四年级数学应用题专题 相遇问题

合集下载

四年级数学应用题专题相遇问题

四年级数学应用题专题相遇问题

四年级数学应用题专题相遇问题Revised by BETTY on December 25,2020四年级一、知识要点:相遇问题是行程问题的一种典型应用题,也是相向运动的问题.无论是走路、行车还是物体的移动,总是要涉及到三个量:路程、速度、时间.路程、速度、时间三者之间的数量关系路程=速度×时间,速度=路程÷时间,时间=路程÷速度.二、学法引导:相遇问题的计算关系式为:总路程=速度和×相遇时间“总路程”指两人从出发到相遇共同的路程;“速度和”指两人在单位时间内共同走的路程;“相遇时间”指从出发到相遇所经的时间.通常情况下对于相遇问题的求解还要借助线段图来进行直观地分析和理解题意,以突破难点.三、解题技巧:一般的相遇问题:甲从A地到B地,乙从B地到A地,然后两人在A地到B地之间的某处相遇,实质上是甲、乙两人一起走了A←→B这段路程,如果两人同时出发,那么有:(1)甲走的路程+乙走的路程=全程(2)甲(乙)走的路程=甲(乙)的速度×相遇时间(3)全程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间四、例题精讲:例1. 两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过小时两车相遇.两个车站之间的铁路长多少千米?解法一、(48+78)×=126×=441(千米)答:两个车站之间的铁路长441千米.解法二、48×+78×=168+273=441(千米)答:两个车站之间的铁路长441千米.例2. A、D两地相距520千米,甲骑摩托车每小时行30千米,乙骑电动车每小时行驶20千米,几小时以后还相距70千米没有相遇?(520-70)÷(30+20)=450÷50=9(时)答:9小时以后还相距70千米没有相遇.例3. A、D两地相距520千米,甲骑摩托车每小时行30千米,乙骑电动车每小时行驶20千米,几小时相遇以后相距70千米?(520+70)÷(30+20)=590÷50=(时)答:小时相遇以后相距70千米例4. 甲、乙两站相距840千米,两列火车同时从两站相对开出,8小时后相遇,第一列火车的速度是每小时56千米,问第二列火车的速度是多少?解法一、(840-56×8)÷8=(840-448)÷8=392÷8=49(千米)答:第二列火车的速度是每小时49千米.解法二、840÷8-56=105-56=49(千米)答:第二列火车的速度是每小时49千米.例5. 甲、乙两城相距680千米,从甲城开往乙城的普通客车每小时行驶60千米,2小时后,快车从乙城开往甲城,每小时行80千米,快车开出几小时后两车相遇?(680-60×2)÷(60+80)=(680-120)÷140=560÷140=4(时)答:快车开出4小时后两车相遇.小结:解答一般的相遇问题,我们常规的思路是,抓住相遇问题的基本数量关系:(甲速+乙速)×相遇时间=路程来解答.但有一些相遇问题的已知和所求比较特殊,如果仍采用常规的解题思路就难以解决问题,针对各种不同的情况,下面介绍几种特殊的解题方法.一、抓住两个数量差并采用对应的思维方法例1. 甲车从A城到B城,速度是50千米/小时.乙车从B城到A城,速度是40千米/小时.两车同时出发,结果在离A、B两城的中点C 30千米的地方相遇,求A、B两城间的路程?分析与解:这道题的条件与问题如图所示.要求A、B两城的距离,关键是求出相遇时间.因路程是未知的,所以用路程÷(甲速+乙速)求相遇时间有一定的困难.抓住题设中隐含的两个数量差,即甲车与乙车的速度差:50千米/小时-40千米/小时=10千米/小时;相遇时两车的路差:30千米×2=60千米.再将其对应起来思维:正因为甲车每小时比乙车多走10千米,所以甲车多走60千米所花去的时间6小时正是两车相遇的时间.因此,求A、B两地距离的综合算式是:(50+40)×[30×2÷(50-40)]=90×[60÷10]=90×6=540(千米).答:A、B两地的路程是540千米.二、突出不变量并采用整体的思维方法例2. A、B两地间的公路长96千米,张华骑自行车自A往B,王涛骑摩托车自B 往A,他们同时出发,经过80分两人相遇,王涛到A地后马上折回,在第一次相遇后40分追上张华,王涛到B地后马上折回,问再过多少时间两个人再相遇?分析与解:根据题意张华、王涛三次相遇情况可画示意图.这道题如果从常规思路入手,运用相遇问题的基本数量关系来求解是非常不易的.但可根据题中小张、小王三次相遇各自的车速不变和在相距96千米的两地其同时相向而行相遇时间不变,进行整体思维.从图中可以看到:第三次相遇时,王涛走的路程是2AB+BE张华走的路程是AE,两人走的总路程是3个AB,所花的时间是80×3=240(分).可见,从第二次相遇到第三次相遇所经过的时间的综合算式是:80×3-80-40=120(分).答:再经过120分钟两人再次相遇.【模拟试题】(答题时间:30分钟)1、甲、乙两列火车同时从相距735千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?2、两列火车从两个车站同时相向出发,甲车每小时行85千米,乙车每小时行78千米,经过小时两车相遇.两个车站之间的铁路长多少千米?3、两人骑马同时从相距165千米的两地相对跑来,5小时相遇.第一匹马每小时跑15千米,第二匹马每小时跑多少千米第二匹马比第一匹马多跑多少千米4、小明和张楠分别从相距4320米的甲乙两地同时相对而行,小明骑车每分钟走160米,是张楠步行速度的2倍,多少分钟后两人相遇?5、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米.已知乙船每小时行42千米,甲船平均每小时行多少千米?6、一辆汽车和一辆自行车从相距千米的甲、乙两地同时出发,相向而行,3小时后两车相遇.已知汽车每小时比自行车多行千米,求汽车、自行车的速度各是多少?7、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇.乙车每小时行多少千米?【试题答案】1、甲、乙两列火车同时从相距735千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?735÷(85+90)=735÷175=(时)答:小时两列火车相遇.2、两列火车从两个车站同时相向出发,甲车每小时行85千米,乙车每小时行78千米,经过小时两车相遇.两个车站之间的铁路长多少千米?(85+78)×=163×=(千米)答:两个车站之间的铁路长千米.3、两人骑马同时从相距165千米的两地相对跑来,5小时相遇.第一匹马每小时跑15千米,第二匹马每小时跑多少千米第二匹马比第一匹马多跑多少千米165÷5-15 (18-15)× 5=33-15 =3×5=18(千米)=15(千米)答:第二匹马每小时跑18千米.第二匹马比第一匹马多跑15千米.4、小明和张楠分别从相距4320米的甲乙两地同时相对而行,小明骑车每分钟走160米,是张楠步行速度的2倍,多少分钟后两人相遇?4320÷(160÷2+160)=4320÷(80+160)=4320÷240=18(分钟)答:18分钟后两人相遇.5、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米.已知乙船每小时行42千米,甲船每小时行多少千米?(654-22)÷8-42=632÷8-42=79-42=37(千米)答:甲船平均每小时行驶37千米.6、一辆汽车和一辆自行车从相距千米的甲、乙两地同时出发,相向而行,3小时后两车相遇.已知汽车每小时比自行车多行千米,求汽车、自行车的速度各是多少?÷3=(千米)(-)÷2=26÷2=13(千米)13+=(千米)答:汽车每小时行驶千米,自行车每小时行驶13千米.7、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇.乙车每小时行多少千米?480-45×(5-1)=480-180=300(千米)300÷5=60(千米)答:乙车每小时行驶60千米.。

小学数学相遇问题应用题专项练习30题(有答案过程)

小学数学相遇问题应用题专项练习30题(有答案过程)

相遇问题应用题专项练习30题(有答案)1、甲城到乙城的公路长470千米。

快慢两汽车同时从两城相对开出,快车每小时行50千米,慢车每小时行44千米,;两车经过多长时间相遇?2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

两地相距多少千米?3.甲乙两车从两地同时出发相向而行,乙车每小时行60千米,乙车每小时行的是甲车每小时行的1.5倍,经过3小时相遇。

两地相距多少千米?4.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时比甲车多行20千米,经过3小时相遇。

两地相距多少千米?5.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,4小时后还相距20千米”两地相距多少千米?6、A、B两地相距3300米,甲、乙两人同时从两地相对而行,甲每分钟走82米,乙每分钟走83米,已经行了15分钟,还要行多少分钟才可以相遇?7、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

相遇时两车各行了多少千米?8、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

相遇时哪辆车行的路程多?多多少?9、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

乙车行完全程要多少小时?10、电视机厂要装配2500台电视机,两个组同时装配,10天完成,一个组每天装配52台,另一个组每天装配多少台?11、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米?甲船比乙船每小时多航行多少千米?12、甲地到乙地的公路长436千米。

两辆汽车从两地对开,甲车每小时行42千米,乙车每小时行46千米。

甲车开出2小时后,乙车才出发,再经过几小时两车相遇?13、一列快车从甲站开往乙站每小时行驶65千米,一列慢车同时从乙站开往甲站,每小时行驶60千米,相遇时快车比慢车多走10千米。

四年级数学应用题专题相遇问题

四年级数学应用题专题相遇问题

四年级数学应用题专题--相遇问题一、知识要点:相遇问题就是行程问题的一种典型应用题,也就是相向运动的问题.无论就是走路、行车还就是物体的移动,总就是要涉及到三个量:路程、速度、时间.路程、速度、时间三者之间的数量关系路程=速度×时间,速度=路程÷时间,时间=路程÷速度.二、学法引导:相遇问题的计算关系式为:总路程=速度与×相遇时间“总路程”指两人从出发到相遇共同的路程;“速度与”指两人在单位时间内共同走的路程;“相遇时间”指从出发到相遇所经的时间.通常情况下对于相遇问题的求解还要借助线段图来进行直观地分析与理解题意,以突破难点.三、解题技巧:一般的相遇问题:甲从A地到B地,乙从B地到A地,然后两人在A地到B地之间的某处相遇,实质上就是甲、乙两人一起走了A←→B这段路程,如果两人同时出发,那么有:(1)甲走的路程+乙走的路程=全程(2)甲(乙)走的路程=甲(乙)的速度×相遇时间(3)全程=(甲的速度+乙的速度)×相遇时间=速度与×相遇时间四、例题精讲:例1、两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过3、5小时两车相遇.两个车站之间的铁路长多少千米?解法一、(48+78)×3、5=126×3、5=441(千米)答:两个车站之间的铁路长441千米.解法二、48×3、5+78×3、5=168+273=441(千米)答:两个车站之间的铁路长441千米.例2、 A、D两地相距520千米,甲骑摩托车每小时行30千米,乙骑电动车每小时行驶20千米,几小时以后还相距70千米没有相遇?(520-70)÷(30+20)=450÷50=9(时)答:9小时以后还相距70千米没有相遇.例3、 A、D两地相距520千米,甲骑摩托车每小时行30千米,乙骑电动车每小时行驶20千米,几小时相遇以后相距70千米?(520+70)÷(30+20)=590÷50=11、8(时)答:11、8小时相遇以后相距70千米例4、甲、乙两站相距840千米,两列火车同时从两站相对开出,8小时后相遇,第一列火车的速度就是每小时56千米,问第二列火车的速度就是多少?解法一、(840-56×8)÷8=(840-448)÷8=392÷8=49(千米)答:第二列火车的速度就是每小时49千米.解法二、840÷8-56=105-56=49(千米)答:第二列火车的速度就是每小时49千米.例5、甲、乙两城相距680千米,从甲城开往乙城的普通客车每小时行驶60千米,2小时后,快车从乙城开往甲城,每小时行80千米,快车开出几小时后两车相遇?(680-60×2)÷(60+80)=(680-120)÷140=560÷140=4(时)答:快车开出4小时后两车相遇.小结: 解答一般的相遇问题,我们常规的思路就是,抓住相遇问题的基本数量关系:(甲速+乙速)×相遇时间=路程来解答.但有一些相遇问题的已知与所求比较特殊,如果仍采用常规的解题思路就难以解决问题,针对各种不同的情况,下面介绍几种特殊的解题方法.一、抓住两个数量差并采用对应的思维方法例1、甲车从A城到B城,速度就是50千米/小时.乙车从B城到A城,速度就是40千米/小时.两车同时出发,结果在离A、B两城的中点C 30千米的地方相遇,求A、B两城间的路程?分析与解:这道题的条件与问题如图所示.要求A、B两城的距离,关键就是求出相遇时间.因路程就是未知的,所以用路程÷(甲速+乙速)求相遇时间有一定的困难.抓住题设中隐含的两个数量差,即甲车与乙车的速度差:50千米/小时-40千米/小时=10千米/小时;相遇时两车的路差:30千米×2=60千米.再将其对应起来思维:正因为甲车每小时比乙车多走10千米,所以甲车多走60千米所花去的时间6小时正就是两车相遇的时间.因此,求A、B两地距离的综合算式就是: (50+40)×[30×2÷(50-40)]=90×[60÷10]=90×6=540(千米).答:A、B两地的路程就是540千米.二、突出不变量并采用整体的思维方法例2、 A、B两地间的公路长96千米,张华骑自行车自A往B,王涛骑摩托车自B往A,她们同时出发,经过80分两人相遇,王涛到A地后马上折回,在第一次相遇后40分追上张华,王涛到B地后马上折回,问再过多少时间两个人再相遇?分析与解:根据题意张华、王涛三次相遇情况可画示意图.这道题如果从常规思路入手,运用相遇问题的基本数量关系来求解就是非常不易的.但可根据题中小张、小王三次相遇各自的车速不变与在相距96千米的两地其同时相向而行相遇时间不变,进行整体思维.从图中可以瞧到:第三次相遇时,王涛走的路程就是2AB+BE张华走的路程就是AE,两人走的总路程就是3个AB,所花的时间就是80×3=240(分).可见,从第二次相遇到第三次相遇所经过的时间的综合算式就是: 80×3-80-40=120(分).答:再经过120分钟两人再次相遇.【模拟试题】(答题时间:30分钟)1、甲、乙两列火车同时从相距735千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?2、两列火车从两个车站同时相向出发,甲车每小时行85千米,乙车每小时行78千米,经过6、5小时两车相遇.两个车站之间的铁路长多少千米?3、两人骑马同时从相距165千米的两地相对跑来,5小时相遇.第一匹马每小时跑15千米,第二匹马每小时跑多少千米?第二匹马比第一匹马多跑多少千米?4、小明与张楠分别从相距4320米的甲乙两地同时相对而行,小明骑车每分钟走160米,就是张楠步行速度的2倍,多少分钟后两人相遇?5、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米.已知乙船每小时行42千米,甲船平均每小时行多少千米?6、一辆汽车与一辆自行车从相距172、5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇.已知汽车每小时比自行车多行31、5千米,求汽车、自行车的速度各就是多少?7、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇.乙车每小时行多少千米?【试题答案】1、甲、乙两列火车同时从相距735千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?735÷(85+90)=735÷175=4、2(时)答:4、2小时两列火车相遇.2、两列火车从两个车站同时相向出发,甲车每小时行85千米,乙车每小时行78千米,经过6、5小时两车相遇.两个车站之间的铁路长多少千米?(85+78)×6、5=163×6、5=1059、5(千米)答:两个车站之间的铁路长1059、5千米.3、两人骑马同时从相距165千米的两地相对跑来,5小时相遇.第一匹马每小时跑15千米,第二匹马每小时跑多少千米?第二匹马比第一匹马多跑多少千米?165÷5-15 (18-15)× 5=33-15 =3×5=18(千米)=15(千米)答:第二匹马每小时跑18千米.第二匹马比第一匹马多跑15千米.4、小明与张楠分别从相距4320米的甲乙两地同时相对而行,小明骑车每分钟走160米,就是张楠步行速度的2倍,多少分钟后两人相遇?4320÷(160÷2+160)=4320÷(80+160)=4320÷240=18(分钟)答:18分钟后两人相遇.5、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米.已知乙船每小时行42千米,甲船每小时行多少千米?(654-22)÷8-42=632÷8-42=79-42=37(千米)答:甲船平均每小时行驶37千米.6、一辆汽车与一辆自行车从相距172、5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇.已知汽车每小时比自行车多行31、5千米,求汽车、自行车的速度各就是多少?172、5÷3=57、5(千米)(57、5-31、5)÷2=26÷2=13(千米)13+31、5=44、5(千米)答:汽车每小时行驶44、5千米,自行车每小时行驶13千米.7、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇.乙车每小时行多少千米?480-45×(5-1)=480-180=300(千米)300÷5=60(千米)答:乙车每小时行驶60千米.。

四年级数学应用题专题-相遇问题

四年级数学应用题专题-相遇问题

四年级数学应用题专题-相遇问题四年级数学应用题专题--相遇问题一、知识要点:相遇问题是行程问题的一种典型应用题,也是相向运动的问题.无论是走路、行车还是物体的移动,总是要涉及到三个量:路程、速度、时间.路程、速度、时间三者之间的数量关系路程=速度×时间,速度=路程÷时间,时间=路程÷速度.二、学法引导:相遇问题的计算关系式为:总路程=速度和×相遇时间“总路程”指两人从出发到相遇共同的路程;“速度和”指两人在单位时间内共同走的路程;“相遇时间”指从出发到相遇所经的时间.通常情况下对于相遇问题的求解还要借助线段图来进行直观地分析和理解题意,以突破难点.三、解题技巧:一般的相遇问题:甲从A地到B地,乙从B地到A地,然后两人在A地到B 地之间的某处相遇,实质上是甲、乙两人一起走了A←→B这段路程,如果两人同时出发,那么有:(1)甲走的路程+乙走的路程=全程(2)甲(乙)走的路程=甲(乙)的速度×相遇时间(3)全程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间四、例题精讲:例1. 两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过3.5小时两车相遇.两个车站之间的铁路长多少千米?解法一、(48+78)×3.5=126×3.5=441(千米)答:两个车站之间的铁路长441千米.解法二、48×3.5+78×3.5=168+273=441(千米)答:两个车站之间的铁路长441千米.例2. A、D两地相距520千米,甲骑摩托车每小时行30千米,乙骑电动车每小时行驶20千米,几小时以后还相距70千米没有相遇?(520-70)÷(30+20)=450÷50=9(时)答:9小时以后还相距70千米没有相遇.例3. A、D两地相距520千米,甲骑摩托车每小时行30千米,乙骑电动车每小时行驶20千米,几小时相遇以后相距70千米?(520+70)÷(30+20)=590÷50=11.8(时)答:11.8小时相遇以后相距70千米例4. 甲、乙两站相距840千米,两列火车同时从两站相对开出,8小时后相遇,第一列火车的速度是每小时56千米,问第二列火车的速度是多少?解法一、(840-56×8)÷8=(840-448)÷8=392÷8=49(千米)答:第二列火车的速度是每小时49千米.解法二、840÷8-56=105-56=49(千米)答:第二列火车的速度是每小时49千米.例5. 甲、乙两城相距680千米,从甲城开往乙城的普通客车每小时行驶60千米,2小时后,快车从乙城开往甲城,每小时行80千米,快车开出几小时后两车相遇?(680-60×2)÷(60+80)=(680-120)÷140=560÷140=4(时)答:快车开出4小时后两车相遇.小结:解答一般的相遇问题,我们常规的思路是,抓住相遇问题的基本数量关系:(甲速+乙速)×相遇时间=路程来解答.但有一些相遇问题的已知和所求比较特殊,如果仍采用常规的解题思路就难以解决问题,针对各种不同的情况,下面介绍几种特殊的解题方法.一、抓住两个数量差并采用对应的思维方法例1. 甲车从A城到B城,速度是50千米/小时.乙车从B城到A城,速度是40千米/小时.两车同时出发,结果在离A、B两城的中点C 30千米的地方相遇,求A、B两城间的路程?分析与解:这道题的条件与问题如图所示.要求A、B两城的距离,关键是求出相遇时间.因路程是未知的,所以用路程÷(甲速+乙速)求相遇时间有一定的困难.抓住题设中隐含的两个数量差,即甲车与乙车的速度差:50千米/小时-40千米/小时=10千米/小时;相遇时两车的路差:30千米×2=60千米.再将其对应起来思维:正因为甲车每小时比乙车多走10千米,所以甲车多走60千米所花去的时间6小时正是两车相遇的时间.因此,求A、B两地距离的综合算式是:(50+40)×[30×2÷(50-40)]=90×[60÷10]=90×6=540(千米).答:A、B两地的路程是540千米.二、突出不变量并采用整体的思维方法例2. A、B两地间的公路长96千米,张华骑自行车自A往B,王涛骑摩托车自B往A,他们同时出发,经过80分两人相遇,王涛到A地后马上折回,在第一次相遇后40分追上张华,王涛到B地后马上折回,问再过多少时间两个人再相遇?分析与解:根据题意张华、王涛三次相遇情况可画示意图.这道题如果从常规思路入手,运用相遇问题的基本数量关系来求解是非常不易的.但可根据题中小张、小王三次相遇各自的车速不变和在相距96千米的两地其同时相向而行相遇时间不变,进行整体思维.从图中可以看到:第三次相遇时,王涛走的路程是2AB+BE张华走的路程是AE,两人走的总路程是3个AB,所花的时间是80×3=240(分).可见,从第二次相遇到第三次相遇所经过的时间的综合算式是:80×3-80-40=120(分).答:再经过120分钟两人再次相遇.【模拟试题】(答题时间:30分钟)1、甲、乙两列火车同时从相距735千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?2、两列火车从两个车站同时相向出发,甲车每小时行85千米,乙车每小时行78千米,经过6.5小时两车相遇.两个车站之间的铁路长多少千米?3、两人骑马同时从相距165千米的两地相对跑来,5小时相遇.第一匹马每小时跑15千米,第二匹马每小时跑多少千米?第二匹马比第一匹马多跑多少千米?4、小明和张楠分别从相距4320米的甲乙两地同时相对而行,小明骑车每分钟走160米,是张楠步行速度的2倍,多少分钟后两人相遇?5、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米.已知乙船每小时行42千米,甲船平均每小时行多少千米?6、一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇.已知汽车每小时比自行车多行31.5千米,求汽车、自行车的速度各是多少?7、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇.乙车每小时行多少千米?【试题答案】1、甲、乙两列火车同时从相距735千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?735÷(85+90)=735÷175=4.2(时)答:4.2小时两列火车相遇.2、两列火车从两个车站同时相向出发,甲车每小时行85千米,乙车每小时行78千米,经过6.5小时两车相遇.两个车站之间的铁路长多少千米?(85+78)×6.5=163×6.5=1059.5(千米)答:两个车站之间的铁路长1059.5千米.3、两人骑马同时从相距165千米的两地相对跑来,5小时相遇.第一匹马每小时跑15千米,第二匹马每小时跑多少千米?第二匹马比第一匹马多跑多少千米?165÷5-15 (18-15)× 5=33-15 =3×5=18(千米)=15(千米)答:第二匹马每小时跑18千米.第二匹马比第一匹马多跑15千米.4、小明和张楠分别从相距4320米的甲乙两地同时相对而行,小明骑车每分钟走160米,是张楠步行速度的2倍,多少分钟后两人相遇?4320÷(160÷2+160)=4320÷(80+160)=4320÷240=18(分钟)答:18分钟后两人相遇.5、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米.已知乙船每小时行42千米,甲船每小时行多少千米?(654-22)÷8-42=632÷8-42=79-42=37(千米)答:甲船平均每小时行驶37千米.6、一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇.已知汽车每小时比自行车多行31.5千米,求汽车、自行车的速度各是多少?172.5÷3=57.5(千米)(57.5-31.5)÷2=26÷2=13(千米)13+31.5=44.5(千米)答:汽车每小时行驶44.5千米,自行车每小时行驶13千米.7、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇.乙车每小时行多少千米?480-45×(5-1)=480-180=300(千米)300÷5=60(千米)答:乙车每小时行驶60千米.。

4年级-9-行程之相遇问题

4年级-9-行程之相遇问题

行程之相遇问题甲从A地到B地,乙从B地到A地,然后两人在途中相遇,实质上是甲和乙一起走了A,B之间这段路程,如果两人同时出发,那么相遇路程=甲走的路程+乙走的路程=甲的速度×相遇时间+乙的速度×相遇时间=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间.一般地,相遇问题的关系式为:速度和×相遇时间=路程和。

解决行程问题,常常要借助于线段图。

【例1】★一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。

3.5小时两车相遇。

甲、乙两个城市的路程是多少千米?【小试牛刀】两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。

甲、乙两车相遇时,各行了多少千米?典型例题知识梳理【例2】大头儿子的家距离学校3000米,小头爸爸从家去学校接大头儿子放学,大头儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?【小试牛刀】聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇,你知道聪聪家和明明家的距离吗?【例3】A、B两地相距90米,包子从A地到B地需要30秒,菠萝从B地到A地需要15秒,现在包子和菠萝从A、B两地同时相对而行,相遇时包子与B地的距离是多少米?【例4】甲、乙两车分别从相距360千米的A、B两城同时出发,相对而行,已知甲车到达B城需4小时,乙车到达A城需12小时,问:两车出发后多长时间相遇?【例5】甲、乙两辆汽车分别从A、B两地出发相对而行,甲车先行1小时,甲车每小时行48千米,乙车每小时行50千米,5小时相遇,求A、B两地间的距离.【小试牛刀】甲、乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?【例6】甲、乙两辆汽车分别从A、B两地出发相向而行,甲车先行3小时后乙车从B地出发,乙车出发5小时后两车还相距15千米.甲车每小时行48千米,乙车每小时行50千米.求A、B两地间相距多少千米?【小试牛刀】甲、乙两辆汽车从A、B两地同时相向开出,出发后2小时,两车相距141千米;出发后5小时,两车相遇.A、B两地相距多少千米?【例7】两列城铁从两城同时相对开出,一列城铁每小时走40千米,另一列城铁每小时走45千米,在途中每列车先后各停车4次,每次停车15分钟,经过7小时两车相遇,求两城的距离?【小试牛刀】两列城铁从两城同时相对开出,一列城铁每小时走40千米,另一列城铁每小时走45千米,在途中每列车先后各停车5次,每次停车12分钟,经过7小时两车相遇,求两城的距离?【例8】夏夏和冬冬同时从两地相向而行,夏夏每分钟行50米,冬冬每分钟行60米,两人在距两地中点50米处相遇,求两地的距离是多少米?【小试牛刀】甲乙两人同时从两地相向而行.甲每小时行5千米,乙每小时行4千米.两人相遇时乙比甲少行3千米.两地相距多少千米?【例9】甲乙二人同时分别自A、B两地出发相向而行,相遇之地距A、B中点300米,已知甲每分钟行100米,乙每分钟行70米,求A地至B地的距离.【小试牛刀】李明和王亮同时分别从两地骑车相向而行,李明每小时行18千米,王亮每小时行16千米,两人相遇时距全程中点3千米.问全程长多少千米?【例10】甲、乙两车分别同时从、B 两地相对开出,第一次在离A 地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B 地25千米处相遇.求、两地间的距离.【小试牛刀】甲、乙两车分别同时从A 、B 两地相对开出,第一次在离A 地90千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B 地30千米处相遇.求A 、B 两地间的距离?1.甲、乙两列火车从相距144千米的两地相向而行,甲车每小时行28千米,乙车每小时行22千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?2.妈妈从家出发到学校去接小红,妈妈每分钟走75米.妈妈走了3分钟后,小红从学校出发,小红每分钟走60米.再经过20分钟妈妈和小红相遇.从小红家到学校有多少米?3.甲乙两座城市相距530千米,货车和客车从两城同时出发,相向而行.货车每小时行50千米,客车每小时行70千米.客车在行驶中因故耽误1小时,然后继续向前行驶与货车相遇.问相遇时客车、货车各行驶多少千米?A AB 课后作业4.甲、乙两列火车从相距366千米的两个城市对面开来,甲列火车每小时行37千米,乙列火车每小时行36千米,甲列火车先开出2小时后,乙列火车才开出,问乙列火车行几小时后与甲列火车相遇?5.夏夏和冬冬同时从两地相向而行,两地相距1100米,夏夏每分钟行50米,冬冬每分钟行60米,问两人在距两地中点多远处相遇?6.王老师从甲地到乙地,每小时步行5千米,张老师从乙地到甲地,每小时步行4千米.两人同时出发,然后在离甲、乙两地的中点1千米的地方相遇,求甲、乙两地间的距离.7.树叶和月亮同时分别从两地骑车相向而行,树叶每小时行18千米,月亮每小时行16千米,两人相遇时距全程中点5千米.问全程长多少千米?8.甲乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,乙每小时走4千米。

小学数学相遇问题应用题专项练习30题[有答案解析过程]

小学数学相遇问题应用题专项练习30题[有答案解析过程]

相遇问题应用题专项练习30题(有答案)1、甲城到乙城的公路长470千米。

快慢两汽车同时从两城相对开出,快车每小时行50千米,慢车每小时行44千米,;两车经过多长时间相遇?2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

两地相距多少千米?3.甲乙两车从两地同时出发相向而行,乙车每小时行60千米,乙车每小时行的是甲车每小时行的 1.5倍,经过3小时相遇。

两地相距多少千米?4.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时比甲车多行20千米,经过3小时相遇。

两地相距多少千米?5.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,4小时后还相距20千米”两地相距多少千米?6、A、B两地相距3300米,甲、乙两人同时从两地相对而行,甲每分钟走82米,乙每分钟走83米,已经行了15分钟,还要行多少分钟才可以相遇?7、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

相遇时两车各行了多少千米?8、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

相遇时哪辆车行的路程多?多多少?9、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

乙车行完全程要多少小时?10、电视机厂要装配2500台电视机,两个组同时装配,10天完成,一个组每天装配52台,另一个组每天装配多少台?11、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米?甲船比乙船每小时多航行多少千米?12、甲地到乙地的公路长436千米。

两辆汽车从两地对开,甲车每小时行42千米,乙车每小时行46千米。

甲车开出2小时后,乙车才出发,再经过几小时两车相遇?13、一列快车从甲站开往乙站每小时行驶65千米,一列慢车同时从乙站开往甲站,每小时行驶60千米,相遇时快车比慢车多走10千米。

小学数学相遇与追及应用题

小学数学相遇与追及应用题

1相遇和追及1. 甲、乙两车分别从相距57千米的A 、B 两地同时出发,相向而行,甲车的速度为11千米/时,乙车的速度为8千米/时,请问甲乙两车将在( )小时后相遇.A. 5B. 4C. 3D. 2【答案】C【解答】根据相遇问题中,相遇时间=路程和÷速度和,所以甲乙两车的相遇时间为:()571183÷+=小时,答案选C .【难度】中等2. 帮帮和小业两家相距2400米,帮帮以60米/分的速度走向小业家,5分钟后,小业以40米/分的速度走向帮帮家,则小业出发( )分钟后能和帮帮相遇.A. 21B. 20C. 19D. 18【答案】A【解答】帮帮先走5分钟,走了605300⨯=米,剩下的距离为24003002100-=米,为两人的路程和,因此相遇时间为()2100604021÷+=分钟,故选A .【难度】4星3. 甲、乙两车分别从相距36千米的A 、B 两地同时出发,相向而行,甲车的速度为7千米/时,乙车的速度为5千米/时,请问甲乙两车将在( )小时后相遇.A. 5B. 4C. 3D. 2【答案】C【解答】根据相遇问题中,相遇时间=路程和÷速度和,所以甲乙两车的相遇时间为:()36753÷+=小时,答案选C .【难度】中等24. 帮帮和小业从自家同时出发,相向而行,帮帮和小业两家相距1600米,10分钟后两人相遇.已知帮帮的速度是每分钟60米,那么小业的速度是每分钟( )米.A. 160B. 100C. 60D. 40【答案】B【解答】帮帮和小业的路程和是1600米,相遇时间是10分钟,所以速度和是160010160÷=米/分,帮帮的速度是60米/分,那么小业的速度是16060100-=米/分,故选B .【难度】中等5. 甲、乙两车从A 、B 两地同时出发,相向而行,10小时相遇,已知甲车的速度是50千米/时,乙车的速度是甲车的2倍,则A 、B 两地之间的距离为( )千米.A. 500B. 1000C. 1500D. 2000【答案】C【解答】甲车的速度为50千米/时,乙车的速度为502100⨯=千米/时,两车10小时相遇,因此A 、B 两地之间的距离为()50100101500+⨯=,故选C .【难度】中等6. 甲、乙两地相距600千米,快车和慢车分别从甲、乙两地同时出发,相向而行,快车每小时行60千米,慢车每小时行30千米,试问:如果慢车先出发2小时,( )小时后两车相遇.A. 4B. 6C. 8D. 10【答案】B【解答】慢车先出发2小时,走了30260⨯=千米,此时两车相距60060540-=千米,根据相遇时间=路程和÷速度和,所以两车的相遇时间为540(6030)6÷+=小时,故选B .【难度】中等7. 聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明3明快42米,经过20分钟后两人相遇,聪聪家和明明家的距离是( ).A. 820B. 1640C. 1680D. 无法确定【答案】B【解答】解:由题意知聪聪的速度是:204262+=(米/分),两家的距离明明走过的路程聪聪走过的路程2020622040012401640=⨯+⨯=+=(米);故选:B.【难度】简单8. 妈妈从家出发到学校去接小红,妈妈每分钟走75米.小红从学校出发,小红每分钟走60米.经过20分钟妈妈和小红相遇.从小红家到学校有( )米.A. 1500B. 1200C. 2700D. 300【答案】C【解答】解:20分钟后妈妈和小红相遇,也就是说妈妈和小红共同走了20分钟,家到学校的路程为:7560202700+⨯=()(米). 故选:C.【难度】简单9. 甲和乙从相距5000米的A 、B 两地同时出发,相向而行.如果甲每分钟走150米,乙每分钟走350米,那么两人从出发到相遇需要( )分钟.A. 7B. 8C. 9D. 10【答案】D【解答】甲每分钟走150米,乙每分钟走350米,一共要走5000米的路程,所以甲、乙相遇的时间为路程和÷速度和,即 ()500015035010÷+=分钟,故选D .【难度】中等10. 甲、乙两车同时从相距2156千米的两地相向而行,经过7小时两车相遇.甲车每小时行154千米,乙车每小时行()千米.A. 136B. 145C. 154D. 163【答案】C【解答】两车从相距2156千米的两地同时出发,7小时相遇,则可知甲乙两车的速度和为21567308-=千÷=千米/时,其中甲车的速度为154千米/时,所以乙车速度为308154154米/时,故选C.【难度】中等4。

四年级上册相遇问题应用题

四年级上册相遇问题应用题

四年级上册相遇问题应用题1、甲乙两车从相距450千米的两地同时相向行驶。

甲车每小时行驶45千米,5小时后还相距25千米。

求乙车每小时行驶多少千米?解题思路:根据相遇问题的思路,设乙车每小时行驶x千米,则甲车行驶的路程为45×5=225千米,乙车行驶的路程为5x千米。

因为两车相向而行,所以它们的路程之和为450千米。

因此,可以列出方程:225+5x+25+x=450,解得x=40.因此,乙车每小时行驶40千米。

2、甲乙两城相距7100千米。

一架飞机以每小时850千米的速度从甲城飞往乙城,2小时后,另一架飞机以每小时950千米的速度从乙城飞往甲城。

又经过几小时后两机相遇?解题思路:两架飞机相遇时,它们的路程之和为7100千米。

设两架飞机相遇的时间为t小时,则第一架飞机的飞行距离为850×(2+t)千米,第二架飞机的飞行距离为950t千米。

因此,可以列出方程:850×(2+t)+950t=7100,解得t=6.因此,两架飞机相遇时,已经飞行了8小时。

3、甲乙二人同时从相距51千米的两地相对出发。

甲车每小时行3.5千米,乙车每小时行3.3千米。

经过几小时两车相遇?解题思路:设两车相遇的时间为t小时,则甲车行驶的路程为3.5t千米,乙车行驶的路程为3.3t千米。

因为两车相对而行,所以它们的路程之和为51千米。

因此,可以列出方程:3.5t+3.3t=51,解得t=15.因此,两车相遇时,已经行驶了15小时。

4、两个工程队修121千米的路。

甲队每天修3.8千米,乙队每天修4.7千米。

甲队先工作5天,后两队合修。

还需要几天才能修完?解题思路:甲队先工作5天,共修了5×3.8=19千米的路程。

剩下的路程为121-19=102千米。

设两队合修的时间为t 天,则甲队共修了5+t天,乙队共修了XXX。

因此,可以列出方程:3.8×(5+t)+4.7t=102,解得t=12.因此,两队合修共需要17天才能修完。

小学数学应用题专项练习——相遇问题

小学数学应用题专项练习——相遇问题

相遇问题1.甲、乙两人分别骑自行车从两地同时出发相向而行,甲每小时骑7千米,乙每小时骑6千米,两人经过5小时相遇,请问:两地相距多远?2.牛牛和丁丁两人分别骑自行车从两地相向而行,牛牛提前2个小时出发,再经过4个小时与丁丁相遇,已知牛牛每个小时骑5千米,丁丁每个小时骑8千米,请问:两地相距多远?3.甲和乙驾车从相距700干米的两地同时出发相向而行,甲每小时行驶48千米,乙每小时行驶52千米,请问:两人多久后相遇?4.丁丁和田田两人从相距1089米的两地同时出发相向而行,已知丁丁每分钟走52米,他们经过11分钟相遇,那么,请问:田田每分钟走多少米?5.回答下列各小题。

(1)牛牛和丁丁两人分别以每小时6千米和每小时4千米的速度行走,若他们从A,B 两地同时出发,相向而行,5小时后相遇,则 A,B 两地相距多少千米?(2)甲车和乙车分别以每小时70千米,每小时50千米的速度从相距480千米的两地向对方的出发地前进。

多久后两车会相遇?6.甲、乙两人分别以每小时8千米和每小时4千米的速度行走,若他们从 A,B 两地同时出发,相向而行,6小时后相遇,则 A,B 两地相距多少千米?7.甲车和乙车分别以每小时70千米,每小时50千米的速度从相距300千米的两地同时出发向对方前进.当两人之间的距离是60千米时,他们走了多少小时?8.北京和上海相距1320千米.甲乙两列直快火车同时从北京和上海相对开出,6小时后两车相遇,甲车每小时行120千米,乙车每小时行多少千米?9.两车同时从两地相对开出,两地相距285千米,5小时后相遇。

甲车每小时行30千米,乙车每小时行多少千米?10.甲、乙两人分别从相距978米的两地相向而行.已知甲每分钟走23米,乙每分钟走45米,甲提前10分钟出发.请问:乙需要多久才能和甲相遇?11.甲、乙两列火车从相距942千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发小时后,甲车才出发。

四年级相遇问题应用题

四年级相遇问题应用题

四年级相遇问题应用题1. 小明和小华从相距500米的两地同时出发,相向而行。

小明每分钟走60米,小华每分钟走70米。

问他们多少分钟后相遇?2. 甲、乙两车从相距400千米的两地同时出发,相对而行。

甲车每小时行60千米,乙车每小时行70千米。

问几小时后两车相遇?3. 小红和小丽在环形跑道上跑步,跑道长400米。

小红每秒跑5米,小丽每秒跑7米。

他们从同一地点出发,同向而行。

问多少秒后他们再次相遇?4. 爸爸和小明同时从家出发去公园,家离公园有800米。

爸爸每分钟走80米,小明每分钟走60米。

他们会在公园的哪个位置相遇?5. 两只小船分别从河的两岸同时出发,相向而行。

一只船每小时行20千米,另一只船每小时行25千米。

河宽120千米,问它们多少小时后相遇?6. 小华和小明从相距300米的两地同时出发,同向而行。

小华每分钟走70米,小明每分钟走60米。

问小华追上小明需要多少分钟?7. 甲、乙两人骑自行车从相距60千米的两地同时出发,相向而行。

甲每小时行15千米,乙每小时行18千米。

问他们相遇时离中点多少千米?8. 小明和小丽同时从两地出发,相向而行。

小明每分钟走50米,小丽每分钟走60米。

他们在距离中点100米的地方相遇。

求两地之间的距离。

9. 小红和小华从相距450米的两地同时出发,相向而行。

小红每分钟走65米,小华每分钟走75米。

问他们相遇时一共走了多少分钟?10. 两列火车从相距500千米的两地同时出发,相对而行。

一列火车每小时行70千米,另一列火车每小时行80千米。

问他们相遇时离出发地多少千米?希望这些题目能帮助四年级的学生更好地理解和练习相遇问题的应用题。

小学数学应用题之相遇问题

小学数学应用题之相遇问题

小学数学应用题之相遇问题【含义】两个运动的物体同时由两地出发相向而行,在途中相遇。

这类应用题叫做相遇问题。

这类应用题叫做相遇问题。

【数量关系】相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间【解题思路和方法】简单的题目可直接利用公式,复杂的题目变通后再利用公式,利用线段图分析可以让解题事半功倍。

例1:欢欢和乐乐在一条马路的两端相向而行,欢欢每分钟行60米,乐乐每分钟行80米,他们同时出发5分钟后相遇。

这条马路长()。

解:根据公式总路程=(甲速+乙速)×相遇时间,可以求出这条马路长(60+80)×5 =700(米)。

例2:甲乙两车分别以不变的速度从AB两地同时出发,相向而行。

到达目的地后立即返回。

已知第一次相遇地点距离A地50千米,第二次相遇地点距离B地60千米,AB两地相距()千米。

解:1、本题考查的是二次相遇问题,灵活的运用画线段图的方法来分析是解决这类问题的关键。

2、画线段图3、从图中可以看出,第一次相遇时甲行了50千米。

甲乙合行了一个全程的路程。

从第一次相遇后到第二次相遇,甲乙合行了两个全程的路程。

由于甲乙速度不变,合行两个全程时,甲能行50×2=100(千米)。

4、因此甲一共行了50+100=150(千米),从图中看甲所行路程刚好比AB两地相距路程还多出60千米。

所以AB两地相距150-60=90(千米)。

例3:欢欢和乐乐在相距80米的直跑道上来回跑步,乐乐的速度是每秒3米,欢欢的速度是每秒2米。

如果他们同时分别从跑道两端出发,当他们跑了10分钟时,在这段时间里共相遇过()次。

解:1、根据题意,第一次相遇时,两人共走了一个全程,但是从第二次开始每相遇一次需要的时间都是第一次相遇时间的两倍。

(线段图参考例2。

)2、根据“相遇时间=总路程÷速度和”得到,欢欢和乐乐首次相遇需要80÷(3+2)=16(秒)。

3、因为从第一次相遇结束到第二次相遇,欢欢和乐乐要走两个全程,所以从第二次开始每相遇一次需要的时间是16秒的2倍,也就是32秒,则经过第一次相遇后,剩下的时间是600-16=584(秒),还要相遇584÷32=18.25(次),所以在这段时间里共相遇过18+1=19(次)。

四年级数学应用题专题-相遇问题

四年级数学应用题专题-相遇问题

四年级数学应用题专题--相遇问题一、知识要点:相遇问题是行程问题的一种典型应用题,也是相向运动的问题.无论是走路、行车还是物体的移动,总是要涉及到三个量:路程、速度、时间.路程、速度、时间三者之间的数量关系路程=速度×时间,速度=路程÷时间,时间=路程÷速度.二、学法引导:相遇问题的计算关系式为:总路程=速度和×相遇时间“总路程”指两人从出发到相遇共同的路程;“速度和”指两人在单位时间内共同走的路程;“相遇时间”指从出发到相遇所经的时间.通常情况下对于相遇问题的求解还要借助线段图来进行直观地分析和理解题意,以突破难点.三、解题技巧:一般的相遇问题:甲从A地到B地,乙从B地到A地,然后两人在A地到B 地之间的某处相遇,实质上是甲、乙两人一起走了A←→B这段路程,如果两人同时出发,那么有:(1)甲走的路程+乙走的路程=全程(2)甲(乙)走的路程=甲(乙)的速度×相遇时间(3)全程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间四、例题精讲:例1. 两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过3.5小时两车相遇.两个车站之间的铁路长多少千米?例2. A、D两地相距520千米,甲骑摩托车每小时行30千米,乙骑电动车每小时行驶20千米,几小时以后还相距70千米没有相遇?例3. A、D两地相距520千米,甲骑摩托车每小时行30千米,乙骑电动车每小时行驶20千米,几小时相遇以后相距70千米?例4. 甲、乙两站相距840千米,两列火车同时从两站相对开出,8小时后相遇,第一列火车的速度是每小时56千米,问第二列火车的速度是多少?例5. 甲、乙两城相距680千米,从甲城开往乙城的普通客车每小时行驶60千米,2小时后,快车从乙城开往甲城,每小时行80千米,快车开出几小时后两车相遇?小结:解答一般的相遇问题,我们常规的思路是,抓住相遇问题的基本数量关系:(甲速+乙速)×相遇时间=路程来解答.但有一些相遇问题的已知和所求比较特殊,如果仍采用常规的解题思路就难以解决问题,针对各种不同的情况,下面介绍几种特殊的解题方法.一、抓住两个数量差并采用对应的思维方法例1. 甲车从A城到B城,速度是50千米/小时.乙车从B城到A城,速度是40千米/小时.两车同时出发,结果在离A、B两城的中点C 30千米的地方相遇,求A、B两城间的路程?二、突出不变量并采用整体的思维方法例2. A、B两地间的公路长96千米,张华骑自行车自A往B,王涛骑摩托车自B往A,他们同时出发,经过80分两人相遇,王涛到A地后马上折回,在第一次相遇后40分追上张华,王涛到B地后马上折回,问再过多少时间两个人再相遇?)1、甲、乙两列火车同时从相距735千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?2、两列火车从两个车站同时相向出发,甲车每小时行85千米,乙车每小时行78千米,经过6.5小时两车相遇.两个车站之间的铁路长多少千米?3、两人骑马同时从相距165千米的两地相对跑来,5小时相遇.第一匹马每小时跑15千米,第二匹马每小时跑多少千米?第二匹马比第一匹马多跑多少千米?4、小明和张楠分别从相距4320米的甲乙两地同时相对而行,小明骑车每分钟走160米,是张楠步行速度的2倍,多少分钟后两人相遇?5、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米.已知乙船每小时行42千米,甲船平均每小时行多少千米?6、一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇.已知汽车每小时比自行车多行31.5千米,求汽车、自行车的速度各是多少?7、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇.乙车每小时行多少千米?。

四年级下册数学行程相遇问题

四年级下册数学行程相遇问题

四年级下册数学行程相遇问题一、知识点讲解1. 相遇问题的基本概念两个运动的物体同时由两地出发相向而行,在途中相遇。

这类应用题叫做相遇问题。

基本公式:路程 = 速度和×相遇时间;速度和 = 路程÷相遇时间;相遇时间= 路程÷速度和。

2. 解题步骤第一步:明确已知条件,包括两个物体的速度(如果已知)、运动的路程(如果已知)以及相遇时间(如果已知)。

第二步:根据问题和已知条件,选择合适的公式进行计算。

第三步:检查计算结果是否合理。

二、典型例题及解析1. 例1题目:甲、乙两辆汽车分别从A、B两地同时出发,相向而行。

甲车的速度是每小时60千米,乙车的速度是每小时50千米,经过3小时两车相遇。

A、B两地相距多少千米?解析:已知甲车速度公式千米/小时,乙车速度公式千米/小时,相遇时间公式小时。

(千米/小时)。

那么A、B两地的距离公式千米。

2. 例2题目:A、B两地相距450千米,甲、乙两车分别从A、B两地同时出发,相向而行,甲车的速度是每小时40千米,乙车的速度是每小时50千米。

经过多少小时两车相遇?解析:已知路程公式千米,甲车速度公式千米/小时,乙车速度公式千米/小时。

首先求出速度和公式千米/小时。

根据相遇时间 = 路程÷速度和,可得相遇时间公式小时。

3. 例3题目:甲、乙两人同时从相距2000米的两地相向而行,甲每分钟走110米,经过10分钟两人相遇,乙每分钟走多少米?解析:已知路程公式米,甲的速度公式米/分钟,相遇时间公式分钟。

米/分钟。

那么乙的速度公式米/分钟。

相遇问题的应用题30道及答案四年级

相遇问题的应用题30道及答案四年级

相遇问题的应用题30道及答案四年级1.南京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解392÷(28+21)=8(小时)答:经过8小时两船相遇。

2.小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解“第二次相遇”可以理解为二人跑了两圈。

因此总路程为400×2相遇时间=(400×2)÷(5+3)=100(秒)答:二人从出发到第二次相遇需100秒时间。

3.甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在距中点3千米处相遇,求两地的距离。

解“两人在距中点3千米处相遇”是正确理解本题题意的关键。

从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(3×2)千米,因此,相遇时间=(3×2)÷(15-13)=3(小时)两地距离=(15+13)×3=84(千米)答:两地距离是84千米。

4.两列火车同时从两地相对开出,甲列火车每小时行86千米,乙列火车每小时行102千米,经过5小时两车在途中相遇,求两地相距多少千米?(86+102)×5=940千米或者86×5+102×5=940千米5.甲、乙两人分别从相距20千米的两地同时出发相向而行,甲每小时走6千米,经过2小时后两人相遇,问乙每小时行多少千米?20÷2-6=4千米或者(20-6×2)÷2=4千米6.张杰和姐姐两人从相距2000米的两地相向而行,张杰每分钟行110米,姐姐每分钟行90米,如果一只狗与张杰同时同向而行,每分钟行500米,遇到姐姐后,立即回头向张杰跑去,遇到张杰再向姐姐跑去,这样不断来回,直到张杰和姐姐相遇为止。

(完整版)小学数学相遇问题应用题专项练习题(有答案)

(完整版)小学数学相遇问题应用题专项练习题(有答案)

相遇问题应用题专项练习30题1、甲城到乙城的公路长470千M。

快慢两汽车同时从两城相对开出,快车每小时行50千M,慢车每小时行44千M,;两车经过多长时间相遇?2、甲乙两车从两地同时出发相向而行,甲车每小时行40千M,乙车每小时行60千M,经过3小时相遇。

两地相距多少千M?3.甲乙两车从两地同时出发相向而行,乙车每小时行60千M,乙车每小时行的是甲车每小时行的1.5倍,经过3小时相遇。

两地相距多少千M?4.甲乙两车从两地同时出发相向而行,甲车每小时行40千M,乙车每小时比甲车多行20千M,经过3小时相遇。

两地相距多少千M?5.甲乙两车从两地同时出发相向而行,甲车每小时行40千M,乙车每小时行60千M,4小时后还相距20千M”两地相距多少千M?6、A、B两地相距3300M,甲、乙两人同时从两地相对而行,甲每分钟走82M,乙每分钟走83M,已经行了15分钟,还要行多少分钟才可以相遇?7、甲乙两车从两地同时出发相向而行,甲车每小时行40千M,乙车每小时行60千M,经过3小时相遇。

相遇时两车各行了多少千M?8、甲乙两车从两地同时出发相向而行,甲车每小时行40千M,乙车每小时行60千M,经过3小时相遇。

相遇时哪辆车行的路程多?多多少?1 / 69、甲乙两车从两地同时出发相向而行,甲车每小时行40千M,乙车每小时行60千M,经过3小时相遇。

乙车行完全程要多少小时?10、电视机厂要装配2500台电视机,两个组同时装配,10天完成,一个组每天装配52台,另一个组每天装配多少台?11、甲乙两艘轮船同时从相距126千M的两个码头相对开出,3小时相遇,甲船每小时航行22千M,乙船每小时航行多少千M?甲船比乙船每小时多航行多少千M?12、甲地到乙地的公路长436千M。

两辆汽车从两地对开,甲车每小时行42千M,乙车每小时行46千M 。

甲车开出2小时后,乙车才出发,再经过几小时两车相遇?13、一列快车从甲站开往乙站每小时行驶65千M,一列慢车同时从乙站开往甲站,每小时行驶60千 M,相遇时快车比慢车多走10千M。

四年级下册数学应用题相遇问题

四年级下册数学应用题相遇问题

四年级下册数学应用题相遇问题
问题:四年级下册数学应用题相遇问题。

解答:相遇问题是在数学中常见的一个应用题,通常涉及到两个人或物体同时出发,以不同的速度前进,最终是否会相遇的问题。

以下是一个简单的相遇问题:
问题:小明和小红同时从同一地点出发,小明以每小时4公里的速度向东走,小红以每小时6公里的速度向西走。

如果小明和小红都没有停下来,他们什么时候会相遇?
解答:设相遇的时间为t小时,小明和小红在t小时内分别走过的距离分别为4t和6t。

由于小明和小红同时从同一地点出发,所以小明和小红走过的总距离应该相等。

即,4t = 6t
解得 t = 2/3 小时。

所以,小明和小红会在2/3小时后相遇。

以上是四年级下册数学应用题相遇问题的一个例子,实际应用中可能会有更复杂的问题,但解题思路大致相同,即通过设定变量,建立方程,解方程得出相遇的时间或距离。

小学数学相遇问题应用题专项练习30题(附答案)

小学数学相遇问题应用题专项练习30题(附答案)

相遇问题应用题专项练习30题(有答案)1、甲城到乙城的公路长470千米。

快慢两汽车同时从两城相对开出,快车每小时行50千米,慢车每小时行44千米,;两车经过多长时间相遇?2、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

两地相距多少千米?3.甲乙两车从两地同时出发相向而行,乙车每小时行60千米,乙车每小时行的是甲车每小时行的1.5倍,经过3小时相遇。

两地相距多少千米?4.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时比甲车多行20千米,经过3小时相遇。

两地相距多少千米?5.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,4小时后还相距20千米”两地相距多少千米?6、A、B两地相距3300米,甲、乙两人同时从两地相对而行,甲每分钟走82米,乙每分钟走83米,已经行了15分钟,还要行多少分钟才可以相遇?7、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

相遇时两车各行了多少千米?8、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

相遇时哪辆车行的路程多?多多少?9、甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

乙车行完全程要多少小时?10、电视机厂要装配2500台电视机,两个组同时装配,10天完成,一个组每天装配52台,另一个组每天装配多少台?11、甲乙两艘轮船同时从相距126千米的两个码头相对开出,3小时相遇,甲船每小时航行22千米,乙船每小时航行多少千米?甲船比乙船每小时多航行多少千米?12、甲地到乙地的公路长436千米。

两辆汽车从两地对开,甲车每小时行42千米,乙车每小时行46千米。

甲车开出2小时后,乙车才出发,再经过几小时两车相遇?13、一列快车从甲站开往乙站每小时行驶65千米,一列慢车同时从乙站开往甲站,每小时行驶60千米,相遇时快车比慢车多走10千米。

小学数学相遇问题应用题专项练习题(有答案)

小学数学相遇问题应用题专项练习题(有答案)

相遇问题应用题专项练习30题1、甲城到乙城的公路长470千M。

快慢两汽车同时从两城相对开出,快车每小时行50千M,慢车每小时行44千M,;两车经过多长时间相遇?2、甲乙两车从两地同时出发相向而行,甲车每小时行40千M,乙车每小时行60千M,经过3小时相遇。

两地相距多少千M?3.甲乙两车从两地同时出发相向而行,乙车每小时行60千M,乙车每小时行的是甲车每小时行的 1.5倍,经过3小时相遇。

两地相距多少千M?4.甲乙两车从两地同时出发相向而行,甲车每小时行40千M,乙车每小时比甲车多行20千M,经过3小时相遇。

两地相距多少千M?5.甲乙两车从两地同时出发相向而行,甲车每小时行40千M,乙车每小时行60千M,4小时后还相距20千M”两地相距多少千M?6、A、B两地相距3300M,甲、乙两人同时从两地相对而行,甲每分钟走82M,乙每分钟走83M,已经行了15分钟,还要行多少分钟才可以相遇?7、甲乙两车从两地同时出发相向而行,甲车每小时行40千M,乙车每小时行60千M,经过3小时相遇。

相遇时两车各行了多少千M?8、甲乙两车从两地同时出发相向而行,甲车每小时行40千M,乙车每小时行60千M,经过3小时相遇。

相遇时哪辆车行的路程多?多多少?9、甲乙两车从两地同时出发相向而行,甲车每小时行40千M,乙车每小时行60千M,经过3小时相遇。

乙车行完全程要多少小时?10、电视机厂要装配2500台电视机,两个组同时装配,10天完成,一个组每天装配52台,另一个组每天装配多少台?11、甲乙两艘轮船同时从相距126千M的两个码头相对开出,3小时相遇,甲船每小时航行22千M,乙船每小时航行多少千M?甲船比乙船每小时多航行多少千M?12、甲地到乙地的公路长436千M。

两辆汽车从两地对开,甲车每小时行42千M,乙车每小时行46千M 。

甲车开出2小时后,乙车才出发,再经过几小时两车相遇?13、一列快车从甲站开往乙站每小时行驶65千M,一列慢车同时从乙站开往甲站,每小时行驶60千 M,相遇时快车比慢车多走10千M。

小学数学相遇问题应用题专项练习30题(有答案过程)

小学数学相遇问题应用题专项练习30题(有答案过程)

小学数学相遇问题应用题专项练习30题(有答案过程)1.甲城到乙城的公路长为470千米。

快车每小时行驶50千米,慢车每小时行驶44千米。

问两车经过多长时间相遇?答:快车和慢车的相对速度为XXX/小时。

根据路程等于速度乘时间,两车相遇的时间为470/94=5小时。

2.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,经过3小时相遇。

问两地相距多少千米?答:甲车和乙车的相对速度为40+60=100千米/小时。

根据路程等于速度乘时间,两地的距离为100*3=300千米。

3.甲乙两车从两地同时出发相向而行,乙车每小时行60千米,甲车每小时行的速度是乙车的1.5倍,经过3小时相遇。

问两地相距多少千米?答:设甲车的速度为x千米/小时,则乙车的速度为1.5x千米/小时。

根据路程等于速度乘时间,两地的距离为(60+1.5x)*3=180+4.5x千米。

又因为两车相向而行,所以两地的距离为两车行驶的路程之和,即(60+1.5x)*3+(40+x)*3=300+4.5x千米。

解得x=20,所以两地的距离为180+4.5x=270千米。

4.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时比甲车多行20千米,经过3小时相遇。

问两地相距多少千米?答:设甲车的速度为x千米/小时,则乙车的速度为x+20千米/小时。

根据路程等于速度乘时间,两地的距离为(40+x)*3+(40+x+20)*3=360+6x千米。

又因为两车相向而行,所以两地的距离为两车行驶的路程之和,即360+6x=2d,其中d为两地的距离。

解得d=270千米。

5.甲乙两车从两地同时出发相向而行,甲车每小时行40千米,乙车每小时行60千米,4小时后还相距20千米。

问两地相距多少千米?答:甲车和乙车的相对速度为40+60=100千米/小时。

4小时后,两车相距20千米,即两车行驶的路程之和为两地的距离减去20千米,设两地的距离为d,则100*4=d-20,解得d=420千米。

小学数学应用题——之相遇问题

小学数学应用题——之相遇问题

追及问题
1、甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两
人同时向南出发,几分钟后乙追上甲?
2、骑车人与行人同一条街同方向前进,行人在骑自行车人前面450米处,行人每分钟步行60米,两人同时出发,3分钟后骑自行车的人追上行人,骑自行车的人每分钟行多少米?
3、两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆汽车每小时行63
千米,第一辆汽车先行2小时后,第二辆汽车才出发,问第二辆汽车出发后几小时追上第一辆汽车?
4、哥哥和弟弟两人同时在一个学校上学,弟弟以每分钟80米的速度先去学校,3分钟后,哥哥骑车以每分钟200米的速度也向学校骑去,那么哥哥几分钟追上弟弟?
5、姐妹两人在同一小学上学,妹妹以每分钟50米的速度从家走向学校,姐姐比妹妹晚10分钟出发,为了不迟到,她以每分钟150米的速度从家跑步上学,结果两人却同时到达学校,求家到学校的距离有多远?
植树问题
1、园林工人沿公路一侧植树,每隔6米种一棵,一共种了36棵。

从第一棵到最后一棵的距离有多远?
2、学校运动会要举行入场式,要求每班24名同学上场,排4路纵队,前后每两人间隔1米,每班队伍长几米?
3、每班的队伍长5米,全校有24个班,每两个班间隔3米,全校的入场式队伍共长多少米?
4、某一淡水湖的周长1350米,在湖边每隔9米种柳树一株,在两株柳树中间种植2株夹枝桃,可栽柳树多少株?可栽夹枝桃多少株?两株夹枝桃之间相距多少米?
5、光华路小学三年级学生有125人参加运动会入场式,他们每5人一行,前后每行间隔为2米,主席台长42米,他们以每分钟45米的速度通过主席台,需要多少分钟?
6、一个木工把一根长24米的木条锯成了3米长的小段,每锯断一次要用5分钟,共需多少分钟?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

--相遇问题四年级数学应用题专题一、知识要点:
相遇问题是行程问题的一种典型应用题,也是相向运动的问题.无论是走路、行车还是物体的移动,总是要涉及到三个量:路程、速度、时间.
路程、速度、时间三者之间的数量关系
路程=速度×时间,
速度=路程÷时间,
时间=路程÷速度.
二、学法引导:
相遇问题的计算关系式为:总路程=速度和×相遇时间
“总路程”指两人从出发到相遇共同的路程;
“速度和”指两人在单位时间内共同走的路程;
“相遇时间”指从出发到相遇所经的时间.
通常情况下对于相遇问题的求解还要借助线段图来进行直观地分析和理解题意,以突破难点.
三、解题技巧:
一般的相遇问题:甲从A地到B地,乙从B地到A地,然后两人在A地到B地之间的某处相遇,实质上是甲、乙两人一起走了A←→B这段路程,如果两人同时出发,那么有:
(1)甲走的路程+乙走的路程=全程
(2)甲(乙)走的路程=甲(乙)的速度×相遇时间
(3)全程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间
四、例题精讲:
例1. 两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过小时两车相遇.两个车站之间的铁路长多少千米?
解法一、
(48+78)×
=126×
=441(千米)
千米.441两个车站之间的铁路长答:
解法二、
48×+78×
=168+273
=441(千米)
答:两个车站之间的铁路长441千米.
例2. A、D两地相距520千米,甲骑摩托车每小时行30千米,乙骑电动车每小时行驶20千米,几小时以后还相距70千米没有相遇?
(520-70)÷(30+20)
=450÷50
=9(时)
答:9小时以后还相距70千米没有相遇.
例3. A、D两地相距520千米,甲骑摩托车每小时行30千米,乙骑电动车每小时行驶20千米,几小时相遇以后相距70千米?
(520+70)÷(30+20)
=590÷50
=(时)
答:小时相遇以后相距70千米
例4. 甲、乙两站相距840千米,两列火车同时从两站相对开出,8小时后相遇,第一列火车的速度是每小时56千米,问第二列火车的速度是多少?
解法一、
(840-56×8)÷8
=(840-448)÷8
=392÷8
=49(千米)
答:第二列火车的速度是每小时49千米.
解法二、
840÷8-56
=105-56
(千米)49=
答:第二列火车的速度是每小时49千米.
例5. 甲、乙两城相距680千米,从甲城开往乙城的普通客车每小时行驶60千米,2小时后,快车从乙城开往甲城,每小时行80千米,快车开出几小时后两车相遇?
(680-60×2)÷(60+80)
=(680-120)÷140
=560÷140
=4(时)
答:快车开出4小时后两车相遇.
小结:解答一般的相遇问题,我们常规的思路是,抓住相遇问题的基本数量关系:
(甲速+乙速)×相遇时间=路程来解答.但有一些相遇问题的已知和所求比较特殊,如果仍采用常规的解题思路就难以解决问题,针对各种不同的情况,下面介绍几种特殊的解题方法.
一、抓住两个数量差并采用对应的思维方法
例1. 甲车从A城到B城,速度是50千米/小时.乙车从B城到A城,速度是40千米/小时.两车同时出发,结果在离A、B两城的中点C 30千米的地方相遇,求A、B两城间的路程?
分析与解:这道题的条件与问题如图所示.要求A、B两城的距离,关键是求出相遇时间.因路程是未知的,所以用路程÷(甲速+乙速)求相遇时间有一定的困难.抓住题设中隐含的两个数量差,即甲车与乙车的速度差:50千米/小时-40千米/小时=10千米/小时;相遇时两车的路差:30千米×2=60千米.再将其对应起来思维:正因为甲车每小时比乙车多走10千米,所以甲车多走60千米所花去的时间6小时正是两车相遇的时间.因此,求A、B两地距离的综合算式是:
(50+40)×[30×2÷(50-40)]
=90×[60÷10]
=90×6
(千米).540=
答:A、B两地的路程是540千米.
二、突出不变量并采用整体的思维方法
例2. A、B两地间的公路长96千米,张华骑自行车自A往B,王涛骑摩托车自B往A,他们同时出发,经过80分两人相遇,王涛到A地后马上折回,在第一次相遇后40分追上张华,王涛到B地后马上折回,问再过多少时间两个人再相遇?
分析与解:根据题意张华、王涛三次相遇情况可画示意图.这道题如果从常规思路入手,运用相遇问题的基本数量关系来求解是非常不易的.但可根据题中小张、小王三次相遇各自的车速不变和在相距96千米的两地其同时相向而行相遇时间不变,进行整体思维.从图中可以看到:第三次相遇时,王涛走的路程是2AB+BE张华走的路程是AE,两人走的总路程是3个AB,所花的时间是80×3=240(分).可见,从第二次相遇到第三次相遇所经过的时间的综合算式是:
80×3-80-40=120(分).
答:再经过120分钟两人再次相遇.
【模拟试题】(答题时间:30分钟)
1、甲、乙两列火车同时从相距735千米的两地相向而行,甲列车每小时行85
千米,乙列车每小时行90千米,几小时两列火车相遇?
2、两列火车从两个车站同时相向出发,甲车每小时行85千米,乙车每小时行78千米,经过小时两车相遇.两个车站之间的铁路长多少千米?
3、两人骑马同时从相距165千米的两地相对跑来,5小时相遇.第一匹马每小时跑15千米,第二匹马每小时跑多少千米?第二匹马比第一匹马多跑多少千米?
4、小明和张楠分别从相距4320米的甲乙两地同时相对而行,小明骑车每分钟走160米,是张楠步行速度的2倍,多少分钟后两人相遇?
5、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米.已知乙船每小时行42千米,甲船平均每小时行多少千米?
6、一辆汽车和一辆自行车从相距千米的甲、乙两地同时出发,相向而行,3小时后两车相遇.已知汽车每小时比自行车多行千米,求汽车、自行车的速度各是多少?
7、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,乙车每小时行多少千米?小时后两车相遇.5小时,1途中因汽车故障甲车停了.【试题答案】
1、甲、乙两列火车同时从相距735千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?
735÷(85+90)
=735÷175
=(时)
答:小时两列火车相遇.
2、两列火车从两个车站同时相向出发,甲车每小时行85千米,乙车每小时行78千米,经过小时两车相遇.两个车站之间的铁路长多少千米?
(85+78)×
=163×
=(千米)
答:两个车站之间的铁路长千米.
3、两人骑马同时从相距165千米的两地相对跑来,5小时相遇.第一匹马每小时跑15千米,第二匹马每小时跑多少千米?第二匹马比第一匹马多跑多少千米?
165÷5-15 (18-15)× 5
=33-15 =3×5
=18(千米)=15(千米)
答:第二匹马每小时跑18千米.第二匹马比第一匹马多跑15千米.
4、小明和张楠分别从相距4320米的甲乙两地同时相对而行,小明骑车每分钟走160米,是张楠步行速度的2倍,多少分钟后两人相遇?
4320÷(160÷2+160)
=4320÷(80+160)
=4320÷240
=18(分钟)
答:18分钟后两人相遇.
5、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米.已知乙船每小时行42千米,甲船每小时行多少千米?
(654-22)÷8-42
=632÷8-42
=79-42
(千米)37=
答:甲船平均每小时行驶37千米.
6、一辆汽车和一辆自行车从相距千米的甲、乙两地同时出发,相向而行,3小时后两车相遇.已知汽车每小时比自行车多行千米,求汽车、自行车的速度各是多少?
÷3=(千米)
(-)÷2
=26÷2
=13(千米)
13+=(千米)
答:汽车每小时行驶千米,自行车每小时行驶13千米.
7、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇.乙车每小时行多少千米?480-45×(5-1)
=480-180
=300(千米)
300÷5=60(千米)
答:乙车每小时行驶60千米.。

相关文档
最新文档