这两个自然数中较大的数是().8.一个两位数,个位上和十位上数字都是合数,并且是互质数,这个数最大是()9.从100里减去25,加上22,再减去25,加上22,这样连续进行,当得数是0时,减去了()个25,加上了()个22。

().10.2,4,10,10四个数,用四则运算来组成一个算式,使结果等于24.().11.被减数、减数与差的平均数是60,减数是差的3倍,减数是().12.若a÷b=8……3 , 那么(100a)÷(100b) = 8……()。

13.一次数学检测只有两道题,第一道题全班有27做对,第二题全班有33人做对,两题都对的有15人(没有人做错),那么全班有()人14.(重庆市巴川中学2012年试题)一个数保留两位小数是10.00,那么这个数最小是(),最大是()15.(成都西川中学2011年试题)一个整数四舍五入到万位,约是50000,这个数最小是()A 50001B 44445C 44999D 4500016.(成都实验中学2011年试题)一根木料锯成4段要47段要()分钟。

小升初数学专题:数论问题

小升初数学专题:数论问题

二、分解质因数:指的就是把一个合数表示成质数乘积的形式的过程。
唯一分解定理:N a1p1 a2p2 a3p3 an pn (a1、a2an为N不同的质因数)
那么N的因数个数n=(1+p1)×(1+p2) × …(1+pn) 三、辗转相除法
辗转相除法主要针对两个较大数求最大公因数而言的。 就是用其中较大数除以较小数,得余数r1;接下来每一步都用上一步的除数除以余
例8. 商店有6箱货物,分别重15千克、16千克、18千克、19千克、 20千克、31千克,两个顾客买走了其中的5箱,其中一个顾客 买走的货物质量是另一个顾客的2倍,那么商店剩下的这箱货物 重多少千克?
解析
因为拿走的一定是3的倍数,把所有的数加起来,再减去 20才是3的倍数,所以,剩下的是20千克。 15+16+18+19+20+31=119千克 1+1+9=11 11不是3的倍数, 11-2=9 , 9是3的倍数。 答:剩下的是20千克。
每个算式中,每次商减一,余数就增加一个 除数,这样可以得到同余是“9”,再求4、5、 7的最小公倍数是140,再加9等于149。
例5. 要使185× 84× 135× 52× ( )乘积的末五位数都是0, ( )中应填入的自然数最小值 是多少?
解析
要使乘积末五位都是0,就要使这五个因数中有5个2 和5个5。所以要把这四个数分解质因数,看缺少几 个5和几个2,括号里就填出它们的乘积。
例10. 某校2012年的学生人数 是个完全平方数,2013年的 学生人数比上一年多101人, 这个数字也是一个完全平方 数。该校2013年的学生人数 是多少人?
解析
设2012有学生X 2 人,2013年有学生 Y 2人,

小升初数学专项解析+习题-数论篇(附答案).doc

小升初数学专项解析+习题-数论篇(附答案).doc

【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。

】小升初重点中学真题之数论篇数论篇一1 (人大附中考题)有____个四位数满足下列条件:它的各位数字都是奇数;它的各位数字互不相同;它的每个数字都能整除它本身。

2 (101中学考题)如果在一个两位数的两个数字之间添写一个零,那么所得的三位数是原来的数的9倍,问这个两位数是__。

3(人大附中考题)甲、乙、丙代表互不相同的3个正整数,并且满足:甲×甲=乙+乙=丙×135.那么甲最小是____。

4 (人大附中考题)下列数不是八进制数的是( )A、125B、126C、127D、128预测1.在1~100这100个自然数中,所有不能被9整除的数的和是多少?预测2.有甲、乙、丙三个网站,甲网站每3天更新一次,乙网站每五5天更新一次,丙网站每7天更新一次。

2004年元旦三个网站同时更新,下一次同时更新是在____月____日?预测3、从左向右编号为1至1991号的1991名同学排成一行.从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的同学留下,其余的同学出列;留下的同学第三次从左向右1至1l报数,报到11的同学留下,其余同学出列.那么最后留下的同学中,从左边数第一个人的最初编号是______.数论篇二1 (清华附中考题)有3个吉利数888,518,666,用它们分别除以同一个自然数,所得的余数依次为a,a+7,a+10,则这个自然数是_____.2 (三帆中学考题)140,225,293被某大于1的自然数除,所得余数都相同。

2002除以这个自然数的余数是 .3 (人大附中考题)某个两位数加上3后被3除余1,加上4后被4除余1,加上5后被5除余1,这个两位数是______.4 (101中学考题)一个八位数,它被3除余1,被4除余2,被11恰好整除,已知这个八位数的前6位是257633,那么它的后两位数字是__________。

小升初专练数论问题《等量关系和方程通用版》(含答案)

小升初专练数论问题《等量关系和方程通用版》(含答案)

小升初专练-数论问题-等量关系和方程【知识点归纳】等量关系怎么找:1.先读懂题,大的等量关系就在条件中2.若是条件复杂的等量关系,在大的等量关系中出现不止一个未知数,要通过其他小的等量关系去解决例如A×B=N×X(其中X为终极未知数,N是已知数,那么AB都是可以先求出来的未知数)我们可以通过A+M=B×K(M,K可以是已知数或者M,K存在关系)那么可以通过M和K求出A和B进而求出X.【经典题型】例1:有8个球编号是①至⑧,其中有6个球一样重,另外两个球都轻1克.为了找出这两个轻球,用天平称了3次.结果如下:第一次:①+②比③+④重;第二次:⑤+⑥比⑦+⑧轻;第三次:①+③+⑤与②+④+⑧一样重.两个轻球分别是.( )A、①④B、③⑧C、②⑤D、④⑤分析】由①+②比③+④重可知③与④中至少有一个轻球,由⑤+⑥比⑦+⑧轻可知⑤与⑥至少有一个轻球,①+③+⑤和②+④+⑧一样重可知两个轻球的编号是④⑤解:因为①+②比③+④重,所以③与④中至少有一个轻球,因为⑤+⑥比⑦+⑧轻,所以⑤与⑥至少有一个轻球,因为①+③+⑤和②+④+⑧一样重,可知两个轻球的编号是④⑤;故选:D.点评:本题考查的是等式的性质:等式的两边加(或减)同一个数(或式子)结果仍相等;等式的两边同乘(或除以)同一个数(除数不为0)结果仍相等.例2:如图,一根1米长的竹竿,在它的左端挂1千克的物体,右端挂4千克的物体时,如果处于平衡状态,那么拴绳子的点0应位于离左端()米的地方.分析:由题意并结合杠杆的平衡原理可得:左端物体的重量×距O点的距离=右端物体的重量×距O 点的距离,由此可设拴绳子的点0应位于离左端x米的地方,则距右端就是(1-x)米,利用得到的等量关系式列方程解答即可.解:设拴绳子的点0应位于离左端x米的地方,则距右端就是(1-x)米,由题意得:1×x=4×(1-x)x=4-4x5x=4x=0.8答:拴绳子的点0应位于离左端0.8米的地方.故答案为:0.8.点评:本题考查杠杆的平衡条件的应用,找出等量关系是解答的关键.一.选择题1.下面关于时间、速度、路程的关系式正确的是( )A.时间=速度÷路程B.时间=路程÷速度C.时间=路程×速度2.水果店上午运来4000千克水果,其中苹果占30%,如果下午又运来一批苹果,这时两次运来的苹果总重量占两次运来的水果总重量的,问下午又运来( )千克苹果.A.1200B.4000C.7200D.10000二.填空题3. ○时间=路程总价○数量= ○时间=工作总量总产量○数量= .4.如果桃树的棵数比梨树的棵数多80棵,那么 的棵数○ = 的棵数.5.小明x岁,爸爸40岁,父子俩相差28岁.用方程表示数量关系是 .6.某数减去7剩下的再乘以7,所得的结果与先减去11剩下的再乘以11的结果相同,这个数是 .7.地砖块数=地面面积÷ 面积=每行块数×每列块数8.工作总量÷ =时间 × =总价;单产量× =总产量 速度× =路程;总产量÷ =数量 速度= ÷ ;时间= ÷工效 工效= ÷ .9.体育老师到商店买6个足球和3个篮球,要付381元;买10个足球和5个篮球则要付 元.10.如图,一根1米长的竹竿,在它的左端挂1千克的物体,右端挂4千克的物体时,如果处于平衡状态,那么拴绳子的点0应位于离左端 米的地方.11.用方程表示下列数量关系.A.43等于x减去6: ;B.一瓶果汁x元,5瓶果汁10元: C.一个长方形的面积是80平方米,长是16米,宽是x米: .三.应用题12.三月植树好时节,星河小学原计划栽杨树、柳树和樟树共1500棵。

小升初数学专题复习-专题一 数论 通用版

小升初数学专题复习-专题一   数论    通用版

专题一数论考点扫描数论知识包括数的奇偶性、质数、合数、数的整除、余数的性质、数位的含义、平均数、分解因数、平方数、倍数与因数。

1.数的奇偶性奇数+奇数=偶数奇数+偶数=奇数偶数+偶数=偶数奇数×奇数=奇数偶数×偶数=偶数奇数×偶数=偶数奇数个奇数相加=奇数偶数个奇数相加=偶数(只要式子中含有偶数,那么相乘结果就是偶数)2.数的整除,常见的数的整除特征(1)2:个位是偶数;(2)3:各个数位之和是3的倍数;(3)5:个位是 0或5;(4)4、25:后两位可以被4(25)整除;(5)8、125:后三位可以被8(125)整除;(6)9:各个数位之和是9的倍数;(7)7:一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,差是7的倍数。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数;(8)11:奇数位上的数字之和与偶数位上的数字之和的差(以大减小)是11的倍数;(9)13:一个多位数的末三位数与末三位以前的数字所组成的数之差,可以被13整除即可被13整除;(10)17:若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

3.余数的性质(1)余数的可加性:和的余数等于余数的和;(2)余数的可减性:差的余数等于余数的差;(3)余数的可乘性:积得余数等于余数的积;(4)同余的性质:对于同一个余数,如果有两个整数余数相同,那么它们的差就一定能被这个除数整除;对于同一个除数,如果有两个整数余数相同,那么它们的乘方就一定能被这个除数整数。

抛砖引玉【例1】下列各数中,()同时是3和5的倍数.A.18 B.102 C.45【解析】同时是3和5的倍数必须满足:末尾是0或5,并且各个数位上的和能被3整除;进而得出结论.18个位上是8,不是5的倍数,102个位上是2,不是5的倍数,45是5的倍数,4+5=9,是3的倍数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数论[知识要点]小学升初考试中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。

主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r(0≤r<b),且q,r是唯一的。

特别地,如果r=0,那么a=bq。

这时,a被b整除,记作b|a,也称b是a 的约数,a是b的倍数。

2.若a|c,b|c,且a,b互质,则ab|c。

3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<pk为质数,a1,a2,…,ak为自然数,并且这种表示是唯一的。

(1)式称为n的质因数分解或标准分解。

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(ak+1)。

5.整数集的离散性:n与n+1之间不再有其他整数。

因此,不等式x<y与x≤y-1是等价的。

下面,我们将按数论题的内容来分类讲解。

第一节整除【专题简析】:在数的整除中要熟记数整除的特点,在用整除的知识来解决相关试题的时候要注意首先确定末尾那个数字,在确定其他的数字。

数整除的特征数特点被2整除一个整数的个位是0,2,4,6,8中的某一个被3(或者9)整除一个整数的各位数字之和能被3(或者9)整除被5整除一个整数的末尾不是5就是0被4(或者25)整除一个整数的末两位能被4(或者25)整除被8(或者125)整除一个整数的末三位能被8(或者125)整除被11整除一个整数的奇数数位上的数字之和与偶数数位上的数字之和的差(较大数减较小数)能被11整除被7(或者11或者13)整除一个整数的末三位与末三位以前的数字所组成的数之差(较大数减较小数)能【例题精讲】例1.老师买了72本相同价格的书,当时没有记住书的单价,只用铅笔记下了用的总钱数,回到学校后其中有两个数字已经模糊不清了,总钱数成了□13.7□元,你能帮忙补上□中数字吗?练习1.马虎的采购员,买了72只桶,洗衣服时将购货发票洗烂了,只能依稀看到72只桶共□67.9□元,□内的字迹已经看不清楚,请帮他算一下一共多少钱?例2.在算式abcde13abcde 1中,不同字母代表不同的数,相同的字母代表相同的数,求abcde 这个五位数是多少?练习2.一个六位数,他的个位数字是6,将6移动到最前面,所得的数是原数的4倍,求这个六位数。

例3.从0,3,5,7,这4个数中任选3个,组成没有重复数字的三位数,在组成的数中能同时被2、3、5整除的数有多少个?练习3.从1、2、3、4、5中任取3个数组成没有重复数字的三位数,在这些三位数中能同时被2和9整除的数有多少个?【综合练习】1.学校李老师一共买了28支价格相同的钢笔,共付人民币9□. 2□元,已知□处的数字相同,请问每支铅笔多少钱?2.已知y x1993是45的倍数,求所有满足条件的六位数y x1993。

3.小明在一张纸上写下了一个没有重复数字的五位数,9□4 □5,其中十位数字和千位数字都看不清楚了,但已知这个数能被75整除,那么满足上述条件的五位数中,最大的一个数是多少?4.在25 □79这个数的□内填上一个数字,使这个数能被11整除,问□应填几?5.五位数a a235能被3整除,它的末三个数字组成的数a a2能被2整除,求这个五位数?6.已知六位数□8919□能被33整除,那么这个六位数是多少?7.一个六位数23□56□是88的倍数,这个数除以88商多少?8.有一个整数,用它去除70、110、160等到三个余数之和是50,求此整数。

9.有一个正整数是一个有2008位的数,且是9的倍数,数字之和是A,A 的数字之和是B ,B 的数字之和是C,求C 是多少?第二节质数与合数的应用【专题简析】根据质数、合数的意义,解答与质数合数有关的问题,学习这部分内容,首先要记住20以内、100以内的质数,有利于顺利解题。

【例题精讲】例1分别判断251,539是质数还是合数?例2 A是一个质数,而且A+6,A+8,A+12,A+14都是质数,试求出满足要求的最小质数A。

例3如图,四个小三角形顶点处有6个圆圈,如果在这些圆圈中分别填上6个质数,它们的和是20。

而且每个小三角形顶点圆圈的数之和相等,问这6个质数的积是多少?【基础练习】1.试判断507,619,667是质数还是合数?2.(1)如果两个质数的和是1999,那么这两个质数的积是多少?(2)如果三个质数和是130,那么这三个质数的积最大是多少?3.写出50以内5个连续自然数,要求每个数都是合数。

4.A是一个质数,且A+4,A+6,A+10都是质数,试求出满足要求的最小质数A。

5.把一个一位数的质数A,写在另一个两位质数B的后面,得到一个三位数,这个三位数是A的119倍,求A和B。

6.把一个两位质数写在另一个两位质数后面,得到一个四位数,它能被这两个质数之和的一半整除,试求出所有这样的质数对。

7.填出下面加法算式中的6个质数。

8 质9+ 质 6 质1 质质质【拓展提高】1.(1)写出5个质数,按从大到小的顺序排列,每相邻两数差是12。

(2)写出7个连续自然数,要求每个数都是合数。

2.判断数6666667111111是质数还是合数?3.判断数1111…121111…1是质数还是合数。

1998个1 1998个14.判断20032003-2003是质数还是合数。

5.a,b,c都是质数,c是一位数,且a×b+c=1993,那么a+b+c的和是多少?6.一个长方体,它的正面和上面面积之和是299平方厘米,如果它的长、宽、高都是质数,那么这个长方体的体积是多少?7.有标号是1—9数字的9张卡片,甲、乙、丙三人每人拿了3张卡片,甲的3张卡片数的积是48,乙的3张卡片上数的和是15,丙的3张卡片上数的积是63,问甲、乙、丙各拿了哪3张卡片?8.把1—10这10个数字围成一个圆圈,使每相邻两个数的和都是质数。

9.有一个数,如果它的数字倒排以后,所得的数仍是这个数,这个数称为回数,如1991就是这样的年份,回数具有如下两个性质:(1)1991是一个回数;(2)1991是一个两位质数回数和一个三位质数回数的积。

在1000年到2000年之间的1000年中,除了1991外,具有性质(1)(2)的年份有哪些?10.有四个相同的瓶子里分别装有不同重量的酒,每瓶与其他各瓶分别合称一次,重量分别是8,9,10,11,12,13千克。

已知4只空瓶重量之和及酒的重量之和均是质数,最重的两瓶内共有多少酒?第三节分解质因数【专题简析】分解质因数常常运用在实际生活中,在许多竞赛题中初看起来很难,但他都与乘积有关,对于这类题目我们可以用分解质因数的方法来解答,因此掌握并灵活应用分解质因数的的知识能解答许多一般方法不能解答的问题。

要注意的是在分解质因数的过程中“2”是很特别的,他是质数中唯一一个偶数,而且还经常结合数的奇偶性来考。

注意特例(1001=7×11×13)【例题精讲】例1.将12个苹果平均分成若干份,共有多少种分法?练习1.有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人,那么共有多少种分法?例2.五个连续自然数的乘积是15120.那么这五个自然数的和是多少?练习.有4个小孩,恰好一个比一个大一岁,4人的年龄积是3024,问这4个孩子中最大的有多少岁?例3.在下面的算式里,里的数字各不相同,求这四个数字的和。

□□×□□□ =1995练习3.下面四张小纸片各盖上了一个数字,如果这四个数字是连续的偶数,请完整下面的算式。

□□×□□=5760例4.一个两位数除310余37,这个数可以是多少?练习4. 237除以一个两位数,所得的余数是6,满足这个条件的两位数有哪些?例5.(质数与合数)两个质数的和是39,求这两个质数的积。

练习5.两个质数的和是99,求这两个数的积。

例6.有4个人他们都属虎,年龄之积是27664,求这4个人的年龄分别是多少?练习6.有6个人,他们都属龙,年龄之积是17597125,那么他们的年龄之和是多少?例7.十个非零且不相等的自然数的和是2002,那么这十个非零自然数的公约数最大是多少?例8.一个正整数能分成3个不同质数的积,如果这3个质数的平方和是150,求这个正整数?练习8:一个正整数能分成3个不同质数的积,如果这3个质数的平方和是1710,求这个正整数?例9.有三个数字能组成6个不同的三位数,这6个数的和是2886,求这6个三位数中最小的一个是多少?练习9:有3个数字能组成6个不同的3位数,这6个数的和是1776,求这6个三位数中最小的一个是多少?【综合练习】1、甲数比乙数大9,两个数的积是792,求甲乙两数分别是多少?2、四个连续奇数的积是19305,求这四个奇数的和。

3、在下面算式框内各填上一个数字,使算式成立。

× =19954. 5100除以一个三位数,余数是95,这个三位数最大是多少?5.三个质数的和是80,求这三个质数的积。

6.已知三个质数的平方和是7950,求这三个质数的积。

7.已知两个数的和是60,最小公倍数是273,求此两数分别是多少?8.今有三个质数,他们的平方和是7950,求这三个质数的积。

9.有四个数字能组成6个不同的四位数,这6个数的和是39996,求这6个三位数中最小的一个是多少10.主人对客人说:“院子里有三个小孩,他们的年龄之积等于72,年龄之和恰恰是我家的楼号,楼号你是知道的,你能求出这些孩子的年龄吗?”客人想了一下说:“我还不能确定答案!”他站起来,走到窗前,看了看楼下的孩子,说:“有两个很小的孩子,我知道他们的年龄了!”请问,主人家的楼号是多少?三个孩子的年龄分别是多少?第四节余数问题【专题简析】在整数除法中,当不能整除时,就产生余数。

a÷b=c……d(0<d<b)是带余除法的基本形式。

如果两个自然数a,b同除以自然数m,所得余数相同,称作a与b对于模m 同余,记作a≡b(mod m)。

如17与32被5除,余数都是2,即17≡32(mod 5)。

【例题精讲】例1被除数、除数、商与余数之和是1100,已知余数是9,商是18,求被除数和除数。

例2写出除109后余4的全部两位数。

例3有一个不等于1的整数,它除967,1000,2001得到相同的余数,那么这个整数是多少?例4在1与3000之间同时被3,5,7除都余2的数有多少个?例5自然数16510,14893和14167除以m的余数相同,求m的最大值。

【基础练习】1.用一个两位数除961,余数为36,求这个两位数。

2. 719除以一个两位数,余数4,问这样的两位数有多少个?3.两个数相除,商为8,余数为16,被除数、除数与商的和是555,除数是几?4.求111…11被13除的余数。

相关文档
最新文档