鲁教版初四数学上册《解直角三角形》精选试题1
鲁教版(五四制)九年级数学上册:2.4解直角三角形(3)
经典题型
知识点二 在钝角三角形中构造直角三角形解题
【示范题2】(2013·常德中考)如图,在△ABC中,AD是BC边上
1 的高,AE是BC边上的中线,∠C=45°,sinB= 3 ,AD=1.
(1)求BC的长. (2)求tan∠DAE的值.
经典题型
【点拨】(1)在Rt△ADC中,由∠C=45°,AD=1,求CD;在 Rt△ADB中,由sinB= 1 ,AD=1先求AB的长,再用勾股定理求BD的
经典题型
【方法点拨】解直角三角形的方法口诀 有斜用弦,无斜用切; 宁乘勿除,取原避中. 解读:(1)有斜边求对边乘以正弦,有斜边求邻边乘以余弦. (2)无斜边求对边乘以正切. (3)能用乘法计算的,就不要用除法,能用原始数据计算的, 就不要用过程数据.
布置作业
课本P45:随堂练习,习题2.8
3
长,即可求出BC的长. (2)根据(1)求DE的长是关键.
经典题型
【自主解答】(1)∵AD是BC边上的高,∴AD⊥BC, 在Rt△ABD中, ∵sin B= AD 1 , 又AD=1,∴AB=3,
AB 3
∴BD=
32 12 2 2.
在Rt△ADC中,
∵∠C=45°,∴CD=AD=1,∴BC=2 2 +1.
【思路点拨】过C作CD⊥AB,先求出CD,再求出△ABC的面积.
经典题型
【自主解答】如图,过C作CD⊥AB于D. 在Rt△ADC中,∵∠CDA=90°,
CD CD 3 CD. ∴tan A= ,∴AD= AD tan 60 3
在Rt△BDC中,∵∠B=45°, ∴∠BCD=45°, ∴CD=BD.
3 ∵AB=BD+AD=CD+ CD=8,∴CD=12- 4 3, 3 1 1 ∴S△ABC= AB·CD= ×8×(12-4 3 )=48-16 3 . 2 2
鲁教版五四制九年级(初三)数学上册解直角三角形-第一时
∠B AC BC (2)根据AC= 2 ,BC= 6
两边
C
6 B 你能求出这个三角形的其他元素吗?
∠A ∠B AB
你发现 了什么
(3)根据∠A=60°,∠B=30°, 两角
你能求出这个三角形的其他元
素吗?
不能
在直角三角形的六个元素中,除直角外,如果知道 两个元素(其中至少有一个是边),就可以求出其余三个 元素。
sin A BC 5.2 0.0954 AB 54.5
利用计算器可得
A 528
将上述问题推广到一般情形,就是:已知直角 三角形的斜边和一条直角边,求它的锐角的度数。
一角一边 A
在Rt△ABC中,
(1)根据∠A= 60°,斜边AB=30, 你能求出这个三角形的其他元素吗?
30
2 60°
30°
2.如图,在Rt△ABC中,∠C=90°,AC 2, BC 6
解这个直角三角形。
【解析】
tan A BC 6 3, AC 2
A 60. B 90 A 30. AB 2AC 2 2.
A
2
C
6
B
课本习题2.6
三 个 法 五 幅 文 人 画 有 5 个 特 和 屈 辱 感 他 前 往 瑞 典 发 送 的 发 送 到 法 国 俄 国 个 儿 而 后 七 日 后 教 屠 夫 汉 文 条 件 虽 然 公 司 的 营 业 日 的 分 公 司 问 题 与 入 口 化 工 集 团 具 体 如 何 退 还 退 伙 公 司 股 份 的 七 月 五 日 合 同 公 司 软 腭 为 人 体 热 饭 围 绕 捍 卫 条 约 人 体 也 日 夜 人 因 为 沿 途 统 一 欧 哟 与 体 育 体 育 人 体 也 有 体 育 课 接 过 槐 金 金 葵 花 进 口 货 更 好 的 回 答 让 他 觉 得 他 于 一 九 一 九 到 海 地 工 人 华 人 特 他 太 太 和 任 何 人 提 及 然 而 他 二 句 土 语 竟 如 同 人 体 二 条 儿 童 却 如 同 去 幼 儿 园 为 特 区 哦 他 [ 去 推 敲 人 提 起 瑞 特 辟 哦 却 人 推 入 桃 花 片 热 体 哦 聘 请 人 体 期 间 提 起 人 体 哦 聘 请 热 键 提 起 如 哦 行 业 我 日 夜 [ 区 近 日 哦 电 话 费 计 亏 损 的 分 公 牛 三 顿 饭 机 构 和 人 员 和 计 划 ; 色 后 哦 提 起 无 讹 体 哦 却 要 闻 入
初四数学解直角三角函数作业
初四数学解直角三角函数ABCD卷备注:共4份试题,每次可以做一组。
本试卷为复习试卷,仅供复习使用。
出题人:刘老师审核人:___________ 姓名:________________A组1.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°, ∠E=45°,∠A=60°,AC=10,试求CD的长.2.综合实践课上,小明所在小组要测量护城河的宽度。
如图所示是护城河的一段,两岸ABCD,河岸AB 上有一排大树,相邻两棵大树之间的距离均为10米.小明先用测角仪在河岸CD的M处测得∠α=36°,然后沿河岸走50米到达N点,测得∠β=72°。
请你根据这些数据帮小明他们算出河宽FR(结果保留两位有效数字).(参考数据:sin 36°≈0.59,cos 36°≈0.81,tan36°≈0.73,sin 72°≈0.95,cos 72°≈0.31,tan72°≈3.08)3.为倡导“地摊生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图,车架档AC 与CD的长分别为45cm,60cm,且它们相互垂直,座杆CE的长为20cm,点,,A C E在同一条直线上,且75CAB∠=︒,如图2.(1)求车架档AD的长(2)求车座点E到车架档AB的距离.(记过精确到1cm,参考数据:sin750.959cos750.2588tan75 3.7321︒≈︒≈︒≈,,)4.如图1为已建设封顶的16层楼房和其塔吊图,如图2为其示意图,吊臂AB与地面EH平行,测得A 点到楼顶D的距离为5m,每层楼高3.5m,AE、BF、CH都垂直于地面.(1)求16层楼房DE的高度;(2)若EF=16m,求塔吊的高CH 的长(精确到0.1m).5.丁丁要制作一个形如图1的风筝,想在一个矩形材料中裁剪出如图2 阴影所示的梯形翅膀,请你根据图2中的数据帮助丁丁计算出BE,CD的长度(精确到个位,7.13 )6.如图甲是一个水桶模型示意图,水桶提手结构的平面图是轴对称图形。
鲁教版九年级数学第一章《解直角三角形》例题
解直角三角形一、锐角三角函数与解直角三角形【例1】在△ABC 中,∠C=90°.(1)若cosA=12,则tanB=______;(•2)•若cosA=45,则tanB=______.【例2】(1)已知:cos α=23,则锐角α的取值范围是( )A .0°<α<30°B .45°<α<60°C .30°<α<45°D .60°<α<90°(2)当45°<θ<90°时,下列各式中正确的是( A .tan θ>cos θ>sin θ B .sin θ>cos θ>tan θC .tan θ>sin θ>cos θD .cot θ>sin θ>cos θ【例3】(1)在Rt △ABC 中,∠C=90°,AD 是∠BAC ∠的平分线,∠CAB=60°,•CD=3,BD=23,求AC ,AB 的长.(2)曙光中学”有一块三角形状的花园ABC ,•有人已经测出∠A=30°,AC=40米,BC=25米,你能求出这块花园的面积吗?(3)某片绿地形状如图所示,其中AB ⊥BC ,CD ⊥AD ,∠A=60°,AB=200m ,CD=100m ,•求AD 、BC的长.二、解直角三角形的应用【回顾与回顾】问题⎧⎪⎧⎪⎨⎪⎨⎪⎪⎪⎩⎩转化---直角三角形视角常用术语坡度方位角【例题经典】关于坡角【例1】下图表示一山坡路的横截面,CM 是一段平路,•它高出水平地面24米,从A 到B ,从B 到C 是两段不同坡角的山坡路.山坡路AB 的路面长100米,•它的坡角∠BAE=5°,山坡路BC 的坡角∠CBH=12°.为了方便交通,•政府决定把山坡路BC 的坡角降到与AB 的坡角相同,使得∠DBI=5°.(精确到0.01米)(1)求山坡路AB 的高度BE .(2)降低坡度后,整个山坡的路面加长了多少米?(sin5°=0.0872,cos5°=0.9962,sin12°=0.2079,cos12°=0.9781)方位角.【例2】如图,MN 表示襄樊至武汉的一段高速公路设计路线图,•在点M 测得点N 在它的南偏东30°的方向,测得另一点A 在它的南偏东60°的方向;•取MN 上另一点B ,在点B 测得点A 在它的南偏东75°的方向,以点A 为圆心,500m•为半径的圆形区域为某居民区,已知MB=400m ,通过计算回答:如果不改变方向,•高速公路是否会穿过居民区? 坡度【例3】为了农田灌溉的需要,某乡利用一土堤修筑一条渠道,•在堤中间挖出深为1.2米,下底宽为2米,坡度为1:0.8的渠道(其横断面为等腰梯形)•,并把挖出来的土堆在两旁,使土堤高度比原来增加了0.6米(如图所示)求:(1)渠面宽EF ;(2)修200米长的渠道需挖的土方数.例题精讲例1、在Rt △ABC 中,∠C=90°,a = 1 , c = 4 , 则sinA 的值是 ( )A 、1515B 、41C 、31D 、415例2.在A ABC 中,已知∠C=90°,sinB=53,则cosA 的值是 ( )A .43B .34 c .54 D .53例4.为测楼房BC 的高,在距楼房30米的A 处,测得楼顶B 的仰角为α,则楼房BC 的高为(A )30tan α米;(B )30tan α米; (C )30sin α米; (D )30sin α米例5.某人沿倾斜角为β的斜坡走了100米,则他上升的高度是 米例6.如图7,初三年级某班同学要测量校园内国旗旗杆的高度,在地面的C 点用测角器测得旗杆顶A 点的仰角∠AFE=60°,再沿直线CB 后退8米到D 点,在D 点又用测角器测得旗杆顶A 点的仰角∠AGE=45°;已知测角器的高度是1.6米,求旗杆AB 的高度.(3的近似值取1.7,结果保留小数)。
2019—2020年鲁教版五四制九年级数学第一学期《解直角三角形》同步练习及解析.doc
解直角三角形练习题2一、选择题1、如图,已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在CB 的延长线上的D ′处,那么tan ∠BAD ′等于( ) (A).1 (B).2 (C).22 (D).222、如果α是锐角,且54cos =α,那么αsin 的值是( ). (A )259 (B ) 54 (C )53 (D )2516 3、等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于( ). (A )513(B )1213 (C )1013 (D )5124、. 以下不能构成三角形三边长的数组是 ( )(A )(1,3,2) (B )(3,4,5) (C )(3,4,5) (D )(32,42,52) 5、在Rt △ABC 中,∠C =90°,下列式子中正确的是( ). (A )B A sin sin = (B )B A cos sin = (C )B A tan tan = (D )B A cot cot =6、在矩形ABCD 中,DE ⊥AC 于E ,设∠ADE=α,且53cos =α,AB = 4, 则AD 的长为( ).A BCDE(A )3 (B )316 (C )320 (D )516 7、某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a 元,则购买这种草皮至少要( ). (A )450a 元 (B )225a 元 (C )150a 元 (D )300a 元 8、已知α为锐角,tan (90°-α)=3,则α的度数为( ) (A )30° (B )45° (C )60° (D )75°9、在△ABC 中,∠C=90°,BC=5,AB=13,则sinA 的值是( ) (A )135(B )1312 (C )125 (D )51210、如果∠a 是等边三角形的一个内角,那么cosa 的值等于( ). (A )21 (B )22(C )23 (D )1二、填空题11、如图,在△ABC 中,若∠A =30°,∠B =45°,AC =22, 则BC = w12、如图,沿倾斜角为30︒的山坡植树,要求相邻两棵树的水平距离AC 为2m ,那么相邻两棵树的斜坡距离AB 为 m 。
中考数学解直角三角形练习
中考数学解直角三角形练习第一课时(锐角三角函数)课标要求1、 通过实例认识直角三角形的边角关系:即锐角三角函数(sinA 、cosA 、tanA 、cotA )2、 熟知300、450、600角的三角函数值3、 会用计算器求锐角的三角函数值:以及由已知的三角函数值求相应的锐角。
4、 通过特殊角三角函数值:知道互余两角的三角函数的关系。
5、 了解同角三角函数的平方关系。
sin 2α+cos 2α=1:倒数关系tan α·cot α=1.6、 熟知直角三角形中:300角的性质。
中招考点1、 锐角三角函数的概念:锐角三角函数的性质。
2、 300、450、600角的三角函数值及计算代数式的值。
3、 运用计算器求的三角函数值或由锐角三角函数值求角度。
典型例题[例题1] 选择题(四选一)1、如图19-1:在Rt △ABC 中:CD 是斜边AB 上的高:则下列线段比中不等于sinA 的是( )A. AC CDB. CB BDC.AB CBD.CBCD分析:sinA=AC CD ; sinA=sin ∠BCD=BC BD ;sinA= ABBC;从而判断D 不正确。
故应选D.。
2、在Rt △ABC 中:∠C =900:∠A =∠B :则cosA 的值是( ) A.21B. 22 C.23 D.1分析:先求出∠A 的度数:因为∠C =900:∠A =∠B :故∠A =∠B =450:再由特殊角的三角函数值可得:cosA=cos450=22故选B.。
3、在△ABC 中:∠C =900:sinA=23 ;则cosB 的值为( )A. 21B. 22C.23D.33分析:方法一:因为sinA=23;故锐角A =600。
因为∠C =900:所以∠B =300.cosB=23.故选C.方法二:因为 ∠C =900:故 ∠A 与 ∠B 互余.所以cosB=sin A =23.故选C..4、如图19-2:在△ABC 中:∠C =900:sinA=53.则BC :AC 等于( )A C图19-1A. 3:4B. 4:3C.3:5D.4:5 分析: 因为∠C =900:sinA =53 ;又sinA=AB BC .所以AB BC =53; 不妨设BC =3k ;AB=5k ;由勾股定理可得AC =22BC AB -=4k ;所以BC :AC =3k:4k=3:4故选A.。
九年级数学上册解直角三角形 同步练习1鲁教版
解直角三角形同步练习
单选
1. 如图,由D点测塔顶A点和塔基B点仰角分别为60°和30°.已知塔基高出地平面20米(即BC为20米)塔身AB的高为 [ ]
如图,一敌机从一高炮正上方2000米经过,沿水平方向飞行,稍后到达B点,这时仰角为45°,1分钟后,飞机到达A点,仰角30°,则飞机从B到A的速度是[ ]米/分.(精确到1米)
A.1461
B.1462
°,前进20米到达B处,又测得C的仰角为45°,则塔高CD(精确到0.1m)是[ ]m
A.25.3
B.26.3
4. 如图:在200米高的峭壁上,测得一塔的塔顶与塔基的俯角分别为30°和
60°,那么塔高是[ ]米
5. 如图:从B处测得建筑物上旗杆EC顶点C的仰角是60°,再从B的正上方40米高层上A处,测得C的仰角是45°,那么旗杆顶点C离地CD的高度是[ ]米.
参考答案
1. C
2. D
3. C
4. B
5. C。
中考数学总复习《解直角三角形》专项测试卷带答案
中考数学总复习《解直角三角形》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A 层·基础过关1.已知∠A 是锐角,sin A =35,则tan A 的值是 ( )A .35B .34C .43D .452.(2024·东营垦利区二模)如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,现测得∠A =88°,∠C =42°,AB =60,则点A 到BC 的距离为 ( )A .60sin 50°B .60sin50°C .60cos 50°D .60tan 50°3.宽与长的比是√5-12的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感.如图,把黄金矩形ABCD 沿对角线AC 翻折,点B 落在点B'处,AB'交CD 于点E ,则sin ∠DAE 的值为 ( )A .√55B .12C .35D .2√554.(2024·淄博高青县模拟)在△ABC 中,若|sin A -12|+(√22-cos B )2=0,则∠C 的度数是 .5.(2024·绥化中考)如图,用热气球的探测器测一栋楼的高度,从热气球上的点A测得该楼顶部点C的仰角为60°,测得底部点B的俯角为45°,点A与楼BC的水平距离AD=50 m,则这栋楼的高度为m(结果保留根号).6. (2024·赤峰中考)综合实践课上,航模小组用无人机测量古树AB的高度.如图,点C处与古树底部A处在同一水平面上,且AC=10米,无人机从C处竖直上升到达D 处,测得古树顶部B的俯角为45°,古树底部A的俯角为65°,则古树AB的高度约为米(结果精确到0.1米;参考数据:sin 65°≈0.906,cos 65°≈0.423,tan 65°≈2.145).7.(2024·浙江中考)如图,在△ABC中,AD⊥BC,AE是BC边上的中线,AB=10,AD=6,tan∠ACB=1.(1)求BC的长;(2)求sin∠DAE的值.B 层·能力提升8.(2024·深圳中考)如图,为了测量某电子厂的高度,小明用高1.8 m 的测量仪EF 测得顶端A 的仰角为45°,小军在小明的前面5 m 处用高1.5 m 的测量仪CD 测得顶端A 的仰角为53°,则电子厂AB 的高度为 ( ) (参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈43)A .22.7 mB .22.4 mC .21.2 mD .23.0 m9.(2024·包头中考)如图,在矩形ABCD 中,E ,F 是边BC 上两点,且BE =EF =FC ,连接DE ,AF ,DE 与AF 相交于点G ,连接BG.若AB =4,BC =6,则sin ∠GBF 的值为 ( )A .√1010B .3√1010 C .13 D .2310. (2024·盐城中考)如图,小明用无人机测量教学楼的高度,将无人机垂直上升到距地面30 m 的点P 处,测得教学楼底端点A 的俯角为37°,再将无人机沿教学楼方向水平飞行26.6 m至点Q处,测得教学楼顶端点B的俯角为45°,则教学楼AB的高度约为m.(精确到1 m,参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)11.(2024·上海中考)在平行四边形ABCD中,∠ABC是锐角,将CD沿直线l翻折至AB所在直线,对应点分别为C',D',若AC'∶AB∶BC=1∶3∶7,则cos∠ABC=.C层·素养挑战12.(2024·广元中考)小明从科普读物中了解到,光从真空射入介质发生折射时,入叫做介质的“绝对折射率”,简称射角α的正弦值与折射角β的正弦值的比值sinαsinβ“折射率”.它表示光在介质中传播时,介质对光作用的一种特征.,β=30°,求该介质的(1)若光从真空射入某介质,入射角为α,折射角为β,且cos α=√74折射率;(2)现有一块与(1)中折射率相同的长方体介质,如图①所示,点A,B,C,D分别是长方体棱的中点,若光线经真空从矩形A1D1D2A2对角线交点O处射入,其折射光线恰好从点C处射出.如图②,已知α=60°,CD=10 cm,求截面ABCD的面积.参考答案A 层·基础过关1.(2024·潍坊寿光市二模)已知∠A 是锐角,sin A =35,则tan A 的值是 (B)A .35B .34C .43D .452.(2024·东营垦利区二模)如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,现测得∠A =88°,∠C =42°,AB =60,则点A 到BC 的距离为 (A)A .60sin 50°B .60sin50°C .60cos 50°D .60tan 50°3.(2024·泸州中考)宽与长的比是√5-12的矩形叫做黄金矩形,黄金矩形给我们以协调、匀称的美感.如图,把黄金矩形ABCD 沿对角线AC 翻折,点B 落在点B'处,AB'交CD 于点E ,则sin ∠DAE 的值为 (A)A .√55B .12C .35D .2√554.(2024·淄博高青县模拟)在△ABC 中,若|sin A -12|+(√22-cos B )2=0,则∠C 的度数是 105° .5.(2024·绥化中考)如图,用热气球的探测器测一栋楼的高度,从热气球上的点A 测得该楼顶部点C 的仰角为60°,测得底部点B 的俯角为45°,点A 与楼BC 的水平距离AD =50 m,则这栋楼的高度为 (50+50√3) m(结果保留根号).6. (2024·赤峰中考)综合实践课上,航模小组用无人机测量古树AB的高度.如图,点C处与古树底部A处在同一水平面上,且AC=10米,无人机从C处竖直上升到达D 处,测得古树顶部B的俯角为45°,古树底部A的俯角为65°,则古树AB的高度约为11.5米(结果精确到0.1米;参考数据:sin 65°≈0.906,cos 65°≈0.423,tan 65°≈2.145).7.(2024·浙江中考)如图,在△ABC中,AD⊥BC,AE是BC边上的中线,AB=10,AD=6,tan∠ACB=1.(1)求BC的长;(2)求sin∠DAE的值.【解析】(1)∵AD⊥BC,AB=10,AD=6∴BD=√AB2-AD2=√102-62=8;∵tan∠ACB=1,∴CD=AD=6∴BC=BD+CD=8+6=14;(2)∵AE 是BC 边上的中线,∴CE =12BC =7,∴DE =CE -CD =7-6=1,∵AD ⊥BC∴AE =√AD 2+DE 2=√62+12=√37∴sin ∠DAE =DEAE =√37=√3737.B 层·能力提升8.(2024·深圳中考)如图,为了测量某电子厂的高度,小明用高1.8 m 的测量仪EF 测得顶端A 的仰角为45°,小军在小明的前面5 m 处用高1.5 m 的测量仪CD 测得顶端A 的仰角为53°,则电子厂AB 的高度为 (A) (参考数据:sin 53°≈45,cos 53°≈35,tan 53°≈43)A .22.7 mB .22.4 mC .21.2 mD .23.0 m9.(2024·包头中考)如图,在矩形ABCD 中,E ,F 是边BC 上两点,且BE =EF =FC ,连接DE ,AF ,DE 与AF 相交于点G ,连接BG.若AB =4,BC =6,则sin ∠GBF 的值为 (A)A .√1010B .3√1010 C .13 D .2310. (2024·盐城中考)如图,小明用无人机测量教学楼的高度,将无人机垂直上升到距地面30 m 的点P 处,测得教学楼底端点A 的俯角为37°,再将无人机沿教学楼方向水平飞行26.6 m 至点Q 处,测得教学楼顶端点B 的俯角为45°,则教学楼AB 的高度约为 17 m .(精确到1 m,参考数据:sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)11.(2024·上海中考)在平行四边形ABCD中,∠ABC是锐角,将CD沿直线l翻折至或AB所在直线,对应点分别为C',D',若AC'∶AB∶BC=1∶3∶7,则cos∠ABC=274.7C层·素养挑战12.(2024·广元中考)小明从科普读物中了解到,光从真空射入介质发生折射时,入叫做介质的“绝对折射率”,简称射角α的正弦值与折射角β的正弦值的比值sinαsinβ“折射率”.它表示光在介质中传播时,介质对光作用的一种特征.(1)若光从真空射入某介质,入射角为α,折射角为β,且cos α=√7,β=30°,求该介质的4折射率;(2)现有一块与(1)中折射率相同的长方体介质,如图①所示,点A,B,C,D分别是长方体棱的中点,若光线经真空从矩形A1D1D2A2对角线交点O处射入,其折射光线恰好从点C处射出.如图②,已知α=60°,CD=10 cm,求截面ABCD的面积.【解析】(1)∵cos α=√74∴如图设b=√7x,则c=4x,由勾股定理得,a=√(4x)2-(√7x)2=3x∴sin α=ac =3x4x=34,又∵β=30°∴sin β=sin 30°=12∴折射率为sinαsinβ=3412=32.(2)根据折射率与(1)的材料相同,可得折射率为32∵α=60°∴sinαsinβ=sin60°sinβ=32,∴sin β=√33.∵四边形ABCD是矩形,点O是AD中点∴AD=2OD,∠D=90°又∵∠OCD=β∴sin∠OCD=sin β=√33在Rt△ODC中,设OD=√3x,OC=3x由勾股定理得,CD=√(3x)2-(√3x)2=√6x∴tan β=ODCD =√3x√6x=√2.又∵CD=10 cm∴OD10=√2∴OD=5√2cm∴AD=10√2cm,∴截面ABCD的面积为:10√2×10=100√2cm2.。
中考数学总复习《解直角三角形的应用题》专题测试卷(附答案)
中考数学总复习《解直角三角形的应用题》专题测试卷(附答案)1.如图,小明为了测量学校旗杆CD的高度,在地面离旗杆底部C处22米的A处放置高度为1.5米的测角仪AB,测得旗杆顶端D的仰角为32°,求旗杆的高度CD.(结果精确到0.1米)【参考数据:sin32°=0.53,cos32°=0.85,tan32°=0.62】2.如图,在一次数学实践活动中,小明同学为了测量学校旗杆EF的高度,在观测点A处观测旗杆顶点E的仰角为45°,接着小明朝旗杆方向前进了7m到达C点,此时,在观测点D处观测旗杆顶点E的仰角为60°.假设小明的身高为1.68m,求旗杆EF的高度.(结果保留一位小数.参考数据:√2≈1.414,√3≈ 1.732)3.如图,在徐州云龙湖旅游景区,点A为“彭城风华”观演场地,点B为“水族展览馆”,点C为“徐州汉画像石艺术馆”.已知∠BAC=60°,∠BCA=45°,AC=1640m.求“彭城风华”观演场地与“水族展览馆”之间的距离AB(精确到1m).(参考数据:√2≈1.41,√3≈1.73)4.大连作为沿海城市,我们常常可以在海边看到有人海钓.小华陪爷爷周末去东港海钓,爷爷将鱼竿AB摆成如图所示.已知AB=2.4m,在有鱼上钩时,鱼竿与地面的夹角∠BAD=45°.此时鱼线被拉直,鱼线BO= 3m.点O恰好位于海面,鱼线BO与海面OH的夹角∠BOH=60°.求海面OH与地面AD之间的距离DH的长.(结果保留一位小数,参考数据:√2=1.414,√3=1.73)5.让运动挥洒汗水,让青春闪耀光芒.重庆某中学倡议全校师生“每天运动一小时,快乐学习每一天”,响应学校号召,小明决定早睡早起,每天步行上学.如图,小明家在A处,学校在C处,从家到学校有两条线路,他可以从点A经过点B到点C,也可以从点A经过点D到点C.经测量,点B在点A的正北方向,AB=300米.点C在点B的北偏东45°;点D在点A的正东方向,点C在点D的北偏东30°方向CD=2900米.(1)求BC的长度(精确到个位);(2)小明每天步行上学都要从点A到点C,路线一;从点A经过点B到点C,路线二;从点A经过点D到点C,请计算说明他走哪一条路线较近?(参考数据:√2≈1.414,√3≈1.732,√6≈2.449)6.拉杆箱是外出旅行常用工具.某种拉杆箱示意图如图所示(滚轮忽略不计),箱体截面是矩形BCDE,BC 的长度为60cm,两节可调节的拉杆长度相等,且与BC在同一条直线上.如图1,当拉杆伸出一节(AB)时,AC与地面夹角∠ACG=53°;如图2,当拉杆伸出两节(AM、MB)时,AC与地面夹角∠ACG=37°,两种情况下拉杆把手A点距离地面高度相同.求每节拉杆的长度.(参考数据:sin53°≈45,sin37°≈35,tan53°≈4 3,tan37°≈34)7.某中学凤栖堂前一尊孔子雕像矗立于萋萋芳草间,小刚站在雕像前,自C处测得雕像顶A的仰角为53°,小强站凤栖堂门前的台阶上,自D处测得雕像顶A的仰角为45°,此时,两人的水平距离EC为0.45m,已知凤栖堂门前台阶斜坡CD的坡比为i=1:3.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)(1)计算台阶DE的高度;(2)求孔子雕像AB的高度.8.如图为某景区平面示意图,C为景区大门,A,B,D分别为三个风景点.经测量,A,B,C在同一直线上,且A,B在C的正北方向,AB=240米,点D在点B的南偏东75∘方向,在点A的东南方向.(参考数据:√2≈1.414,√3≈1.732)(1)求B,D两地的距离;(结果精确到0.1米)(2)大门C在风景点D的南偏西60∘方向,景区管理部门决定重新翻修CD之间的步道,求CD间的距离.9.小明和小玲游览一处景点,如图,两人同时从景区大门A出发,小明沿正东方向步行60米到一处小山B处,再沿着BC前往寺庙C处,在B处测得亭台D在北偏东15°方向上,而寺庙C在B的北偏东30°方向上,小玲沿着A的东北方向上步行一段时间到达亭台D处,再步行至正东方向的寺庙C处.(1)求小山B与亭台D之间的距离;(结果保留根号)(2)若两人步行速度一样,则谁先到达寺庙C处.(结果精确到个位,参考数据:√2≈1.41,√3≈1.73,√6≈2.45)10.研学实践:为重温解放军东渡黄河“红色记忆”,学校组织研学活动,同学们来到毛主席东渡黄河纪念碑所在地,在了解相关历史背景后,利用航模搭载的3D扫描仪采集纪念碑的相关数据.数据采集:如图,点A是纪念碑顶部一点,AB的长表示点A到水平地面的距离.航模从纪念碑前水平地面的点M处竖直上升,飞行至距离地面20米的点C处时,测得点A的仰角∠ACD=18.4°;然后沿CN方向继续飞行,飞行方向与水平线的夹角∠NCD=37°,当到达点A正上方的点E处时,测得AE=9米数据应用:已知图中各点均在同一竖直平面内,E,A,B三点在同一直线上.请根据上述数据,计算纪念碑顶部点A到地面的距离AB的长.(结果精确到1米.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin18.4°≈0.32,cos18.4°≈0.95,tan18.4°≈0.33)11.【综合与实践】如图1,光线从空气射入水中会发生折射现象,其中α代表入射角,β代表折射角.学习小组查阅资料了解到,若n=sinαsinβ,则把n称为折射率.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43)【实践操作】如图2,为了进一步研究光的折射现象,学习小组设计了如下实验:将激光笔固定在MN处,光线可沿PD照射到空容器底部B处,将水加至D处,且BF=12cm时,光点移动到C处,此时测得DF=16cm,BC=7cm四边形ABFE是矩形,GH是法线.【问题解决】(1)求入射角∠PDG的度数;(2)请求出光线从空气射入水中的折射率n.12.数学兴趣小组设计了一款含杯盖的奶茶纸杯(如图1),图2为该纸杯的透视效果图,在图3的设计草图中,由AF、线段EF和ED构成的图形为杯盖部分,其中AF、与ED均在以AD为直径的⊙O上,且AF= ED,G为EF的中点,点G是吸管插孔处(忽略插孔直径和吸管直径),由点A,B,C,D构成的图形(杯身部分)为等腰梯形,已知杯壁AB=13.6cm,杯底直径BC=5.8cm,杯壁与直线l的夹角为84°.(1)求杯口半径OD的长;(2)若杯盖顶FE=3.2cm,吸管BH=22cm,当吸管斜插,即吸管的一端与杯底点B重合时,求吸管漏出杯盖部分GH的长.(参考数据:sin84∘≈0.995,cos84∘≈0.105,tan84∘≈9.514,√15.93≈3.99,17.5222≈307.02,√315.43≈17.76,结果精确到0.1cm).13.为了保护小吉的视力,妈妈为他购买了可升降夹书阅读架(如图1),将其放置在水平桌面上的侧面示意图(如图2),测得底座高AB为2cm,∠ABC=150°,支架BC为18cm,面板长DE为24cm,CD为6cm.(厚度忽略不计)(1)求支点C离桌面l的高度:(计算结果保留根号)(2)小吉通过查阅资料,当面板DE绕点C转动时,面板与桌面的夹角α满足30°≤α≤70°时,能保护视力.当α从30°变化到70°的过程中,问面板上端E离桌面l的高度是增加了还是减少了?增加或减少了多少?(精确到0.1cm,参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)14.如图,四边形ABCD是某公园的游览步道(步道可以骑行),把四个景点连接起来,为了方便,在景点C的正东方设置了休息区K,其中休息区K在景点A的南偏西30°方向800√2米处,景点A在景点B的北偏东75°方向,景点B和休息区K两地相距400√5米(∠ABK<90°),景点D分别在休息区K、景点A的正东方向和正南方向.(参考数据:√2≈1.41,√5≈2.24,√6≈2.45)(1)求步道AB的长度;(2)周末小明和小宏相约一起去公园游玩,他们在景点C一起向正东出发,不久到达休息区K,他们发现有两条路线到达景点A,于是小宏想比赛看谁先到达景点A.他们分别租了一辆共享单车,两人同时在K点出发,小明选择①K−B−A路线,速度为每分钟320米;小宏选择②K−D−A路线,速度为每分钟240米,其中两人在各个景点停留的时间不计.请你通过计算说明,小明和小宏谁先到达景点A呢?15.某公园里有一座凉亭,亭盖呈圆锥状,如图所示,凉亭的顶点为O,点O在圆锥底面、地面上的正投影分别为点O1,O2,点P为圆锥底面的圆上一点,数据显示,该圆锥的底面半径为2米(即O1P=2米),圆锥底面离地面的高度为3米(即O1O2=3米).(1)若OO1=2米,求圆锥的侧面积;(2)现计划对亭盖的外部进行喷漆作业,需测算亭盖的外部面积(即圆锥的侧面积).因凉亭内堆积建筑材料,导致无法直接测量OO2的高度,工人先在水平地面上选取观测点A,B(A,B,O2在同一直线上),利用测角仪分别测得点O的仰角为α,β,其中tanα=12,tanβ=25,再测得A,B两点间的距离为m米(即AB=MN=m米),已知测角仪的高为1米(即MA=NB=QO2=1米),求亭盖的外部面积(用含m的代数式表示).16.赤水河畔的“美酒河”三个大字,是世界上最大的摩崖石刻汉字.小茜想测量绝壁上“美”字AG的高度,根据平面镜反射原理可推出入射光线与镜面的夹角等于反射光线与镜面的夹角(如图中∠DEC=∠AEB,∠DFC=∠GFB),具体操作如下:将平面镜水平放置于E处,小茜站在C处观测,俯角∠MDE=45°时,恰好通过平面镜看到“美”字顶端A处(CD为小茜眼睛到地面的高度),再将平面镜水平放置于F处观测,俯角∠MDF=36.9°时,恰好通过平面镜看到“美”字底端G处.测得BE=163.3m,CE=1.5m,点C,E,F,B在同一水平线上,点A,G,B在同一铅垂线上.(参考数据:sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75)(1)CD的高度为__________m,CF的长为__________m;(2)求“美”字AG的高度.17.风能是一种清洁无公害的可再生能源,利用风力发电非常环保.如图1所示,是一种风力发电装置;如图2为简化图,塔座OD建在山坡DF上(坡比i=3:4,DE垂直于水平地面EF,O,D,E三点共线),坡面DF长10m,三个相同长度的风轮叶片OA,OB,OC可绕点O转动,每两个叶片之间的夹角为120°;当叶片静止,OA与OD重合时,在坡底F处向前走25米至点M处,测得点O处的仰角为53°,又向前走23.5米至点N处,测得点A处的仰角为30°(点E,F,M,N在同一水平线上).(1)求叶片OA的长;(2)在图2状态下,当叶片绕点O顺时针转动90°时(如图3),求叶片OC顶端C离水平地面EF的距离.(参考数据:sin53°≈45,cos53°≈35,tan53°≈43,√3≈1.7,结果保留整数)18.贵州旅游资源丰富.某景区为给游客提供更好的游览体验,拟在如图①景区内修建观光索道.设计示意图如图②所示,以山脚A为起点,沿途修建AB,CD两段长度相等的观光索道,最终到达山顶D处,中途设计了一段与AF平行的观光平台BC为50m.索道AB与AF的夹角为15°,CD与水平线的夹角为45°,A,B 两处的水平距离AE为576m,DF⊥AF,垂足为点F.(图中所有点都在同一平面内,点A,E,F在同一水平线上)(1)求索道AB的长(结果精确到1m);(2)求水平距离AF的长(结果精确到1m).(参考数据:sin15°≈0.26cos15°≈0.97tan15°≈0.27√2≈1.41)19.春天是踏青的好季节小明和小华决定去公园出游踏青.如图已知A为公园入口景点B位于A点东北方向400√2米处景点E位于A点南偏东30°方向景点B在景点E的正北方向景点C既位于景点B正东方向310米处又位于景点D的北偏西37.5°方向.景点F既位于景点E的正东方向又位于景点D的正南方向.DF=400米.(参考数据:√2≈1.41,√3≈1.73,sin37.5°≈35,cos37.5°≈45,tan37.5°≈34)(1)求BE的长;(精确到个位)(2)小明选择了游览路线①:A−B−C−D小明行驶的平均速度是72米/分小明在景点B、C处各停留了10分钟、5分钟.小华选择了游览路线②:A−E−F−D小华行驶的平均速度为96米/分.小华在景点E、F处各停留了9分钟、8分钟.请通过计算说明:小明和小华谁先到达景点D处.20.如图是一种家用健身卷腹机由圆弧形滑轨⌒AB可伸缩支撑杆AC和手柄AD构成.图①是其侧面简化示意图.滑轨⌒AB支撑杆AC与手柄AD在点A处连接其中D A B三点在一条直线上.(1)如图① 固定∠DAC=120°,若BC=30√6cm,AC=60cm,求∠ABC的度数;(2)如图② 固定∠DAC=100°若AC=50cm,∠ABC=30°时圆弧形滑轨AB所在的圆恰好与直线BC 相切于点B求滑轨⌒AB的长度.(结果精确到0.1 参考数据:π取3.14 sin70°≈0.940)参考答案:1.解:由题意得BE⊥CD于EBE=AC=22米∠DBE=32°在Rt△DBE中DE=BE⋅tan∠DBE=22×0.62≈13.64(米)CD=CE+DE=1.5+13.64≈15.14(米)答:旗杆的高CD约为15.14米.2.解:延长AD交EF于点G设EG=x∵AD∥BF,EF⊥BF∵AG⊥EF∵∠B=∠F=∠AGF=90°∵四边形ABFG是矩形∠AGE=90°∵∠EAG=45°∵∠AEG=90°−∠EAG=45°∵AG=EG=x∵AD=7∵DG=x−7∵∠EDG=60°=√3∵tan∠EDG=EGDG=√3∵xx−7∵x=7(3+√3)2∵EG=7(3+√3)2∵GF=AB=1.68∵EF=EG+GF=7(3+√3)2+1.68≈7(3+1.732)2+1.68 =16.562+1.68=18.242≈18.2.故旗杆EF的高度约18.2m.3.解:过B作BH⊥AC于H设AH=xm∵∠BAC=60°∵∠ABH=90°−60°=30°∵AB=2AH=2xm∵tanA=tan60°=BHAH=√3∵BH=√3xm∵∠BCA=45°∠BHC=90°∵△BHC是等腰直角三角形∵CH=BH=√3xm∵AH+CH=√3x+x=AC=1640≈600.7∵x=√3+1∵AB=2x≈1201(m).答:“彭城风华”观演场地与“水族展览馆”之间的距离AB约是1201m.4.解:过点B作BC⊥OH交OH于点C延长AD交BC于点E∵四边形DECH是矩形∵DH=CE.根据题意可知∠BAD=45°,∠BOH=60°在Rt△ABE中AB=2.4m∵sin∠BAE=BEAB即sin45°=BE2.4=1.2×1.41=1.692.解得BE=2.4×√22在Rt△BOC中BO=3m∵sin∠BOC=BCBO即sin60°=BC3=1.5×1.73=2.595解得BC=3×√32∵DH=CE=BC−BE=0.903≈0.9(m).所以海面OH与地面AD之间得距离DH的长0.9m.5.(1)解:过点C作CM⊥AD交AD的延长线于点M过点B作BN⊥AM交AM于点N过点D作DH⊥BN 交BN于点H.由题可知:∠CBN=45°∠A=90°∠CDM=60°.∵四边形ABNM、四边形ABHD、四边形DMNH都是矩形△BCN是等腰直角三角形.在Rt△CMD中∵∠CDM=60°CD=2900米∵DM=12DC=1450米CM=√3DM=1450√3米∵AB=MN=300米∵CN=CM−MN=(1450√3−300)米在Rt△CBN中∠CBN=45°∵CB=√2CN=(1450√6−300√2)米≈3127米答:BC的长度为3127米.(2)解:路线一:AB+BC=(300+1450√6−300√2)米≈3427米∵AM=BN=CN=(1450√3−300)米∵AD=AM−DM=(1450√3−1750)米∵路线二:AD+CD=(1450√3+1150)米≈3361米∵3427<3361∵路线二较近.6.解:如图1 作AF⊥CG垂足为F设AB=xcm则AC=60+x∵sin53°=AFAC =AF60+x∴AF=(60+x)⋅sin53°如图2 作AH⊥CG垂足为H则AC=60+2x∴AH=(60+2x)⋅sin37°∵AF=AH∴(60+x)⋅sin53°=(60+2x)⋅sin37°∴4(60+x)5=3(60+2x)5解得:x=30.答:每节拉杆的长度为30cm.7.(1)解:∵凤栖堂门前台阶斜坡CD的坡比为i=1:3EC为0.45m∵DE EC =13∴DE=EC3=0.15m即台阶DE的高度为0.15m;(2)解:如图所示设AB的对边为MN作DF⊥MN于F∵由题意得四边形NFDE是矩形∵FN=DE=0.15m DF=NE设MN=xm则MF=(x−0.15)m在Rt△MFD中∠MDF=45°∵FD=MF=(x−0.15)m∵NC=NE−EC=(x−0.15)−0.45=(x−0.6)m∵tan53°=MNNC ≈43即xx−0.6=43解得x=2.4经检验x=2.4是原方程的解答:孔子雕像AB的高度约2.4m.8.(1)解:过点B作BP⊥AD于点P由题意知∠BAD=45∘∠CBD=75∘∴∠ADB=30∘∠ABP=45∘=∠A∴BD=2BP AP=BP在Rt△ABP中AB=240米∴AP=BP=AB=120√2(米)sin45∘∴BD=2BP=240√2≈339.4(米).答:B、D两地的距离约为339.4米;(2)解:过点B作BM⊥CD于点M由(1)得BD=2BP=240√2(米)∵∠CDB=180∘−60∘−75∘=45∘∠CBD=75∘∠DCB=60∘∴∠DBM=45∘=∠CDB∴BM=DM在Rt△BDM中BD=240√2sin45∘=BMBD∴BM=DM=BD⋅sin45∘=240√2×√2=240(米)2在Rt△BCM中∠CBM=75∘−45∘=30∘∴CM=BM⋅tan30∘=80√3(米)∴DC=DM+CM=240+80√3(米).9.解:(1)作BE⊥AD于点E由题意知AB=60∠A=45°∠ABD=90°+15°=105°∠CBA=90°+30°=120°在Rt△ABE中在Rt△BDE中ED=√3BE=30√6BD=2BE=60√2∴小山B与亭台D之间的距离60√2米(2)延长AB作DF⊥BA于点F作CG⊥BA于点G则∠CBG=180°−∠CBA=60°由题意知CD∥AB∵四边形CDFG是矩形∵CG=DF,CD=FG.∵AE=30√2ED=30√6∴AD=30√2+30√6在Rt△AFD中DF=AF=√2=30+30√3CG=DF=30+30√3米在Rt△BCG中BG=√3=10√3+30∴CD=FG=AB+BG−AF=60−20√3∴S玲=AD+CD=30√2+30√6+60−20√3≈141.2米S明=AB+BC=60+60+20√3≈154.6米∵141.2<154.6且两人速度一致∴小玲先到.答:小玲先到达寺庙C处.10.解:如图:延长CD交AB于点H则四边形CMBH为矩形∴CM=HB=20在Rt△ACH中∠AHC=90°∠ACH=18.4°∴tan∠ACH=AH CH∴CH=AHtan∠ACH=AHtan18.4°≈AH0.33在Rt△ECH中∠EHC=90°∠ECH=37°∴tan∠ECH=EH CH∴CH=EHtan∠ECH=EHtan37°≈EH0.75设AH=x.∵AE=9∴EH=x+9∴x0.33=x+90.75解得x≈7.1∴AB=AH+HB≈7.1+20=27.1≈27(米).答:点A到地面的距离AB的长约为27米.11.(1)解:如图1 ∵GH∥FB∴∠DBF=∠PDG,∵BF=12cm,DF=16cm,∴tan∠DBF=DFBF=1612=43,∵tan53°≈4 3∴入射角∠PDG约为53°.(2)解:如图2 作DM⊥AB于点T在Rt△BDF中BF=12cm,DF=16cm∴BD=√DF2+BF2=20cm,在Rt△DTC中TC=DF−BC=16−7=9cm,DT=BF=12cm∴CD=√DT2+TC2=√122+92=15cm,∴光线从空气射入水中的折射率∴光线从空气射入水中的折射率n=43.12.(1)解:过点B作BP⊥AD于点D过点C作CQ⊥AD于点Q延长BC到点R ∵四边形BCQP是矩形∵BC=QP BP=CQ∵AB=13.6cm杯底直径BC=5.8cm杯壁与直线l的夹角为84°点A B C D构成的图形(杯身部分)为等腰梯形∵AD∥BC CD=AB=13.6cm QP=BC=5.8cm∵∠A=∠D=∠DCR=84°∵BP=CQ CD=AB∵Rt△ABP≌Rt△DCQ(HL)∵AP=DQ∵AP=DQ=CDcosD=13.6×0.105=1.428(cm)CQ=CDsinD=13.6×0.995=13.532(cm)∵AD=2AP+PQ=DQ=2×1.428+5.8=8.656(cm)AD=4.328≈4.3(cm)∵OD=12故杯口半径OD的长为4.3cm.(2)解:连接GO并延长交BC于点N∵G为EF的中点EF=1.6(cm)∵GO⊥EF,EG=FG=12连接FD∵ AF=ED,∵∠EFD=∠ADF,∵AD∥EF∵GO⊥AD∵ AD∥BC∵GO⊥BC∵NO=13.532(cm)∵GO=√(4.3)2−(1.6)2≈4.0(cm)∵GN≈17.532(cm)∵GB=√(17.532)2+(2.9)2≈17.77(cm)∵GH=BH−GB=22−17.77≈4.2(cm)13.(1)解:过点C作CF⊥l于点F过点B作BM⊥CF于点M∴∠CFA=∠BMC=∠BMF=90°.由题意得:∠BAF=90°∴四边形ABMF为矩形∴MF=AB=2cm∠ABM=90°.∵∠ABC=150°∴∠MBC=60°.∵BC=18cm∴CM=BC⋅sin60°=18×√32=9√3(cm).∴CF=CM+MF=(9√3+2)cm.答:支点C离桌面l的高度为(9√3+2)cm;(2)解:过点C作CN∥l过点E作EH⊥CN于点H∴∠EHC=90°.∵DE=24cm CD=6cm∴CE=18cm.当∠ECH=30°时EH=CE⋅sin30°=18×12=9(cm);当∠ECH=70°时EH=CE⋅sin70°≈18×0.94=16.92(cm);∴16.92−9=7.92≈7.9(cm)∴当α从30°变化到70°的过程中面板上端E离桌面l的高度是增加了增加了约7.9cm.14.(1)解:由题意得∠DAK=30°∠BAD=75°∠D=90°AK=800√2米BK=400√5米∵∠BAK=∠BAD−∠DAK=75°−30°=45°过点K作KH⊥AB于H则∠AHK=∠BHK=90°∵△AHK为等腰直角三角形∵AH=KH=√22AK=√22×800√2=800米∵BH=√BK2−KH2=√(400√5)2−8002=400米∵AB=AH+BH=800+400=1200米;(2)解:∵AK=800√2∠DAK=30°∠D=90°∵DK=12AK=400√2米AD=AK·cos30°=800√2×√32=400√6米∵路线②K−D−A的路程为KD+AD=400√2+400√6≈1544米∵小宏到达景点A的时间为1544÷240≈6.43分钟∵路线①K−B−A的路程为KB+BA=400√5+1200≈2096米∵小明到达景点A的时间为2096÷320≈6.55分钟∵6.43<6.55∵小宏先到达景点A.15.(1)解:由题意得:∠OO1P=90°.∵OO1=2米O1P=2米∴OP=2√2(米).∴圆锥的侧面积=π×2√2×2=4√2π(米2).答:圆锥的侧面积为4√2π平方米;(2)解:由题意得:∠OQM=90°.设OQ长x米.∵tanα=1 2∴MQ=2x米.∵MN=m米∴NQ=(m+2x)米.∵tanβ=2 5∴xm+2x =25.解得:x=2m.∵O1O2=3米QO2=1米∴OO1=2m+1−3=(2m−2)米.∵O1P=2米∠OO1P=90°.∴OP=√22+(2m−2)2=√4m2−8m+8=2√m2−2m+2(米).∴圆锥的侧面积=π×2√m2−2m+2×2=4π√m2−2m+2(米2).答:亭盖的外部面积为4π√m2−2m+2平方米.16.(1)解:∵∠MDE=45°∴∠DEC=45°∵DC⊥BC∴△DCE是等腰直角三角形∴DC=CE=1.5m 在Rt△DCF中∠DFC=36.9°DC=1.5m∴DF=DCsin36.9°=1.50.60=2.5(m)∴CF=√DF2−DC2=√2⋅52−1⋅52=2(m);故答案为:1.52;(2)∵∠DEC=45°∴∠AEB=45°∴∠BAE=45°∴AB=BE=163.3m由题意可知∠MDF=36.9°∴∠GFB=∠DFC=∠MDF=36.9°∵EF=CF−CE=2−1.5=0.5(m)∴BF=163.3−0.5=162.8(m)在Rt△BFG中BG=tan∠GFB⋅BF≈0.75×162.8=122.1(m)∴AG=163.3−122.1=41.2(m)即“美”字的高度AG约为41.2m.17.(1)解:∵DE垂直于水平地面EF∵∠E=90°∵坡比i=3:4∵DE EF =34设DE=3xm则EF=4xm ∵坡面DF长10m∵(3x)2+(4x)2=102解得:x=2(负值舍去)∵DE=6m EF=8m∵MF=25m∵ME=MF+EF=33m由题意得:∠OME=53°=44m∵OE=ME⋅tan53°≈33×43∵MN=23.5m∵NE=ME+MN=56.5m.由题意得:∠N=30°≈32m∵AE=NE⋅tan30°=56.5×√33∵OA=OE−AE=44−32=12m.(2)如图过点C作CH⊥OE于点M CG⊥NE于G∵∠CHE=∠HEG=∠CGE=∠CHO=90°∵四边形HEGC是矩形∵EH=CG∵叶片绕点O顺时针转动90°∵∠AOE=90°∵∠AOC=120°∵∠COH=30°由题意得:OC=OA=12m=6√3m∵OH=OCcos∠COH=12×√32∵CG=HE=OE−OH=44−6√3≈34m.∵叶片OC顶端C离水平地面EF的距离为34m.18.(1)解:在Rt△ABE中∠AEB=90°∠A=15°AE=576m∴AB=AEcosA =576cos15°≈594(m).答:索道AB的长约为594m.(2)延长BC交DF于点G∵BC∥AF DF⊥AF∴DG⊥CG.∵四边形BEFG为矩形.∴EF=BG.∵CD=AB≈594m∠DCG=45°∴CG=CD·cos∠DCG≈594×cos45°=297√2(m).∴AF=AE+EF=AE+BG=AE+BC+CG≈576+50+297√2≈1045(m).答:水平距离AF的长约为1045m19.(1)解:如图所示过点A作AH⊥BE于点H∵∠BAH=45°,AB=400√2米∴AH=BH=√22AB=400米∵∠AEB=30°∴HE=√3AH=400√3米AE=2AH=800米∴BE=400+400√3≈1092(米).∴BE长约1092米.(2)解:小华先到达景点D处理由如下:如图过点C作CN⊥EF于点N过点D作DM⊥BE于点M交CN于点G则四边形BCNE和四边形DFNG都是矩形∴BC=EN BE=CN=(400+400√3)米GN=DF=400米DG=NF∴CG=CN−GN=400√3米∵景点C既位于景点B正东方向310米处又位于景点D的北偏西37.5°方向.∴BC=310(米)∠DCN=37.5°在Rt△CGD中cos∠DCN=CGCD tan∠DCN=DGCG∴CD=CGcos37.5°=400√345≈865(米)DG=CG⋅tan37.5°=400√3×34≈519(米)∴EF=EN+NF=BC+DG≈829(米)∵小明选择了游览路线①:A−B−C−D小明行驶的平均速度是72米/秒.小明在景点B、C处各停留了10分钟、5分钟∴小明的游览时间为400√2+310+86572+10+5≈39(分钟)在Rt△AEH中AH=400米∠EAH=60°∴AE=AHcos60°=40012=800(米)∵小华选择了游览路线②:A−E−F−D小华行驶的平均速度为96米/秒.小华在景点E、F处各停留了9分钟、8分钟∴小华的游览时间为800+829+40096+9+8≈38(分钟)∴小华的游览时间更短先到达景点D处.20.(1)解:如图过点C作CE⊥AB垂足为E∵∠DAC=120°∴∠EAC=180°−∠DAC=60°在Rt△AEC中AC=60cm∴CE=AC⋅sin60°=60×√32=30√3(cm)在Rt△BEC中BC=30√6cm∴sin∠EBC=ECBC=√330√6=√22∴∠ABC=45°∴∠ABC的度数约为45°;(2)解:如图过点A作AF⊥BC垂足为F∵圆弧形滑轨⌒AB所在的圆恰好与直线BC相切于点B ∴过点B作HB⊥BC作AB的垂直平分线MG交HB于点O连接OA∴OB=OA∴圆弧形滑轨⌒AB所在的圆的圆心为O∵∠DAC=100°∠ABC=30°∴∠ACF=∠DAC−∠ABC=100°−30=70°在Rt△AFC中AC=50cm∴AF=AC⋅sin70°≈50×0.940=47(cm)在Rt△AFB中∠ABC=30°∴AB=2AF=2×47=94(cm)∵OB⊥BC∴∠OBC=90°∴∠OBA=∠OBC−∠ABC=60°∴△OBA为等边三角形∴OB=AB=94cm∠BOA=60°∴滑轨⌒AB的长度=60π×94180≈98.4(cm)∴滑轨AB⌒AB的长度约为98.4cm.。
中考数学三角函数和解直角三角形精选练习(附答案).docx
2013屮考数学三角函数和解直角三角形精选练习(附答案)2013中考三角函数和解直角三角形精选题适合培优1.下图表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A,且当钟面显示3点30分时,分针垂直于桌面,A点距桌面的高度为10公分。
如图(十七),若此钟面显示3点45分时,A点距桌面的高度为16公分,则钟面显示3点50分时,A点距桌面的高度为多少公分?A. 22-3B. 16+ . 18 D. 19【答案】D2、RtAABC «|>, ZC=90°, a、b、c 分别是ZA、ZB、ZC 的对边,那么c等于()答案:B3.(2011河南三门峡模拟一)某人乘雪橇沿如图所示的斜坡笔直滑下,滑下的路S (米)与时间t (秒)间的关系式为S=10t + t2,若滑到坡底的时间为2秒,则此人下滑的高度为()A.24 米B.12 米D.11 米答案:B4、(2012年浙江省杭州市一模)如图,在RtAABC中,AB=CB, BO丄AC,把AABC折叠,使AB落在AC±,点B与AC ±的点E重合,展开后,折痕AD交BO于点F,连接DE、EF.下列结论:①lanZADB=2;②图小有4对全等三角形;③若将ADEF沿EF折叠,则点D不一定落在AC上;④BD二BF;⑤S四边形,上述结论屮正确的个数是()A. 4个B. 3个C. 2个D. 1个第1题答案:B5.若AABC 屮,锐角A 满足丨sinA- I +cos2C=0.则AABC 是()。
A.等腰直角三角形B.等腰三角形C.直角三角形D.锐角三角形6.等腰三角形的而积为40,底边长4,则底角的正切值为()。
A. 10B. 20C.D.7.如图,是一张宽m的矩形台球桌ABCD, 一球从点M (点M在长边CD±)出发沿虚线MN射向边BC,然后反弹到边AB上的P点.如果,那么P点与B 点的距离为【答案】(第15题8.长为4m的梯子搭在墙上与地面成45。
2019版中考数学 三角形分类训练四 解直角三角形 鲁教版
2019版中考数学三角形分类训练四解直角三角形鲁教版典例诠释:考点一勾股定理及其逆定理的应用例1 (xx·大兴一模)《九章算术》中记载:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”译文:有一根竹子原高一丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?如图1-10-95,我们用线段OA和线段AB来表示竹子,其中线段AB表示竹子折断部分,用线段OB表示竹梢触地处离竹根的距离,则竹子折断处离地面的高度OA是尺.图1-10-95【答案】【名师点评】本题是以古代数学著作为背景,首先要读懂题目,哪些线段是已知,哪些线段是未知:OB=3,OA+AB=10,求OA的长,利用勾股定理即可得解.考点二求三角函数值例2 (xx·延庆一模)如图1-10-96,在4×4的正方形网格中,tan α的值等于( )图1-10-96A.2B.C.D.【答案】 A【名师点评】求三角函数方法较多,解法灵活,在具体的解题中要根据已知条件采取灵活的计算方法.常用的方法有:①根据特殊的三角函数值求值;②直接应用三角函数定义;③借助变量之间的数量关系求值;④根据三角函数关系求值;⑤构造直角三角形求值.例3 (xx·怀柔二模)如图1-10-97,在地面上的点A处测得树顶B的仰角为α度,AC=7米,则树高BC为( )图1-10-97A.7sin α米B.7cos α米C.7tan α米D.(7+α)米【答案】 C【名师点评】此题考查三角函数的定义和仰角的知识,已知∠A、AC,求BC,利用∠A的正切值即可.考点三特殊三角函数值的计算例4 (xx·怀柔一模)2sin 45°-.【答案】 2【名师点评】此题考查了实数的运算,掌握零指数幂、负整数指数幂的运算法则是关键,另外要求我们熟练记忆一些特殊角的三角函数值.考点四解直角三角形例5 如图1-10-98,在△ABC中,∠A=30°,∠B=45°,AC=2,求AB的长.图1-10-98【答案】 3+【名师点评】将斜三角形转化为直角三角形是解决三角形中有关计算的重要思想方法,解决的方法是作三角形的高.例6 (xx·东城二模)如图1-10-99,矩形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD于点E.(1)求证:∠BAM=∠AEF;(2)若AB=4,AD=6,cos∠BAM=,求DE的长.图1-10-99(1)【证明】∵四边形ABCD是矩形,∴∠B=∠BAD=90°.∵EF⊥AM,∴∠AFE=∠B=∠BAD=90°.∴∠BAM+∠EAF=∠AEF+∠EAF=90°.∴∠BAM=∠AEF.(2)【解】在Rt△ABM中,∠B=90°,AB=4,cos∠BAM=,∴AM=5.∵F为AM中点,∴AF=.∵∠BAM=∠AEF,∴ cos∠BAM=cos∠AEF=.∴ sin∠AEF=.在Rt△AEF中,∠AFE=90°,AF=,sin∠AEF=,∴AE=,∴DE=AD-AE=6-=.【名师点评】 (1)通过“同角的余角相等”易证;(2)在△ABM中,知AB和∠BAM的余弦值可以得到AM的长,再利用相似或三角函数求AE的长,从而求出DE的长.考点五解直角三角形的应用例7 (xx·门头沟一模)如图1-10-100,A,B,C表示修建在一座山上的三个缆车站的位置,AB,BC表示连接缆车站的钢缆.已知A,B,C所处位置的海拔,,分别为130米,400米,1 000米.由点A测得点B的仰角为30°,由点B测得点C的仰角为45°,那么AB和BC的总长度是( )图1-10-100A.1 200+270B.800+270C.540+600D.800+600【答案】 C基础精练:1.(xx·平谷一模)在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深、葭长各几何?”这个数学问题的意思是说:“有一个边长为1丈(1丈=10尺)的正方形水池,在水池正中央长有一根芦苇,芦苇露出水面 1 尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面.请问这个水池的深度和这根芦苇的长度各是多少?”如图1-10-101,设这个水池的深度是x 尺,根据题意,可列方程为.图1-10-101【答案】2.(xx·顺义一模)《算法统综》是中国古代数学名著,作者是我国明代数学家程大伟,在《算法统综》有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记,仕女家人争蹴.良工高士素好奇,算出索长有几?”译文:“有一架秋千,当它静止时,踏板离地1尺,将它往前推送10尺(水平距离)时,秋千的踏板就和人一样高,这个人的身高为5尺,秋千的绳索始终拉得很直,试问绳索有多长?”如图1-10-102,设秋千的绳索长为x尺,根据题意可列方程 .【答案】图1-10-1023.如图1-10-103,有两棵树,一棵高12米,另一棵高6米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行米.图1-10-103【答案】 104.(xx·通州一模)在我国古算书《周髀算经》中记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理. 如图1-10-104是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理. 图1-10-105是由图1-10-104放入矩形内得到的,∠BAC=90°,AB=3,AC=4,D,E,F,G,H,I都在矩形KLMJ 的边上,那么矩形KLMJ的面积为 .图1-10-104 图1-10-105【答案】 1106.(xx·丰台二模)如图1-10-106所示,河堤横断面迎水坡AB的坡角是30°,堤高BC= 5 m,则坡面AB的长度是( )图1-10-106A.10 mB.10 mC.15 mD.5 m【答案】 A7.(xx·平谷二模)如图1-10-107,为测量一棵与地面垂直的树BC的高度,在距离树的底端4米的A处,测得树顶B的仰角∠α=74°,则树BC的高度为( )图1-10-107A.米B.4sin 74°米C.4tan 74°米D.4cos 74°米【答案】 C8.(xx·西城一模)某滑雪场举办冰雪嘉年华活动,采用直升机航拍技术拍摄活动盛况.如图1-10-108,通过直升机的镜头C观测水平雪道一端A处的俯角为30°,另一端B处的俯角为45°.若直升机镜头C处的高度CD为300米,点A,D,B在同一直线上,则雪道AB的长度为( )图1-10-108A.300米B.1 502米C.900米D.(300+300)米【答案】 D9.(xx·顺义二模)如图1-10-109,为了使电线杆稳固的垂直于地面,两侧常用拉紧的钢丝绳索固定,由于钢丝绳的交点E在电线杆的上三分之一处,所以知道BE的高度就可以知道电线杆AB的高度了.要想得到BE的高度,需要测量出一些数据,然后通过计算得出.请你设计出要测量的对象:;请你写出计算AB高度的思路: .图1-10-109【解】∠BCE和线段BC;思路:①在Rt△BCE中,由tan∠BCE=,求出BE=BC·tan∠BCE,②由AE=AB,可求得BE=AB,AB=BE=BC·tan∠BCE.10.(xx·延庆一模)如图1-10-110,甲船在港口P的南偏西60°方向,距港口86海里的A 处,沿AP方向以每小时15海里的速度匀速驶向港口P.乙船从港口P出发,沿南偏东45°方向匀速驶离港口P,现两船同时出发,2小时后乙船在甲船的正东方向.求乙船的航行速度.(结果精确到个位,参考数据:≈1.414,≈1.732,≈2.236)图1-10-110【解】依题意,设乙船速度为每小时x海里,2小时后甲船在点B处,乙船在点C处,PC=2x,如图1-10-111,过P作PD⊥BC于D,∴BP=86-2×15=56.图1-10-111在Rt△PDB中,∠PDB=90°,∠BPD=60°,∴PD=PB·cos 60°=28.在Rt△PDC中,∠PDC=90°,∠DPC=45°,∴PD=PC·cos 45°=·2x=x,∴x=28,即x=14≈20.答:乙船的航行速度为每小时20海里.11.(xx·通州二模)如图1-10-112,在ABCD中,∠1=∠2,∠3=∠4,EF∥AD,请直接写出与AE相等的线段(两条即可),写出满足勾股定理的等式 .(一组即可)图1-10-112【答案】AD,DF12.(xx·平谷二模)已知:如图1-10-113,∠ACB=90°,AC=BC , AD = BE, ∠CAD=∠CBE,(1)判断△DCE的形状,并说明你的理由;(2)当BD∶CD=1∶2,∠BDC=135°时,求sin∠BED的值.图1-10-113【解】 (1)如图1-10-114.图1-10-114∵AC=BC,AD=BE,∠CAD=∠CBE,∴△ADC≌△BEC,∴DC=EC,∠1=∠2.∵∠1+∠BCD=90°,∴∠2+∠BCD=90°.∴△DCE是等腰直角三角形.(2)∵△DCE是等腰直角三角形,∴∠CDE=45°.∵∠BDC=135°,∴∠BDE=90°.∵BD∶CD=1∶2,设BD=x,则CD=2x,DE=2x,BE=3x.∴ sin∠BED==.13.如图1-10-115所示,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠AED的正切值等于.图1-10-115【答案】14.(xx·丰台二模)将两个直角三角板按图1-10-116中方式叠放,BC=4,那么BD= .图1-10-116【答案】 215.(xx·石景山一模)如图1-10-117,在四边形ABCD中,AB=2,∠A=∠C=60°,DB⊥AB于点B,∠DBC=45°,求BC的长.图1-10-117【解】如图1-10-118,过点D作DE⊥BC于点E.图1-10-118∵DB⊥AB,AB=2,∠A=60°,∴BD=AB·tan 60°=2.∵∠DBC=45°,DE⊥BC,∴BE=DE=BD·sin 45°=.∵∠C=∠A=60°,∠DEC=90°,∴CE==,∴BC=+.16.(xx·昌平一模)如图1-10-119,已知:BD是四边形ABCD的对角线,AB⊥BC,∠C=60°,AB=1,BC=3+,CD=2.(1)求tan∠ABD的值;(2)求AD的长.图1-10-119【解】 (1)如图1-10-120,作DE⊥BC于点E.∵在Rt△CDE中,∠C=60°,CD=2,∴CE=,DE=3.∵BC=3+,∴BE=BC-CE=3+=3.∴DE=BE=3.∴在Rt△BDE中,∠EDB=∠EBD=45°.∵AB⊥BC,∠ABC=90°,∴∠ABD=∠ABC-∠EBD=45°.∴ tan∠ABD=1.图1-10-120(2)如图1-10-120,作AF⊥BD于点F.在Rt△ABF中,∠ABF=45°,AB=1,∴BF=AF=.∵在Rt△BDE中,DE=BE=3,∴BD=3.∴DF=BD-BF=3=.∴在Rt△AFD中,AD==.17.(xx·西城一模)如图1-10-121,在ABCD中,过点A作AE⊥DC交DC的延长线于点E,过点D作DF∥EA交BA的延长线于点F.(1)求证:四边形AEDF是矩形;(2)连接BD,若AB=AE=2,tan∠FAD=,求BD的长.图1-10-121(1)【证明】∵四边形ABCD是平行四边形,∴AB∥DC,即AF∥ED.∵DF∥EA,∴四边形AEDF是平行四边形.∵AE⊥DE,∴∠E=90°,∴四边形AEDF是矩形.(2)【解】如图1-10-122.图1-10-122∵四边形AEDF是矩形,∴FD=AE=2,∠F=90°.∵在Rt△AFD中,tan∠FAD==,∴AF=5.∵AB=2,∴BF=AB+AF=7.∴在Rt△BFD中,BD==.真题演练:1.(xx·北京)计算:+4sin 45°-+|1-|.【答案】2.(xx·北京)如图1-10-123,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=,BE=2.求CD的长和四边形ABCD的面积.图1-10-123【解】如图1-10-124,过点D作DH⊥AC,图1-10-124∵∠CED=45°,DH⊥EC,DE=,∴EH=DH=1.又∵∠DCE=30°,∴HC=,DC=2.∵∠AEB=45°,∠BAC=90°,BE=2,∴AB=AE=2,∴AC=2+1+=3+,∴ =×2×(3+)+×1×(3+)=.欢迎您的下载,资料仅供参考!。
鲁教版解直角三角形练习题1
解直角三角形练习题 1姓名 2013.09一、填空题:1、 在Rt △ABC 中,∠B =900,AB =3,BC =4,则A sin = ;2、 在Rt △ABC 中,∠C =900,AB =,3,5cm BC cm =则A sin = ,B cos = ;3、 Rt △ABC 中,∠C =900,A sin =54,AB =10,则BC = ; 4、α是锐角,若︒=15cos sin α,则α= 若8018.0'1853sin =︒,则'4236cos ︒= ;5、∠B 为锐角,且01cos 2=-B ,则∠B = ;6、在△ABC 中,∠C =900,∠A ,∠B ,∠C 所对的边分别为a 、b 、c ,12,9==b a 则A sin = ,B sin = ;7、Rt △ABC 中,∠C =900,21tan =A ,则=A sin ; 8、在Rt △ABC 中,∠C =900,若b a 32=则_____tan =A ;9.等腰三角形中,腰长为5cm ,底边长8cm ,则它的底角的正切值是 ;10、若∠A 为锐角,且03tan 2tan 2=-+A A ,则∠A =11、Rt △ABC 中,8,60=︒=∠c A ,则__________,==b a ;12、在△ABC 中,若2,32==b c ,,则____tan =B ,面积S = ;13、在△ABC 中,AC :BC =1:3,AB =6,∠B = ,AC = BC =14、在△ABC 中,︒=∠90B ,AC 边上的中线BD =5,AB =8,则A C B ∠ta n = ;二、选择题1、在Rt △ABC 中,各边的长度都扩大2倍,那么锐角A 的正弦、余弦值 ( )(A ) 都扩大2倍 (B ) 都扩大4倍 (C ) 没有变化 (D ) 都缩小一半2、若∠A 为锐角,且tanA 3<,则∠ A ( ) (A ) 小于300 (B ) 大于300 (C ) 大于00且小于600 (D ) 大于6003、等腰三角形底边与底边上的高的比是3:2,则顶角为 ( )(A ) 600 (B ) 900 (C ) 1200 (D ) 15004、在△ABC 中,A ,B 为锐角,且有 B A cos sin =,则这个三角形是 ( )(A ) 等腰三角形 (B ) 直角三角形 (C ) 钝角三角形 (D ) 锐角三角形5、有一个角是︒30的直角三角形,斜边为cm 1,则斜边上的高为 ( )(A ) cm 41 (B ) cm 21 (C ) cm 43 (D ) cm 23 三、求下列各式的值 1、︒+︒60cos 60sin 22 2、︒︒-︒30cos 30sin 260sin3、︒-︒45cos 30sin 24、3245cos 2-+︒5、0045cos 360sin 2+ 6、 130sin 560cos 300-7、︒30sin 22·︒+︒60cos 30tan ·︒30cos 8、︒-︒30tan 45sin 22四、解答下列各题1、在Rt △ABC 中,∠C =900,,AB =13,BC =5,求A si n , A cos ,A tan ,A cot ;2. 在Rt △ABC 中,∠C =900,若1312sin =A 求 A cos ,B sin ,B cos ;3. 在Rt △ABC 中,︒=∠=︒=∠45,17,90B b C ,求a 、c 与A ∠;四、根据下列条件解直角三角形。
2.4解直角三角形 同步训练(附答案) 2021--2022学年鲁教版九年级数学上册
2021年鲁教版九年级数学上册《2.4解直角三角形》同步优生辅导训练(附答案)一.选择题(共12小题)1.如图,在△ABC中,∠ABC=90°,tan∠BAC=,AD=2,BD=4,连接CD,则CD长的最大值是()A.2+B.2+1C.2+D.2+22.如图,在△ABC中,点O是角平分线AD、BE的交点,若AB=AC=10,BC=12,则tan∠OBD的值是()A.B.2C.D.3.如图,△ABC底边BC上的高为h1,△PQR底边QR上的高为h2,则有()A.h1=h2B.h1<h2C.h1>h2D.以上都有可能4.如图,已知在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足是D,设∠CAB=α,CD=h,那么BC的长度为()A.B.C.D.h•cosα5.如图,△ABC的顶点是正方形网格的格点,则cos∠ABC的值为()A.B.C.D.6.如图,在4×4的网格中,每个小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值为()A.2B.C.D.7.在Rt△ABC中,∠C=90°,下列关系式中错误的是()A.BC=AB•sin A B.BC=AC•tan A C.AC=BC•tan B D.AC=AB•cos B8.在Rt△ABC中,∠C=90°,cos B=,则Rt△ABC的三边a、b、c之比a:b:c为()A.2::3B.1::C.1:2:3D.2::9.在△ABC中,BC=2,AC=2,∠A=30°,则AB的长为()A.B.2C.或4D.2或410.如图,在△ABC中,AB=AC=4,∠C=72°,D是AB的中点,DE⊥AB交AC于点E,则cos A的值为()A.B.C.D.11.在△ABC中,如果sin A=,cot B=,那么这个三角形一定是()A.等腰三角形B.锐角三角形C.钝角三角形D.直角三角形12.如图,已知∠ABC=60°,BD是∠ABC的平分线,BE是∠CBD的平分线,O,P分别是BD,BE上的动点(与点B不重合),分别过点O,P作OM⊥BC,PN⊥BC,垂足分别是点M,N.当点M,N重合时,的值是()A.+1B.2﹣3C.2D.二.填空题(共4小题)13.将一副直角三角板拼成如图所示的四边形ABCD,一边重合,若∠CAB=45°,∠CAD=30°,连接BD,则tan∠DBC=.14.如图△ABC中∠ACB=90°,D在AC上,AD=4CD,若∠BAC=2∠CBD,则tan A=.15.在Rt△ABC中,∠C=90°,sin B=,若斜边上的高CD=2,则AC=.16.在△ABC中,AB=2AC,tan B=,BC边上的高长为2,则△ABC的面积为.三.解答题(共4小题)17.如图,在Rt△ABC中,∠A=90°,作BC的垂直平分线交AC于点D,延长AC至点E,使CE=AB.(1)若AE=1,求△ABD的周长;(2)若AD=BD,求tan∠ABC的值.18.如图1,△ABC中,D为AC边上一动点(不含端点),过点D作DE∥AB交BC于点E,过点E作EF∥AC交AB于点F,连接AE,DF.点D运动过程中,始终有AE=DF.(1)求证:∠BAC=90°;(2)如图2,若AC=3,tan B=,当AF=AD时,求AD的长.19.如图,在△ABC中,AD是BC边上的高,tan B=cos∠DAC.(1)求证:AC=BD;(2)若sin C=,BC=12,求△ABC的面积.20.已知△ABC,AB=AC,∠BAC=90°,D是AB边上一点,连接CD,E是CD上一点,且∠AED=45°.(1)如图1,若AE=DE,①求证:CD平分∠ACB;②求的值;(2)如图2,连接BE,若AE⊥BE,求tan∠ABE的值.参考答案一.选择题(共12小题)1.解:如图,在AD的下方作Rt△ADT,使得∠ADT=90°,DT=1,连接CT,则AT=,∵==2,∴=,∵∠ADT=∠ABC=90°,∴△ADT∽△ABC,∴∠DAT=∠BAC,=∴∠DAB=∠TAC,∵=,∴△DAB∽△TAC,∴==,∴TC=2,∵CD≤DT+CT,∴CD≤1+2,∴CD的最大值为1+2,故选:B.2.解:如图:作OF⊥AB于F,∵AB=AC,AD平分∠BAC.∴∠ODB=90°.BD=CD=6.∴根据勾股定理得:AD==8.∵BE平分∠ABC.∴OF=OD,BF=BD=6,AF=10﹣6=4.设OD=OF=x,则AO=8﹣x,在Rt△AOF中,根据勾股定理得:(8﹣x)2=x2+42.∴x=3.∴OD=3.在Rt△OBD中,tan∠OBD===.故选:A.3.解:如图,分别作出△ABC底边BC上的高为AD即h1,△PQR底边QR上的高为PE即h2,在Rt△ADC中,h1=AD=5×sin55°,在Rt△PER中,h2=PE=5×sin55°,∴h1=h2,故选:A.4.解:∵CD⊥AB,∴∠CAD+∠DCA=90°,∵∠ACB=∠ACD+∠BCD=90°,∴∠BCD=∠CAD=α,在Rt△BCD中,∵cos∠BCD=,CD=h,∴BC=.故选:B.5.解:法一、如图,在Rt△ABD中,∠ADB=90°,AD=BD=3,∴AB===3,∴cos∠ABC===.故选:B.法二、在Rt△ABD中,∠ADB=90°,AD=BD=3,∴∠ABD=∠BAD=45°,∴cos∠ABC=cos45°=.故选:B.6.解:∵AC2=12+22=5,AB2=22+42=20,BC2=32+42=25,∴AC2+AB2=BC2.∴∠CAB=90°.∴tan∠ABC=.故选:C.7.解:如图所示:∵sin A=,∴BC=sin A×AB,故选项A正确;∵tan A=,∴BC=tan A×AC,故选项B正确;∵tan B=,∴AC=tan B×BC,故选项C正确;∵cos B=,∴BC=cos B×AB≠AC,故选项D错误.故选:D.8.解:∵∠C=90°,∴cos B==,设a=2x,c=3x,∴b==x,∴a:b:c=2x:x:3x=2::3.故选:A.9.解:作CD⊥AB交AB的延长线于点D,当B2C=2时,∵∠A=30°,∠ADC=90°,AC=2,∴CD=,∴AD==3,B2D==1,∴AB2=3﹣1=2,同理可得,AB1=3+1=4,即AB的长为2或4,故选:D.10.解:∵在△ABC中,AB=AC=4,∠C=72°,∴∠ABC=∠C=72°,∠A=180°﹣∠C﹣∠ABC=36°.∵D是AB中点,DE⊥AB,∴AE=BE,AD=BD=AB=2,∴∠ABE=∠A=36°,∴∠BEC=∠A+∠ABE=72°=∠C,∴BE=BC=AE,设BC=AE=x,则CE=AC﹣AE=4﹣x.∵∠ABC=∠BEC,∠C=∠C,∴△ABC∽△BEC,∴=,即=,解得:x1=2﹣2,x2=﹣2﹣2(舍去),∴AE=2﹣2,∴cos A===,故选:C.11.解:∵sin A=,cot B=,∴∠A=30°,∠B=60°,∴∠C=180°﹣30°﹣60°=90°,∴△ABC是直角三角形,故选:D.12.解:当M,N重合时,点P在OM上,如图,过点P作PH⊥BD于H,∵BE是∠CBD的平分线,PN⊥BC,∴PH=PM,∵∠ABC=60°,BD是∠ABC的平分线,∴∠CBD=∠ABC=30°,∴∠BOP=90°﹣30°=60°,∵在Rt△POH中,PO==PH,∴=+1.故选:A.二.填空题(共4小题)13.解:作DE⊥BC,交BC延长线于点E,设CD=x,∵∠CAB=45°,∠CAD=30°,一副直角三角板拼成的四边形ABCD,∴∠ACB=90°,∠ADC=90°,∴∠DCE=30°,∴BC=AC=2x,DE=x,CE=x,∴tan∠DBC===.故答案为:.14.解:延长AC至E,使CE=CD,连接BE,∵∠ACB=90°,∴BC⊥AC,∵CE=CD,∴BC是DE的垂直平分线,∴BD=BE,∴∠E=∠BDE,设∠CBD=α,则∠BAC=2α,∴∠E=∠BDE=90°﹣α,∴∠ABE=180°﹣∠E﹣BAC=180°﹣(90°﹣α)﹣2α=90°﹣α,∴∠E=∠ABE,∴AB=AE,设CD=x,则AD=4x,∴AE=AB=6x,AC=5x,在Rt△ABC中,BC===x,∴tan A==.故答案为:.15.解:在Rt△ABC中,∠C=90°,∴∠A+∠B=90°.∵CD⊥AB,∴∠A+∠ACD=90°.∴∠ACD=∠B.∵sin B=,∴sin∠ACD=.∵sin∠BCD=.∴=.设AD=a,则AC=3a..∵CD=2,∴2.∴a=.∴AC=.故答案为:.16.解:在Rt△ADB中,tan B=,∴=,解得,BD=6,由勾股定理得,AB===2,∴AC===,由勾股定理得,CD===1,如图1,BC=CD+BD=1+6=7,∴△ABC的面积=×BC×AD=×7×2=7,如图2,BC=BD﹣CD=6﹣1=5,∴△ABC的面积=×BC×AD=×5×2=5,∴△ABC的面积为7或5,故答案为:7或5.三.解答题(共4小题)17.解:(1)如图,连接BD,设BC垂直平分线交BC于点F,∴BD=CD,C△ABD=AB+AD+BD=AB+AD+DC=AB+AC,∵AB=CE,∴C△ABD=AC+CE=AE=1,故△ABD的周长为1.(2)设AD=x,∴BD=3x,又∵BD=CD,∴AC=AD+CD=4x,在Rt△ABD中,AB===2.∴tan∠ABC===.18.(1)证明:∵DE∥AB,EF∥AC,∴四边形ADEF是平行四边形.∵AE=DF,∴▱ADEF是矩形.∴∠BAC=90°.(2)解:当AF=AD时,由(1)知,此时四边形ADEF是正方形.方法1,∵DE∥AB,∴∠DEC=∠B,∠EDC=∠BAC=90°.∴tan∠DEC=tan B=.在Rt△DEC中,设DC=3x,则DE=4x.∵四边形ADEF是正方形,∴AD=DE=4x.∴AC=AD+DC=7x=3.∴x=,∴AD=4x=.方法2:在Rt△ABC中,∠BAC=90°,tan B=,AC=3,∴AB=4.∵四边形ADEF是正方形,设AD=DE=x.∵DE∥AB,∴△CED∽△CBA.∴,即,解得x=,∴AD=.19.(1)证明:∵AD是BC边上的高,∴∠ADB=∠ADC=90°,∵tan B=cos∠DAC,∴=,∴BD=AC;(2)解:设AC=BD=x,∴CD=BC﹣BD=12﹣x,∵sin C=,∴cos C=,tan C=,∴=,=,即=,解得:x=,∴CD=12﹣x=,∴AD=CD=×=8,∴△ABC的面积=BC×AD=×12×8=48.20.(1)①证明:∵AE=DE,∴∠ADE=∠DAE,∵∠CAD=90°,∴∠ADC+∠ACD=90°,∠DAE+∠CAE=90°,∴∠CAE=∠ACD,∴EA=EC,∵∠AED=45°=∠CAE+∠ACD,∴∠ACD=22.5°,∵AB=AC,∠BAC=90°,∴∠ACB=45°,∴∠BCD=∠ACD=22.5°,∴CD平分∠ACB.②解:如图1中,过点D作DT⊥BC于T.∵CD平分∠ACB,DT⊥CB,DA⊥CA,∴DA=DT,∵AB=AC,∠BAC=90°,∴∠B=45°,∴BD=DT=AD,∴=.(2)解:如图2中,连接BE,过点C作CT⊥AT交AE的延长线于T.∵AE⊥BE,CT⊥AT,∴∠AEB=∠T=∠BAC=90°,∴∠BAE+∠ABE=90°,∠BAE+∠CAE=90°,∴∠ABE=∠CAT,∵AB=AC,∴△ABE≌△CAT(AAS),∴AE=CT,BE=AT,∵∠AED=∠CET=45°,∠T=90°,∴ET=CT=AE,∴BE=2AE,∴tan∠ABE==。
中考数学模拟试卷精选汇编:解直角三角形附答案
解直角三角形一.选择题1. (2015·北京市朝阳区·一模)如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S在一条直线上,且直线PS与河垂直,在过点S且与PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R.如果QS=60 m,ST=120 m,QR=80 m,则河的宽度PQ为A.40 m B.60 m C.120 m D.180 m答案:C二.填空题1.(2015·江苏江阴青阳片·期中)如图,小红站在水平面上的点A处,测得旗杆BC顶点C的仰角为60°,点A到旗杆的水平距离为a米.若小红的水平视线与地面的距离为b米,则旗杆BC的长为____▲____米。
(用含有a、b的式子表示)第1题答案:b+3a2. (2015·屯溪五中·3月月考)如图,港口A在观测站O的正东方向,OA=4km,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为__________答案:2倍根号23.(2015•山东潍坊广文中学、文华国际学校•一模)如图2,菱形ABCD 的周长为20cm ,且tan ∠ABD =34,则菱形ABCD 的面积为 cm 2. 答案:24;4.(2015·邗江区·初三适应性训练)如图,△ABC 的顶点都在正方形网格的格点上,则cosC 的值为 ▲ .答案:552 第2题 5.(2015·重点高中提前招生数学练习)在某海防观测站的正东方向12海里处有A ,B 两艘船相遇,然后A 船以每小时12海里的速度往南航行,B 船以每小时3海里的速度向北漂移.则经过 小时后,观测站及A ,B 两 船恰成一个直角三角形. 【答案】26.(2015·重点高中提前招生数学练习)已知∠A 为锐角,且4sin 2A -4sinAcosA +cos 2A =0,则tanA = . 【答案】12【解析】由题意得(2sinA -cosA )2=0,∴2sinA -cosA =0,∴sinA cosA =12. ∴tanA =sinA cosA =12.7(2015·网上阅卷适应性测试)小聪有一块含有30°角的直角三角板,他想只利用量角器来测量较短直角边的长度,于是他采用如图的方法,小聪发现点A 处的三角板读数为12cm ,点B 处的量角器的读数为74°,由此可知三角板的较短直角边的长度约为 ▲ cm .(参考数据:sin 37°≈0.6,cos 37°≈0.8,tan 37°≈0.75).答案:98.(2015·山东省东营区实验学校一模)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米、宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出___个这样的停车位.(2≈1.4)答案:17三.解答题1.(2015·江苏江阴长泾片·期中)2015年4月18日潍坊国际风筝节拉开了帷幕,这天小敏同学正在公园广场上放风筝,如图风筝从A处起飞,几分钟后便飞达C处,此时,在AQ延长线上B处的小亮同学,发现自己的位置与风筝和广场边旗杆PQ的顶点P在同一直线上.(1)已知旗杆高为10米,若在B处测得旗杆顶点P的仰角为30°,A处测得点P的仰角为45°,试求A、B之间的距离;(2)在(1)的条件下,若在A处背向旗杆又测得风筝的仰角为75°,绳子在空中视为一条线段,求绳子AC为多少米?(结果保留根号)答案:解:(1)在Rt△BPQ中,PQ=10米,∠B=30°,则BQ= tan60°×PQ=103, ……………2分又在Rt△APQ中,∠PAB=45°,则AQ=tan45°×PQ=10,即:AB=(103+10)(米)……………4分(2)过A作AE⊥BC于E,在Rt△ABE中,∠B=30°,AB=103+10,∴AE=sin30°×AB=12(103+10)=53+5,……………6分∵∠CAD=75°,∠B=30°∴∠C=45°,……………7分在Rt△CAE中,sin45°=AEAC,图8∴AC =2(53+5)=(56+52)(米) ……………9分2.(2015·江苏江阴青阳片·期中)如图,某广场一灯柱AB 被一钢缆CD 固定,CD 与地面成40°夹角,且CB =5米.(1)求钢缆CD 的长度;(精确到0.1米)(2)若AD =2米,灯的顶端E 距离A 处1.6米,且∠EAB =120°,则灯的顶端E 距离地面多少米?(参考数据:tan 400=0.84, sin 400=0.64, cos 400=34)答案:(1)在Rt ⊿BCD 中∵cos 40°=CDBC…………1分 ∴CD =40cos BC =5÷43=320…………3分 (2)∵∠EAF =180°-120°=60° 在Rt ⊿AEF 中 cos 60°=AEAF ∴AF =AE ·cos 60°=1.6·21=0.8…………5分 在Rt ⊿BCD 中 tan 40°=BCBDBD =BC ·tan 40°=5·0.84=4.2…………7分 BF =4.2+2+0.8=7…………8分3.(2015·江苏江阴夏港中学·期中)如图,轮船从点A 处出发,先航行至位于点A 的南偏西15°且点A 相距100km 的点B 处,再航行至位于点B 的北偏东75°且与点B 相距200km 的点C 处.(1)求点C 与点A 的距离(精确到1km ) (2)确定点C 相对于点A 的方向 (参考数据:2≈1.414,3≈1.732)答案:解法1:(1)如答图2,过点A 作AD ⊥BC ,垂足为D .············1分由图得,∠ABC =︒=︒−︒601575.·······························2分在Rt △ABD 中,∵∠ABC =60°,AB =100,∴BD =50,AD =350····················3分 ∵BC =200,∴CD=BC -BD =150.·································4分 ∴在Rt △ABD 中,AC =22CD AD +=3100≈173(km ). 答:点C 与点A 的距离约为173km .························5分(2)在△ABC 中,∵2222)3100(100+=+AC AB =40 000,22200=BC =40 000. ∴222BC AC AB =+,∴︒=∠90BAC .···················7分 ∴︒=︒−︒=∠−∠=∠751590BAF BAC CAF 答:点C 位于点A 的南偏东75°方向.················8分 解法2:(1)如答图3,取BC 的中点D ,连接AD.············ 1分由图得,∠ABC =︒=︒−︒601575···················2分 ∵D 为BC 的中点,BC =200,∴CD=BD =100. 在△ABD 中,∵BD =100,AB =100,∠ABC =60°, ∴△ADB 为等边三角形,··························3分 ∴AD=BD=CD ,∠ADB =60°,∴∠DAC =∠DCA =30°. ∴∠BAC =∠BAD +∠DAC =90°,···················4分 ∴AC =)(km 173310022≈=−AB BC 答:点C 与点A 的距离约为173km .·······················5分 (2)由图得,︒=︒−︒=∠−∠=∠751590BAF BAC CAF答:点C 位于点A 的南偏东75°方向.······························8分4.(2015·江苏江阴要塞片·一模)如图是某地下商业街的入口,数学课外兴趣小组的同学打算运用所学的知识测量侧面支架的最高点E 到地面的距离EF .经测量,支架的立柱BC 与地面垂直,即∠BCA =90°,且BC =1.5m ,点F 、A 、C 在同一条水平线上,斜杆AB 与水平线AC 的夹角∠BAC =30°,支撑杆DE ⊥AB 于点D ,该支架的边BE 与AB 的夹角∠EBD =60°,又测得AD =1m .请你求出该支架的边BE 及顶端E 到地面的距离EF 的长度.答案:解:在Rt △ABC 中,∵∠BAC =30°,BC =1.5m ,∴AB=3m,∵AD=1m,∴BD=2m,·········1分在Rt△EDB中,∵∠EBD=60°,∴∠BED=90°﹣60°=30°,∴EB=2BD=2×2=4m,·········3分过B作BH⊥EF于点H,∴四边形BCFH为矩形,HF=BC= 1.5m,∠HBA=∠BAC=30°,········4分又∵∠HBA=∠BAC=30°,∴∠EBH=∠EBD﹣∠HBD=30°,∴EH=EB=2m,∴EF=EH+HF=2+1.5=3.5(m).········7分答:该支架的边BE为4m,顶端E到地面的距离EF的长度为3.5m.5. (2015·屯溪五中·3月月考)如图,在一笔直的海岸线l上有A,B两个观测站,A在B的正东方向,AB=2(单位:km).有一艘小船在点P处,从A测得小船在北偏西60°的方向,从B测得小船在北偏东45°的方向.(结果都保留根号)(1)求点P到海岸线l的距离;(2)小船从点P处沿射线AP的方向航行一段时间后,到达点C处.此时,从B测得小船在北偏西15°的方向.求点C与点B之间的距离.答案:解:(1)如图,过点P 作PD ⊥AB 于点D .设PD =xkm . 在Rt △PBD 中,∠BDP =90°,∠PBD =90°﹣45°=45°, ∴BD =PD =xkm .在Rt △P AD 中,∠ADP =90°,∠P AD =90°﹣60°=30°, ∴AD =PD =xkm .∵BD +AD =AB , ∴x +x =2, x =﹣1,∴点P 到海岸线l 的距离为(﹣1)km ;(2)如图,过点B 作BF ⊥AC 于点F . 在Rt △ABF 中,∠AFB =90°,∠BAF =30°, ∴BF =AB =1km .在△ABC 中,∠C =180°﹣∠BAC ﹣∠ABC =45°. 在Rt △BCF 中,∠BFC =90°,∠C =45°, ∴BC =BF =km ,∴点C 与点B 之间的距离为km .6. (2015·安徽省蚌埠市经济开发·二摸)合肥新桥国际机场出港大厅有一幅“黄山胜景”的壁画.聪聪站在距壁画水平距离15米的地面,自A 点看壁画上部D 的仰角为045,看壁画下部C的仰角为030,求壁画CD 的高度.3 1.7≈2 1.4≈,精确到十分位)答案:过A 点作AB ⊥DC 于点B ,则AB =15,在Rt ABD ∆中,045DAB ∠=,∴BD =AB =15 ……… 3分 在Rt ABC ∆中,030BAC ∠=, ∴03tan 3015533BC AB ==⨯= ………… 6分 ∴CD =BD -BC =15-53155 1.7 6.5≈−⨯=答:壁画CD 的高度为6.5米 …………… 8分7. (2015·安庆·一摸)为维护南海主权,我海军舰艇加强对南海海域的巡航.2015年4月10日上午9时,我海巡001号舰艇在观察点A 处观测到其正东方向802海里处有一灯塔S ,该舰艇沿南偏东450的方向航行,11时到达观察点B ,测得灯塔S 位于其北偏西150方向,求该舰艇的巡航速度?(结果保留整数)(参考数据:73.13,41.12≈≈)答案:解:过点S 作SC ⊥AB ,C 为垂足.在Rt △ACS 中,∠CAS =450,AS =802,∴SC =AC =80;………3分在Rt △BCS 中,∠CBC =450-150=300,∴BC =803,AB =AC +BC =80+803;………6分∴该舰艇的巡航速度是(80+803)÷(11-9)=40+403≈109(海里/时)…………8分8. (2015·屯溪五中·3月月考)如图,在△ABC 中,AB =AC =5,BC =8.若∠BPC =∠BAC ,求tan ∠BPC 的值。
2019年中考数学专题复习解直角三角形训练无答案鲁教版
2018中考专题复习解直角三角形1.我国为了维护队钓鱼岛P的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同(AP∥BD),当轮船航行到距钓鱼岛20km的A处时,飞机在B处测得轮船的俯角是45°;当轮船航行到C处时,飞机在轮船正上方的E处,此时EC=5km.轮船到达钓鱼岛P时,测得D处的飞机的仰角为30°.试求飞机的飞行距离BD(结果保留根号).2.钓鱼岛自古以来就是中国的神圣领土,为宣誓主权,我海监船编队奉命在钓鱼岛附近海域进行维权活动,如图,一艘海监船以30海里/小时的速度向正北方向航行,海监船在A处时,测得钓鱼岛C在该船的北偏东30°方向上,航行半小时后,该船到达点B处,发现此时钓鱼岛C与该船距离最短.(1)请在图中作出该船在点B处的位置;(2)求钓鱼岛C到B处距离(结果保留根号)3.四川雅安发生里氏7.0级地震,救援队救援时,利用生命探测仪在某建筑物废墟下方探测到点C 处有生命迹象,已知废墟一侧地面上两探测点A、B相距4米,探测线与地面的夹角分别为30°和60°,如图所示,试确定生命所在点C的深度(结果精确到0.1米,参考数据≈1.41,≈1.73)4.如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.5°,∠PBA=26.5.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A,B为参照点,结果精确到0.1米)(参考数据:sin38.5°=0.62,cos38.5°=0.78,tan38.5°=0.80,sin26.5°=0.45,cos26.5°=0.89,tan26.5°=0.50)5.如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树的正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为3米,台阶AC的坡度为1:(即AB:BC=1:),且B、C、E三点在同一条直线上.请根据以上条件求出树DE 的高度(侧倾器的高度忽略不计).6.钓鱼岛自古以来就是我国的神圣领土,为维护国家主权和海洋权利,我国海监和渔政部门对钓鱼岛海域实现了常态化巡航管理.如图,某日在我国钓鱼岛附近海域有两艘自西向东航行的海监船A、B,B船在A船的正东方向,且两船保持20海里的距离,某一时刻两海监船同时测得在A的东北方向,B的北偏东15°方向有一我国渔政执法船C,求此时船C与船B的距离是多少.(结果保留根号)7.在东西方向的海岸线l上有一长为1km的码头MN(如图),在码头西端M的正西19.5km处有一观察站A.某时刻测得一艘匀速直线航行的轮船位于A的北偏西30°,且与A相距40km的B处;经过1小时。
鲁教解直角三角形测试题
我认真观看了这节课,感触颇多,这节课教学环节时间分配较合理,教师引导及时恰当。
教师教学思路清晰,教学重点突出,教师由浅入深、轻松愉悦地完成了教学目标。
教师亲切的表情、流畅的语言、课件的精心准备等等方面都为学生引领提供了一个轻松和谐的学习环境。
着重通过比一比、想一想、试一试等活动来让学生主动探究解二元一次方程组的方法,掌握了加减法解二元一次方程组,同时又培养了学生积极参与、团结合作、主动探究的精神。
我认为这是一堂充满生命活力的课堂能促进学生全面发展的课堂,体现新课标理念的课堂。
由新课开始,让学生体会转化思想。
然后,让学生通过问题列出二元一次方程组,看能不能把他转化为学过的一元一次方程,从而解决问题。
最后老师又让学生动脑看能不能用学过的知识解决问题。
整个操作过程层次分明,通过比比谁做得快、合作学习、小试牛刀、议一议等环节调动学生动脑、动口,人人参与学习过程,理念概念、表述数理有机地结合起来。
让学生既学得高兴又充分理解知识,形象直观地得出解二元一次方程组的方法。
培养学生获取知识的能力、观察能力和操作能力。
总体来说本节课突出以下几点:教学目标明确、具体、可观测、可操作、可评价,体现三维目标整体要求;重点、难点处理符合学生认知规律;情境与活动设计指向问题解决教学环节相对完整、过程流畅、结构清晰;课堂容量适当,时间布局合理。
教学组织形式多样,方法有效,引导学生自主、合作、探究学习;反馈和评价及时恰当。
面向全体、注重差异,学生参与面广;突出学生主体性和教学互动性。
熟练、合理地应用信息技术手段;应用信息技术支持学生学习、课堂交流和教学评价;应用数字资源改变教学内容呈现方式,帮助学生理解、掌握和应用知识。
使用普通话,语言准确、生动、富有激情和启迪性,教态亲切和蔼。
在教学策略、方法、手段上有独到之处、有亮点。
学生学习兴趣浓厚,积极主动,参与度高,在学习活动中获得良好体验,课堂气氛活跃有序,完成本节课既定的教学目标,使不同层次的学生都能基本掌握本节课所学知识,并各有收获,能推动学生在学科思维、实践能力和情感态度等某一方面得到有效发展,加强学科知识与生活联系,引导学生解决现实生活中的实际问题,晒课界面组织合理、信息完整、语言规范;课件运行正常,链接准确;视频拍摄内按容完整、画面清晰声画同步。
初中数学 初四数学解直角三角形检测
解直角三角形一、选择题2. (2014•浙江杭州,第10题,3分)已知AD ∥BC ,AB ⊥AD ,点E ,点F 分别在射线AD ,射线BC 上.若点E 与点B 关于AC 对称,点E 与点F 关于BD 对称,AC 与BD 相交于点G ,则( )二、填空题2. (2014•山东潍坊,第17题3分)如图,某水平地面上建筑物的高度为AB ,在点D 和点F处分别竖立高是2米的CD 和EF ,两标杆相隔52米,并且建筑物AB 、标杆CD 和EF 在同一竖直平面内,从标杆CD 后退2米到点G 处,在G 处测得建筑物顶端A 和标杆顶端C 在同一条直线上;从标杆FE 后退4米到点H 处,在H 处测得建筑物顶端A 和标杆顶端E 在同一条直线上,则建筑物的高是 米.4.(2014•四川内江,第23题,6分)如图,∠AOB=30°,OP 平分∠AOB ,PC ⊥OB 于点C .若OC=2,则PC 的长是.三、解答题2. (2014•山东枣庄,第21题8分)如图,一扇窗户垂直打开,即OM ⊥OP ,AC 是长度不变的滑动支架,其中一端固定在窗户的点A 处,另一端在OP 上滑动,将窗户OM 按图示方向想内旋转35°到达ON 位置,此时,点A 、C 的对应位置分别是点B 、D .测量出∠ODB 为25°,点D到点O的距离为30cm .(1)求B 点到OP 的距离;(2)求滑动支架的长.(结果精确到1cm .参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)3. (2014•山东潍坊,第21题10分)如图,某海域有两个海拔均为200米的海岛A 和海岛B ,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C 处时测得正前方一海岛顶端A 的俯角是450,然后:沿平行于AB 的方向水平飞行1.99×104米到达点D 处,在D 处测得正前方另一海岛顶端B 的俯角是600,求两海岛间的距离AB .4. (2014•山东烟台,第21题7分)小明坐于堤边垂钓,如图,河堤AC 的坡角为30°,AC 长米,钓竿AO 的倾斜角是60°,其长为3米,若AO 与钓鱼线OB 的夹角为60°,求浮漂B 与河堤下端C 之间的距离.5.(2014•湖南怀化,第21题,10分)两个城镇A 、B 与两条公路ME ,MF 位置如图所示,其中ME 是东西方向的公路.现电信部门需在C 处修建一座信号发射塔,要求发射塔到两个城镇A 、B 的距离必须相等,到两条公路ME ,MF 的距离也必须相等,且在∠FME 的内部(1)那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)(2)设AB的垂直平分线交ME于点N,且MN=2(+1)km,在M处测得点C位于点M的北偏东60°方向,在N处测得点C位于点N的北偏西45°方向,求点C到公路ME的距离.7. (2014•江西抚州,第21题,9分)如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2.晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化.已知每个菱形边长均等于20cm ,且AH DE EG===20cm .⑴当∠CED=60°时,求C、D两点间的距离;⑵当∠CED由60°变为120°时,点A向左移动了多少cm ?(结果精确到0.1cm)⑶设DG x=cm ,当∠CED的变化范围为60°~ 120°(包括端点值)时,求x的取值范围 .(结果精确到0.1cm)(.≈1732,可使用科学计算器)9.(2014年贵州黔东南)黔东南州22.(10分)某校九年级某班开展数学活动,小明和小军合作用一副三角板测量学校的旗杆,小明站在B点测得旗杆顶端E点的仰角为45°,小军站在点D测得旗杆顶端E点的仰角为30°,已知小明和小军相距(BD)6米,小明的身高(AB)1.5米,小军的身高(CD)1.75米,求旗杆的高EF的长.(结果精确到0.1,参考数据:≈1.41,≈1.73)10.(2014•遵义21.(8分))如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)14. (2014•江苏徐州,第25题8分)如图,轮船从点A处出发,先航行至位于点A的南偏西15°且点A相距100km的点B处,再航行至位于点A的南偏东75°且与点B相距200km的点C处.(1)求点C与点A的距离(精确到1km);(2)确定点C相对于点A的方向.(参考数据:≈1.414,≈1.732)18.(2014•四川泸州,第22题,8分)海中两个灯塔A、B,其中B位于A的正东方向上,渔船跟踪鱼群由西向东航行,在点C处测得灯塔A在西北方向上,灯塔B在北偏东30°方向上,渔船不改变航向继续向东航行30海里到达点D,这是测得灯塔A在北偏西60°方向上,求灯塔A、B间的距离.(计算结果用根号表示,不取近似值)图1图2。
鲁美版五四制九年级数学上册-解直角三角形测试题
【章节训练】1.3解直角三角形-1【章节训练】1.3 解直角三角形-1一、选择题(共7小题)1.(2013•绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A.cm B.cmC.cmD.cm2.(2013•河池)如图,⊙O的弦AB垂直半径OC于点D,∠CBA=30°,OC=3cm,则弦AB的长为()A.9cm B.3cm C.cm D.cm3.(2013•聊城)河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为()A.12米B.4米C.5米D.6米4.(2013•宁夏)如图是某水库大坝横断面示意图.其中AB、CD分别表示水库上下底面的水平线,∠ABC=120°,BC的长是50m,则水库大坝的高度h是()A.25m B.25m C.25m D.m5.(2013•绵阳)如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底点G为BC的中点,则矮建筑物的高CD为()A.20米B.米C.米D.米6.(2013•衢州)如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为()(结果精确到0.1m,≈1.73).A.3.5m B.3.6m C.4.3m D.5.1m7.(2010•攀枝花)如图所示,已知AD是等腰△ABC底边上的高,且tan∠B=,AC上有一点E,满足AE:CE=2:3,则tan∠ADE的值是()A.B.C.D.二、填空题(共6小题)(除非特别说明,请填准确值)8.(2013•十堰)如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为_________ 米.9.(2013•攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=,BE=4,则tan∠DBE的值是_________ .10.(2013•宁德)如图,在距离树底部10米的A处,用仪器测得大树顶端C的仰角∠BAC=50°,则这棵树的高度BC是_________ 米(结果精确到0.1米).11.(2013•齐齐哈尔)请运用你喜欢的方法求tan75°= _________ .12.(2013•陕西)如图,四边形ABCD的对角线AC,BD相交于点O,且BD平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD的面积为_________ .(结果保留根号)13.(2013•牡丹江)如图,AC是操场上直立的一个旗杆,从旗杆上的B点到地面C涂着红色的油漆,用测角仪测得地面上的D点到B点的仰角是∠BDC=45°,到A点的仰角是∠ADC=60°(测角仪的高度忽略不计)如果BC=3米,那么旗杆的高度AC= _________ 米.【章节训练】1.3 解直角三角形-1参考答案与试题解析一、选择题(共7小题)1.(2013•绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=()A.cm B.cmC.cmD.cm考点:菱形的性质;勾股定理;解直角三角形.分析:先求出菱形的边长,然后利用面积的两种表示方法求出DH,在Rt△DHB中求出BH,然后得出AH,利用tan ∠HAG的值,可得出GH的值.解答:解:∵四边形ABCD是菱形,对角线AC=8cm,BD=6cm,∴AO=4cm,BO=3cm,在Rt△AOB中,AB==5cm,∵BD×AC=AB×DH,∴DH=cm,在Rt△DHB中,BH==cm,则AH=AB﹣BH=cm,∵tan∠HAG===,∴GH=AH=cm.故选B.点评:本题考查了菱形的性质、解直角三角形及三角函数值的知识,注意菱形的面积等于对角线乘积的一半,也等于底乘高.2.(2013•河池)如图,⊙O的弦AB垂直半径OC于点D,∠CBA=30°,OC=3cm,则弦AB的长为()A.9cm B.3cm C.cm D.cm考点:垂径定理;圆周角定理;解直角三角形.分析:根据圆周角定理求出∠AOD,求出∠OAD,根据含30度角的直角三角形性质和勾股定理求出AD、OD,根据垂径定理即可求出AB.解答:解:∵∠CBA=30°,∴∠AOC=2∠CBA=60°,∵AB⊥OC,∴∠ADO=90°,∴∠OAD=30°,∴OD=OA=×3=(cm),由勾股定理得:AD==4.5cm,∵AB⊥OC,OC过O,∴AB=2AD=9(cm),故选A.点评:本题考查了垂径定理,含30度角的直角三角形性质,圆周角定理,勾股定理的应用,主要考查学生的推理和计算能力.3.(2013•聊城)河堤横断面如图所示,堤高BC=6米,迎水坡AB的坡比为1:,则AB的长为()A.12米B.4米C.5米D.6米考点:解直角三角形的应用-坡度坡角问题.分析:根据迎水坡AB的坡比为1:,可得=1:,即可求得AC的长度,然后根据勾股定理求得AB的长度.解答:解:Rt△ABC中,BC=6米,=1:,∴则AC=BC×=6,∴AB===12.故选A.点评:此题主要考查解直角三角形的应用,构造直角三角形解直角三角形并且熟练运用勾股定理是解答本题的关键.4.(2013•宁夏)如图是某水库大坝横断面示意图.其中AB、CD分别表示水库上下底面的水平线,∠ABC=120°,BC的长是50m,则水库大坝的高度h是()A.25m B.25m C.25m D.m考点:解直角三角形的应用-坡度坡角问题.分析:首先过点C作CE⊥AB于点E,易得∠CBE=60°,在Rt△CBE中,BC=50m,利用正弦函数,即可求得答案.解答:解:过点C作CE⊥AB于点E,∵∠ABC=120°,∴∠CBE=60°,在Rt△CBE中,BC=50m,∴CE=BC•sin60°=25(m).故选A.点评:此题考查了坡度坡角问题.注意能构造直角三角形,并利用解直角三角形的知识求解是解此题的关键.5.(2013•绵阳)如图,在两建筑物之间有一旗杆,高15米,从A点经过旗杆顶点恰好看到矮建筑物的墙角C点,且俯角α为60°,又从A点测得D点的俯角β为30°,若旗杆底点G为BC的中点,则矮建筑物的高CD为()A.20米B.米C.米D.米考点:解直角三角形的应用-仰角俯角问题.分析:根据点G是BC中点,可判断EG是△ABC的中位线,求出AB,在Rt△ABC中求出BC,在Rt△AFD中求出DF,继而可求出CD的长度.解答:解:∵点G是BC中点,EG∥AB,∴EG是△ABC的中位线,∴AB=2EG=30米,在Rt△ABC中,∠CAB=30°,则BC=ABtan∠BAC=30×=10米.如图,过点D作DF⊥AF于点F.在Rt△AFD中,AF=BC=10米,则FD=AF•tanβ=10×=10米,综上可得:CD=AB﹣FD=30﹣10=20米.故选A.点评:本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数的知识求解相关线段的长度.6.(2013•衢州)如图,小敏同学想测量一棵大树的高度.她站在B处仰望树顶,测得仰角为30°,再往大树的方向前进4m,测得仰角为60°,已知小敏同学身高(AB)为1.6m,则这棵树的高度为()(结果精确到0.1m,≈1.73).A.3.5m B.3.6m C.4.3m D.5.1m考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:设CD=x,在Rt△ACD中求出AD,在Rt△CED中求出ED,再由AE=4m,可求出x的值,再由树高=CD+FD即可得出答案.解答:解:设CD=x,在Rt△ACD中,CD=x,∠CAD=30°,则tan30°=CD:AD=x:AD故AD=x,在Rt△CED中,CD=x,∠CED=60°,则tan60°=CD:ED=x:ED故ED=x,由题意得,AD﹣ED=x﹣x=4,解得:x=2,则这棵树的高度=2+1.6≈5.1m.故选D.点评:本题考查了解直角三角形的应用,解答本题关键是构造直角三角形,利用三角函数的知识表示出相关线段的长度.7.(2010•攀枝花)如图所示,已知AD是等腰△ABC底边上的高,且tan∠B=,AC上有一点E,满足AE:CE=2:3,则tan∠ADE的值是()A.B.C.D.考点:解直角三角形.专题:压轴题.分析:过E点作CD的平行线交AD于F,设AE=2a,则CE=3a.tan∠C=,EF和DF分别可用a的代数式来表达,即可得出tan∠ADE的值.解答:解:过E点作CD的平行线交AD于F.如图:∵AD是等腰△ABC底边上的高,tan∠B=,∴EF⊥AD,tan∠C=.设AE=2a,∵AE:CE=2:3,∴CE=3a,AC=5a.∵tan∠C=,∴sin∠C=,cos∠C=.在直角△ADC中,AD=ACsin∠C=5a×=3a.在直角△AFE中,AF=AE×sin∠AEF=AE×sin∠C=2a×=.EF=AE×cos∠AEF=AE×cos∠C=2a×=.在直角△DFE中,tan∠ADE=.故选B.点评:考查等腰三角形的性质和三角函数的性质.二、填空题(共6小题)(除非特别说明,请填准确值)8.(2013•十堰)如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为750米.考点:解直角三角形的应用-仰角俯角问题.专题:压轴题.分析:作AD⊥BC于D,根据速度和时间先求得AC的长,在Rt△ACD中,求得∠ACD的度数,再求得AD的长度,然后根据∠B=30°求出AB的长.解答:解:如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°﹣30°=45°,AC=30×25=750(米),∴AD=AC•sin45°=375(米).在Rt△ABD中,∵∠B=30°,∴AB=2AD=750(米).故答案为:750.点评:本题考查了解直角三角形的应用,解答本题的关键是根据仰角和俯角构造直角三角形并解直角三角形,难度适中.9.(2013•攀枝花)如图,在菱形ABCD中,DE⊥AB于点E,cosA=,BE=4,则tan∠DBE的值是 2 .考点:菱形的性质;解直角三角形.分析:求出AD=AB,设AD=AB=5x,AE=3x,则5x﹣3x=4,求出x,得出AD=10,AE=6,在Rt△ADE中,由勾股定理求出DE=8,在Rt△BDE中得出tan∠DBE=,代入求出即可,解答:解:∵四边形ABCD是菱形,∴AD=AB,∵cosA=,BE=4,DE⊥AB,∴设AD=AB=5x,AE=3x,则5x﹣3x=4,x=2,即AD=10,AE=6,在Rt△ADE中,由勾股定理得:DE==8,在Rt△BDE中,tan∠DBE===2,故答案为:2.点评:本题考查了菱形的性质,勾股定理,解直角三角形的应用,关键是求出DE的长.10.(2013•宁德)如图,在距离树底部10米的A处,用仪器测得大树顶端C的仰角∠BAC=50°,则这棵树的高度BC是11.9 米(结果精确到0.1米).考点:解直角三角形的应用-仰角俯角问题.分析:根据已知得出tan50°=,进而求出大树的高BC即可.解答:解:∵由A点测得大树BC的顶端C的仰角为60°,A点到大树的距离AB=10m,∴∠BAC=50°,∴tan50°=,∴BC=10tan50°≈10×1.192=11.92≈11.9米.故答案为:11.9.点评:此题考查了解直角三角形的应用,利用仰角的定义,利用直角三角形并结合图形利用三角函数解直角三角形是解题关键.11.(2013•齐齐哈尔)请运用你喜欢的方法求tan75°= 2+.考点:解直角三角形.专题:计算题.分析:先作△BCD,使∠C=90°,∠DBC=30°,延长CB到A,使AB=BD,连接AD,得出∠ADC=75°,设CD=x,用含x的代数式表示出AB、BD、BC,进一步表示出AC.根据tan∠ADC=tan75°=AC:CD求解.解答:解:如图,作△BCD,使∠C=90°,∠DBC=30°,延长CB到A,使AB=BD,连接AD.∵AB=BD,∴∠A=∠ADB.∵∠DBC=30°=2∠A,∴∠A=15°,∠ADC=75°.设CD=x,∴AB=BD=2CD=2x,BC=CD=x,∴AC=AB+BC=(2+)x,∴tan∠ADC=tan75°=AC:CD=2+.故答案为2+.点评:此题考查了解直角三角形的知识,解题的关键是作出含75°角的直角三角形,然后在直角三角形中求解,要求学生有较强逻辑推理能力和运算能力.12.(2013•陕西)如图,四边形ABCD的对角线AC,BD相交于点O,且BD平分AC.若BD=8,AC=6,∠BOC=120°,则四边形ABCD的面积为12.(结果保留根号)考点:解直角三角形.分析:如图,过点E作AE⊥BD于点E,过点C作CF⊥BD于点F.则通过解直角△AEO和直角△CFO求得AE=CF=,所以易求四边形ABCD的面积.解答:解:如图,过点E作AE⊥BD于点E,过点C作CF⊥BD于点F.∵BD平分AC,AC=6,∴AO=CO=3.∵∠BOC=120°,∴∠AOE=60°,∴AE=AO•sin60°=.同理求得CF=,∴S四边形ABCD=S△ABD+S△CBD=BD•AE+BD•CF=2×××8=12.故答案是:12.点评:本题考查了解直角三角形,三角形的面积的计算.求图中相关线段的长度时,也可以根据勾股定理进行解答.13.(2013•牡丹江)如图,AC是操场上直立的一个旗杆,从旗杆上的B点到地面C涂着红色的油漆,用测角仪测得地面上的D点到B点的仰角是∠BDC=45°,到A点的仰角是∠ADC=60°(测角仪的高度忽略不计)如果BC=3米,那么旗杆的高度AC= 3米.考点:解直角三角形的应用-仰角俯角问题.专题:应用题.分析:在Rt△BDC中,根据∠BDC=45°,求出DC=BC=3米,在Rt△ADC中,根据∠ADC=60°即可求出AC的高度.解答:解:在Rt△BDC中,∵∠BDC=45°,∴DC=BC=3米,在Rt△ADC中,∵∠ADC=60°,∴AC=DCtan60°=3×=3(米).故答案为:3.点评:本题考查了解直角三角形的应用,解题的关键是根据仰角构造直角三角形,解直角三角形,难度一般.初中数学试卷。