汽车转向系统动力学(一.二)
汽车转向系统动力学(一.二)
前后侧偏柔度
D i D ai D bi D ci D di D ei D fe D gi
评价指标
瞬态响应的品质参数
固有频率ω0
0
mu ( ak 1 bk 2 ) muI
z
L k1k 2 u L u k1k 2 mI
z
2
1 Ku
2
- 汽车转向系统动力学
28
4-2 汽车操纵稳定性工程分析方法
阻尼比ζ
m a k1 b k 2 I z k1 k 2
- 汽车转向系统动力学
22
4-2 汽车操纵稳定性工程分析方法
Dai侧向力引起的轮胎弹性侧偏角 (º /g)
侧倾外倾引起的侧偏角,(º /g)
k
D bi
k
g
侧倾外倾系数
g 一个g时的外倾角
- 汽车转向系统动力学
23
4-2 汽车操纵稳定性工程分析方法
2
2 1 arctg mua 0 / Lk 2
反应时间τ 峰值反应时间ε
0 1
2
1 arctg
2
0 1
2
- 汽车转向系统动力学
19
4-2 汽车操纵稳定性工程分析方法
频率响应特性
- 汽车转向系统动力学
动力转向工作原理
动力转向工作原理
动力转向是一种用于汽车等车辆的转向系统,其工作原理主要基于液压力。
它通过将驾驶员在转向盘上施加的力转化为液压控制信号,以改变车辆行驶方向。
动力转向系统主要由助力转向泵、助力转向缸和转向阀组成。
当驾驶员转动转向盘时,助力转向泵会自动感应并通过液压来提供额外的力量。
这使得转向更加轻松,并且减少了驾驶员需要施加的力量。
在转向过程中,助力转向泵会将液压油送入助力转向缸。
数字驱动系统通过波纹管和液压缸传递驾驶员的输入力量。
转向阀控制液压油的流量和方向,以实现车辆转向。
当转向盘旋转时,液压油的流动方向和强度也会相应改变,从而使车辆转向。
动力转向系统的信号由转向传感器检测和传递。
转向传感器检测转向盘的位置和角度,并将该信息传送到转向阀。
转向阀再将相应的液压控制信号发送到助力转向泵和助力转向缸,从而调整车辆的行驶方向。
总之,动力转向工作原理是通过液压力来改变车辆方向。
驾驶员通过转动转向盘施加力量,在转向系统的作用下,液压油的流动方向和强度发生变化,使车辆完成转向动作。
第五章 汽车转向系统动力学,
第五章汽车转向系统动力学问题的提出汽车转向系统动力学是研究驾驶员给系统以转向指令后汽车在曲线行驶中的运动学和动力学特性。
这一特性影响到汽车操纵的方便性和稳定性,所以也是汽车安全性的重要因素之一,因而成为汽车系统动力学中重要研究内容之一。
汽车操纵稳定性是与汽车的车速密不可分的,早期的低速汽车还谈不上稳定性的问题,最早出现稳定性的问题,是在具有较高车速的轿车上或赛车上,目前,随着车速的不断提高,轿车、大客车、载货汽车的设计都离不开汽车操纵稳定性的研究。
近年来,有许多学者研究这一问题,并取得很多成果。
操纵性不好的汽车的主要表现:1.“飘” -有时驾驶员并没有发出转向的指令,而汽车开始自己改编本方向,使人感到汽车漂浮2.“贼”-有时汽车像受惊的马,忽东忽西,汽车不听驾驶员的指令;3.“反应迟钝”-驾驶员虽然发出指令。
但是汽车还没有转向反映,转向过程反应较慢;4.“晃”-驾驶员发出了稳定的转型指令,可使汽车左右摇摆,行驶方向难以稳定,当汽车受到路面不平,或者是侧向风扰动时,汽车就会出现左右摇摆;5.“丧失路感”-正常汽车转弯的程度,会通过转向盘在驾驶员的手上产生相应的感觉,有些汽车操纵性不好的汽车,特别是在汽车车速较高时,或转向急剧时会丧失这种感觉,这会增加驾驶员操纵困难,或影响驾驶员的正确判断6.“失去控制”-某些汽车的车速超过一个临界值以后,驾驶员已经不能控制器行驶的方向。
汽车的操纵稳定性:在驾驶者不感到过分紧张、疲劳的条件下,汽车能遵循驾驶者通过转向系及转向车轮给定的方向行驶,且当遭遇外界干扰时,汽车能抵抗干扰而保持稳定行驶的能力。
汽车的操纵性:汽车能及时而准确的反映驾驶员主观操作的能力,也就是按照驾驶员的愿望维持或改变原来的行驶路线的能力。
汽车的稳定性:汽车在外力干扰下,仍能保持或很快恢复原来行驶状态和方向,而不致丧失控制、发生侧滑或翻车的能力。
101两者的关系:操纵性的丧失常导致侧滑、回转、甚至翻车;而稳定性的破坏也往往使汽车失去操纵性,处于危险状态。
第四章汽车转向操纵系统动力学
m0 h c b1 b0
式中 m0 mIz ;
h [mD Iz A];
c mB (AD B2 ) ;
(4 16)
b1 mLa K1;
b0 LK1K 2
回主目录
如果令 r ,则式(4-16)可写成
m0r hr cr b1 b0
(4 17)
这是一个强迫振动的二阶微分方程,可进一步改写为
K
此时
max ch 2L
回主目录
此最大值为轴距L相等的中性转向汽车横摆角
速转代度向轿增量车益增把的加特一时征半,车,即速此设K增时计大为,c6h特5称~征为1车0特0速k征m车/ hch速之。降间当低。不,足当
3. K<0 此时式(4-9)中的分母小于1,横摆角速度增益
比中性转向时大,随着车速的增加,曲线将
回主目录
在国外把这一比值称为静态储备系数S·M(Static
Margin), S M La La K 2 La (4 13)
L
K1 K 2 L
当中性转向作用点
C
与质心重合时,
n
La
L'a
S M 0 中性转向( a1 a2 )
当质心在中性转向作用点之前, La L'a
S M 0 不足转向( a1 a2 )
先将式(4-5)、(4-6)改写成下式 :
A BB DK1aK m1(Iz)
式中 A K1 K 2
B (La Ka1 Lb Ka2 )
D (La 2 K1 Lb 2 K 2 )
(4 14)
(4 15)
回主目录
由式(4-15)得
( I z
D
K1
)
B
代人式(4-14)中消去 ,最后可整理成的微分方程:
汽车系统动力学第二版
汽车系统动力学第二版《汽车系统动力学第二版》是一本关于汽车系统动力学的专业书籍,旨在为读者提供关于汽车动力学的全面理解。
本书通过详细介绍汽车动力学的基本概念、原理和数学模型,帮助读者深入了解汽车系统的运行原理,并掌握相关的分析和设计方法。
第一章介绍了汽车系统动力学的基本概念和研究对象。
汽车系统动力学是研究汽车运动和力学特性的学科,涉及到车辆的加速、制动、转向和悬挂等方面。
本书强调了汽车系统动力学的重要性,指出了它对汽车性能和安全性的影响。
第二章详细介绍了汽车的运动学特性。
运动学是研究物体运动规律的学科,而汽车的运动学特性则包括车辆的速度、加速度和位移等参数。
本章通过引入几何学和向量分析的知识,解释了汽车运动学的基本原理,并给出了相关的计算方法。
第三章讨论了汽车的轮胎力学特性。
轮胎是汽车与地面之间的唯一接触点,它对车辆的牵引、制动和操纵性能起着至关重要的作用。
本章介绍了轮胎的结构和工作原理,并详细阐述了轮胎与地面之间的力学相互作用。
第四章介绍了汽车的悬挂系统。
悬挂系统是连接车身和车轮的重要组成部分,它对车辆的舒适性、稳定性和操控性起着重要作用。
本章从悬挂系统的基本原理入手,介绍了常见的悬挂结构和悬挂元件的设计原则,并讨论了悬挂系统对车辆动力学性能的影响。
第五章讨论了汽车的转向系统。
转向系统是控制车辆转向运动的关键部件,它对车辆的操纵性和稳定性有着重要影响。
本章介绍了转向系统的工作原理和组成部分,并讨论了转向系统的设计和调整方法。
第六章介绍了汽车的制动系统。
制动系统是保证车辆安全的重要组成部分,它对车辆的制动性能和稳定性起着至关重要的作用。
本章详细介绍了制动系统的原理、结构和工作过程,并讨论了制动系统的设计和优化方法。
最后一章总结了全书的内容,并展望了汽车系统动力学领域的未来发展方向。
本书通过详细的理论分析和实例应用,帮助读者深入了解汽车系统动力学的原理和方法,并为汽车工程师和研究人员提供了有价值的参考资料。
汽车系统动力学第1章 车辆动力学概述
第一节 历史回顾
20世纪90年代末期 – 研究人员发现,车辆在高速行驶过程中的横向稳定
裕度较小,通过调节四个车轮的纵向力而形成一定 的回转力矩,就可控制汽车的横摆角速度,由此提 出了“直接横摆控制”(Direct Yaw moment Control,简称DYC)算法,并经试验验证了该算法 的有效性。在此基础上,近年来又提出了限制一定 侧偏角范围的车辆动力学控制(Vehicle Dynamics Control,简称VDC)。 自2000年以来 – VDC系统得到了各国汽车厂商关注,并进行开发研 制。
第一章 车辆动力学概述
世纪商务英语听说教程 专业篇I (第五版)
主讲:朱明
高级工程师、高级技师、国家经济师 高级国家职业技能鉴定考评员 高级技能专业教师
汽车系统动力学
第一章 车辆动力学概述
• 第一节 历史回顾 • 第二节 研究内容和范围 • 第三节 汽车特性和设计方法 • 第四节 术语、标准和法规 • 第五节 发展趋势
汽车系统动力学
图1-1 底盘控制系统与车辆动力学关系示意图
汽车系统动力学
第一节 历史回顾
20世纪70年代末
– 从飞机设计技术中引入的防抱死制动系统 (Anti-lock Braking System,简称ABS) 可以称得上是向车辆底盘控制迈出的第一步, ABS通过限制制动压力来保证车轮的最佳滑移 率,从而避免了车轮抱死。
量、转向信号传感装置、变车道、J转向
等试验方法的测试技术日趋完善。 人们对非线性操纵响应的理解也愈加深
入,从而使操纵动力学的研究逐渐向高侧向 加速度的非线性作用域扩展。
汽车系统动力学
第一节 历史回顾
最近10年: 计算机技术及应用软件的开发,使建模的
汽车系统动力学习题答案
汽车系统动⼒学习题答案1.汽车系统动⼒学发展趋势随着汽车⼯业的飞速发展,⼈们对汽车的舒适性、可靠性以及安全性也提出越来越⾼的要求,这些要求的实现都与汽车系统动⼒学相关。
汽车系统动⼒学是研究所有与汽车系统运动有关的学科,它涉及的范围较⼴,除了影响车辆纵向运动及其⼦系统的动⼒学响应,还有车辆在垂向和横向两个⽅⾯的动⼒学内容,随着多体动⼒学的发展及计算机技术的发展,使汽车系统动⼒学成为汽车CAE技术的重要组成部分,并逐渐朝着与电⼦和液压控制、有限元分析技术集成的⽅向发展,主要有三个⼤的发展⽅向:(1)车辆主动控制车辆控制系统的构成都将包括三⼤组成部分,即控制算法、传感器技术和执⾏机构的开发。
⽽控制系统的关键,控制律则需要控制理论与车辆动⼒学的紧密结合。
(2)多体系统动⼒学多体系统动⼒学的基本⽅法是,⾸先对⼀个由不同质量和⼏何尺⼨组成的系统施加⼀些不同类型的连接元件,从⽽建⽴起⼀个具有合适⾃由度的模型;然后,软件包会⾃动产⽣相应的时域⾮线性⽅程,并在给定的系统输⼊下进⾏求解。
汽车是⼀个⾮常庞⼤的⾮线性系统,其动⼒学的分析研究需要依靠多体动⼒学的辅助。
(3)“⼈—车—路”闭环系统和主观与客观的评价采⽤⼈—车闭环系统是未来汽车系统动⼒学研究的趋势。
作为驾驶者,⼈既起着控制器的作⽤,⼜是汽车系统品质的最终评价者。
假如表达驾驶员驾驶特性的驾驶员模型问题得到解决后,“开环评价”与“闭环评价”的价值差别也许就不存在了。
因此,在⼈—车闭环系统中的驾驶员模型研究,也是今后汽车系统动⼒学研究的难题和挑战之⼀。
除驾驶员模型的不确定因素外,就车辆本⾝的⼀些动⼒学问题也未必能完全通过建模来解决。
⽬前,⼈们对车辆性能的客观测量和主观之间的复杂关系还缺乏了解,⽽车辆的最终⽤户是⼈。
因此,对车辆系统动⼒学研究者⽽⾔,今后⼀个重要的研究领域可能会是对主观评价与客观评价关系的认识2.⽬前汽车系统动⼒学的研究现状汽车系统动⼒学研究内容范围很⼴,包括车辆纵向运动及其⼦系统的动⼒学响应,还有车辆垂向和横向动⼒学内容。
车辆系统动力学
2. 系统具有整体性
系统虽是由多种元素组成,但系统的性能不 是各元素性能的简单组合,而是相互影响的,所 以这种组合使系统的整体功能获得新的内容,具 有更高的价值。例如一辆汽车是由发动机、传动 系、车轮、车身、操纵系统组成。单有发动机只 能发出动力,不会自己行走,但当发动机装在具 有车轮的汽车底盘上,就成为可以行走的汽车, 成为一种交通工具,其功能就与一台发动机大不 相同。由此可见,研究系统特性应从整体的观点 来看。系统的性能是由其整体性能为代表,而不 是由某一个元素所能代替的。
4. 系统具有功能共性
系统中存在着物质、能量和信息的流动, 并与外界(环境)进行物质、能量和信息的交 流,既可以从外界环境向系统输入或从系统向 外界环境输出物质、能量和信息。这是任何系 统都具有的功能,称为系统的功能共性。如汽 车系统中把燃料的燃烧热能转换为汽车的行驶 动能,在这一过程中,发动机吸收氧气,而排 除废气。这一过程有能量的交流,也有物质的 交流。
第一章 绪论
• 1.1 系统与系统动力学的概念 • 1.2 汽车系统动力学的研究内容和特点 • 1.3 汽车系统动力学的研究方法
1.1 系统与系统动力学的概念
在我们真实的大千世界中,存在着许多由一组物 件构成,以一定规律相互联系起来的实体,这就是系 统,自然界就有太阳系、银河系这样的大系统,这种 系统是脱离人的影响而自然存在,称为自然系统,还 有如生物、原子内部也构成了自然系统,还有一种系 统是通过人的设计而形成的系统,称为人工系统,如 生产系统、交通运输系统、通信系统;人工组合和自 然合成的组合系统,如导航系统。 本文主要是研究人工的物理系统及其特性。 如果把汽车的构成看成是一大系统,那么这一系 统应表示为(如图1-1):
一个系统可能由若干个环节组成,画出各环节的 方框图,然后将这些方框图联系起来,就构成了系 统的方框图。因此,方框图是数学模型-传递函数 的图解化 。
04第四章 汽车转向系统动力学
4.3.2 驾驶员对转向盘的操纵作用与汽 车运动稳定性
现实中的k h 只能取兼顾二者的 适当值。 具体表现在,驾驶员在操纵汽车高速行使 时,既不是紧握乃至完全固定转向盘从而 使k h 很大,也不是完全从转向盘撒手而使 k h为0,而是以适当的力度轻轻握住转向 盘,从而获得合适的k h 。可以说,驾驶员 轻轻搭在转向盘上的 手、腕的作用是使汽 车运动更趋稳定。
(4-9)
(4-10)
式中:前轮转向角、前后轮各侧偏角以及各侧偏力 如图4-6a所示;
m,Iz——汽车质量、绕质心C的转动惯量;
lf、lr——质心C至前、后轴的距离。
又参照图4-6b,可以分别确定各车轮侧偏角为:
f 1 tan f 1
f 2 tan f 2
V l f r V d f r 2
lf d Ih 2k f ( r ) Th 2 dt V
(4-2)’’
当 时:
d 2 mV 2(k f kr ) m V (l f k f lr kr )r 2k f 0(4-30) dt V
dr 2(l f k f lr kr ) I Z dt
(4-19)
dr 2(l ek f l k ) 2(l f ek f lr kr ) I Z r 2l f ek f dt V
2 f 2 f r
比较式(4-19)、(4-20)与 (4-15)、(4-16)可知,前者实际上 相当于是用e kf 和a分别代替后者的kf 和 .
r
(4-61)
车速80km/h,1g=9.8m/s2 图4-18 与前轮转角成比例的后轮转向对汽车侧向加速度响应的影响
汽车线控转向系统控制研究
汽车线控转向系统控制研究摘要:为了提高汽车线控转向系统操纵稳定性,对其控制策略进行了研究。
首先,通过分析系统运动学微分方程,采用Matlab/Simulink软件构建汽车线控转向系统的仿真模型。
设计基于车轮转角的改进滑膜控制策略,在双移线变道工况和阶跃信号转向工况下进行多次联合仿真试验。
结果表明,改进的滑膜控制具有良好的控制效果,此研究的线控转向系统可以提高车辆转向操纵的稳定性。
前言由于汽车线控转向系统取消了传统的机械连接,因此必须采用合理的控制策略来实现方向盘与转向执行机构之间的信号传输,以确保转向的准确性和安全性。
文献[1]设计了一种电机转速模型观测器,以便实时监测由于系统参数变化所带来的低频干扰,并对其进行了补偿。
文献[2]通过分析转向系统的几何结构,采用模糊自适应PID控制,有效地抑制了电流误差,提高了助力力矩的精确度。
文献[3]系统地总结了汽车线控转向系统的发展,并分析了线控转向系统的关键控制策略。
文献[4]利用BP神经网络模拟出不同工况下的转向助力矩,仿真结果表明,车辆具有良好的转向轻便性。
SBW系统工作环境较为复杂,容易受到外界干扰的影响,方向盘与转向电机之间的信号转换与传输过程的准确性尤为重要。
本次研究将建立基于前轮转角误差控制的系统模型,以改善系统控制的有效性,提高汽车线控转向的准确性。
1 线控转向系统工作原理及动力学建模1.1 线控转向系统结构与工作原理线控转向系统主要是由方向盘模块和转向执行模块组成,其组成如图1所示。
当汽车转向时,传感器将方向盘的转角、转矩信号传递到主控制器ECU。
ECU根据方向盘转角、转矩及车辆状态等信息,经计算处理后,得到转向电机驱动电流,并通过电机驱动器将其施加给驱动电机,以控制转向执行电机,输出相应的转矩,从而保证汽车稳定转向。
路感电机可以根据路面信息模拟出相应的路感信息,并通过方向盘传递给驾驶员,使其掌握车辆在路面的行驶状态,从而加强对车辆的操控。
汽车转向行驶的动力学方程
汽车转向行驶的动力学方程引言:汽车转向是指通过转动方向盘,使车辆改变行进方向的过程。
在汽车转向过程中,涉及到许多力的作用,如转向力、转向阻力、惯性力等。
为了研究汽车转向行驶的动力学特性,需要建立相应的动力学方程。
本文将对汽车转向行驶的动力学方程进行详细介绍。
一、转向力的作用在汽车转向行驶过程中,转向力起着至关重要的作用。
转向力是指由转向机构传递到转向轮的力,它使得转向轮能够改变车辆行进方向。
转向力的大小与方向盘的转动角度成正比,可以用以下公式表示:转向力 = 方向盘转动角度× 转向力系数二、转向阻力的影响除了转向力外,转向阻力也会对汽车转向行驶产生影响。
转向阻力是由转向系统的摩擦力和阻尼力造成的,它会抵消部分转向力,影响车辆的转向灵活性。
转向阻力的大小取决于转向系统的设计和质量,一般情况下,转向阻力可以通过增加液压助力装置来减小。
三、惯性力的作用在汽车转向行驶过程中,惯性力也会对转向产生影响。
惯性力是指车辆由于转向而产生的向外甩出的力,它会阻碍车辆的转向。
惯性力的大小与车辆的质量和转弯半径有关,质量越大、转弯半径越小,惯性力越大。
为了克服惯性力的影响,需要施加更大的转向力。
四、动力学方程的建立为了描述汽车转向行驶的动力学特性,可以建立如下的动力学方程:转向力 - 转向阻力 = 惯性力根据这个动力学方程,可以进一步推导出具体的数学表达式,从而研究汽车转向行驶过程中各种力的变化规律。
五、影响转向行驶的因素除了转向力、转向阻力和惯性力外,还有一些其他因素也会对汽车转向行驶产生影响。
其中包括路面摩擦力、车辆的速度、车轮的转动角度等。
这些因素的变化都会对汽车的转向行驶产生影响,需要进行综合考虑。
六、转向系统的优化设计通过对汽车转向行驶的动力学方程进行研究,可以得出一些优化设计的原则。
例如,提高转向力的传递效率、减小转向阻力、降低惯性力的影响等。
这些原则可以指导转向系统的设计和改进,提高汽车的转向性能和操控稳定性。
第四节 转向系统动力学
Engine Vibration Flex Body
Complete steering Friction model
Uneven road dynamics Wheel model …… ……
1930s 1960s
1970s
Linear performance model
1990s
Nonlinear performance model
2014-07-03
吉林大学 汽车仿真与控制国家重点实验室
3
对模型的需求
转向系统模型是描述汽车方向盘转角与方向盘回 正力矩、前轮转角之间关系的模型。转向系统模 型建立的合理性和准确性是汽车动力学仿真精度 和可信度的保证
根据驾驶员的指令输入操作车轮的转向,保证汽 车整体的方向控制
需要时刻反馈方向盘的力感的动态响应; 反映左右转向轮的相位关系,实现左右转向轮贯
2014-07-03
吉林大学 汽车仿真与控制国家重点实验室
12
几种典型转向系统
SCFs NADS Tesis Carsim 华沙 ASCL
2014-07-03
吉林大学 汽车仿真与控制国家重点实验室
13
SCFs
SCFs转向系统模型是由通用汽车公司 的W. Keith Adams和Richard W. Topping 于2001年提出的,利用一系列特性函数 来描述转向系统特性的模型
转向系统动力学
吉林大学 汽车仿真与控制国家重点实验室
转向系统 由转向盘到车轮的传递系统称为转向系统
R
L
2014-07-03
吉林大学 汽车仿真与控制国家重点实验室
2
转向系统功能
改变和保持汽车的行驶方向 一方面,驾驶员通过转向系统控制前轮转
汽车转向系统动力学性能的仿真分析
汽车转向系统动力学性能的仿真分析汽车是现代社会的必需品之一,而转向系统作为汽车最基本的控制系统之一,也是汽车安全性能最直接相关的部件之一。
转向系统的好坏对于安全行车至关重要。
在汽车设计中,转向系统的动力学性能是一个非常重要的指标,因此对其进行仿真分析可以有效地提高汽车安全性能和行驶稳定性。
汽车转向系统的动力学性能受到多种因素的影响,如转向系统的目标点、转向系统的转向角度、车辆的速度、地面的摩擦力等等。
因此,分析转向系统的动力学性能不仅需要考虑转向系统本身的特性,还要考虑车辆的实际行驶环境以及路面的状态。
为了对汽车转向系统的动力学性能进行分析,可以利用虚拟仿真技术来模拟汽车转向过程中的各项数据,并通过数据分析来得出转向系统的动力学性能指标。
虚拟仿真技术是指利用计算机模拟现实世界中各种场景和物理过程的技术,通过分析和计算来得出需要的结果。
在进行汽车转向系统的动力学性能仿真分析时,需要先构建汽车转向系统的模型,并且确定好模型的各项参数。
一般来说,模型的参数可以根据车辆的实际情况进行调整,如车辆的长度、车宽、质量、轮胎压力等等。
通过模型构建和参数的确定,可以为汽车转向系统的仿真分析提供可靠的数据。
在进行仿真分析时,需要将模型放置在特定的环境中,如模拟特定的道路、交通状况等等。
然后,将各种力和扭矩作用于模型上,以模拟汽车在实际行驶过程中的环境和载荷。
通过对模拟过程中所得到的数据进行分析,可以得到很多有价值的信息。
如汽车的行驶稳定性、转向系统的响应速度、转向优化效果等等。
这样,设计师们可以通过仿真分析来修改和优化转向系统的设计方案,以提高汽车的行驶稳定性和安全性能。
值得注意的是,汽车转向系统的动力学性能仿真分析需要借助一些现代化的仿真软件,如Msc.Adams、MATLAB、AutoCAD等等。
这些专业仿真软件可以大大提高仿真分析的精度和准确性,从而得到更加可靠的分析结果。
总而言之,汽车转向系统的动力学性能仿真分析对于汽车设计和生产来说是非常重要的。
汽车系统动力学 (1)
第一章车辆动力学概述(1学时)
第一节研究内容和范围
第二节车辆特性和设计方法,及发展趋势
第二章车辆动力学建模方法及基础理论(2学时)
第一节动力学方程的建立方法
第二节多体系统运动学,动力学
第三章轮胎动力学(3学时)
第一节轮胎模型
第二节轮胎纵向力学特性
第三节轮胎垂向力学特性
第二节基于matlab的车辆系统建模、仿真与控制器设计实例
第三节应用adams软件的多体动力学实例分析(课外上机)
三、教材和参考书
教材:
喻凡,林逸编著,汽车系统动力学,机械工业出版社,2005.9
Rajesh Rajamani,Vehicle Dynamics And Control,Birkhäuser, 2006
作业安排:要求学生自学几个主流的汽车动力学软件,布置几个相关的大作业(车辆动力学建模与仿真分析),加深了解相关的学习内容。
考核安排及成绩评定方法:以平时的上课出勤率,提交计算分析报告的情况,以及最后的考试为依据,进行本课程成绩的最终评定。
五、拟任课教师情况
申焱华(主讲),副教授,博士,近3年的任课情况:(本科)车辆人机工程,现代设计方法概论;(研究生)多体动力学;
参考书:
(1)Thomas D.Gillespie著,赵六奇,金达锋译,车辆动力学基础,清华大学出版社,2006.12
(2)Manfred Mitschke, Henning Wallentowitz著,陈荫三,余强译汽车动力学(第四版)清华大学出版社,2009.12
(3)Dave Crolla,喻凡著,车辆动力学及其控制,人民交通出版社,2004。1
第一节车辆扩展操纵模型的推导
差速转向动力学
差速转向动力学一、引言差速转向是汽车的一个重要部分,它可以让车辆在转弯时更加稳定和灵活。
在本文中,我们将讨论差速转向的动力学原理。
二、差速器的基本原理差速器是汽车传动系统的一个重要组成部分,它通过不同的齿轮比例来实现左右轮胎的旋转速度不同。
当车辆行驶直线时,左右轮胎的旋转速度应该相同。
但是,在转弯时,内侧轮胎需要旋转更慢,而外侧轮胎需要旋转更快。
这就是差速器发挥作用的时候。
三、差速器的工作原理当车辆在直线上行驶时,左右两个半轴上的齿轮会以相同的速度旋转。
但是,在转弯时,内侧半轴上的齿轮需要比外侧半轴上的齿轮旋转得慢一些。
这就是因为内侧半轴所连接的车轮需要绕着一个更小的圆周运动。
为了实现这种不同速度旋转,差速器采用了一种特殊设计。
它由三个主要部分组成:环齿、行星齿轮和太阳齿轮。
当车辆在直线上行驶时,环齿和太阳齿轮的旋转速度相同,而行星齿轮不会旋转。
但是,在转弯时,内侧半轴上的环齿和太阳齿轮之间会有一个相对运动,这样就可以使内侧半轴上的车轮旋转得更慢。
四、差速器的限制差速器虽然可以使车辆在转弯时更加稳定和灵活,但它也有一些限制。
首先,差速器只能控制左右两个半轴上的车轮旋转速度,而无法控制前后两个半轴上的车轮旋转速度。
这意味着当一个车轮失去牵引力时,它会自由旋转,并且可能导致车辆失控。
此外,在某些情况下,差速器可能会因为过度滑动而损坏。
例如,在冰雪路面或泥泞路面行驶时,差速器可能会因为左右两个半轴上的车轮无法牢固地抓住地面而过度滑动。
五、结论总之,差速器是汽车传动系统的一个重要部分,它可以使车辆在转弯时更加稳定和灵活。
但是,差速器也有一些限制,需要注意使用。
在实际驾驶中,我们需要根据路况和天气状况来合理使用差速器,以确保行驶安全。
汽车系统动力学教学大纲
汽车系统动力学教学大纲汽车系统动力学教学大纲引言:汽车系统动力学是汽车工程领域中的重要学科之一。
它研究汽车的动力学性能,包括车辆的悬挂系统、转向系统、制动系统等。
本文将介绍汽车系统动力学教学的大纲,旨在帮助学生全面了解汽车系统动力学的基本原理和应用。
一、课程概述汽车系统动力学课程是汽车工程专业的核心课程之一,主要介绍汽车的动力学性能与操控特性。
通过本课程的学习,学生将能够掌握汽车系统动力学的基本原理和应用,为日后从事汽车工程相关领域的工作打下坚实的基础。
二、教学目标1. 理解汽车系统动力学的基本概念和原理;2. 掌握汽车悬挂系统、转向系统、制动系统等的设计和调整方法;3. 能够分析汽车动力学性能,并提出相应的改进措施;4. 培养学生的实际动手能力和团队合作精神。
三、教学内容1. 汽车系统动力学基础知识a. 车辆坐标系和参考系b. 汽车运动学和动力学基本方程c. 车辆的质量和惯性特性d. 车辆悬挂系统的结构和工作原理2. 汽车悬挂系统动力学a. 悬挂系统的类型和分类b. 悬挂系统的参数对车辆动力学性能的影响c. 悬挂系统的调整和优化方法3. 汽车转向系统动力学a. 转向系统的结构和工作原理b. 转向系统的参数对车辆操控性能的影响c. 转向系统的调整和优化方法4. 汽车制动系统动力学a. 制动系统的结构和工作原理b. 制动系统的参数对车辆制动性能的影响c. 制动系统的调整和优化方法5. 汽车系统动力学的实验与仿真a. 汽车系统动力学实验的设计和实施b. 汽车系统动力学仿真软件的应用四、教学方法1. 理论授课:通过课堂讲解,向学生传授汽车系统动力学的基本理论知识;2. 实验教学:组织学生进行汽车系统动力学实验,培养学生的动手能力和实践能力;3. 仿真教学:利用计算机仿真软件,模拟汽车系统动力学的运动过程,帮助学生理解和分析实际问题;4. 讨论与案例分析:组织学生进行小组讨论,分析实际案例,培养学生的团队合作和问题解决能力。
汽车转向行驶的动力学方程
汽车转向行驶的动力学方程转向是汽车行驶中的一个重要操作,通过转动方向盘,驱动轮将发生转向,从而改变汽车的行驶方向。
转向行驶的动力学方程是描述转向过程的数学模型,可以帮助我们理解汽车转向的原理和行为。
在转向行驶的动力学方程中,涉及到几个重要的力和力矩。
首先是转向力矩,它是由驾驶员通过方向盘施加在前轮上的力矩。
这个力矩将使前轮发生转向,从而改变汽车的行驶方向。
转向力矩的大小和方向取决于驾驶员的操作力和方向盘的转动角度。
另一个重要的力是前轮与地面之间的摩擦力。
当前轮发生转向时,转弯半径会改变,而摩擦力将提供一个向心力,使汽车保持在曲线轨道上。
摩擦力的大小取决于前轮与地面的摩擦系数以及前轮与地面之间的接触面积。
还有惯性力和离心力。
惯性力是由于汽车在转弯过程中的惯性而产生的,它的方向与转弯方向相反。
离心力是由于转弯过程中汽车的加速度而产生的,它的方向指向转弯中心。
这两个力的大小取决于汽车的质量、速度和转弯半径。
综合考虑以上力和力矩,可以得到汽车转向行驶的动力学方程。
这个方程可以用来计算汽车在转弯过程中的加速度、转角和转弯半径等参数。
根据这个方程,可以优化汽车的转向系统设计,提高转向的精确度和稳定性。
除了动力学方程,还有其他因素会影响汽车的转向行驶。
例如,前轮的悬挂系统和轮胎的特性会对转向行为产生影响。
悬挂系统的硬度和轮胎的摩擦系数会改变转向的灵敏度和稳定性。
此外,路面的条件也会对转向行驶产生影响,如路面的摩擦系数和坡度等。
在实际驾驶中,驾驶员需要根据转向行驶的动力学方程和其他因素进行判断和操作。
通过合理地施加转向力矩和控制速度,驾驶员可以实现安全、稳定的转向行驶。
理解和掌握转向行驶的动力学方程,对驾驶员来说是非常重要的。
汽车转向行驶的动力学方程是描述转向过程的数学模型,可以帮助我们理解转向的原理和行为。
通过合理地施加转向力矩和控制速度,驾驶员可以实现安全、稳定的转向行驶。
掌握转向行驶的动力学方程,对于驾驶员来说具有重要意义。
汽车四轮转向四自由度动力学模型
汽车四轮转向四自由度动力学模型一、引言汽车作为现代交通工具的重要组成部分,其行驶稳定性和操控性能成为人们关注的焦点。
为了更好地理解汽车转向过程,研究者提出了汽车四轮转向四自由度动力学模型。
本文将对该模型进行介绍和分析。
二、汽车四轮转向四自由度动力学模型汽车四轮转向四自由度动力学模型是一种理论框架,用于描述汽车在转向过程中的运动规律。
该模型将汽车视为一个具有四个自由度的系统,包括纵向运动、横向运动、横摆运动和侧滑运动。
1. 纵向运动自由度纵向运动自由度是指汽车在纵向方向上的运动。
它受到引擎输出的动力和制动系统的制动力的影响。
在转向过程中,纵向运动自由度的变化可以影响汽车的加速度和制动效果。
2. 横向运动自由度横向运动自由度是指汽车在横向方向上的运动。
它受到转向系统的影响,包括前轮转向角度和转向系统的响应特性。
横向运动自由度的变化会影响汽车的横向加速度和侧向稳定性。
3. 横摆运动自由度横摆运动自由度是指汽车绕垂直轴线旋转的运动。
它受到转向系统和车身结构的影响,包括转向系统的转向角速度和车身的转动惯量。
横摆运动自由度的变化会影响汽车的横摆角度和横摆稳定性。
4. 侧滑运动自由度侧滑运动自由度是指汽车的轮胎与地面之间的相对滑动。
它受到横向运动和横摆运动的影响,包括车轮滑动角度和侧向力的变化。
侧滑运动自由度的变化会影响汽车的侧向力和侧滑稳定性。
三、应用与研究进展汽车四轮转向四自由度动力学模型在汽车工程领域具有广泛的应用价值。
它可以用于汽车设计和操控性能评估,帮助工程师改进汽车的转向系统和悬挂系统,提高汽车的稳定性和操控性能。
研究者们在汽车四轮转向四自由度动力学模型的基础上进行了许多深入的研究。
他们通过理论模拟和实验验证,对汽车转向过程中的动力学特性进行了深入分析,为汽车操控性能的提升提供了重要的理论支持。
随着自动驾驶技术的发展,汽车四轮转向四自由度动力学模型也得到了进一步的应用。
研究者们通过建立更加精确的模型,优化汽车的自动驾驶算法,提高汽车的驾驶安全性和舒适性。
乘用车底盘的转向系统的动力学特性分析与优化
乘用车底盘的转向系统的动力学特性分析与优化转向系统是乘用车底盘的重要组成部分之一,其性能对车辆的操控和行驶稳定性起着至关重要的作用。
本文将对乘用车底盘的转向系统的动力学特性进行分析,并提出优化方案。
在乘用车底盘的转向系统中,主要包括转向柱、转向机构、转向齿轮、转向销、转向阻尼器等部件。
这些部件的协作使得车辆能够实现转向动作,保证驾驶员可以准确、灵活地控制车辆的行驶方向。
首先,我们需要分析乘用车底盘的转向系统的动力学特性。
转向系统的动力学特性反映了车辆操控性能以及操纵稳定性。
主要包括以下几个方面:1. 转向系统的转向比:转向比是描述转向系统输入角度与输出角度之间关系的参数。
转向比的大小直接影响到车辆的操控性能。
较小的转向比可以提供较大的转向力矩,使车辆操控更为灵活。
而较大的转向比则可以提供较小的转向力矩,提高驾驶舒适性。
因此,在优化转向系统的动力学特性时,需要综合考虑转向比与操控性能之间的平衡。
2. 转向系统的稳定性:转向系统的稳定性是指在车辆行驶过程中,转向系统是否能够保持稳定。
若转向系统出现瞬时失稳或非线性特性,将会对车辆的操纵稳定性产生不利影响。
因此,必须对转向系统的稳定性进行分析和优化,保证在不同的行驶条件下,车辆的转向系统保持稳定。
3. 转向系统的灵敏度:转向系统的灵敏度主要是指驾驶员对于方向盘的转动所产生的转向力矩的感知能力。
灵敏度较高的转向系统可以使驾驶员对车辆的操控更为精确、准确。
在优化转向系统的动力学特性时,需要适度提升转向系统的灵敏度,以便驾驶员更好地感知车辆的转向情况。
针对上述动力学特性,我们可以采取以下优化措施:1. 优化转向系统的传动机构:转向系统的传动机构包括转向柱、转向齿轮等部件。
通过优化传动机构的设计和材料选择,可以减小转向系统的传动损失和摩擦,提高转向系统的效率和灵敏度。
2. 优化转向系统的阻尼器:转向系统的阻尼器起到减震和稳定转向系统的作用。
通过优化阻尼器的设计和调整阻尼力的大小,可以提高转向系统的稳定性和舒适性。
汽车系统动力学第13章 转向系统动力学及控制
第二节 转向系统振动分析
轮胎的侧向弹性恢复力与变形的滞后关系及示功图
第二节 转向系统振动分析
三、前轴与前轮的耦合振动 前面我们分别介绍了车辆前轴的侧倾振动和前轮绕主销的摆 振问题。然而,车辆在实际行驶中,前轴侧倾振动和前轮摆振 可能相互耦合,并对车辆操纵性和行驶稳定性的影响很大。 虽然摆振的机理和影响因素很复杂,用于摆振研究的数学模 型也很多,然而为了便于说明摆振现象,可以在模型建立过程 中对一些数学上难于处理的非线性问题进行简化处理,如忽 略悬架弹性和阻尼的非线性特性及一些如零部件的间隙和干 摩擦等次要因素。这里,首先建立考虑前轮和前轴耦合振动 的线性模型,再给出一些典型的分析结果[2,3]。
第二节 转向系统振动分析
某非独立悬架汽车摆振模型参数
第二节 转向系统振动分析
首先考察随横拉杆刚度K0和转向机构刚度Kp的影响,在不同K0 和Kp的条件下,前轮摆振振幅随车速变化的关系分别如图13-11 和图13-12所示。由图可见,前轮摆振的幅值将随横拉杆刚度K0 和转向机构刚度Kp的增加而减小。 此外,考察转向机构刚度对系统的固有频率fns和相对阻尼系数ζ 的影响,如图13-13所示。由图可见,系统的固有频率fns和相对 阻尼系数ζ将随转向机构刚度的增加而提高。当转向机构刚度 Kp低于7kN·m/rad时,前轮摆振系统进入不稳定区。 最后,考察系统可能出现自激型摆振的车速范围。系统的相对阻 尼系数ζ随车速的变化关系如图13-14所示。当车速在 32~69km/h范围内时,系统相对阻尼系数ζ<0,即系统出现负 阻尼而发生自激振动。当车速低于30km/h和高于75km/h时, 系统相对阻尼系数ζ>0,系统为受迫振动系统。
第二节 转向系统振动分析
车辆前轴绕车辆坐标系x轴的自由振动
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 汽车转向系统动力学
3
4-1 概述
T
r1
r0
1.05r0
r (t) 0.95r0
t
sw
转向盘转角sw0
t
r
稳态横摆角速度
0
反应时间
r1最大横摆角速度 峰值反应时间
r1 100%超调量 r0
稳定时间
- 汽车转向系统动力学
4
4-1 概述
瞬态响应特征评价参数
➢横摆角速度响应时间 ➢横摆角速度峰值响应时间 ➢横摆角速度超调量 ➢横摆角速度总方差 ➢侧向加速度响应时间 ➢侧向加速度峰值时间 ➢侧向加速度超调量 ➢侧向加速度总方差 ➢汽车因素TB ➢稳态横摆角速度增益
- 汽车转向系统动力学
2
4-1 概述
ISO 试验
steady-state circular driving behaviour open-loop test procedure lateral transient response tests methods open-loop test methods braking in a turn – open-loop test procedure test track for a severe lane-change manoeuvre part 1 : double-
- 汽车转向系统动力学
11
4-2 汽车操纵稳定性工程分析方法
运动微分方程
lim ax
t0
u
t
ur
lim 和ay
t0
u+
t
ur+
Y向力平衡
FY1cosFY2m(ur+ ) FY1FY2m(ur+ )
对质心取矩
L1FY1c osL2FY2Iz r L1FY1L2FY2Iz r
- 汽车转向系统动力学
12
- 汽车转向系统动力学
15
4-2 汽车操纵稳定性工程分析方法
评价指标
➢ 稳态响应
转向灵敏度
r const,
0,
=
r
0
- 汽车转向系统动力学
5
4-1 概述
主观评价法:驾驶员根据不同的驾驶任务操纵汽车时, 依据对操纵动作难易程度的感觉来对汽车进行评价
直线行驶稳定性(包括转向回正能力、侧风敏感性、路面不 平敏感性等)
行车变道的操纵性 转弯稳定(包括转向的准确性、固有转向特性、转弯制动特
性等) 操纵负荷 多弯道路段上汽车总特性的评价。 汽车的乘坐操纵舒适性(空间、力度等,如踏板、手柄)
➢ 反映稳态特性的参量:不足转向量1-2,转向灵敏度 和汽车重心侧偏角。
➢ 时域反映横摆运动瞬态响应的参量:峰值反应时间和横 摆角速度超调量。
➢ 频域反映横摆运动瞬态响应的参量:固有频率,幅值比 和相位差。
➢ 综合参量:汽车因素 TB,TB 必须在同一工况下得出, 通常 V=31.3 m/s,ay= 0.4g。
= i
- 汽车转向系统动力学
10
4-2 汽车操纵稳定性工程分析方法
假设条件
☆ 忽略转向系的影响,以前轮转角作为输入; ☆ 汽车只进行平行于地面的平面运动,而忽略悬架的作用; ☆ 汽车前进(纵轴)速度不变,只有沿y轴的侧向速度和绕z
轴的横摆运动(ay<0.4g) ;
☆ 驱动力不大,对侧偏特性无影响; ☆ 忽略空气阻力; ☆ 忽略左右轮胎因载荷变化引起轮胎特性的变化; ☆ 忽略回正力矩的变化。
驾驶员-汽车闭环系统
- 汽车转向系统动力学
9
4-2 汽车操纵稳定性工程分析方法
数学模型
为了简化数学模型并保证足够的工程分析精 度,把多自由度模型缩减为只有y 和的二自由 度模型。其方法是忽略y 和以外其它自由度的 惯性和阻尼而计及它们运动的静态耦合效应。
只要把简单的二自由度模型中的轮胎侧偏刚 度换以综合了各种侧偏效应的车轮当量侧偏刚 度,就可变成缩减的二自由度数学模型。即:
lane change test track for a severe lane-change manoeuvre part 2 : obstacle
avoidance power off reactions of a vehicle in a turn- open-loop test
method
- 汽车转向系统动力学
7
4-1 概述
实例
驾驶员对 14个车辆方案中的每 个方案进行汽车易操纵性的主观 评价,然后将14个车辆方案进行 主观排序。
- 汽车转向系统动力学
8
4-1 概述
理论研究方法
➢ 开环线性系统 ➢ 闭环系统
路面条件 交通状况
气候
驾驶员
驾驶员 的手脚
侧风 路面不平
汽车
汽车运动
(横摆、侧倾...)
4-2 汽车操纵稳定性工程分析方法
运动微分方程
, L1 r
u
u
1
(
)
L1 r
u
2
L2 r
u
L2 r
u
F Y 1 k 11 F Y 2 k 22
- 汽车转向系统动力学
13
4-2 汽车操纵稳定性工程分析方法
运动微分方程
k11 k 2 2 m(u r )
L1k1
1
L2 k 2 2
汽车转向系统 动力学(一.二)
- 汽车转向系统动力学
4-1 概述
客观评价法r、ay、p(侧倾)和 角转向力等
蛇形试验
转向回正性能试验
方向盘转角阶跃输入试验 转向轻便性试验
方向盘转角脉冲输入试验 稳态回转试验
GM 试验
Control Response Test Frequency Response Test Maximum Lateral Accelaration Test On-center Handling Test
- 汽车转向系统动力学
6
4-1 概述
主观评价法:驾驶员根据不同的驾驶任务操纵汽车时, 依据对操纵动作难易程度的感觉来对汽车进行评价
人数:不少于20,有经验、有文化 的普通驾驶员 路:L>50Km,Vmax不小于最高车速的70% 车辆:正常 主观评分:如5级分制:5,4,3,2,1 ,对应于
很好,较好,中等,较差,很差。 NT=(l*wl+c*wc+R*wr+S*ws+F*wf)/5
I z r
将
1
2
(
)
L2
u
r
L1 r
u
L2
u
r
代
入
,
则
FY
(k1 ( L1k1
k2)
L2k2
( L1k1
) (
L2k2 L12 k1
)r
u L22 k 2
k1 m(
)r
u
L1k1
u r )
TZ
I z r
- 汽车转向系统动力学
14
4-2 汽车操纵稳定性工程分析方法
评价指标