浅谈构造等比数列求数列的通项公式
构造等差或者等比数列求解数列的通项公式-高考数学大题精做之解答题题型全覆盖高端精品
高考数学大题精做之解答题题型全覆盖高端精品第二篇数列与不等式专题02构造等差或者等比数列求解数列的通项公式【典例1】数列{}n a 中,112a =,112(()2n n n a a n N *+=-∈,数列{}n b 满足*2n n n b a n =⋅∈N .(I )求证:数列{}n b 是等差数列,并求数列{}n a 的通项公式;(II )设2log n n nc a =,求数列22n n c c +⎛⎫ ⎪⎝⎭的前n 项n T .【思路点拨】(I )将1122nn n a a -⎛⎫=- ⎪⎝⎭配凑成11221n n n n a a ++=-.由此证得数列{}n b 是等差数列.求得n b 的表达式,进而求得数列{}n a 的通项公式.(II )先求得n c 的表达式,然后利用裂项求和法求得n T .【典例2】已知数列{}n a 的前n 项和为n S ,且()23n n S a n n *=-∈N.(1)设3n n b a =+,证明数列{}n b 为等比数列,并求出通项公式n a ;(2)求2462n a a a a ++++L .【思路点拨】(1)由题可得()11231n n S a n ++=-+,与条件作差可得123n n a a +=+,则()1323n n a a ++=+,即可证明数列{}n b 为等比数列,利用等比数列的通项公式求得数列{}n b 的通项公式,进而求得数列{}n a 的通项公式;(2)由(1)可得22323nn a =⋅-,进而利用等比数列的前n 项和公式求解即可【典例3】设数列{}n a 的前n 项和为n S ,已知11a =,121n n S S +-=,n *∈N .(1)证明:{}1n S +为等比数列,求出{}n a 的通项公式;(2)若n nn b a =,求{}n b 的前n 项和n T ,并判断是否存在正整数n 使得1250n n T n -⋅=+成立?若存在求出所有n 值;若不存在说明理由.【思路点拨】(1)根据等比数列的定义即可证明{}1n S +为等比数列,再根据n S 和n a 的关系11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,即可求出{}n a 的通项公式;(2)根据12n n n n nb a -==,可采取错位相减法求出{}n b 的前n 项和n T ,然后代入1250n n T n -⋅=+得,2260n n --=,构造函数()226x f x x =--(1x ≥),利用其单调性和零点存在性定理即可判断是否存在.【典例4】已知数列{}n a 是等比数列,数列{}n b 满足1212b b ==,338b =,1121nn n n a b b ++=+.(1)求{}n a 的通项公式;(2)求{}n b 的前n 项和.【思路点拨】(1)根据已知条件求出2a ,3a 即可求出等比数列{}n a 的通项公式;(2)由(1)可得11221n n n n b b ++=+,即数列{}2n n b 是公差为1的等差数列,求出n b 的通项公式,利用错位相减法求出数列的前n 项和.【典例5】已知正项数列{}n a 满足11a =,()221142n n n n a a a a n *+++=-∈N.(1)证明:数列{}1n a +是等比数列;(2)证明:()2341111123n n a a a a *+++++<∈N .【思路点拨】(1)将题干中的等式因式分解后得出()()111222n n n n n n a a a a a a ++++=+-,由此得出121n n a a +=+,再利用定义证明出数列{}1n a +为等比数列;(2)求出21nn a =-,利用放缩法得出()2111232n n n a -≤⋅≥,结合等比数列的求和公式可证明出结论成立.【典例6】已知数列{}n a 的前n 项和为n S ,且2n n S a n =-.(1)证明数列{}1n a +是等比数列,并求数列{}n a 的通项公式;(2)记1111n n n n b a a a ++=+,求数列{}n b 的前n 项和n T .【思路点拨】(1)由2n n S a n =-,可得()1121n n S a n ++=-+,两式相减,可化为()1121n n a a ++=+,结合等比数列的定义,即可得到结论;(2)由⑴1111111112121n n n n n n n n n a b a a a a a +++++=+==---,利用“裂项法”,即可求得数列{}n b 的前n 项和n T .1.已知数列{}n a 满足112a =-,()1212n n a a n -=-≥.(1)求证:{}1n a +为等比数列,并求数列{}n a 的通项公式;(2)若数列{}n n a b +是首项为1,公差为3的等差数列,求数列{}n b 的前n 项和.2.已知数列{},{}n n a b 满足{}1,2n n n n a a b b +-=+为等比数列,且12a =,24a =,310a =.(1)试判断列{}n b 是否为等比数列,并说明理由;(2)求n a .3.已知数列{}n b ,满足14b =且12(2)1n n b b n n n --=≥-.(1)求证{}n b 是单增数列;(2)求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n S .4.已知数列{}n a 的前n 项和为n S ,2n n S a n =+.(1)证明:{}1n a -为等比数列;(2)设1n n b a =-,若不等式12233411111n n t b b b b b b b b ++++⋅⋅⋅+<对*n N ∀∈恒成立,求t 的最小值.5.已知数列{}n a 满足:11a =,12n n a a n ++=,*n N ∈.(1)求证:数列12n a n ⎧⎫-+⎨⎬⎩⎭是等比数列;(2)设212n n n a b -=,求数列{}n b 的前n 项和n S .6.已知数列{}n a 的前n 项和为n S ,且满足()221,n n S a n n N +=--∈.(Ⅰ)求证:数列{}2n a +是等比数列;(Ⅱ)求数列(){}2n n a ⋅+的前n 项和.7.已知数列{}n a 满足113a =,且*n N ∈时,1n a +,n a ,23-成等差数列.(1)求证:数列2{}3n a +为等比数列;(2)求数列{}n a 的前n 项和n S .8.已知数列{}n a 满足11232,2n n n a a n ---=⋅≥,且1232a a =.(1)求证:数列{}2nn a -是等比数列.(2)设n S 为数列{}n a 的前n 项的和,记n T 为数列1{}n na S +的前n 项和,若*,n n N T m ∀∈<,*m N ∈,求m 的最小值.9.在数列{}n a 中,11a =,122nn n a a +=+,(1)设12nn n a b -=,证明:数列{}n b 是等差数列;(2)求数列{}n a 的前n 项和.参考答案【典例1】解:(I )由1122nn n a a +⎛⎫=- ⎪⎝⎭,即11221n n n n a a ++=-.而2nn n b a =,∴11n n b b +=-,即11n n b b +-=.又1121b a ==,∴数列{}n b 是首项和公差均为1的等差数列.于是1(1)1=2nn n b n n a =+-⨯=,∴2n n n a =.(II )∵22log log 2n n n n c n a ===,∴22211(2)2n n c c n n n n +==-++.∴1111111111111132435112212n T n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+-=+-- ⎪ ⎪ ⎪ ⎪ ⎪-++++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭311212n n =--++.【典例2】【2020届湖南省长沙市第一中学高三月考】已知数列{}n a 的前n 项和为n S ,且()23n n S a n n *=-∈N.(1)设3n n b a =+,证明数列{}n b 为等比数列,并求出通项公式n a ;(2)求2462n a a a a ++++L .【思路点拨】(1)由题可得()11231n n S a n ++=-+,与条件作差可得123n n a a +=+,则()1323n n a a ++=+,即可证明数列{}n b 为等比数列,利用等比数列的通项公式求得数列{}n b 的通项公式,进而求得数列{}n a 的通项公式;(2)由(1)可得22323nn a =⋅-,进而利用等比数列的前n 项和公式求解即可解:(1)由23n n S a n =-,得()11231n n S a n ++=-+,两式相减,得123n n a a +=+,所以()1323n n a a ++=+,即()12n n b b n *+=∈N,当1n =时,11123a S a ==-,所以13a =,则1136b a =+=,所以数列{}n b 是以6为首项,2为公比的等比数列,所以162n n b -=⋅,所以()13623321n n n n a b -=-=⋅-=-(2)由(1)知22323nn a =⋅-,则24224623232323nn a a a a n++++=⋅+⋅++⋅-L L ()14143343414n n n n +-=⋅-=---【典例3】【2020届山东省青岛市高三上学期期末数学试题】设数列{}n a 的前n 项和为n S ,已知11a =,121n n S S +-=,n *∈N .(1)证明:{}1n S +为等比数列,求出{}n a 的通项公式;(2)若n nn b a =,求{}n b 的前n 项和n T ,并判断是否存在正整数n 使得1250n n T n -⋅=+成立?若存在求出所有n 值;若不存在说明理由.【思路点拨】(1)根据等比数列的定义即可证明{}1n S +为等比数列,再根据n S 和n a 的关系11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,即可求出{}n a 的通项公式;(2)根据12n n n n nb a -==,可采取错位相减法求出{}n b 的前n 项和n T ,然后代入1250n n T n -⋅=+得,2260n n --=,构造函数()226x f x x =--(1x ≥),利用其单调性和零点存在性定理即可判断是否存在.解:(1)∵121n n S S +-=∴()1121n n S S ++=+,*n N ∈因为111a S ==,所以可推出10n S +>.故1121n n S S ++=+,即{}1n S +为等比数列.∵112S +=,公比为2∴12n n S +=,即21nn S =-,∵1121n n S --=-,当2n ≥时,112n n n n a S S --=-=,11a =也满足此式,∴12n n a -=;(2)因为12n n n n n b a -==,01112222n n n T -=++⋅⋅⋅+∴121122222n n n T =++⋅⋅⋅+,两式相减得:011111122222222n n n n n n T -+=++⋅⋅⋅+-=-即1242n n n T -+=-,代入1250n n T n -⋅=+,得2260n n --=.令()226x f x x =--(1x ≥),()2ln 210xf x '=->在[)1,x ∈+∞成立,∴()226xf x x =--,()1,x ∈+∞为增函数,而()()540f f ⋅<,所以不存在正整数n 使得1250n n T n -⋅=+成立.【典例4】【广东省佛山市2019-2020学年高三教学质量检测(一)】已知数列{}n a 是等比数列,数列{}n b 满足1212b b ==,338b =,1121nn n n a b b ++=+.(1)求{}n a 的通项公式;(2)求{}n b 的前n 项和.【思路点拨】(1)根据已知条件求出2a ,3a 即可求出等比数列{}n a 的通项公式;(2)由(1)可得11221n n n n b b ++=+,即数列{}2n n b 是公差为1的等差数列,求出n b 的通项公式,利用错位相减法求出数列的前n 项和.解:(1)由1121nn n n a b b ++=+,取1n =,得22121a b b =+,解得24a =.取2n =,得33241a b b =+,解得38a =.∵{}n a 是等比数列,则322a q a ==,212aa q==.∴{}n a 的通项公式为112n n n a a q -==.(2)∵11221n n n n b b ++=+,∴数列{}2n n b 是公差为1的等差数列.()12211n n b b n n =+-⨯=,则2n nnb =.设{}n b 的前n 项和为n S ,则231232222n n n S =+++⋅⋅⋅+,234112322222n n S n+=++++ .则2311111222222n n n S n +=+++⋅⋅⋅+-11111222112212nn n n n ++⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭+⎢⎥⎣⎦=-=--.∴222n n n S +=-.【典例5】【2020届浙江省杭州市第二中学高三12月月考数学试题】已知正项数列{}n a 满足11a =,()221142n n n n a a a a n *+++=-∈N .(1)证明:数列{}1n a +是等比数列;(2)证明:()2341111123n n a a a a *+++++<∈N .【思路点拨】(1)将题干中的等式因式分解后得出()()111222n n n n n n a a a a a a ++++=+-,由此得出121n n a a +=+,再利用定义证明出数列{}1n a +为等比数列;(2)求出21nn a =-,利用放缩法得出()2111232n n n a -≤⋅≥,结合等比数列的求和公式可证明出结论成立.解:(1)221142n n n n a a a a +++=- ,()()2211112422n n n n n n n n a a a a a a a a ++++∴+=-=+-.0n a > ,120n n a a +∴+>,121n n a a +∴-=,即121n n a a +=+,则有1122211n n n n a a a a +++==++且112a +=,∴数列{}1n a +是以2为首项,以2为公比的等比数列;(2)由(1)得12nn a +=,即21nn a =-,得()22111112212232n n n n n n a --=≤=⋅≥--,2123411111111111121232111322232312n n n n a a a a -+⎛⎫- ⎪⎛⎫⎛⎫⎝⎭∴++++≤++++==-< ⎪⎪⎝⎭⎝⎭- .【典例6】【天津市南开区南开中学2019届高三第五次月考】已知数列{}n a 的前n 项和为n S ,且2n n S a n =-.(1)证明数列{}1n a +是等比数列,并求数列{}n a 的通项公式;(2)记1111n n n n b a a a ++=+,求数列{}n b 的前n 项和n T .【思路点拨】(1)由2n n S a n =-,可得()1121n n S a n ++=-+,两式相减,可化为()1121n n a a ++=+,结合等比数列的定义,即可得到结论;(2)由⑴1111111112121n n n n n n n n n a b a a a a a +++++=+==---,利用“裂项法”,即可求得数列{}n b 的前n 项和n T .解:(1)令1n =,得1121a a =-,由此得11a =,由于2n n S a n =-,则()1121n n S a n ++=-+,两式相减得()11212n n n n S S a n a n ++-=-+-+,即121n n a a +=+,所以()1121121n n n a a a ++=++=+,即1121n n a a ++=+,故数列{}1n a +是等比数列,其首项为112a +=,11222n nn a -+=⋅=,故数列{}n a 的通项公式是21nn a =-.(2)1111n n n n b a a a ++=+11n n n a a a ++=()()122121nn n +=--()()()()1121212121n n nn ++---=--,1112121n n +=---,12n nT b b b =+++12231111111212121212121n n +⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭ 12231111111212121212121n n +=-+-++-------11121n +=--.1.【思路点拨】(1)由已知构造等比数列,可得111122n n a -⎛⎫+=⋅ ⎪⎝⎭,化简即为{}n a 的通项.(2)由已知得32n n a b n +=-,代入112nn a ⎛⎫=- ⎪⎝⎭,可得()1=312nn b n ⎛⎫-- ⎪⎝⎭,所以数列{}n b 的前n 项和分别利用等差数列和等比数列求和公式即可求得.解:(1)由()1212n n a a n -=-≥,得()1211n n a a -+=+,即()11112n n a a -+=+,又11102a +=≠,∴{}1n a +是以1112a +=为首项,公比为12的等比数列.∴111122n n a -⎛⎫+=⋅ ⎪⎝⎭,∴112nn a ⎛⎫=- ⎪⎝⎭.(2)由已知得()11332n n a b n n +=+-⨯=-,∵112n n a ⎛⎫=- ⎪⎝⎭,∴()()()11323213122n nn n b n a n n ⎛⎫⎛⎫=--=--+=-- ⎪ ⎪⎝⎭⎝⎭.所以数列{}n b 的前n 项和为:()2121112531222nn b b b n ⎛⎫⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++-- ⎪⎢⎥⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦L L ()21112531222nn ⎡⎤⎛⎫⎛⎫=+++--+++⎡⎤⎢⎥⎪ ⎪⎣⎦⎝⎭⎝⎭⎢⎥⎣⎦L L()211122231311122212nn n n n n ⎡⎤⎛⎫-⎢⎥ ⎪+-⎡⎤⎝⎭+⎢⎥⎛⎫⎣⎦⎣⎦=-=-+ ⎪⎝⎭-.2.【2020届河北省保定市高三上学期期末】已知数列{},{}n n a b 满足{}1,2n n n n a a b b +-=+为等比数列,且12a =,24a =,310a =.(1)试判断列{}n b 是否为等比数列,并说明理由;(2)求n a .【思路点拨】(1)根据所给通项公式及12a =,24a =,310a =,可求得123,,b b b ,即可利用等比中项定义判断{}n b 是否为等比数列.(2)根据{2}n b +为等比数列,即可由(1)中所得首项与公比求得n b .根据1,n n n a a b +-=结合递推公式与累加法,即可求得n a .解:(1)数列{}n b 不是等比数列.理由如下:由1n n n a a b +-=,且1232,4,10a a a ===得:所以1212b a a =-=,2326b a a =-=,又因为数列{2}n b +为等比数列,所以可知其首项为4,公比为2.所以2324216b +=⨯=,314b =∴,显然22133628b b b =≠=故数列{}n b 不是等比数列.(2)结合(1)知,等比数列{2}n b +的首项为4,公比为2,故112422n n n b -++=⋅=,所以122n n b +=-,因为1n n n a a b +-=,122(2)nn n a a n --=-≥∴令2,,(1)n n =- 累加得()2322222(1)nn a n -=+++-- ,()23222222nn a n ∴=++++-+ ()1221222221n n n n +-=-+=--,又12a =满足上式,+122n n a n=-∴3.【2020届北京市清华大学附属中学高三第一学期(12月)月考】已知数列{}n b ,满足14b =且12(2)1n n b b n n n --=≥-.(1)求证{}n b 是单增数列;(2)求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n S .【思路点拨】(1)先求出数列{}nb n的通项公式,再得n b ,直接作差可得单调性;(2)用裂项相消法求数列1n b ⎧⎫⎨⎬⎩⎭的和.解:(1)∵12(2)1n n b b n n n --=≥-,∴数列{}n b n 是等差数列,公差为2,又141b =,∴42(1)22nb n n n=+-=+,∴2(1)n b n n =+.2n ≥时,12(1)2(1)40n n b b n n n n n --=+--⋅=>,所以1n n b b ->,所以数列{}n b 是递增数列.(2)11111(2(1)21n b n n n n ==-++,∴111111[(1()()]222312(1)n n S n n n =-+-++-=++ .4.【2020届重庆市康德卷高考模拟调研卷理科数学(二)】已知数列{}n a 的前n 项和为n S ,2n n S a n =+.(1)证明:{}1n a -为等比数列;(2)设1n n b a =-,若不等式12233411111n n t b b b b b b b b ++++⋅⋅⋅+<对*n N ∀∈恒成立,求t 的最小值.【思路点拨】(1)利用1nn n a S S -=-得到1,n n a a -的递推公式再构造数列证明即可.(2)根据(1)可求得12nn a =-,进而求得2n b n =,再用裂项求和求解12231111n n b b b b b b +++⋅⋅⋅+进而求得t 的最小值解:(1)11221n n n n n a S S a a --=-=--()1121(2)n n a a n -⇒-=-≥,故{}1n a -为等比数列.(2)令1n =,则有111211S a a =+⇒=-,所以()111122n n n a a --=-⋅=-,所以12n n a =-,令122nn n b a n =-==,令1111141n n n c b b n n +⎛⎫==- ⎪+⎝⎭,所以122311*********...412231n n b b b b b b n n +⎛⎫++⋅⋅⋅+=-+-++- ⎪+⎝⎭()111111414414n n ⎛⎫=-=-< ⎪++⎝⎭.所以14t ≥.故t 的最小值为14.5.【2020届重庆市康德卷高考模拟调研卷理科数学(一)】已知数列{}n a 满足:11a =,12n n a a n ++=,*n N ∈.(1)求证:数列12n a n ⎧⎫-+⎨⎬⎩⎭是等比数列;(2)设212n n na b -=,求数列{}n b 的前n 项和n S .【思路点拨】(1)12n n c a n =-+,则12n n a c n =+-代入已知式可证得结论;(2)由(1)求得n a ,从而得n b ,用错位相减法求数列{}n b 的前n 项和n S .解:(1)设12n n c a n =-+,由题111(1)22n n a n a n +⎛⎫-++=--+ ⎪⎝⎭,即1n n c c +=-,又11111022c a =-+=≠,∴{}n c 为等比数列,即12n a n ⎧⎫-+⎨⎬⎩⎭为等比数列;(2)由(1)知11(1)2n n c -=⋅-,即111(1)22n n a n -=⋅-+-,2121n a n -∴=-,212n n n b -∴=,231135232122222n n n n n S ---=+++⋅⋅⋅++,234+111352*********n n n n n S --=+++⋅⋅⋅++,两式相减得23111111121323222222222n n n n n n S ++-+⎛⎫=+++⋅⋅⋅+-=- ⎪⎝⎭,2332n nn S +∴=-.6.【2020届陕西省咸阳市高三上学期期末考试】已知数列{}n a 的前n 项和为n S ,且满足()221,n n S a n n N +=--∈.(Ⅰ)求证:数列{}2n a +是等比数列;(Ⅱ)求数列(){}2n n a ⋅+的前n 项和.【思路点拨】(I )令1n =,利用11a S =可求得13a =;当2n ≥时,利用1n n n a S S -=-整理可得()1222n n a a -+=+,从而证得结论;(II )由(I )可得{}2n a +的通项公式,从而求得()1252n n n a n -+=⋅,利用错位相减法求得结果.解:(I )令1n =,11123a S a ==-,解得:13a =当2n ≥且n *∈N 时,221n n S a n =--,11221n n S a n --=-+11222n n n n n a S S a a --∴=-=--,即122n n a a -=+()1222n n a a -∴+=+{}2n a ∴+是以125a +=为首项,2为公比的等比数列(II )由(I )知:1252n n a -+=⋅()1252n n n a n -∴+=⋅设数列(){}2n n a +的前n 项和为nT 则()012215210215251252n n n T n n --=⨯+⨯+⨯+⋅⋅⋅+-⋅+⋅()123125210215251252n nn T n n -∴=⨯+⨯+⨯+⋅⋅⋅+-⋅+⋅两式作差得:()()11212125525222552512n n n n n T n n ----=-⋅+⨯++⋅⋅⋅+=-⋅+⨯-()55252105525n n n n n =-⋅+⋅-=-⋅-()5525n n T n ∴=-⋅+7.【2020届四川省达州市普通高中高三第一次诊断性测】已知数列{}n a 满足113a =,且*n N ∈时,1n a +,n a ,23-成等差数列.(1)求证:数列2{}3n a +为等比数列;(2)求数列{}n a 的前n 项和n S .【思路点拨】(1)利用等差中项的知识列出算式,然后整理算式,对算式进行变形可发现数列2{}3n a +为等比数列;(2)先根据(1)的结论得出数列{}n a 的通项公式,然后根据通项公式的特点分组求和即可得到前n 项和n S .解:(1)证明:由题意,当*n N ∈时,1n a +,n a ,23-成等差数列,则1223n n a a +-=,即1223n n a a +=+,1222222()3333n n n a a a +∴+=++=+,又12121333a +=+= ,∴数列2{}3n a +是以1为首项,2为公比的等比数列.(2)解:由(1),知1223n n a -+=,即1223n n a -=-,*n N ∈.12n nS a a a ∴=++⋯+1212222(1(2(2)(2)3333n -=-+-+-+⋯+-1212(1222)3n n-=+++⋯+-122123n n -=--2213n n =--.8.【2020届山西省太原市第五中学高三11月阶段性考试】已知数列{}n a 满足11232,2n n n a a n ---=⋅≥,且1232a a =.(1)求证:数列{}2nn a -是等比数列.(2)设n S 为数列{}n a 的前n 项的和,记n T 为数列1{}n na S +的前n 项和,若*,n n N T m ∀∈<,*m N ∈,求m 的最小值.【思路点拨】(1)首先令2n =,解得13a =,将11232n n n a a ---=⋅化简为112122n n n n a a ---=-,得到数列{}2nna -是以1为首项,12为公比的等比数列.(2)由(1)可知1122n n n a -⎛⎫ ⎪⎝⎭+=,利用分组求和可算出1112()2n n n S +-=-,从而得到11132nn n a S ⎛⎫=⋅ ⎪+⎝⎭,再计算n T 即可找到m 的最小值.解:(1)当2n =时,2126a a -=,因为1232a a =,所以13a =.由11232,2n n n a a n ---=⋅≥,得()11222nn n n a a---=-,所以112122n n n n a a ---=-,则数列{}2nn a -是以1为首项,12为公比的等比数列.(2)由(1)知1122n nn a -⎛⎫= ⎪⎝⎭-,1122n nn a -⎛⎫ ⎪⎝⎭+=.111(1)2(12)122()112212nn n n n S +---=+=---.所以111111111132322()2()22nn n n n n n n a S -+-⎛⎫===⋅ ⎪+⎝⎭++- ,11(1)11162(1)132312n n n T -==-<-所以m 的最小值为1.9.在数列{}n a 中,11a =,122nn n a a +=+,(1)设12nn n a b -=,证明:数列{}n b 是等差数列;(2)求数列{}n a 的前n 项和.试题分析:(1)题中条件12nn n a b -=,而要证明的是数列是等差数列,因此需将条件中所给的的递推公式122nn n a a +=+转化为的递推公式:11122n n n n a a +-=+,从而11n n b b +=+,,进而得证;(2)由(1)可得,12n n a n -=,因此数列的通项公式可以看成一个等差数列与等比数列的乘积,故可考虑采用错位相减法求其前项和,即有:①,①得:②,②-①得.解:(1)∵122nn n a a +=+,11122n n n n a a +-=+,又∵12nn n a b -=,∴11n n b b +=+,,∴则{}n b 是为首项为公差的等差数列;由(1)得1(1)1n b n n =+-⋅=,∴12n n a n -=,∴①,①得:②,②-①得.。
(完整版)用构造法求数列的通项公式汇总
用构造法求数列的通项公式上海外国语大学嘉定外国语实验学校 徐红洁在高中数学教材中,有很多已知等差数列的首项、公比或公差(或者通过计算可以求出数列的首项,公比),来求数列的通项公式。
但实际上有些数列并不是等差、等比数列,给出数列的首项和递推公式,要求出数列的通项公式。
而这些题目往往可以用构造法,根据递推公式构造出一个新数列,从而间接地求出原数列的通项公式。
对于不同的递推公式,我们当然可以采用不同的方法构造不同的类型的新数列。
下面给出几种我们常见的构造新数列的方法:一.利用倒数关系构造数列。
例如:中,若求a n }{n a 数列),(411,211N n a a a nn ∈+==++4,n n nn b b a b ==+1,1则设即=4,n n b b -+1}是等差数列。
n b {∴可以通过等差数列的通项公式求出,然再求后数列{ a n }的通项。
n b 练习:1)数列{ a n }中,a n ≠0,且满足求a n),(,311,2111N n a a a nn ∈+==+2)数列{ a n }中,求a n 通项公式。
,22,111+==+n nn a a a a 3)数列{ a n }中,求a n .),,2(02,0,1111N n n a a a a a a n n n n n ∈≥=-⋅+≠=--且二.构造形如的数列。
2n n a b =例:正数数列{ a n }中,若n n n a N n a a a 求),(4,52211∈-==+ 解:设4,4,112-=--==++n n n n n n b b b b a b 即则),71(,429429429)4()1(25254}{2211N n n n a na n nb a b b n n n n ∈≤≤-=∴-=-=-⋅-+=∴==-即,是等差数列,公差是数列练习:已知正数数列{ a n }中,,),2(2,211N n n a a a n n ∈≥==-求数列{ a n }的通项公式。
初中数学知识归纳等比数列的通项与求和公式
初中数学知识归纳等比数列的通项与求和公式等比数列是数学中常见的一种数列形式。
在等比数列中,每一项与前一项的比值都是相同的,这个比值被称为公比。
对于一个等比数列来说,我们可以通过公比和首项来确定其通项和求和公式。
一、等比数列的通项公式设等比数列的首项为a,公比为r。
根据等比数列的定义,可以得到:第一项:a₁ = a第二项:a₂ = ar第三项:a₃ = ar²第四项:a₄ = ar³...第n项:aₙ = ar^(n-1)根据观察,我们可以发现第n项与n的指数之间存在着一种关系。
通过推导,可以得到等比数列的通项公式:aₙ = a * r^(n-1)这就是等比数列的通项公式,可以用来求解等比数列中任意一项的数值。
二、等比数列的求和公式在解决等比数列相关的问题时,有时我们需要求解等比数列的前n项和。
为了得到等比数列的求和公式,我们可以先将该数列的前n项与公比进行相乘,得到一个新的数列:a * r, ar², ar³, ..., ar^(n-1)然后,我们将这个新的数列的求和问题转化为等差数列的求和问题。
观察新数列,可以发现它是一个等差数列,首项为a,公差为ar。
根据等差数列的求和公式,我们可以得到:Sₙ = (a * r - a) / (r - 1) * (1 - r^n)其中,Sₙ表示等比数列的前n项和。
三、应用示例现在,我们通过几个具体的示例来说明等比数列的通项和求和公式的应用。
示例一:已知等比数列的首项为2,公比为3,求该数列的第10项和前10项和。
解:根据等比数列的通项公式,代入a = 2,r = 3,可以求得第10项:a₁₀ = 2 * 3^(10-1) = 2 * 3^9 = 2 * 19683 = 39366根据等比数列的求和公式,代入a = 2,r = 3,n = 10,可以求得前10项和:S₁₀ = (2 * 3 - 2) / (3 - 1) * (1 - 3^10) = 6 / 2 * (1 - 59049) = -59040因此,该等比数列的第10项为39366,前10项和为-59040。
等比数列的通项公式
等比数列的通项公式在数学中,等比数列是一种常见的数列形式,它的每一项与前一项的比值都相等。
等比数列可以通过通项公式来表示,该公式能够直接计算出数列的任意项。
一、等比数列的定义等比数列是指一个数列中,每一项与前一项的比值都相等的数列。
设等比数列的首项为a,公比为r,则数列的通项可以表示为an = a *r^(n-1),其中an表示数列中的第n项。
二、等比数列的性质1. 公比的正负性:若公比r大于0且不等于1,则数列递增;若公比r小于0且不等于-1,则数列递减。
2. 公比的绝对值:若公比的绝对值|r|小于1,则数列递减趋于0;若公比的绝对值|r|大于1,则数列递增或递减趋于正负无穷。
3. 通项公式的推导:通过求解数列中的两个相邻项,可以得到通项公式。
假设第k项与第(k+1)项分别为ak和a(k+1),则有ak * r = a(k+1),可得到通项公式为an = a * r^(n-1)。
4. 等比数列的求和公式:由于等比数列的每一项与前一项的比值相等,可以使用求和公式来计算数列的和。
求和公式为Sn = a * (1 - r^n) /(1 - r),其中n表示求和的项数。
三、应用例题例题1:求等比数列2,4,8,16,...的第8项和前8项的和。
解析:首先计算公比r,可通过相邻两项的比值来求解。
第二项4除以第一项2等于2,第三项8除以第二项4等于2,以此类推可以得到公比r=2。
利用通项公式an = a * r^(n-1),可得到第8项a8 = 2 *2^(8-1) = 2 * 2^7 = 256。
其次,利用求和公式Sn = a * (1 - r^n) / (1 - r),代入首项a=2,公比r=2,项数n=8,可以得到前8项的和S8 = 2 * (1 - 2^8) / (1 - 2) = 2 * (1 - 256) / -1 = 510。
例题2:若等比数列的首项为3,第5项为48,求公比和前10项的和。
用构造法求数列的通项公式
用构造法求数列的通项公式首先,我们需要了解什么是数列和通项公式。
数列是由一系列按照一定规律排列的数字组成的序列。
通项公式是指能够通过一个数列中的任意一项来表示它的第n项的公式。
构造法是指通过观察数列中的规律,逐步构造出通项公式的方法。
对于数列的构造方法,有多种不同的途径可以使用。
下面将介绍一些常见的构造法。
1.等差数列:等差数列是指数列中任意两项之间的差都是一个常数d。
要构造等差数列的通项公式,可以通过观察数列中的规律来得到。
例如,对于等差数列1,4,7,10,13,...,我们可以观察到每一项与前一项的差都是3,因此该数列的通项公式可以表示为An=A1+(n-1)d,其中A1为首项,d为公差,n为项数。
2.等比数列:等比数列是指数列中任意两项之间的比都是一个常数r。
要构造等比数列的通项公式,可以通过观察数列中的规律来得到。
例如,对于等比数列2,6,18,54,162,...,我们可以观察到每一项与前一项的比都是3,因此该数列的通项公式可以表示为An=A1*r^(n-1),其中A1为首项,r为公比,n为项数。
3.斐波那契数列:斐波那契数列是一种特殊的数列,每一项都是前两项的和。
要构造斐波那契数列的通项公式,可以通过观察数列中的规律来得到。
例如,对于斐波那契数列1,1,2,3,5,8,...,我们可以观察到每一项都是前两项的和,因此该数列的通项公式可以表示为An=An-1+An-2,其中A1和A2为首两项,n为项数。
4.平方数列:平方数列是指数列中每一项都是一些整数的平方。
要构造平方数列的通项公式,可以通过观察数列中的规律来得到。
例如,对于平方数列1,4,9,16,25,36,...,我们可以观察到每一项都是一些整数的平方,因此该数列的通项公式可以表示为An=n^2,其中n为项数。
5.阶乘数列:阶乘数列是指数列中每一项都是小于等于该项的正整数的阶乘。
要构造阶乘数列的通项公式,可以通过观察数列中的规律来得到。
等比数列的通项与求和公式
等比数列的通项与求和公式等比数列是一种常见的数列形式,其中每个后续的项都是前一项乘以一个常数,这个常数称为公比。
在等比数列中,我们可以根据首项和公比来计算通项和求和,这对于数列问题的解决非常有用。
首先,让我们来研究等比数列的通项公式。
假设等比数列的首项为a,公比为r,第n项为an。
我们可以通过观察数列中的模式来得出通项公式。
在等比数列中,我们可以发现每个后一项都是前一项乘以公比:a,ar,ar^2,ar^3...从中,我们可以观察到,每一项的幂次都是逐渐增大的。
因此,第n项可以表示为首项a乘以公比r的n-1次方:an = a * r^(n-1)这就是等比数列的通项公式。
有了这个公式,我们可以轻松计算等比数列中任意一项的值。
接下来,我们来讨论等比数列的求和公式。
求和公式可以帮助我们快速计算数列中一定范围内所有项的和。
对于等比数列的求和,我们需要使用以下公式:Sn = a * (r^n - 1) / (r - 1)其中,Sn表示数列前n项的和。
根据这个公式,我们可以计算出等比数列的和。
需要注意的是,在使用等比数列的公式时,我们需要确保首项a和公比r的值是已知的并且合法的。
否则,我们可能会得到错误的结果。
下面,让我们通过一个具体的例子来演示如何使用等比数列的通项和求和公式。
假设有一个等比数列,首项为2,公比为3,我们想要计算前5项的和。
首先,根据通项公式:an = a * r^(n-1)我们可以计算出第5项的值:a5 = 2 * 3^(5-1) = 162接下来,我们可以使用求和公式:Sn = a * (r^n - 1) / (r - 1)来计算前5项的和:S5 = 2 * (3^5 - 1) / (3 - 1) = 242因此,前5项的和为242。
通过等比数列的通项公式和求和公式,我们可以快速、准确地计算出数列中任意一项的值以及一定范围内所有项的和。
总结起来,等比数列的通项公式为an = a * r^(n-1),其中a为首项,r为公比,n为项数。
等比数列的通项与求和公式
等比数列的通项与求和公式等比数列是数学中常见的一种数列形式,它的每一项与前一项的比值都是一个常数。
在等比数列中,我们可以通过一些公式来求解其通项和求和。
一、等比数列的定义与性质等比数列是指一个数列中,每一项与前一项的比值都是一个常数。
这个常数称为等比数列的公比,通常用字母q表示。
对于一个等比数列{a₁, a₂, a₃, ...},它的公比为q,那么可以得到以下性质:1. 第n项与第m项的比值等于q的n-m次方,即aₙ/aₙ = q^(n-m)。
2. 等比数列的任意一项都可以表示为第一项乘以公比的n-1次方,即aₙ = a₁* q^(n-1)。
3. 等比数列的前n项和可以表示为第一项乘以公比的n次方减一,再除以公比减一,即Sₙ = a₁ * (q^n - 1) / (q - 1)。
二、等比数列的通项公式的推导为了推导等比数列的通项公式,我们可以利用等比数列的性质。
假设等比数列的第一项为a₁,公比为q,那么根据等比数列的性质2,第n项可以表示为aₙ = a₁ * q^(n-1)。
三、等比数列的求和公式的推导同样地,为了推导等比数列的求和公式,我们可以利用等比数列的性质。
假设等比数列的第一项为a₁,公比为q,那么根据等比数列的性质3,前n项和可以表示为Sₙ = a₁ * (q^n - 1) / (q - 1)。
四、等比数列的应用举例等比数列的通项公式和求和公式在实际问题中有广泛的应用。
以下是一些应用举例:1. 财务投资:假设某人每年向银行存入1000元,年利率为5%。
那么他每年的存款金额就可以构成一个等比数列,其中第一项为1000,公比为1.05。
通过等比数列的通项公式,可以计算出第n年的存款金额。
而通过等比数列的求和公式,可以计算出n年内的总存款金额。
2. 科学实验:在某个科学实验中,每次实验的结果都是前一次实验结果的一半。
这个实验结果就可以构成一个等比数列,其中第一项为1,公比为0.5。
通过等比数列的通项公式,可以计算出第n次实验的结果。
谈谈求数列的通项公式的思路
考点透视求数列的通项公式问题经常出现各类试题中,常以选择、填空题的形式出现.此类问题,通常要求根据已知递推式关系式或数列的和式,求数列的通项公式.其命题形式多种多样,常见的解法有利用a n与S n的关系、递推法、构造法、累加法、累乘法等.那么,如何选择合适的方法进行求解呢?下面结合实例进行探讨.一、根据an与Sn的关系求解有些问题中直接给出了数列的前n项和及其关系式,在这种情况下,可以根据数列的通项公式a n与其前n项和S n的关系{a n=S n-S n-1,n≥2,a1=S1,n=1,来求数列的通项公式.在解题时,需先根据数列的前n项和S n及其关系式求得S n-1,然后将其与S n相减,得到在n≥2的情况下数列的通项公式,再检验当n=1时,a1是否满足所求a n的表达式.若满足,则a n的表达式即为数列的通项公式;若不满足,则需分情况表示数列的通项公式.例1.已知数列{}a n的前n项和为S n,S1+2S2+3S3+⋯+nS n=n2()n+124,求数列{}a n的通项公式.解:当n=1时,a1=S1=1,由题意可得S1+2S2+3S3+⋯+nS n=n2()n+124,①当n≥2时,S1+2S2+3S3+⋯+()n-1S n-1=n2()n-124,②①-②可得nS n=n2()n+124-n2()n-124=n3,即Sn=n2,当n≥2时,a n=S n-S n-1=2n-1,且当n=1时a1满足上式,所以数列{}a n的通项公式为a n=2n-1.本题的已知条件中含有数列的前n项和,需根据数列的通项公式a n与其前n项和S n的关系{a n=S n-S n-1,n≥2,a1=S1,n=1,来求得数列的通项公式.将n替换成n-1,求得S n-1的关系式,然后将两式作差,即可求得在n≥2时的a n,最后进行检验,即可求得问题的答案.例2.记数列{}a n的前n项和为S n,数列{}S n的前n项积为b n,若2S n+1b n=2,求数列{}a n的通项公式.解:由题意可得S n=b n b n-1()n≥2,且2S n+1b n=2,可得2b n-1bn+1bn=2()n≥2,即b n-b n-1=12()n≥2,当n=1时,由2b1+1b1=2可得b1=32,则数列{}b n的通项公式为b n=32+12()n-1=n+22,可得S n=b n b n-1=n+2n+1()n≥2,当n=1时,S1=b1=32满足该式,所以S n=n+2n+1,则a n=S n-S n-1=n+2n+1-n+1n=-1n()n+1()n≥2,当n=1时,a1=32不满足上式,故数列{}a n的通项公式为a n=ìíîïï32,n=1,-1n()n+1,n≥2.根据数列的通项公式a n与其前n项和S n的关系{a n=S n-S n-1,n≥2,a1=S1,n=1,求数列{}a n的通项公式,一定要考虑当n=1时的情形,否则得到不完整的答案.若当n=1时a n的表达式满足当n≥2时的通项公式,则可忽略对n=1的情况的讨论.二、通过累加求解累加法是求数列的通项公式的常用方法,该方法主要适用于由形如a n-a n-1=f()n的递推关系式求数周涛35点透视列的通项公式.其步骤为:①将已知递推关系式转化为a n -a n -1=f ()n 的形式;②将n 或n -1个式子累加,可得a n =()a n -a n -1+()a n -1-a n -2+⋯+()a 2-a 1+a 1,求得f ()1+f ()2+⋯+f ()n 的和,即可求得当n ≥2时的a n ;③判断当n =1时,a 1是否满足所求的表达式a n ,进而得到数列的通项公式.例3.已知数列{}a n 满足a 1=1,a 2=3,a n +2=3a n +1-2a n .(1)证明:数列{}a n +1-a n 是等比数列;(2)求数列{}a n 的通项公式.解:(1)数列{}a n +1-a n 是以a 2-a 1为首项,2为公比的等比数列(过程略);(2)由(1)可得,a n +1-a n =2n ()n ∈N ∗,当n ≥2时,a n =()a n -a n -1+()a n -1-a n -2+⋯+()a 2-a 1+a 1=2n -1+2n -2+⋯+2+1,∴a n =2n-1,∴数列{}a n 的通项公式为a n =2n-1.解答本题的关键是明晰a n +1-a n =2n与a n -a n -1=f ()n 的结构一致,然后令n =1,2,3,…,n -1,再将这n -1个式子累加,借助累加法求得数列的通项公式.三、通过累乘求解运用累乘法与累加法求数列的通项公式的思路较为相似.累乘法主要适用于由形如a na n -1=f ()n 的递推关系式求数列的通项公式.令n =1,2,3,…,n ,再将这n个式子累乘,即a n =a n a n -1×a n -1a n -2×…×a2a 1×a 1,求得f ()n ×f ()n -1×⋯×f ()1的值,即可求得数列的通项公式.最后,还需根据问题所给条件求出a 1,判断a 1是否满足a n 的表达式,综合所有情况,就能得到数列的通项公式.例4.已知数列{}a n 的前n 项和为S n ,a 1=1,S n =n 2a n ()n ∈N ∗,则数列{}a n 的通项公式为_____.解:由S n =n 2a n 可知当n ≥2时,S n -1=()n -12a n -1,则a n =S n -S n -1=n 2a n -()n -12a n -1,即(n 2-1)a n =(n -1)2a n -1,易知a n ≠0,故a na n -1=n -1n +1()n ≥2,当n ≥2时,a n =a na n -1×a n -1a n -2×⋯×a 3a 2×a 2a 1×a 1=n -1n +1×n -2n ×⋯×24×13×1=2n ()n +1,当n =1时,a 1=1满足上式,所以数列{}a n 的通项公式为a n =2n ()n +1.解答本题,需先根据数列的通项公式a n 与其前n 项和S n 的关系求得a n 的表达式.而该式形如a na n -1=f ()n ,于是将n 个式子累乘,借助累乘法求得数列的通项公式.一般地,a n -a n -1=f ()n 、an a n -1=f ()n 只满足当n ≥2时的情形,运用累加法、累乘法求数列的通项公式,一定要讨论当n =1时的情形.四、通过构造等比数列求解当遇到形如a n =pa n -1+q 、a n =pa n -1+f ()n 的递推关系式时,可考虑运用构造法来求数列的通项公式.在解题时,需引入待定系数λ,将a n =pa n -1+q 、a n =pa n -1+f ()n 设为a n +λ=p ()a n -1+λ或a n +λf ()n =p ⋅()a n -1+λf ()n -1,从而构造出等比数列{}a n +λ或{}a n +λf ()n ,以便根据等比数列的通项公式求得数列的通项公式.例5.已知数列{}a n 满足a n +1=3a n +3∙2n,a 1=2,求数列{}a n 的通项公式.解:由a n +1=3a n +3∙2n可设a n +1+λ∙2n +1=3(a n +λ2n ),则λ=3∙2n ,故数列{}a n +3∙2n是以a 1+6=8为首项,3为公比的等比数列,则a n +3∙2n =8∙3n -1,所以a n =8∙3n -1-3∙2n ,即数列{}a n 的通项公式为a n =8∙3n -1-3∙2n .递推关系式a n +1=3a n +3∙2n形如a n +1+f ()n =3(a n +36考点透视f ()n ),于是引入待定系数,将其变形为a n +1+λ∙2n +1=3()a n +λ2n ,从而构造出等比数列{}a n +3∙2n,根据等比数列的通项公式来解题.例6.已知在数列{}a n 中,a n +1=3a n +2,a 1=1,求数列{}a n 的通项公式.分析:问题中所给的递推关系式a n +1=3a n +2形如a n =pa n -1+q ,于是采用构造法,引入待定系数λ,构造出等比数列{}a n +λ,通过求{}a n +λ的通项公式,得到数列{}a n 的通项公式.解:设a n +1+λ=3()a n +λ,即a n +1=3a n +2λ,将其与a n +1=3a n +2比较可得λ=1,故数列{}a n +1是以a 1+1=2为首项,以3为公比的等比数列,因为a n +1=2∙3n -1,所以a n =2∙3n -1-1,故数列{}a n 的通项公式为a n =2∙3n -1-1.上述几种方法适用的情形均不相同,因此在求数列的通项公式时,要注意观察递推关系式或已知关系式,如是否含有S n ,递推式是否形如a n -a n -1=f ()n 、a na n -1=f ()n 、a n =pa n -1+q 、a n =pa n -1+f ()n ,结合递推关系式或已知关系式的特点,选择合适的方法,如根据a n 与S n 的关系、利用累加法、累乘法、构造法来求数列的通项公式.在求数列的通项公式时,还要注意一些细节,如当n =1时的情况,a n 或已知递推式满足的条件,以便得到完整的答案.(作者单位:安徽省安庆市望江县望江中学)单项选择题是高考试题中常出现的一类题目.此类问题中一般会有4个选项,其中只有1个选项是正确的,且不要求提供详细的解题过程,只需选出正确的选项.有些单项选择题中的参数较多,有的给出的数值较大、项数较多,有的给出的条件较少,我们很难或者无法(或没有必要)通过精准的运算、推理得出正确的答案,此时可根据题目中的特殊要素、图形的性质、极限值等来进行估算,利用估算法来快速找到正确的选项,得出问题的答案.一、借助特殊元素进行估算有些单项选择题中涉及的参数、变量较多,问题的答案也不唯一,我们很难根据题意确定答案,此时可从特殊元素入手,结合题意寻找一些特殊值、特殊角、特殊点、特殊位置、特殊函数(或数列)、特殊图形等特殊元素,将其代入题设中进行求解,便可快速找出正确的选项.例1.(2021年高考数学上海卷,第16题)已知x 1,y 1,x 2,y 2,x 3,y 3为6个不同的实数,且满足①x 1<y 1,x 2<y 2,x 3<y 3;②x 1+y 1=x 2+y 2=x 3+y 3;③x 1y 1+x 3y 3=2x 2y 2,则以下选项中恒成立的是().A.2x 2<x 1+x 3B.2x 2>x 1+x 3C.x 22<x 1x 3D.x 22>x 1x 3分析:题目中涉及了6个不同的实数,且需满足3个关系式,较为复杂.不妨根据已知条件选取并确定3个特殊值赋给x 1、x 2、x 3,再结合3个关系式确定另外3个实数y 1、y 2、y 3的值,进而通过估算来确定正确的答案.解:根据①②③可令x 1=1,x 2=2,x 3=4,则x 1+y 1=x 2+y 2=x 3+y 3=9,可得y 1=8,y 2=7,y 3=5,此时6个不同的实数恰好同时满足3个关系式,将x 1=1,x 2=2,x 3=4,y 1=8,y 2=7,y 3=5代入4个选项中,可判断出只有2x 2<x 1+x 3成立,所以本题的正确答案为A .例2.(湖南省三湘名校教育联盟2022届高三第二次大联考数学试卷,第7题)公元前5世纪,毕达哥拉斯学派利用顶角为36°的等腰三角形研究黄金分割.如图1,在△ABC中,AB =AC ,∠A =36°,∠ABC 的平分线交AC 于M ,依此图形可求得cos36°=().A.35 B.C. D.分析:36°不是特殊角,通过三角函数恒等变换来进行计算,运算量大.而根据余弦函数的图象与性质,吴亚南图137。
(完整版)用构造法求数列的通项公式汇总
用构造法求数列的通项公式上海外国语大学嘉定外国语实验学校 徐红洁在高中数学教材中,有很多已知等差数列的首项、公比或公差(或者通过计算可以求出数列的首项,公比),来求数列的通项公式。
但实际上有些数列并不是等差、等比数列,给出数列的首项和递推公式,要求出数列的通项公式。
而这些题目往往可以用构造法,根据递推公式构造出一个新数列,从而间接地求出原数列的通项公式。
对于不同的递推公式,我们当然可以采用不同的方法构造不同的类型的新数列。
下面给出几种我们常见的构造新数列的方法:一.利用倒数关系构造数列。
例如:}{n a 数列中,若),(411,211N n a a a nn ∈+==+求a n n n nn b b a b ==+1,1则设+4, 即n n b b -+1=4, n b {∴}是等差数列。
可以通过等差数列的通项公式求出n b ,然再求后数列{ a n }的通项。
练习:1)数列{ a n }中,a n ≠0,且满足),(,311,2111N n a a a nn ∈+==+求a n 2)数列{ a n }中,,22,111+==+n nn a a a a 求a n 通项公式。
3)数列{ a n }中,),,2(02,0,1111N n n a a a a a a n n n n n ∈≥=-⋅+≠=--且求a n . 二.构造形如2n n a b =的数列。
例:正数数列{ a n }中,若n n n a N n a a a 求),(4,52211∈-==+ 解:设4,4,112-=--==++n n n n n n b b b b a b 即则),71(,429429429)4()1(25254}{2211N n n n a na n nb a b b n n n n ∈≤≤-=∴-=-=-⋅-+=∴==-即,是等差数列,公差是数列练习:已知正数数列{ a n }中,),2(2,211N n n a a a n n ∈≥==-, 求数列{ a n }的通项公式。
用构造法求数列的通项公式汇总
用构造法求数列的通项公式汇总构造法是一种在数学中广泛使用的解题方法,特别是在求解数列的通项公式时,我们可以通过构造一些新的数列,将问题转化为已知的问题,从而达到求解的目的。
以下是几种用构造法求数列通项公式的汇总:1.等差数列构造法:对于形如 an+1 = an + d 或者 an+1 = an - d 的递推式,我们可以通过累加法来求通项公式。
即:令n = 0,1,2,n-1,然后将其各项相加,可得:a1 + (a1 + d) + (a1 + 2d) + , + [a1 + (n-1)d] = n(a1 + n-1)d。
对于等差数列,我们还可以使用前 n 项和公式求解通项公式:an = Sn - Sn-1。
2.等比数列构造法:对于形如 an+1 = q an 或者 an+1 = an q 的递推式,我们可以通过连乘法来求通项公式。
即:令n = 0,1,2,n-1,然后各项相乘,可得:a1 * a1q * a1q^2 * , * a1*q^(n-1) = a1^n * q^(1+2+,+(n-1))。
3.常见数列构造法:对于形如 an+1 = an^2 或者 an+1 = an^2 + 1 等无法直接求出通项公式的递推式,我们需要通过构造新的辅助数列来求解。
例如,令an+1 + x = (an +x)(an + x),可以构造出新的等比数列,从而求得通项公式。
对于形如 an+2 = an+1 + an 或者 an+2 = an+1 * an 等无法通过递推直接求出通项公式的递推式,我们可以通过对原式变形,构造出两个独立的等差或者等比数列,从而利用对应的方法求出通项公式。
例如,对于 an+2 = an+1 + an,我们可以令an+2 + an+1 = 2(an+1 + an),得到一个等差数列;对于 an+2 = an+1 * an,我们可以令an+2 / an+1 = an+1 / an,得到一个等比数列。
构造法求数列通项公式
构造法求数列通项公式求数列通项公式是高考考察的重点和热点,本文将通过构造等比数列或等差数列求数列通项公式作以简单介绍,供同学们学习时参考;一、构造等差数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为(1)()f n f n +-=A 其中A 为常数形式,根据等差数列的定义知)(n f 是等差数列,根据等差数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式;例1 在数列{}n a 中,1a =12,1n a +=33n n a a +n N +∈,求数列{}n a 通项公式. 解析:由a n+1=33+n na a 得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得,=-+n n a a11131,设b n =n a 1,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }是首相b 1=2,公差d=31的等差数列,根据等差数列的通项公式得b n =2+31n-1=31n +35∴数列通项公式为a n =53+n评析:本例通过变形,将递推公式变形成为A a a nn =-+111形式,应用等差数列的通项公式,先求出na 1的通项公式,从而求出n a 的通项公式; 例2 在数列{a n }中,S n 是其前n 项和,且S n ≠0,a 1=1,a n =1222-n n S S n ≥2,求S n 与a n;解析:当n ≥2时,a n =S n -S n-1 代入a n =1222-n n S S得,S n -S n-1=1222-n n S S ,变形整理得S n -S n-1= S n S n-1两边除以S n S n-1得,nS 1-11-n S =2,∴{nS 1}是首相为1,公差为2的等差数列∴nS 1=1+2n-1=2n-1, ∴ S n =121-n n ≥2,n=1也适合,∴S n =121-n n ≥1当n ≥2时,a n =S n -S n-1=121-n -321-n =-38422+-n n ,n=1不满足此式,∴a n ={21138422≥=+--n n n n评析:本例将所给条件变形成A n f n f =-+)()1(,先求出)(n f 的通项公式,再求出原数列的通项公式,条件变形是难点;二、构造等比数列求数列通项公式运用乘、除、去分母、添项、去项、取对数、待定系数等方法,将递推公式变形成为fn+1=Afn其中A 为非零常数形式,根据等比数列的定义知)(n f 是等比数列,根据等比数列的通项公式,先求出)(n f 的通项公式,再根据)(n f 与n a ,从而求出n a 的通项公式;例3在数列{a n }中,a 1=2,a n =a n-12n ≥2,求数列{a n }通项公式;解析:∵ a 1=2,a n =a n-12n ≥2>0,两边同时取对数得,lg a n =2lg a n-1∴1lg lg -n n a a=2, 根据等比数列的定义知,数列{lg a n }是首相为lg2,公比为2的等比数列,根据等比数列的通项公式得lg a n =2n-1lg2=122lg -n∴数列通项公式为a n =122-n评析:本例通过两边取对数,变形成1log 2log -=n n a a 形式,构造等比数列{}log n a ,先求出n a log 的通项公式,从而求出n a 的通项公式;例4在数列{a n }中,a 1=1,a n+1=4a n +3n+1,求数列{a n }通项公式;解析:设a n+1+An+1+B=4a n +An+B,A 、B 为待定系数,展开得a n+1=4a n +3An+3B-A,与已知比较系数得{1333=-=A B A ∴{321==B A ∴a n+1+n+1+32=4a n +n+32,根据等比数列的定义知,数列{a n +n+32}是首项为38,公比为q=3的等比数列,∴a n +n+32=38×3n-1∴数列通项公式为a n =38×3n-1-n-32评析:待定系数法是构造数列的常用方法;例5 在数列{a n }中,a 1=1 ,a n+1a n =4n ,求数列{a n }通项公式;解析:∵a n+1a n =4n ∴a n a n-1=4 n-1 两式相除得11-+n n a a =4 ,∴a 1,a 3,a 5……与a 2,a 4 ,a 6 ……是首相分别为a 1,a 2 ,公比都是4的等比数列, 又∵a 1=1,a n+1a n =4n ,∴a 2=4 ∴a n ={nn n n 22144-练习:1.已知数列{}n a 满足321=a ,n n a n na 11+=+,求n a解:由条件知11+=+n na a n n ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累乘之,即1342312-•⋅⋅⋅⋅⋅⋅•••n n a a a a a a a a nn 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=n a a n 11=⇒ 又321=a ,na n 32=∴ 解:由条件知11+=+n na a n n ,分别令)1(,,3,2,1-⋅⋅⋅⋅⋅⋅=n n ,代入上式得)1(-n 个等式累乘之,即1342312-•⋅⋅⋅⋅⋅⋅•••n n a a a a a a a a nn 1433221-⨯⋅⋅⋅⋅⋅⋅⨯⨯⨯=n a a n 11=⇒ 又321=a ,na n 32=∴ 2. 数列{a n }满足a 1=1,a n =21a 1-n +1n ≥2,求数列{a n }的通项公式; 解:由a n =21a 1-n +1n ≥2得a n -2=21a 1-n -2,而a 1-2=1-2=-1,∴数列{ a n -2}是以21为公比,-1为首项的等比数列∴a n -2=-211-n ∴a n =2-211-n3. 数列{}n a 中,n n n a a a a a +===++122123,2,1,求数列{}n a 的通项公式;解:由n n n a a a +=++1223得,313212n n n a a a +=++设)(112n n n n ka a h ka a -=-+++ 比较系数得3132=-=+kh h k ,,解得31,1-==h k 或1,31=-=h k若取31,1-==h k ,则有)(31112n n n n a a a a --=-+++∴}{1n n a a -+是以31-为公比,以11212=-=-a a 为首项的等比数列∴11)31(-+-=-n n n a a由逐差法可得112211)()()(a a a a a a a a n n n n n +-++-+-=---=11)31()31()31()31(232++-+-++-+--- n n=1311)31(11++---n =11)31(43471)31(143---⨯-=+⎥⎦⎤⎢⎣⎡--n n4. 设各项均为正数的数列{}n a 的前n 项和为n S ,对于任意正整数n,都有等式:n n n S a a 422=+成立,求{}n a 的通项an.解:n n n S a a 422=+⇒112142---=+n n n S a a , ∴n n n n n n n a S S a a a a 4)(42211212=-=-+----0)2)((11=--+--n n n n a a a a ,∵01≠+-n n a a ,∴21=--n n a a . 即{}n a 是以2为公差的等差数列,且24211121=⇒=+a a a a . ∴n n a n 2)1(22=-+=1通过分解常数,可转化为特殊数列{a n +k }的形式求解;一般地,形如a 1+n =p a n +qp ≠1,pq ≠0型的递推式均可通过待定系数法对常数q 分解法:设a 1+n +k=pa n +k 与原式比较系数可得pk -k =q ,即k=1-p q,从而得等比数列{a n +k }; 2通过分解系数,可转化为特殊数列}{1--n n a a 的形式求解;这种方法适用于n n n qa pa a +=++12型的递推式,通过对系数p 的分解,可得等比数列}{1--n n a a :设)(112n n n n ka a h ka a -=-+++,比较系数得q hk p k h =-=+,,可解得k h ,;3、构造法构造法就是在解决某些数学问题的过程中,通过对条件与结论的充分剖析,联想出一种适当的辅助模型,进行命题转换,产生新的解题方法,这种思维方法的特点就是“构造”.若已知条件给的是数列的递推公式要求出该数列的通项公式. 1构造等差数列或等比数列由于等差数列与等比数列的通项公式显然,对于一些递推数列问题,若能构造等差数列或等比数列,无疑是一种行之有效的构造方法. 2构造差式与和式解题的基本思路就是构造出某个数列的相邻两项之差,然后采用迭加的方法就可求得这一数列的通项公式. 3构造商式与积式构造数列相邻两项的商式,然后连乘也是求数列通项公式的一种常用方法; 4构造对数式或倒数式有些数列若通过取对数,取倒数代数变形方法,可由复杂变为简单,使问题得以解决.。
浅谈构造等比数列求数列的通项公式
浅谈构造等比数列的通项公式的方法摘要:由数列的递推公式求数列的通项公式是数列中常见,也是较难的问题,多分析递推公式的结构特征,构造恰当的等比数列,就能够求这些数列的通项公式。
关键词:构造 等比数列 通项公式等比数列是最简单、最基础、最重要的数列之一。
而数列的递推公式是给出数列的一种重要方法,由数列的递推公式求数列的通项公式是数列中比较难的问题,但在根据数列的递推公式求数列的通项公式时,如能恰当地构造等比数列将会给解决问题带来极大的方便。
下面就如何构造等比数列求数列的通项公式谈谈自己的一些办法。
一、形如)0()1(1≠⋅=++p na p a n n n 的类型例1、已知数列}{n a 的各项都是正数且11=a ,02)1()1(2121=--++++n n n n na a a n a n ,求数列}{n a 的通项公式。
解: 由02)1()1(2121=--++++n n n n na a a n a n 得0]2)1)[((11=-++++n n n n na a n a a∵01>++n n a a∴n n na a n 2)1(1=++∴}{n na 是以2为公比,111=⨯a 为首项的等比数列∴12-=n n na ∴na n n 12-= 二、形如)1(1≠=+p a a p n n 的类型例2、已知数列}{n a 中,31=a ,21n n a a =+,求数列}{n a 的通项公式。
分析:利用对数性质可将指数变成倍数,从而将该递推公式转化成等比数列的递推公式。
解:由21n n a a =+得21lg lg n n a a =+∴n n a a lg 2lg 1=+∴}{lg n a 是以1lg a 为首项,2为公比的等比数列∴121113lg 3lg 2lg 2lg -===--n n n n a a∴123-=n n a三、形如q pa a n n +=+1)001(≠≠≠q p p ,,的类型例3、已知数列}{n a 中,11=a ,131+=+n n a a ,求数列}{n a 的通项公式。
求数列通项公式常用的几种方法
求数列通项公式常用的几种方法一、公式法:已知数列{a n}为等差或等比数列,根据通项公式a n=a1+(n-1)d或a n=a1q n-1进行求解.例1:已知{a n}是一个等差数列,且a2=1,a5=-5,求{a n}的通项公式.二、前n项和法:已知数列{a n}的前n项和s n的解析式,求a n.例2:已知数列{a n}的前n项和s n=2n-1,求通项a n.三、s n与a n的关系式法:已知数列{a n}的前n项和s n与通项a n的关系式,求a ns n,其中a1=1,求a n.例3:已知数列{a n}的前n项和s n满足a n+1=13四、累加法:当数列{a n}中有a n-a n-1=f(n),即第n项与第n-1项的差是个有“规律”的数时,就可以用这种方法. 例4:a1=0, a n+1=a n+2(n-1),求通项a n=f(n),即第n项与第n-1项的商是个有“规律”的数时,就可以用这种方法.五、累乘法:当数列{a n}中有a na n−1例5:a1=1,a n=na n-1(n≥2),求通项a nn−1六、构造法:(一)、配常数法:在数列{a n}中有a n=ka n-1+b(k,b均为常数且k≠0),从表面形式上来看a n是关于a n-1的“一次函数”的形式,这时用下面的方法:一般化方法:设a n +m=k(a n-1+m) 则{a n +m}成等比数列例6:已知a1=1,a n=2a n-1+1(n≥2),求通项a n(二)配一次函数法:在数列{a n}中有a n=ka n-1+bn+c(k,b,c均为常数且k≠0),这时用下面的方法:一般化方法:设a n+tn+u=k(a n-1+t(n-1)+u)则{a n+tn+u}成等比数列例7:已知a1=1,a n=2a n-1+3n-2 (n≥2),求通项a n(三)、取倒数法:这种方法适用于a n =ka n−1man−1+p , (n ≥2)(k,m,p 均为常数m ≠0),两边取倒数后得到一个新的特殊(等差或等比)数列或类似于a n =ka n-1+b 的式子. 例8:已知a 1=2,a n =2a n−1a n−1+2 (n ≥2),求通项a n(四)取对数法:一般情况下适用于a n k =a n−1l (k,l 为非零常数)例9:已知a 1=3,a n =a n−12(n ≥2) 求通项a n练习:1、已知}{n a 的首项11=a ,)(2*1N n n a a n n ∈+=+,,求}{n a 的通项公式.2、已知}{n a 中,n n a n n a 21+=+,且21=a ,求数列}{n a 的通项公式.3、已知下列各数列}{n a 的前n 项和n S 的公式为)(23S 2*∈-N n n n n =,求}{n a 的通项公式。
例谈构造法求递推数列的通项公式
例谈构造法求递推数列的通项公式作者:陈祖文来源:《中学教学参考·理科版》2012年第04期数列问题历年来都是高考命题的热点,由于所给的递推形式千变万化,从而使其通项公式成为教学难点,本文主要谈谈如何构造辅助数列去求解析几何类常见数列的递推公式一、-型形如-为常数且a≠0,1,b≠0)的数列,求解此类线性关系的数列的通项公式一般可用待定系数法,通过化归,转化为新的等比数列-,最后通过新的等比数列进行求解和转化【例1】已知数列{}中,-,求数列{}的通项公式解:设-,所以t=1,所以-,即-1,所以数列{}是以为首项,以2-1为公比的等比数列,所以通项公式为--,从而---评析:根据、的线性关系,用待定系数法构造一个新的等比数列,最终求出通项公式.这种类型的递推关系在高考中是比较常见的,属于常规题二、型若a=1,用累加法进行求解;若a≠1,则对f(n)进行分类:1.当f(n)=pn+q时,将原式变形为,根据待定系数法和系数对比得:A=pa-1,B=qa-1+p(a-,从而构造一个新的等比数列{},首项为,公比为a,从而求出--An-2.当时,将原式变形为,从而构造一个新的等比数列{},余下步骤同上【例2】设数列中,,,求数列的通项公式解:设,∴-A,与原式系数对比得:A=1,B=1,∴,数列是以为首项,3为公比的等比数列,∴-,即--n--n-【例3】数列中,-∈,求数列的通项公式解:设--,∴--B,系数对比得:A=1,B=1,所以--,数列-是以-为首项,公比为2的等比数列,∴--,即--评析:此类题目通过待定系数法巧妙确定参数A、B的值,把递推关系式加以转化和化归为熟悉的等比数列问题,再用相应的等比数列性质来求解通项公式三、-型此类递推类型的通项公式,一般可以通过左右两边同时除以或同时加上,使其化归为求由形如确定的数列的通项公式【例4】设数列中,,求的通项公式解法1:∵,两边除以得=,令,所以,再利用上面-型”进行求解解法2:设,展开得,系数对比得λ=1,所以,数列{是以为首项,3为公比的等比数列,∴-即-四、型此类型是两边取倒数,运算中注意新数列的首项、公差或公比的变化【例5】数列满足,且--,求其通项公式解:∵--≥2),两边取倒数得-,所以数列是以为首项,13为公差的等差数列,∴-1)×13,即评析:在学习数列中,常会遇到一些用常规方法很难解决的分式问题,对于此类问题,若能根据题目所给的条件巧取倒数,再求解,往往会立竿见影,事半功倍五、>>0)型这种类型一般是两边取对数,得:【例6】设正项数列,其中且-,求数列的通项公式解:两边取对数得:--,∴-设∴-,所以数列是以为首项,公比为2的等比数列,故--,即---1,∴--评析:本题解决的关键是等式两边同时取对数,从而将原来的次幂降低,而对数底数的选取可以因题而灵活处理,像本题也可以取以10为底的对数六、-、μ是不为零的常数)型此类型可变形为-,则数列是公比为k的等比数列,就把问题转为类型一【例7】已知数列满足∈(1) 令-,证明是等比数列(2) 求的通项公式解:(1)由已知得:---∴-,即数列是以--1=1为首项,公比为-12的等比数列(2)由(1)知,---,当n≥2时,---------=1+(----3--=1+1-(--1-(-12)=1+23[1-(--]=53-23(--;当n=1时,53-23(--所以-23(--∈用构造法求数列递推式的通项公式的类型较多,本文结合一些例子总结了常见的几种类型,旨在对此类知识归纳总结,为数列内容的复习提供一些帮助(责任编辑金铃)。
2023届高三数学一轮复习专题 数列累加法构造等比等递推公式求通项及常用求和方法 讲义 (解析版)
数列求解通项的方法总结方法一、公式法当已知数列的类型(如已知数列为等差或等比数列)时,可以设出首项和公差(公比),列式计算。
1、等差数列通项公式: dn a a n )1(1-+=2、等比数列通项公式:例1、设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q=d ,S 10=100.(1)求数列{a n },{b n }的通项公式 (2)当d >1时,记c n =,求数列{c n }的前n 项和T n .变式1、已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5﹣3b 2=7.(Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.11-=n n q a a方法二、利用前n 项和与通项的关系已知数列{ a n }前n 项和S n ,求通项公式,利用 a n ={)1()2(11=≥--n S n S S n n 特别地,当n=1的值与S 1的值相同时,合并为一个通项公式,否则写成分段的形式。
例2、(1)设数列{a n }的前n 项和为S n ,已知2S n =3n+3.求{a n }的通项公式;(2)S n 为数列{a n }的前n 项和,己知a n >0,a n 2+2a n =4S n +3 (I )求{a n }的通项公式.(Ⅱ)设b n =,求数列{b n }的前n 项和.变式2、(2015·四川)数列{a n }(n=1,2,3…)的前n 项和S n ,满足S n =2a n ﹣a 1,且a 1,a 2+1,a 3成等差数列.(Ⅰ)求数列{a n }的通项公式; (Ⅱ)设数列的前n 项和为T n ,求T n .方法三、利用递推关系式与通项的关系类型1、累加法 形如)(1n f a a n n +=+例3、(2014·全国卷)数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求数列{a n }的通项公式.变式3、已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
用构造法求数列的通项公式的分类和求解方法
用构造法求数列的通项公式的分类和求解方法分类,求解方法重庆市綦江县东溪中学任德辉求数列的通项公式是近几年高考重点考察的内容,两类特殊数列等差数列和等比数列可以根据公式直接求解,还有些特殊数列可用累加法、累乘法等来直接求解,但有些数列却不能直接求解,它们往往要转化为等差、等比数列和其他数列后再运用各自的通项公式求解,从而体现化归思想在数列中的运用,此时可用构造法求解。
所谓构造法就是在解决某些数学问题中通过对条件和结论的充分剖析,有时会联想出一些适当的辅助模型,以促成命题的转换,产生新的解题方法。
下面就构造法求数列的通项公式的分类和解题方法分别进行论述。
一、用构造法求数列的通项公式依照构造目标数列的不同可以分为构造等差数列、构造等比数列和构造其他数列。
1.构造等差数列例1、(2022湖北)已知数列{an}的前n项和Snan()12n12(n为正整数),令bn2nan,求证数列{bn}是等差数列,并求数列{an}的通项公式。
解:a11,b121a1122n1∵Snan()12,∴Sn1an1()n22nn1n∴2an1an()等式两边都乘以2得2an12an1,12n即bn1bn1,∴数列{bn}是以1为首项公差为1的等差数列,bn2an=n∴annn2n例2、数列an中,若a12,an1an,则a4()13anA.21683B.C.D.191554分类,求解方法解:an1an13an11,313anan1anan又1111,是首项为公差3的等差数列。
a12an21156n52(n1)33n,anan2226n5a422所以选A645192.构造等比数列例3、(2022上海)已知数列{an}的前n项和为Sn,且Snn5an85,nN 证明:{an1}是等比数列并求{an}的通项公式证明:当n1时,a1S115a185,a114,a1115当n2时,Sn1n15an185,∴anSnSn115an5an16an5an11,an15(an11)65的等比数列。
用构造法求数列的通项公式几种常见方法
用构造法求数列的通项公式在高中数学教材中,有很多已知等差数列的首项、公比或公差(或者通过计算可以求出数列的首项,公比),来求数列的通项公式。
但实际上有些数列并不是等差、等比数列,给出数列的首项和递推公式,要求出数列的通项公式。
而这些题目往往可以用构造法,根据递推公式构造出一个新数列,从而间接地求出原数列的通项公式。
对于不同的递推公式,我们当然可以采用不同的方法构造不同的类型的新数列。
下面给出几种我们常见的构造新数列的方法:一. 利用倒数关系构造数列。
例如:}{n a 数列中,若),(411,211N n a a a nn ∈+==+求a nn n nn b b a b ==+1,1则设+4,即n n b b -+1=4,nb {∴}是等差数列。
可以通过等差数列的通项公式求出n b ,然再求后数列{ a n }的通项。
练习:1)数列{ a n }中,a n ≠0,且满足),(,311,2111N n a a a nn ∈+==+求a n2)数列{ a n }中,,22,111+==+n nn a a a a 求a n 通项公式。
3)数列{ a n }中,),,2(02,0,1111N n n a a a a a a n n n n n ∈≥=-⋅+≠=--且求a n .二. 构造形如2n n a b =的数列。
例:正数数列{ a n }中,若n n n a N n a a a 求),(4,52211∈-==+解:设4,4,112-=--==++n n n n n n b b b b a b 即则),71(,429429429)4()1(25254}{2211N n n n a na n nb a b b n n n n ∈≤≤-=∴-=-=-⋅-+=∴==-即,是等差数列,公差是数列练习:已知正数数列{ a n }中,),2(2,211N n n a a a n n ∈≥==-,求数列{ a n }的通项公式。
浅谈等比构造法求解数列通项
浅谈等比构造法求解数列通项
作者:陈鑫妍
来源:《新课程·下旬》2019年第01期
数列在高中数学中具有重要地位,而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。
求解通项公式通常需要一定的技巧,常见的有直接法、公式法、归纳猜想法、累加法、累乘法、构造辅助数列等方法,其中构造法是一种常见的方法。
它通过一定的转化,可以将“新问题”转化为我们熟悉的数列模型,化陌生为熟悉,有效解决问题。
本文介绍几类常见的通过构造等比数列来求解数列通项公式的方法,并举出有代表性的例子说明该方法的具体应用。
求数列通项是高考中常见、常考的问题,在考试中经常会出现,对考生的能力有一定的要求,因此如何求解,是一个值得探讨的问题。
上述方法浅析了构造等比数列求解an的方式,通过构造与已知数列相关的等比数列,求解出包含有an关系式的等比数列的通项公式,进而求得an,这不失为一种十分有效的好方法。
用待定系数法构造等比数列求通项
用待定系数法构造等比数列求通项作者:曾刚义来源:《知识窗·教师版》2010年第12期由递推关系求数列的通项是比较棘手的问题,解决此类问题的一种很重要的方法是用待定系数法构造等比数列。
下面就几种类型加以举例分析。
一、已知a1和an+1=pan+q(p≠1,n∈N*)型例1.已知数列an中,a1=1,an+1=2an+3,求an。
解:设an+1+d=2(an+d),展开后得an+1=2an+d,比较系数可知d=3,已知的递推式可化为an+1+3=2(an+3),得数列an+3是首项为a1+3=4、公比是2的等比数列。
所以an+3=4×2n-1,an=2n+1-3。
二、已知a1和an+1=pan+qn+k(p≠1,n∈N*)型例2.已知数列an满足a1=-5,an+1=2an+3n+1,求an。
解:设an+1+s(n+1)+t=2(an+sn+t),展开后得an+1=2an+Sn+t-s,比较系数可知s=3,t-s=1,得t=4。
已知递推式可化为an+1+3(n+1)+4=2(an+3n+4),得数列an+3n+4是首项为a1+3×1+4=2、公比为2的等比数列。
所以an+3n+4=2n,an=2n-3n-4。
三、已知a1和an+1=pan+qn(p≠1,q≠p)型例3.已知数列an满足a1=4,an+1=2an+3n,求an。
解:设an+1+p·3n+1=2(an+p·3n),展开后得an+1=2an-p·3n,比较系数可得p=-1。
已知的递推数列可化为an+1-3n+1=2(an-3n),得数列an-3n是首项为a1-3=1、公比为2的等比数列。
所以an-3n=2n-1,an=3n+2n-1。
注:若p=q时,如an+1=2an+2n,则两边同除2n后可得等差数列,然后可求通项。
四、已知a1、a2和an+2=pan+1=qan(n∈N*)型例4.已知数列an满足a1=1、a2=4、an+2=5an+1-6an,求an。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈构造等比数列求数列的通项公式昭通市水富县第一中学 刘永贵摘要:由数列的递推公式求数列的通项公式是数列中常见,也是较难的问题,多分析递推公式的结构特征,构造恰当的等比数列,就能够求这些数列的通项公式。
关键词:构造 等比数列 通项公式等比数列是最简单、最基础、最重要的数列之一。
而数列的递推公式是给出数列的一种重要方法,由数列的递推公式求数列的通项公式是数列中比较难的问题,但在根据数列的递推公式求数列的通项公式时,如能恰当地构造等比数列将会给解决问题带来极大的方便。
下面就如何构造等比数列求数列的通项公式谈谈自己的一些办法。
一、形如)0()1(1≠⋅=++p na p a n n n 的类型例1、已知数列}{n a 的各项都是正数且11=a ,02)1()1(2121=--++++n n n n na a a n a n ,求数列}{n a 的通项公式。
解: 由02)1()1(2121=--++++n n n n na a a n a n 得]2)1)[((11=-++++n n n n na a n a a∵01>++n n a a∴nn na a n 2)1(1=++∴}{n na 是以2为公比,111=⨯a 为首项的等比数列∴12-=n nna ∴na n n12-=二、形如)1(1≠=+p a a pn n 的类型例2、已知数列}{n a 中,31=a ,21nn a a =+,求数列}{n a 的通项公式。
分析:利用对数性质可将指数变成倍数,从而将该递推公式转化成等比数列的递推公式。
解:由21nn a a =+得21lg lg nn a a =+∴n n a a lg 2lg 1=+∴}{lgn a 是以1lg a 为首项,2为公比的等比数列∴121113lg 3lg 2lg 2lg -===--n n n n a a∴123-=n n a三、形如q pa a n n +=+1)001(≠≠≠q p p ,,的类型例3、已知数列}{n a 中,11=a ,131+=+n n a a ,求数列}{n a 的通项公式。
分析:n n a a 31=+是等比数列的递推公式,该题中多了常数1,故将该递推公式转化成加一个常数成等比数列的结构。
解:令)(31x a x a nn +=++ ①变形得x a a n n 231+=+对比递推公式系数得12=x ,21=x 代入①得)21(3211+=++n n a a∴}21{+na是以23211=+a 为首项,3为公比的等比数列∴nn na321323211⋅=⋅=+-∴21321-⋅=nn a四、形如nn n q pa a+=+1)0101(≠≠≠≠q q p p ,,,的类型例4、已知数列}{n a 中,11=a ,nn n a a 231+=+,求数列}{n a 的通项公式。
分析:n n a a 31=+是等比数列的递推公式,该题中多了一个nq,故将该递推公式转化成加n xq 或1+n xq 成等比数列的结构。
解法1:令)2(3211nn n n x a x a⋅+=⋅+++ ①变形得nn n x a a231⋅+=+对比递推公式系数得1=x,代入①得)2(3211nn n n a a +=+++∴}2{nna+是以3211=+a 为首项,3为公比的等比数列 ∴1332-⋅=+n nna∴nnna23-=解法2:由nn n a a231+=+得1223211+⋅=-+n nnn a a令12-=n n na b ,则1231+=+n n b b从而转化成类型三,以下略。
注意:若qp=,则类型四只能用解法2。
五、形如r qn pa a n n ++=+1)001(≠≠≠q p p ,,的类型例5、已知数列}{n a 中,11=a ,1231++=+n a a n n ,求数列}{n a 的通项公式。
分析:n n a a 31=+是等比数列的递推公式,该题中多了一个12+n ,故将该递推公式转化成加yxn +或y n x +-)1(成等比数列的结构。
解:令])1([31y n x a y xn a n n +-+=+++ ① 变形得yx xn a a n n 23231+-+=+ 对比递推公式系数得:⎩⎨⎧=+-=12322y x x解得⎩⎨⎧==21y x 代入①得]2)1([321+-+=+++n a n a n n∴}2)1({+-+n a n 是以32)11(1=+-+a 为首项,3为公比的等比数列∴nn nn a3332)1(1=⋅=+-+-∴13--=n ann六、形如s rn qnpa an n +++=+21)0001(≠≠≠≠r q p p ,,,的类型例6、已知数列}{n a 中,11=a ,122321+++=+n n a a n n ,求数列}{n a 的通项公式。
分析:nn a a 31=+是等比数列的递推公式,该题中多了一个1222++n n 故将该递推公式转化成加zyn xn++2或zn y n x +-+-)1()1(2成等比数列的结构。
解:令])1()1([3221z n y n x a z yn xnan n +-+-+=++++ ①变形得zy x n x y xna an n 233)62(2321+-+-++=+对比递推公式系数得:⎪⎩⎪⎨⎧=+-=-=123326222z y x x y x解得⎪⎩⎪⎨⎧===541z y x 代入①得]5)1(4)1([354221+-+-+=++++n n a n n a n n∴}5)1(4)1({2+-+-+n n an是以65)11(4)11(21=+-+-+a为首项,3为公比的等比数列。
∴nn nn n a32365)1(4)1(12⋅=⋅=+-+-+-∴22322---⋅=n n an n七、形如n n n qa pa a +=++12)00(≠≠q p ,类型例7、数列}{n a 中,nn n a a a a a +===++1221 1 1,,求数列}{n a 的通项公式。
分析:与前面的类型不同的是前面的递推公式都是相邻两项的关系,而该题却是相邻三项的关系,因此将相邻两项的线性运算看成一个整体构造等比数列。
解:设)(112n n n n xa a y xa a +=++++,变形得nn n xyaa x y a +-=++12)(,对比递推公式的系数,令⎩⎨⎧==-11xy x y ,解得⎪⎪⎩⎪⎪⎨⎧+=+-=251251y x 或⎪⎪⎩⎪⎪⎨⎧-=--=251251y x(I )当⎪⎪⎩⎪⎪⎨⎧+=+-=251251y x 时, )251(251251112n n n n a a a a +-++=+-++++,∴}251{1n n a a +-++是以251+为公比的等比数列,由等比数列的通项公式得:1121)251)(251(251-+++-+=+-+n n n a a a a ①(II )当⎪⎪⎩⎪⎪⎨⎧-=--=251251y x 时,)251(251251112n n n n a a a a --+-=--++++,∴}251{1n n a a --++是以251-为公比的等比数列,由等比数列的通项公式得:1121)251)(251(251-+---+=--+n n n a a a a ②①-②得:112112)251)(251()251)(251(5-----+-++-+=n n n a a a a a∴])251)(251()251)(251[(51112112-----+-++-+=n n n a a a a a ,将1 121==a a ,代入上式化简得])251()251[(51nnn a --+=,这就是著名的斐波拉契数列的通项公式。
由上面的例题可以看出,根据递推公式的结构构造等比数列是解决该类问题的关键,只要多分析递推公式的结构特征,构造恰当的等比数列,就能够求这些数列的通项公式。
另外,若前面类型中的系数0=P ,则问题更简单,若系数1=P ,则可用叠加法解决。